ARM: cpu topology: Add debugfs interface for cpu_power
[cmplus.git] / mm / nommu.c
blob5ff9b35883ee0a3a07310dda39dad20fc758dc8a
1 /*
2 * linux/mm/nommu.c
4 * Replacement code for mm functions to support CPU's that don't
5 * have any form of memory management unit (thus no virtual memory).
7 * See Documentation/nommu-mmap.txt
9 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
10 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com>
13 * Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
16 #include <linux/module.h>
17 #include <linux/mm.h>
18 #include <linux/mman.h>
19 #include <linux/swap.h>
20 #include <linux/file.h>
21 #include <linux/highmem.h>
22 #include <linux/pagemap.h>
23 #include <linux/slab.h>
24 #include <linux/vmalloc.h>
25 #include <linux/tracehook.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mount.h>
29 #include <linux/personality.h>
30 #include <linux/security.h>
31 #include <linux/syscalls.h>
32 #include <linux/audit.h>
34 #include <asm/uaccess.h>
35 #include <asm/tlb.h>
36 #include <asm/tlbflush.h>
37 #include <asm/mmu_context.h>
38 #include "internal.h"
40 #if 0
41 #define kenter(FMT, ...) \
42 printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
43 #define kleave(FMT, ...) \
44 printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
45 #define kdebug(FMT, ...) \
46 printk(KERN_DEBUG "xxx" FMT"yyy\n", ##__VA_ARGS__)
47 #else
48 #define kenter(FMT, ...) \
49 no_printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
50 #define kleave(FMT, ...) \
51 no_printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
52 #define kdebug(FMT, ...) \
53 no_printk(KERN_DEBUG FMT"\n", ##__VA_ARGS__)
54 #endif
56 void *high_memory;
57 struct page *mem_map;
58 unsigned long max_mapnr;
59 unsigned long num_physpages;
60 unsigned long highest_memmap_pfn;
61 struct percpu_counter vm_committed_as;
62 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */
63 int sysctl_overcommit_ratio = 50; /* default is 50% */
64 int sysctl_max_map_count = DEFAULT_MAX_MAP_COUNT;
65 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
66 int heap_stack_gap = 0;
68 atomic_long_t mmap_pages_allocated;
70 EXPORT_SYMBOL(mem_map);
71 EXPORT_SYMBOL(num_physpages);
73 /* list of mapped, potentially shareable regions */
74 static struct kmem_cache *vm_region_jar;
75 struct rb_root nommu_region_tree = RB_ROOT;
76 DECLARE_RWSEM(nommu_region_sem);
78 const struct vm_operations_struct generic_file_vm_ops = {
82 * Return the total memory allocated for this pointer, not
83 * just what the caller asked for.
85 * Doesn't have to be accurate, i.e. may have races.
87 unsigned int kobjsize(const void *objp)
89 struct page *page;
92 * If the object we have should not have ksize performed on it,
93 * return size of 0
95 if (!objp || !virt_addr_valid(objp))
96 return 0;
98 page = virt_to_head_page(objp);
101 * If the allocator sets PageSlab, we know the pointer came from
102 * kmalloc().
104 if (PageSlab(page))
105 return ksize(objp);
108 * If it's not a compound page, see if we have a matching VMA
109 * region. This test is intentionally done in reverse order,
110 * so if there's no VMA, we still fall through and hand back
111 * PAGE_SIZE for 0-order pages.
113 if (!PageCompound(page)) {
114 struct vm_area_struct *vma;
116 vma = find_vma(current->mm, (unsigned long)objp);
117 if (vma)
118 return vma->vm_end - vma->vm_start;
122 * The ksize() function is only guaranteed to work for pointers
123 * returned by kmalloc(). So handle arbitrary pointers here.
125 return PAGE_SIZE << compound_order(page);
128 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
129 unsigned long start, int nr_pages, unsigned int foll_flags,
130 struct page **pages, struct vm_area_struct **vmas,
131 int *retry)
133 struct vm_area_struct *vma;
134 unsigned long vm_flags;
135 int i;
137 /* calculate required read or write permissions.
138 * If FOLL_FORCE is set, we only require the "MAY" flags.
140 vm_flags = (foll_flags & FOLL_WRITE) ?
141 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
142 vm_flags &= (foll_flags & FOLL_FORCE) ?
143 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
145 for (i = 0; i < nr_pages; i++) {
146 vma = find_vma(mm, start);
147 if (!vma)
148 goto finish_or_fault;
150 /* protect what we can, including chardevs */
151 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
152 !(vm_flags & vma->vm_flags))
153 goto finish_or_fault;
155 if (pages) {
156 pages[i] = virt_to_page(start);
157 if (pages[i])
158 page_cache_get(pages[i]);
160 if (vmas)
161 vmas[i] = vma;
162 start = (start + PAGE_SIZE) & PAGE_MASK;
165 return i;
167 finish_or_fault:
168 return i ? : -EFAULT;
172 * get a list of pages in an address range belonging to the specified process
173 * and indicate the VMA that covers each page
174 * - this is potentially dodgy as we may end incrementing the page count of a
175 * slab page or a secondary page from a compound page
176 * - don't permit access to VMAs that don't support it, such as I/O mappings
178 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
179 unsigned long start, int nr_pages, int write, int force,
180 struct page **pages, struct vm_area_struct **vmas)
182 int flags = 0;
184 if (write)
185 flags |= FOLL_WRITE;
186 if (force)
187 flags |= FOLL_FORCE;
189 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
190 NULL);
192 EXPORT_SYMBOL(get_user_pages);
195 * follow_pfn - look up PFN at a user virtual address
196 * @vma: memory mapping
197 * @address: user virtual address
198 * @pfn: location to store found PFN
200 * Only IO mappings and raw PFN mappings are allowed.
202 * Returns zero and the pfn at @pfn on success, -ve otherwise.
204 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
205 unsigned long *pfn)
207 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
208 return -EINVAL;
210 *pfn = address >> PAGE_SHIFT;
211 return 0;
213 EXPORT_SYMBOL(follow_pfn);
215 DEFINE_RWLOCK(vmlist_lock);
216 struct vm_struct *vmlist;
218 void vfree(const void *addr)
220 kfree(addr);
222 EXPORT_SYMBOL(vfree);
224 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
227 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
228 * returns only a logical address.
230 return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
232 EXPORT_SYMBOL(__vmalloc);
234 void *vmalloc_user(unsigned long size)
236 void *ret;
238 ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
239 PAGE_KERNEL);
240 if (ret) {
241 struct vm_area_struct *vma;
243 down_write(&current->mm->mmap_sem);
244 vma = find_vma(current->mm, (unsigned long)ret);
245 if (vma)
246 vma->vm_flags |= VM_USERMAP;
247 up_write(&current->mm->mmap_sem);
250 return ret;
252 EXPORT_SYMBOL(vmalloc_user);
254 struct page *vmalloc_to_page(const void *addr)
256 return virt_to_page(addr);
258 EXPORT_SYMBOL(vmalloc_to_page);
260 unsigned long vmalloc_to_pfn(const void *addr)
262 return page_to_pfn(virt_to_page(addr));
264 EXPORT_SYMBOL(vmalloc_to_pfn);
266 long vread(char *buf, char *addr, unsigned long count)
268 memcpy(buf, addr, count);
269 return count;
272 long vwrite(char *buf, char *addr, unsigned long count)
274 /* Don't allow overflow */
275 if ((unsigned long) addr + count < count)
276 count = -(unsigned long) addr;
278 memcpy(addr, buf, count);
279 return(count);
283 * vmalloc - allocate virtually continguos memory
285 * @size: allocation size
287 * Allocate enough pages to cover @size from the page level
288 * allocator and map them into continguos kernel virtual space.
290 * For tight control over page level allocator and protection flags
291 * use __vmalloc() instead.
293 void *vmalloc(unsigned long size)
295 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
297 EXPORT_SYMBOL(vmalloc);
300 * vzalloc - allocate virtually continguos memory with zero fill
302 * @size: allocation size
304 * Allocate enough pages to cover @size from the page level
305 * allocator and map them into continguos kernel virtual space.
306 * The memory allocated is set to zero.
308 * For tight control over page level allocator and protection flags
309 * use __vmalloc() instead.
311 void *vzalloc(unsigned long size)
313 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
314 PAGE_KERNEL);
316 EXPORT_SYMBOL(vzalloc);
319 * vmalloc_node - allocate memory on a specific node
320 * @size: allocation size
321 * @node: numa node
323 * Allocate enough pages to cover @size from the page level
324 * allocator and map them into contiguous kernel virtual space.
326 * For tight control over page level allocator and protection flags
327 * use __vmalloc() instead.
329 void *vmalloc_node(unsigned long size, int node)
331 return vmalloc(size);
333 EXPORT_SYMBOL(vmalloc_node);
336 * vzalloc_node - allocate memory on a specific node with zero fill
337 * @size: allocation size
338 * @node: numa node
340 * Allocate enough pages to cover @size from the page level
341 * allocator and map them into contiguous kernel virtual space.
342 * The memory allocated is set to zero.
344 * For tight control over page level allocator and protection flags
345 * use __vmalloc() instead.
347 void *vzalloc_node(unsigned long size, int node)
349 return vzalloc(size);
351 EXPORT_SYMBOL(vzalloc_node);
353 #ifndef PAGE_KERNEL_EXEC
354 # define PAGE_KERNEL_EXEC PAGE_KERNEL
355 #endif
358 * vmalloc_exec - allocate virtually contiguous, executable memory
359 * @size: allocation size
361 * Kernel-internal function to allocate enough pages to cover @size
362 * the page level allocator and map them into contiguous and
363 * executable kernel virtual space.
365 * For tight control over page level allocator and protection flags
366 * use __vmalloc() instead.
369 void *vmalloc_exec(unsigned long size)
371 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
375 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
376 * @size: allocation size
378 * Allocate enough 32bit PA addressable pages to cover @size from the
379 * page level allocator and map them into continguos kernel virtual space.
381 void *vmalloc_32(unsigned long size)
383 return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
385 EXPORT_SYMBOL(vmalloc_32);
388 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
389 * @size: allocation size
391 * The resulting memory area is 32bit addressable and zeroed so it can be
392 * mapped to userspace without leaking data.
394 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
395 * remap_vmalloc_range() are permissible.
397 void *vmalloc_32_user(unsigned long size)
400 * We'll have to sort out the ZONE_DMA bits for 64-bit,
401 * but for now this can simply use vmalloc_user() directly.
403 return vmalloc_user(size);
405 EXPORT_SYMBOL(vmalloc_32_user);
407 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
409 BUG();
410 return NULL;
412 EXPORT_SYMBOL(vmap);
414 void vunmap(const void *addr)
416 BUG();
418 EXPORT_SYMBOL(vunmap);
420 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
422 BUG();
423 return NULL;
425 EXPORT_SYMBOL(vm_map_ram);
427 void vm_unmap_ram(const void *mem, unsigned int count)
429 BUG();
431 EXPORT_SYMBOL(vm_unmap_ram);
433 void vm_unmap_aliases(void)
436 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
439 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
440 * have one.
442 void __attribute__((weak)) vmalloc_sync_all(void)
447 * alloc_vm_area - allocate a range of kernel address space
448 * @size: size of the area
450 * Returns: NULL on failure, vm_struct on success
452 * This function reserves a range of kernel address space, and
453 * allocates pagetables to map that range. No actual mappings
454 * are created. If the kernel address space is not shared
455 * between processes, it syncs the pagetable across all
456 * processes.
458 struct vm_struct *alloc_vm_area(size_t size)
460 BUG();
461 return NULL;
463 EXPORT_SYMBOL_GPL(alloc_vm_area);
465 void free_vm_area(struct vm_struct *area)
467 BUG();
469 EXPORT_SYMBOL_GPL(free_vm_area);
471 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
472 struct page *page)
474 return -EINVAL;
476 EXPORT_SYMBOL(vm_insert_page);
479 * sys_brk() for the most part doesn't need the global kernel
480 * lock, except when an application is doing something nasty
481 * like trying to un-brk an area that has already been mapped
482 * to a regular file. in this case, the unmapping will need
483 * to invoke file system routines that need the global lock.
485 SYSCALL_DEFINE1(brk, unsigned long, brk)
487 struct mm_struct *mm = current->mm;
489 if (brk < mm->start_brk || brk > mm->context.end_brk)
490 return mm->brk;
492 if (mm->brk == brk)
493 return mm->brk;
496 * Always allow shrinking brk
498 if (brk <= mm->brk) {
499 mm->brk = brk;
500 return brk;
504 * Ok, looks good - let it rip.
506 flush_icache_range(mm->brk, brk);
507 return mm->brk = brk;
511 * initialise the VMA and region record slabs
513 void __init mmap_init(void)
515 int ret;
517 ret = percpu_counter_init(&vm_committed_as, 0);
518 VM_BUG_ON(ret);
519 vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC);
523 * validate the region tree
524 * - the caller must hold the region lock
526 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
527 static noinline void validate_nommu_regions(void)
529 struct vm_region *region, *last;
530 struct rb_node *p, *lastp;
532 lastp = rb_first(&nommu_region_tree);
533 if (!lastp)
534 return;
536 last = rb_entry(lastp, struct vm_region, vm_rb);
537 BUG_ON(unlikely(last->vm_end <= last->vm_start));
538 BUG_ON(unlikely(last->vm_top < last->vm_end));
540 while ((p = rb_next(lastp))) {
541 region = rb_entry(p, struct vm_region, vm_rb);
542 last = rb_entry(lastp, struct vm_region, vm_rb);
544 BUG_ON(unlikely(region->vm_end <= region->vm_start));
545 BUG_ON(unlikely(region->vm_top < region->vm_end));
546 BUG_ON(unlikely(region->vm_start < last->vm_top));
548 lastp = p;
551 #else
552 static void validate_nommu_regions(void)
555 #endif
558 * add a region into the global tree
560 static void add_nommu_region(struct vm_region *region)
562 struct vm_region *pregion;
563 struct rb_node **p, *parent;
565 validate_nommu_regions();
567 parent = NULL;
568 p = &nommu_region_tree.rb_node;
569 while (*p) {
570 parent = *p;
571 pregion = rb_entry(parent, struct vm_region, vm_rb);
572 if (region->vm_start < pregion->vm_start)
573 p = &(*p)->rb_left;
574 else if (region->vm_start > pregion->vm_start)
575 p = &(*p)->rb_right;
576 else if (pregion == region)
577 return;
578 else
579 BUG();
582 rb_link_node(&region->vm_rb, parent, p);
583 rb_insert_color(&region->vm_rb, &nommu_region_tree);
585 validate_nommu_regions();
589 * delete a region from the global tree
591 static void delete_nommu_region(struct vm_region *region)
593 BUG_ON(!nommu_region_tree.rb_node);
595 validate_nommu_regions();
596 rb_erase(&region->vm_rb, &nommu_region_tree);
597 validate_nommu_regions();
601 * free a contiguous series of pages
603 static void free_page_series(unsigned long from, unsigned long to)
605 for (; from < to; from += PAGE_SIZE) {
606 struct page *page = virt_to_page(from);
608 kdebug("- free %lx", from);
609 atomic_long_dec(&mmap_pages_allocated);
610 if (page_count(page) != 1)
611 kdebug("free page %p: refcount not one: %d",
612 page, page_count(page));
613 put_page(page);
618 * release a reference to a region
619 * - the caller must hold the region semaphore for writing, which this releases
620 * - the region may not have been added to the tree yet, in which case vm_top
621 * will equal vm_start
623 static void __put_nommu_region(struct vm_region *region)
624 __releases(nommu_region_sem)
626 kenter("%p{%d}", region, region->vm_usage);
628 BUG_ON(!nommu_region_tree.rb_node);
630 if (--region->vm_usage == 0) {
631 if (region->vm_top > region->vm_start)
632 delete_nommu_region(region);
633 up_write(&nommu_region_sem);
635 if (region->vm_file)
636 fput(region->vm_file);
638 /* IO memory and memory shared directly out of the pagecache
639 * from ramfs/tmpfs mustn't be released here */
640 if (region->vm_flags & VM_MAPPED_COPY) {
641 kdebug("free series");
642 free_page_series(region->vm_start, region->vm_top);
644 kmem_cache_free(vm_region_jar, region);
645 } else {
646 up_write(&nommu_region_sem);
651 * release a reference to a region
653 static void put_nommu_region(struct vm_region *region)
655 down_write(&nommu_region_sem);
656 __put_nommu_region(region);
660 * update protection on a vma
662 static void protect_vma(struct vm_area_struct *vma, unsigned long flags)
664 #ifdef CONFIG_MPU
665 struct mm_struct *mm = vma->vm_mm;
666 long start = vma->vm_start & PAGE_MASK;
667 while (start < vma->vm_end) {
668 protect_page(mm, start, flags);
669 start += PAGE_SIZE;
671 update_protections(mm);
672 #endif
676 * add a VMA into a process's mm_struct in the appropriate place in the list
677 * and tree and add to the address space's page tree also if not an anonymous
678 * page
679 * - should be called with mm->mmap_sem held writelocked
681 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
683 struct vm_area_struct *pvma, *prev;
684 struct address_space *mapping;
685 struct rb_node **p, *parent, *rb_prev;
687 kenter(",%p", vma);
689 BUG_ON(!vma->vm_region);
691 mm->map_count++;
692 vma->vm_mm = mm;
694 protect_vma(vma, vma->vm_flags);
696 /* add the VMA to the mapping */
697 if (vma->vm_file) {
698 mapping = vma->vm_file->f_mapping;
700 mutex_lock(&mapping->i_mmap_mutex);
701 flush_dcache_mmap_lock(mapping);
702 vma_prio_tree_insert(vma, &mapping->i_mmap);
703 flush_dcache_mmap_unlock(mapping);
704 mutex_unlock(&mapping->i_mmap_mutex);
707 /* add the VMA to the tree */
708 parent = rb_prev = NULL;
709 p = &mm->mm_rb.rb_node;
710 while (*p) {
711 parent = *p;
712 pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
714 /* sort by: start addr, end addr, VMA struct addr in that order
715 * (the latter is necessary as we may get identical VMAs) */
716 if (vma->vm_start < pvma->vm_start)
717 p = &(*p)->rb_left;
718 else if (vma->vm_start > pvma->vm_start) {
719 rb_prev = parent;
720 p = &(*p)->rb_right;
721 } else if (vma->vm_end < pvma->vm_end)
722 p = &(*p)->rb_left;
723 else if (vma->vm_end > pvma->vm_end) {
724 rb_prev = parent;
725 p = &(*p)->rb_right;
726 } else if (vma < pvma)
727 p = &(*p)->rb_left;
728 else if (vma > pvma) {
729 rb_prev = parent;
730 p = &(*p)->rb_right;
731 } else
732 BUG();
735 rb_link_node(&vma->vm_rb, parent, p);
736 rb_insert_color(&vma->vm_rb, &mm->mm_rb);
738 /* add VMA to the VMA list also */
739 prev = NULL;
740 if (rb_prev)
741 prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
743 __vma_link_list(mm, vma, prev, parent);
747 * delete a VMA from its owning mm_struct and address space
749 static void delete_vma_from_mm(struct vm_area_struct *vma)
751 struct address_space *mapping;
752 struct mm_struct *mm = vma->vm_mm;
754 kenter("%p", vma);
756 protect_vma(vma, 0);
758 mm->map_count--;
759 if (mm->mmap_cache == vma)
760 mm->mmap_cache = NULL;
762 /* remove the VMA from the mapping */
763 if (vma->vm_file) {
764 mapping = vma->vm_file->f_mapping;
766 mutex_lock(&mapping->i_mmap_mutex);
767 flush_dcache_mmap_lock(mapping);
768 vma_prio_tree_remove(vma, &mapping->i_mmap);
769 flush_dcache_mmap_unlock(mapping);
770 mutex_unlock(&mapping->i_mmap_mutex);
773 /* remove from the MM's tree and list */
774 rb_erase(&vma->vm_rb, &mm->mm_rb);
776 if (vma->vm_prev)
777 vma->vm_prev->vm_next = vma->vm_next;
778 else
779 mm->mmap = vma->vm_next;
781 if (vma->vm_next)
782 vma->vm_next->vm_prev = vma->vm_prev;
786 * destroy a VMA record
788 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
790 kenter("%p", vma);
791 if (vma->vm_ops && vma->vm_ops->close)
792 vma->vm_ops->close(vma);
793 if (vma->vm_file) {
794 fput(vma->vm_file);
795 if (vma->vm_flags & VM_EXECUTABLE)
796 removed_exe_file_vma(mm);
798 put_nommu_region(vma->vm_region);
799 kmem_cache_free(vm_area_cachep, vma);
803 * look up the first VMA in which addr resides, NULL if none
804 * - should be called with mm->mmap_sem at least held readlocked
806 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
808 struct vm_area_struct *vma;
810 /* check the cache first */
811 vma = mm->mmap_cache;
812 if (vma && vma->vm_start <= addr && vma->vm_end > addr)
813 return vma;
815 /* trawl the list (there may be multiple mappings in which addr
816 * resides) */
817 for (vma = mm->mmap; vma; vma = vma->vm_next) {
818 if (vma->vm_start > addr)
819 return NULL;
820 if (vma->vm_end > addr) {
821 mm->mmap_cache = vma;
822 return vma;
826 return NULL;
828 EXPORT_SYMBOL(find_vma);
831 * find a VMA
832 * - we don't extend stack VMAs under NOMMU conditions
834 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
836 return find_vma(mm, addr);
840 * expand a stack to a given address
841 * - not supported under NOMMU conditions
843 int expand_stack(struct vm_area_struct *vma, unsigned long address)
845 return -ENOMEM;
849 * look up the first VMA exactly that exactly matches addr
850 * - should be called with mm->mmap_sem at least held readlocked
852 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
853 unsigned long addr,
854 unsigned long len)
856 struct vm_area_struct *vma;
857 unsigned long end = addr + len;
859 /* check the cache first */
860 vma = mm->mmap_cache;
861 if (vma && vma->vm_start == addr && vma->vm_end == end)
862 return vma;
864 /* trawl the list (there may be multiple mappings in which addr
865 * resides) */
866 for (vma = mm->mmap; vma; vma = vma->vm_next) {
867 if (vma->vm_start < addr)
868 continue;
869 if (vma->vm_start > addr)
870 return NULL;
871 if (vma->vm_end == end) {
872 mm->mmap_cache = vma;
873 return vma;
877 return NULL;
881 * determine whether a mapping should be permitted and, if so, what sort of
882 * mapping we're capable of supporting
884 static int validate_mmap_request(struct file *file,
885 unsigned long addr,
886 unsigned long len,
887 unsigned long prot,
888 unsigned long flags,
889 unsigned long pgoff,
890 unsigned long *_capabilities)
892 unsigned long capabilities, rlen;
893 unsigned long reqprot = prot;
894 int ret;
896 /* do the simple checks first */
897 if (flags & MAP_FIXED) {
898 printk(KERN_DEBUG
899 "%d: Can't do fixed-address/overlay mmap of RAM\n",
900 current->pid);
901 return -EINVAL;
904 if ((flags & MAP_TYPE) != MAP_PRIVATE &&
905 (flags & MAP_TYPE) != MAP_SHARED)
906 return -EINVAL;
908 if (!len)
909 return -EINVAL;
911 /* Careful about overflows.. */
912 rlen = PAGE_ALIGN(len);
913 if (!rlen || rlen > TASK_SIZE)
914 return -ENOMEM;
916 /* offset overflow? */
917 if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
918 return -EOVERFLOW;
920 if (file) {
921 /* validate file mapping requests */
922 struct address_space *mapping;
924 /* files must support mmap */
925 if (!file->f_op || !file->f_op->mmap)
926 return -ENODEV;
928 /* work out if what we've got could possibly be shared
929 * - we support chardevs that provide their own "memory"
930 * - we support files/blockdevs that are memory backed
932 mapping = file->f_mapping;
933 if (!mapping)
934 mapping = file->f_path.dentry->d_inode->i_mapping;
936 capabilities = 0;
937 if (mapping && mapping->backing_dev_info)
938 capabilities = mapping->backing_dev_info->capabilities;
940 if (!capabilities) {
941 /* no explicit capabilities set, so assume some
942 * defaults */
943 switch (file->f_path.dentry->d_inode->i_mode & S_IFMT) {
944 case S_IFREG:
945 case S_IFBLK:
946 capabilities = BDI_CAP_MAP_COPY;
947 break;
949 case S_IFCHR:
950 capabilities =
951 BDI_CAP_MAP_DIRECT |
952 BDI_CAP_READ_MAP |
953 BDI_CAP_WRITE_MAP;
954 break;
956 default:
957 return -EINVAL;
961 /* eliminate any capabilities that we can't support on this
962 * device */
963 if (!file->f_op->get_unmapped_area)
964 capabilities &= ~BDI_CAP_MAP_DIRECT;
965 if (!file->f_op->read)
966 capabilities &= ~BDI_CAP_MAP_COPY;
968 /* The file shall have been opened with read permission. */
969 if (!(file->f_mode & FMODE_READ))
970 return -EACCES;
972 if (flags & MAP_SHARED) {
973 /* do checks for writing, appending and locking */
974 if ((prot & PROT_WRITE) &&
975 !(file->f_mode & FMODE_WRITE))
976 return -EACCES;
978 if (IS_APPEND(file->f_path.dentry->d_inode) &&
979 (file->f_mode & FMODE_WRITE))
980 return -EACCES;
982 if (locks_verify_locked(file->f_path.dentry->d_inode))
983 return -EAGAIN;
985 if (!(capabilities & BDI_CAP_MAP_DIRECT))
986 return -ENODEV;
988 /* we mustn't privatise shared mappings */
989 capabilities &= ~BDI_CAP_MAP_COPY;
991 else {
992 /* we're going to read the file into private memory we
993 * allocate */
994 if (!(capabilities & BDI_CAP_MAP_COPY))
995 return -ENODEV;
997 /* we don't permit a private writable mapping to be
998 * shared with the backing device */
999 if (prot & PROT_WRITE)
1000 capabilities &= ~BDI_CAP_MAP_DIRECT;
1003 if (capabilities & BDI_CAP_MAP_DIRECT) {
1004 if (((prot & PROT_READ) && !(capabilities & BDI_CAP_READ_MAP)) ||
1005 ((prot & PROT_WRITE) && !(capabilities & BDI_CAP_WRITE_MAP)) ||
1006 ((prot & PROT_EXEC) && !(capabilities & BDI_CAP_EXEC_MAP))
1008 capabilities &= ~BDI_CAP_MAP_DIRECT;
1009 if (flags & MAP_SHARED) {
1010 printk(KERN_WARNING
1011 "MAP_SHARED not completely supported on !MMU\n");
1012 return -EINVAL;
1017 /* handle executable mappings and implied executable
1018 * mappings */
1019 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1020 if (prot & PROT_EXEC)
1021 return -EPERM;
1023 else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
1024 /* handle implication of PROT_EXEC by PROT_READ */
1025 if (current->personality & READ_IMPLIES_EXEC) {
1026 if (capabilities & BDI_CAP_EXEC_MAP)
1027 prot |= PROT_EXEC;
1030 else if ((prot & PROT_READ) &&
1031 (prot & PROT_EXEC) &&
1032 !(capabilities & BDI_CAP_EXEC_MAP)
1034 /* backing file is not executable, try to copy */
1035 capabilities &= ~BDI_CAP_MAP_DIRECT;
1038 else {
1039 /* anonymous mappings are always memory backed and can be
1040 * privately mapped
1042 capabilities = BDI_CAP_MAP_COPY;
1044 /* handle PROT_EXEC implication by PROT_READ */
1045 if ((prot & PROT_READ) &&
1046 (current->personality & READ_IMPLIES_EXEC))
1047 prot |= PROT_EXEC;
1050 /* allow the security API to have its say */
1051 ret = security_file_mmap(file, reqprot, prot, flags, addr, 0);
1052 if (ret < 0)
1053 return ret;
1055 /* looks okay */
1056 *_capabilities = capabilities;
1057 return 0;
1061 * we've determined that we can make the mapping, now translate what we
1062 * now know into VMA flags
1064 static unsigned long determine_vm_flags(struct file *file,
1065 unsigned long prot,
1066 unsigned long flags,
1067 unsigned long capabilities)
1069 unsigned long vm_flags;
1071 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags);
1072 /* vm_flags |= mm->def_flags; */
1074 if (!(capabilities & BDI_CAP_MAP_DIRECT)) {
1075 /* attempt to share read-only copies of mapped file chunks */
1076 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1077 if (file && !(prot & PROT_WRITE))
1078 vm_flags |= VM_MAYSHARE;
1079 } else {
1080 /* overlay a shareable mapping on the backing device or inode
1081 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1082 * romfs/cramfs */
1083 vm_flags |= VM_MAYSHARE | (capabilities & BDI_CAP_VMFLAGS);
1084 if (flags & MAP_SHARED)
1085 vm_flags |= VM_SHARED;
1088 /* refuse to let anyone share private mappings with this process if
1089 * it's being traced - otherwise breakpoints set in it may interfere
1090 * with another untraced process
1092 if ((flags & MAP_PRIVATE) && tracehook_expect_breakpoints(current))
1093 vm_flags &= ~VM_MAYSHARE;
1095 return vm_flags;
1099 * set up a shared mapping on a file (the driver or filesystem provides and
1100 * pins the storage)
1102 static int do_mmap_shared_file(struct vm_area_struct *vma)
1104 int ret;
1106 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1107 if (ret == 0) {
1108 vma->vm_region->vm_top = vma->vm_region->vm_end;
1109 return 0;
1111 if (ret != -ENOSYS)
1112 return ret;
1114 /* getting -ENOSYS indicates that direct mmap isn't possible (as
1115 * opposed to tried but failed) so we can only give a suitable error as
1116 * it's not possible to make a private copy if MAP_SHARED was given */
1117 return -ENODEV;
1121 * set up a private mapping or an anonymous shared mapping
1123 static int do_mmap_private(struct vm_area_struct *vma,
1124 struct vm_region *region,
1125 unsigned long len,
1126 unsigned long capabilities)
1128 struct page *pages;
1129 unsigned long total, point, n;
1130 void *base;
1131 int ret, order;
1133 /* invoke the file's mapping function so that it can keep track of
1134 * shared mappings on devices or memory
1135 * - VM_MAYSHARE will be set if it may attempt to share
1137 if (capabilities & BDI_CAP_MAP_DIRECT) {
1138 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1139 if (ret == 0) {
1140 /* shouldn't return success if we're not sharing */
1141 BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1142 vma->vm_region->vm_top = vma->vm_region->vm_end;
1143 return 0;
1145 if (ret != -ENOSYS)
1146 return ret;
1148 /* getting an ENOSYS error indicates that direct mmap isn't
1149 * possible (as opposed to tried but failed) so we'll try to
1150 * make a private copy of the data and map that instead */
1154 /* allocate some memory to hold the mapping
1155 * - note that this may not return a page-aligned address if the object
1156 * we're allocating is smaller than a page
1158 order = get_order(len);
1159 kdebug("alloc order %d for %lx", order, len);
1161 pages = alloc_pages(GFP_KERNEL, order);
1162 if (!pages)
1163 goto enomem;
1165 total = 1 << order;
1166 atomic_long_add(total, &mmap_pages_allocated);
1168 point = len >> PAGE_SHIFT;
1170 /* we allocated a power-of-2 sized page set, so we may want to trim off
1171 * the excess */
1172 if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) {
1173 while (total > point) {
1174 order = ilog2(total - point);
1175 n = 1 << order;
1176 kdebug("shave %lu/%lu @%lu", n, total - point, total);
1177 atomic_long_sub(n, &mmap_pages_allocated);
1178 total -= n;
1179 set_page_refcounted(pages + total);
1180 __free_pages(pages + total, order);
1184 for (point = 1; point < total; point++)
1185 set_page_refcounted(&pages[point]);
1187 base = page_address(pages);
1188 region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1189 region->vm_start = (unsigned long) base;
1190 region->vm_end = region->vm_start + len;
1191 region->vm_top = region->vm_start + (total << PAGE_SHIFT);
1193 vma->vm_start = region->vm_start;
1194 vma->vm_end = region->vm_start + len;
1196 if (vma->vm_file) {
1197 /* read the contents of a file into the copy */
1198 mm_segment_t old_fs;
1199 loff_t fpos;
1201 fpos = vma->vm_pgoff;
1202 fpos <<= PAGE_SHIFT;
1204 old_fs = get_fs();
1205 set_fs(KERNEL_DS);
1206 ret = vma->vm_file->f_op->read(vma->vm_file, base, len, &fpos);
1207 set_fs(old_fs);
1209 if (ret < 0)
1210 goto error_free;
1212 /* clear the last little bit */
1213 if (ret < len)
1214 memset(base + ret, 0, len - ret);
1218 return 0;
1220 error_free:
1221 free_page_series(region->vm_start, region->vm_top);
1222 region->vm_start = vma->vm_start = 0;
1223 region->vm_end = vma->vm_end = 0;
1224 region->vm_top = 0;
1225 return ret;
1227 enomem:
1228 printk("Allocation of length %lu from process %d (%s) failed\n",
1229 len, current->pid, current->comm);
1230 show_free_areas(0);
1231 return -ENOMEM;
1235 * handle mapping creation for uClinux
1237 unsigned long do_mmap_pgoff(struct file *file,
1238 unsigned long addr,
1239 unsigned long len,
1240 unsigned long prot,
1241 unsigned long flags,
1242 unsigned long pgoff)
1244 struct vm_area_struct *vma;
1245 struct vm_region *region;
1246 struct rb_node *rb;
1247 unsigned long capabilities, vm_flags, result;
1248 int ret;
1250 kenter(",%lx,%lx,%lx,%lx,%lx", addr, len, prot, flags, pgoff);
1252 /* decide whether we should attempt the mapping, and if so what sort of
1253 * mapping */
1254 ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1255 &capabilities);
1256 if (ret < 0) {
1257 kleave(" = %d [val]", ret);
1258 return ret;
1261 /* we ignore the address hint */
1262 addr = 0;
1263 len = PAGE_ALIGN(len);
1265 /* we've determined that we can make the mapping, now translate what we
1266 * now know into VMA flags */
1267 vm_flags = determine_vm_flags(file, prot, flags, capabilities);
1269 /* we're going to need to record the mapping */
1270 region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1271 if (!region)
1272 goto error_getting_region;
1274 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1275 if (!vma)
1276 goto error_getting_vma;
1278 region->vm_usage = 1;
1279 region->vm_flags = vm_flags;
1280 region->vm_pgoff = pgoff;
1282 INIT_LIST_HEAD(&vma->anon_vma_chain);
1283 vma->vm_flags = vm_flags;
1284 vma->vm_pgoff = pgoff;
1286 if (file) {
1287 region->vm_file = file;
1288 get_file(file);
1289 vma->vm_file = file;
1290 get_file(file);
1291 if (vm_flags & VM_EXECUTABLE) {
1292 added_exe_file_vma(current->mm);
1293 vma->vm_mm = current->mm;
1297 down_write(&nommu_region_sem);
1299 /* if we want to share, we need to check for regions created by other
1300 * mmap() calls that overlap with our proposed mapping
1301 * - we can only share with a superset match on most regular files
1302 * - shared mappings on character devices and memory backed files are
1303 * permitted to overlap inexactly as far as we are concerned for in
1304 * these cases, sharing is handled in the driver or filesystem rather
1305 * than here
1307 if (vm_flags & VM_MAYSHARE) {
1308 struct vm_region *pregion;
1309 unsigned long pglen, rpglen, pgend, rpgend, start;
1311 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1312 pgend = pgoff + pglen;
1314 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1315 pregion = rb_entry(rb, struct vm_region, vm_rb);
1317 if (!(pregion->vm_flags & VM_MAYSHARE))
1318 continue;
1320 /* search for overlapping mappings on the same file */
1321 if (pregion->vm_file->f_path.dentry->d_inode !=
1322 file->f_path.dentry->d_inode)
1323 continue;
1325 if (pregion->vm_pgoff >= pgend)
1326 continue;
1328 rpglen = pregion->vm_end - pregion->vm_start;
1329 rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1330 rpgend = pregion->vm_pgoff + rpglen;
1331 if (pgoff >= rpgend)
1332 continue;
1334 /* handle inexactly overlapping matches between
1335 * mappings */
1336 if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1337 !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1338 /* new mapping is not a subset of the region */
1339 if (!(capabilities & BDI_CAP_MAP_DIRECT))
1340 goto sharing_violation;
1341 continue;
1344 /* we've found a region we can share */
1345 pregion->vm_usage++;
1346 vma->vm_region = pregion;
1347 start = pregion->vm_start;
1348 start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1349 vma->vm_start = start;
1350 vma->vm_end = start + len;
1352 if (pregion->vm_flags & VM_MAPPED_COPY) {
1353 kdebug("share copy");
1354 vma->vm_flags |= VM_MAPPED_COPY;
1355 } else {
1356 kdebug("share mmap");
1357 ret = do_mmap_shared_file(vma);
1358 if (ret < 0) {
1359 vma->vm_region = NULL;
1360 vma->vm_start = 0;
1361 vma->vm_end = 0;
1362 pregion->vm_usage--;
1363 pregion = NULL;
1364 goto error_just_free;
1367 fput(region->vm_file);
1368 kmem_cache_free(vm_region_jar, region);
1369 region = pregion;
1370 result = start;
1371 goto share;
1374 /* obtain the address at which to make a shared mapping
1375 * - this is the hook for quasi-memory character devices to
1376 * tell us the location of a shared mapping
1378 if (capabilities & BDI_CAP_MAP_DIRECT) {
1379 addr = file->f_op->get_unmapped_area(file, addr, len,
1380 pgoff, flags);
1381 if (IS_ERR_VALUE(addr)) {
1382 ret = addr;
1383 if (ret != -ENOSYS)
1384 goto error_just_free;
1386 /* the driver refused to tell us where to site
1387 * the mapping so we'll have to attempt to copy
1388 * it */
1389 ret = -ENODEV;
1390 if (!(capabilities & BDI_CAP_MAP_COPY))
1391 goto error_just_free;
1393 capabilities &= ~BDI_CAP_MAP_DIRECT;
1394 } else {
1395 vma->vm_start = region->vm_start = addr;
1396 vma->vm_end = region->vm_end = addr + len;
1401 vma->vm_region = region;
1403 /* set up the mapping
1404 * - the region is filled in if BDI_CAP_MAP_DIRECT is still set
1406 if (file && vma->vm_flags & VM_SHARED)
1407 ret = do_mmap_shared_file(vma);
1408 else
1409 ret = do_mmap_private(vma, region, len, capabilities);
1410 if (ret < 0)
1411 goto error_just_free;
1412 add_nommu_region(region);
1414 /* clear anonymous mappings that don't ask for uninitialized data */
1415 if (!vma->vm_file && !(flags & MAP_UNINITIALIZED))
1416 memset((void *)region->vm_start, 0,
1417 region->vm_end - region->vm_start);
1419 /* okay... we have a mapping; now we have to register it */
1420 result = vma->vm_start;
1422 current->mm->total_vm += len >> PAGE_SHIFT;
1424 share:
1425 add_vma_to_mm(current->mm, vma);
1427 /* we flush the region from the icache only when the first executable
1428 * mapping of it is made */
1429 if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1430 flush_icache_range(region->vm_start, region->vm_end);
1431 region->vm_icache_flushed = true;
1434 up_write(&nommu_region_sem);
1436 kleave(" = %lx", result);
1437 return result;
1439 error_just_free:
1440 up_write(&nommu_region_sem);
1441 error:
1442 if (region->vm_file)
1443 fput(region->vm_file);
1444 kmem_cache_free(vm_region_jar, region);
1445 if (vma->vm_file)
1446 fput(vma->vm_file);
1447 if (vma->vm_flags & VM_EXECUTABLE)
1448 removed_exe_file_vma(vma->vm_mm);
1449 kmem_cache_free(vm_area_cachep, vma);
1450 kleave(" = %d", ret);
1451 return ret;
1453 sharing_violation:
1454 up_write(&nommu_region_sem);
1455 printk(KERN_WARNING "Attempt to share mismatched mappings\n");
1456 ret = -EINVAL;
1457 goto error;
1459 error_getting_vma:
1460 kmem_cache_free(vm_region_jar, region);
1461 printk(KERN_WARNING "Allocation of vma for %lu byte allocation"
1462 " from process %d failed\n",
1463 len, current->pid);
1464 show_free_areas(0);
1465 return -ENOMEM;
1467 error_getting_region:
1468 printk(KERN_WARNING "Allocation of vm region for %lu byte allocation"
1469 " from process %d failed\n",
1470 len, current->pid);
1471 show_free_areas(0);
1472 return -ENOMEM;
1474 EXPORT_SYMBOL(do_mmap_pgoff);
1476 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1477 unsigned long, prot, unsigned long, flags,
1478 unsigned long, fd, unsigned long, pgoff)
1480 struct file *file = NULL;
1481 unsigned long retval = -EBADF;
1483 audit_mmap_fd(fd, flags);
1484 if (!(flags & MAP_ANONYMOUS)) {
1485 file = fget(fd);
1486 if (!file)
1487 goto out;
1490 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1492 down_write(&current->mm->mmap_sem);
1493 retval = do_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1494 up_write(&current->mm->mmap_sem);
1496 if (file)
1497 fput(file);
1498 out:
1499 return retval;
1502 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1503 struct mmap_arg_struct {
1504 unsigned long addr;
1505 unsigned long len;
1506 unsigned long prot;
1507 unsigned long flags;
1508 unsigned long fd;
1509 unsigned long offset;
1512 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1514 struct mmap_arg_struct a;
1516 if (copy_from_user(&a, arg, sizeof(a)))
1517 return -EFAULT;
1518 if (a.offset & ~PAGE_MASK)
1519 return -EINVAL;
1521 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1522 a.offset >> PAGE_SHIFT);
1524 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1527 * split a vma into two pieces at address 'addr', a new vma is allocated either
1528 * for the first part or the tail.
1530 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1531 unsigned long addr, int new_below)
1533 struct vm_area_struct *new;
1534 struct vm_region *region;
1535 unsigned long npages;
1537 kenter("");
1539 /* we're only permitted to split anonymous regions (these should have
1540 * only a single usage on the region) */
1541 if (vma->vm_file)
1542 return -ENOMEM;
1544 if (mm->map_count >= sysctl_max_map_count)
1545 return -ENOMEM;
1547 region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1548 if (!region)
1549 return -ENOMEM;
1551 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1552 if (!new) {
1553 kmem_cache_free(vm_region_jar, region);
1554 return -ENOMEM;
1557 /* most fields are the same, copy all, and then fixup */
1558 *new = *vma;
1559 *region = *vma->vm_region;
1560 new->vm_region = region;
1562 npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1564 if (new_below) {
1565 region->vm_top = region->vm_end = new->vm_end = addr;
1566 } else {
1567 region->vm_start = new->vm_start = addr;
1568 region->vm_pgoff = new->vm_pgoff += npages;
1571 if (new->vm_ops && new->vm_ops->open)
1572 new->vm_ops->open(new);
1574 delete_vma_from_mm(vma);
1575 down_write(&nommu_region_sem);
1576 delete_nommu_region(vma->vm_region);
1577 if (new_below) {
1578 vma->vm_region->vm_start = vma->vm_start = addr;
1579 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1580 } else {
1581 vma->vm_region->vm_end = vma->vm_end = addr;
1582 vma->vm_region->vm_top = addr;
1584 add_nommu_region(vma->vm_region);
1585 add_nommu_region(new->vm_region);
1586 up_write(&nommu_region_sem);
1587 add_vma_to_mm(mm, vma);
1588 add_vma_to_mm(mm, new);
1589 return 0;
1593 * shrink a VMA by removing the specified chunk from either the beginning or
1594 * the end
1596 static int shrink_vma(struct mm_struct *mm,
1597 struct vm_area_struct *vma,
1598 unsigned long from, unsigned long to)
1600 struct vm_region *region;
1602 kenter("");
1604 /* adjust the VMA's pointers, which may reposition it in the MM's tree
1605 * and list */
1606 delete_vma_from_mm(vma);
1607 if (from > vma->vm_start)
1608 vma->vm_end = from;
1609 else
1610 vma->vm_start = to;
1611 add_vma_to_mm(mm, vma);
1613 /* cut the backing region down to size */
1614 region = vma->vm_region;
1615 BUG_ON(region->vm_usage != 1);
1617 down_write(&nommu_region_sem);
1618 delete_nommu_region(region);
1619 if (from > region->vm_start) {
1620 to = region->vm_top;
1621 region->vm_top = region->vm_end = from;
1622 } else {
1623 region->vm_start = to;
1625 add_nommu_region(region);
1626 up_write(&nommu_region_sem);
1628 free_page_series(from, to);
1629 return 0;
1633 * release a mapping
1634 * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1635 * VMA, though it need not cover the whole VMA
1637 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1639 struct vm_area_struct *vma;
1640 unsigned long end;
1641 int ret;
1643 kenter(",%lx,%zx", start, len);
1645 len = PAGE_ALIGN(len);
1646 if (len == 0)
1647 return -EINVAL;
1649 end = start + len;
1651 /* find the first potentially overlapping VMA */
1652 vma = find_vma(mm, start);
1653 if (!vma) {
1654 static int limit = 0;
1655 if (limit < 5) {
1656 printk(KERN_WARNING
1657 "munmap of memory not mmapped by process %d"
1658 " (%s): 0x%lx-0x%lx\n",
1659 current->pid, current->comm,
1660 start, start + len - 1);
1661 limit++;
1663 return -EINVAL;
1666 /* we're allowed to split an anonymous VMA but not a file-backed one */
1667 if (vma->vm_file) {
1668 do {
1669 if (start > vma->vm_start) {
1670 kleave(" = -EINVAL [miss]");
1671 return -EINVAL;
1673 if (end == vma->vm_end)
1674 goto erase_whole_vma;
1675 vma = vma->vm_next;
1676 } while (vma);
1677 kleave(" = -EINVAL [split file]");
1678 return -EINVAL;
1679 } else {
1680 /* the chunk must be a subset of the VMA found */
1681 if (start == vma->vm_start && end == vma->vm_end)
1682 goto erase_whole_vma;
1683 if (start < vma->vm_start || end > vma->vm_end) {
1684 kleave(" = -EINVAL [superset]");
1685 return -EINVAL;
1687 if (start & ~PAGE_MASK) {
1688 kleave(" = -EINVAL [unaligned start]");
1689 return -EINVAL;
1691 if (end != vma->vm_end && end & ~PAGE_MASK) {
1692 kleave(" = -EINVAL [unaligned split]");
1693 return -EINVAL;
1695 if (start != vma->vm_start && end != vma->vm_end) {
1696 ret = split_vma(mm, vma, start, 1);
1697 if (ret < 0) {
1698 kleave(" = %d [split]", ret);
1699 return ret;
1702 return shrink_vma(mm, vma, start, end);
1705 erase_whole_vma:
1706 delete_vma_from_mm(vma);
1707 delete_vma(mm, vma);
1708 kleave(" = 0");
1709 return 0;
1711 EXPORT_SYMBOL(do_munmap);
1713 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1715 int ret;
1716 struct mm_struct *mm = current->mm;
1718 down_write(&mm->mmap_sem);
1719 ret = do_munmap(mm, addr, len);
1720 up_write(&mm->mmap_sem);
1721 return ret;
1725 * release all the mappings made in a process's VM space
1727 void exit_mmap(struct mm_struct *mm)
1729 struct vm_area_struct *vma;
1731 if (!mm)
1732 return;
1734 kenter("");
1736 mm->total_vm = 0;
1738 while ((vma = mm->mmap)) {
1739 mm->mmap = vma->vm_next;
1740 delete_vma_from_mm(vma);
1741 delete_vma(mm, vma);
1742 cond_resched();
1745 kleave("");
1748 unsigned long do_brk(unsigned long addr, unsigned long len)
1750 return -ENOMEM;
1754 * expand (or shrink) an existing mapping, potentially moving it at the same
1755 * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1757 * under NOMMU conditions, we only permit changing a mapping's size, and only
1758 * as long as it stays within the region allocated by do_mmap_private() and the
1759 * block is not shareable
1761 * MREMAP_FIXED is not supported under NOMMU conditions
1763 unsigned long do_mremap(unsigned long addr,
1764 unsigned long old_len, unsigned long new_len,
1765 unsigned long flags, unsigned long new_addr)
1767 struct vm_area_struct *vma;
1769 /* insanity checks first */
1770 old_len = PAGE_ALIGN(old_len);
1771 new_len = PAGE_ALIGN(new_len);
1772 if (old_len == 0 || new_len == 0)
1773 return (unsigned long) -EINVAL;
1775 if (addr & ~PAGE_MASK)
1776 return -EINVAL;
1778 if (flags & MREMAP_FIXED && new_addr != addr)
1779 return (unsigned long) -EINVAL;
1781 vma = find_vma_exact(current->mm, addr, old_len);
1782 if (!vma)
1783 return (unsigned long) -EINVAL;
1785 if (vma->vm_end != vma->vm_start + old_len)
1786 return (unsigned long) -EFAULT;
1788 if (vma->vm_flags & VM_MAYSHARE)
1789 return (unsigned long) -EPERM;
1791 if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1792 return (unsigned long) -ENOMEM;
1794 /* all checks complete - do it */
1795 vma->vm_end = vma->vm_start + new_len;
1796 return vma->vm_start;
1798 EXPORT_SYMBOL(do_mremap);
1800 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1801 unsigned long, new_len, unsigned long, flags,
1802 unsigned long, new_addr)
1804 unsigned long ret;
1806 down_write(&current->mm->mmap_sem);
1807 ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1808 up_write(&current->mm->mmap_sem);
1809 return ret;
1812 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1813 unsigned int foll_flags)
1815 return NULL;
1818 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1819 unsigned long pfn, unsigned long size, pgprot_t prot)
1821 if (addr != (pfn << PAGE_SHIFT))
1822 return -EINVAL;
1824 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1825 return 0;
1827 EXPORT_SYMBOL(remap_pfn_range);
1829 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1830 unsigned long pgoff)
1832 unsigned int size = vma->vm_end - vma->vm_start;
1834 if (!(vma->vm_flags & VM_USERMAP))
1835 return -EINVAL;
1837 vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1838 vma->vm_end = vma->vm_start + size;
1840 return 0;
1842 EXPORT_SYMBOL(remap_vmalloc_range);
1844 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1845 unsigned long len, unsigned long pgoff, unsigned long flags)
1847 return -ENOMEM;
1850 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1854 void unmap_mapping_range(struct address_space *mapping,
1855 loff_t const holebegin, loff_t const holelen,
1856 int even_cows)
1859 EXPORT_SYMBOL(unmap_mapping_range);
1862 * Check that a process has enough memory to allocate a new virtual
1863 * mapping. 0 means there is enough memory for the allocation to
1864 * succeed and -ENOMEM implies there is not.
1866 * We currently support three overcommit policies, which are set via the
1867 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
1869 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
1870 * Additional code 2002 Jul 20 by Robert Love.
1872 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
1874 * Note this is a helper function intended to be used by LSMs which
1875 * wish to use this logic.
1877 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
1879 unsigned long free, allowed;
1881 vm_acct_memory(pages);
1884 * Sometimes we want to use more memory than we have
1886 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
1887 return 0;
1889 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
1890 unsigned long n;
1892 free = global_page_state(NR_FILE_PAGES);
1893 free += nr_swap_pages;
1896 * Any slabs which are created with the
1897 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
1898 * which are reclaimable, under pressure. The dentry
1899 * cache and most inode caches should fall into this
1901 free += global_page_state(NR_SLAB_RECLAIMABLE);
1904 * Leave the last 3% for root
1906 if (!cap_sys_admin)
1907 free -= free / 32;
1909 if (free > pages)
1910 return 0;
1913 * nr_free_pages() is very expensive on large systems,
1914 * only call if we're about to fail.
1916 n = nr_free_pages();
1919 * Leave reserved pages. The pages are not for anonymous pages.
1921 if (n <= totalreserve_pages)
1922 goto error;
1923 else
1924 n -= totalreserve_pages;
1927 * Leave the last 3% for root
1929 if (!cap_sys_admin)
1930 n -= n / 32;
1931 free += n;
1933 if (free > pages)
1934 return 0;
1936 goto error;
1939 allowed = totalram_pages * sysctl_overcommit_ratio / 100;
1941 * Leave the last 3% for root
1943 if (!cap_sys_admin)
1944 allowed -= allowed / 32;
1945 allowed += total_swap_pages;
1947 /* Don't let a single process grow too big:
1948 leave 3% of the size of this process for other processes */
1949 if (mm)
1950 allowed -= mm->total_vm / 32;
1952 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
1953 return 0;
1955 error:
1956 vm_unacct_memory(pages);
1958 return -ENOMEM;
1961 int in_gate_area_no_mm(unsigned long addr)
1963 return 0;
1966 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1968 BUG();
1969 return 0;
1971 EXPORT_SYMBOL(filemap_fault);
1973 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1974 unsigned long addr, void *buf, int len, int write)
1976 struct vm_area_struct *vma;
1978 down_read(&mm->mmap_sem);
1980 /* the access must start within one of the target process's mappings */
1981 vma = find_vma(mm, addr);
1982 if (vma) {
1983 /* don't overrun this mapping */
1984 if (addr + len >= vma->vm_end)
1985 len = vma->vm_end - addr;
1987 /* only read or write mappings where it is permitted */
1988 if (write && vma->vm_flags & VM_MAYWRITE)
1989 copy_to_user_page(vma, NULL, addr,
1990 (void *) addr, buf, len);
1991 else if (!write && vma->vm_flags & VM_MAYREAD)
1992 copy_from_user_page(vma, NULL, addr,
1993 buf, (void *) addr, len);
1994 else
1995 len = 0;
1996 } else {
1997 len = 0;
2000 up_read(&mm->mmap_sem);
2002 return len;
2006 * @access_remote_vm - access another process' address space
2007 * @mm: the mm_struct of the target address space
2008 * @addr: start address to access
2009 * @buf: source or destination buffer
2010 * @len: number of bytes to transfer
2011 * @write: whether the access is a write
2013 * The caller must hold a reference on @mm.
2015 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2016 void *buf, int len, int write)
2018 return __access_remote_vm(NULL, mm, addr, buf, len, write);
2022 * Access another process' address space.
2023 * - source/target buffer must be kernel space
2025 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
2027 struct mm_struct *mm;
2029 if (addr + len < addr)
2030 return 0;
2032 mm = get_task_mm(tsk);
2033 if (!mm)
2034 return 0;
2036 len = __access_remote_vm(tsk, mm, addr, buf, len, write);
2038 mmput(mm);
2039 return len;
2043 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
2044 * @inode: The inode to check
2045 * @size: The current filesize of the inode
2046 * @newsize: The proposed filesize of the inode
2048 * Check the shared mappings on an inode on behalf of a shrinking truncate to
2049 * make sure that that any outstanding VMAs aren't broken and then shrink the
2050 * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
2051 * automatically grant mappings that are too large.
2053 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
2054 size_t newsize)
2056 struct vm_area_struct *vma;
2057 struct prio_tree_iter iter;
2058 struct vm_region *region;
2059 pgoff_t low, high;
2060 size_t r_size, r_top;
2062 low = newsize >> PAGE_SHIFT;
2063 high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2065 down_write(&nommu_region_sem);
2066 mutex_lock(&inode->i_mapping->i_mmap_mutex);
2068 /* search for VMAs that fall within the dead zone */
2069 vma_prio_tree_foreach(vma, &iter, &inode->i_mapping->i_mmap,
2070 low, high) {
2071 /* found one - only interested if it's shared out of the page
2072 * cache */
2073 if (vma->vm_flags & VM_SHARED) {
2074 mutex_unlock(&inode->i_mapping->i_mmap_mutex);
2075 up_write(&nommu_region_sem);
2076 return -ETXTBSY; /* not quite true, but near enough */
2080 /* reduce any regions that overlap the dead zone - if in existence,
2081 * these will be pointed to by VMAs that don't overlap the dead zone
2083 * we don't check for any regions that start beyond the EOF as there
2084 * shouldn't be any
2086 vma_prio_tree_foreach(vma, &iter, &inode->i_mapping->i_mmap,
2087 0, ULONG_MAX) {
2088 if (!(vma->vm_flags & VM_SHARED))
2089 continue;
2091 region = vma->vm_region;
2092 r_size = region->vm_top - region->vm_start;
2093 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
2095 if (r_top > newsize) {
2096 region->vm_top -= r_top - newsize;
2097 if (region->vm_end > region->vm_top)
2098 region->vm_end = region->vm_top;
2102 mutex_unlock(&inode->i_mapping->i_mmap_mutex);
2103 up_write(&nommu_region_sem);
2104 return 0;