2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/memory.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <linux/ftrace_event.h>
58 #include <linux/memcontrol.h>
59 #include <linux/prefetch.h>
61 #include <asm/tlbflush.h>
62 #include <asm/div64.h>
65 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
66 DEFINE_PER_CPU(int, numa_node
);
67 EXPORT_PER_CPU_SYMBOL(numa_node
);
70 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
72 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
73 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
74 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
75 * defined in <linux/topology.h>.
77 DEFINE_PER_CPU(int, _numa_mem_
); /* Kernel "local memory" node */
78 EXPORT_PER_CPU_SYMBOL(_numa_mem_
);
82 * Array of node states.
84 nodemask_t node_states
[NR_NODE_STATES
] __read_mostly
= {
85 [N_POSSIBLE
] = NODE_MASK_ALL
,
86 [N_ONLINE
] = { { [0] = 1UL } },
88 [N_NORMAL_MEMORY
] = { { [0] = 1UL } },
90 [N_HIGH_MEMORY
] = { { [0] = 1UL } },
92 [N_CPU
] = { { [0] = 1UL } },
95 EXPORT_SYMBOL(node_states
);
97 unsigned long totalram_pages __read_mostly
;
98 unsigned long totalreserve_pages __read_mostly
;
99 int percpu_pagelist_fraction
;
100 gfp_t gfp_allowed_mask __read_mostly
= GFP_BOOT_MASK
;
102 #ifdef CONFIG_PM_SLEEP
104 * The following functions are used by the suspend/hibernate code to temporarily
105 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
106 * while devices are suspended. To avoid races with the suspend/hibernate code,
107 * they should always be called with pm_mutex held (gfp_allowed_mask also should
108 * only be modified with pm_mutex held, unless the suspend/hibernate code is
109 * guaranteed not to run in parallel with that modification).
112 static gfp_t saved_gfp_mask
;
114 void pm_restore_gfp_mask(void)
116 WARN_ON(!mutex_is_locked(&pm_mutex
));
117 if (saved_gfp_mask
) {
118 gfp_allowed_mask
= saved_gfp_mask
;
123 void pm_restrict_gfp_mask(void)
125 WARN_ON(!mutex_is_locked(&pm_mutex
));
126 WARN_ON(saved_gfp_mask
);
127 saved_gfp_mask
= gfp_allowed_mask
;
128 gfp_allowed_mask
&= ~GFP_IOFS
;
131 static bool pm_suspending(void)
133 if ((gfp_allowed_mask
& GFP_IOFS
) == GFP_IOFS
)
140 static bool pm_suspending(void)
144 #endif /* CONFIG_PM_SLEEP */
146 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
147 int pageblock_order __read_mostly
;
150 static void __free_pages_ok(struct page
*page
, unsigned int order
);
153 * results with 256, 32 in the lowmem_reserve sysctl:
154 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
155 * 1G machine -> (16M dma, 784M normal, 224M high)
156 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
157 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
158 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
160 * TBD: should special case ZONE_DMA32 machines here - in those we normally
161 * don't need any ZONE_NORMAL reservation
163 int sysctl_lowmem_reserve_ratio
[MAX_NR_ZONES
-1] = {
164 #ifdef CONFIG_ZONE_DMA
167 #ifdef CONFIG_ZONE_DMA32
170 #ifdef CONFIG_HIGHMEM
176 EXPORT_SYMBOL(totalram_pages
);
178 static char * const zone_names
[MAX_NR_ZONES
] = {
179 #ifdef CONFIG_ZONE_DMA
182 #ifdef CONFIG_ZONE_DMA32
186 #ifdef CONFIG_HIGHMEM
192 int min_free_kbytes
= 1024;
193 int min_free_order_shift
= 1;
195 static unsigned long __meminitdata nr_kernel_pages
;
196 static unsigned long __meminitdata nr_all_pages
;
197 static unsigned long __meminitdata dma_reserve
;
199 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
201 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
202 * ranges of memory (RAM) that may be registered with add_active_range().
203 * Ranges passed to add_active_range() will be merged if possible
204 * so the number of times add_active_range() can be called is
205 * related to the number of nodes and the number of holes
207 #ifdef CONFIG_MAX_ACTIVE_REGIONS
208 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
209 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
211 #if MAX_NUMNODES >= 32
212 /* If there can be many nodes, allow up to 50 holes per node */
213 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
215 /* By default, allow up to 256 distinct regions */
216 #define MAX_ACTIVE_REGIONS 256
220 static struct node_active_region __meminitdata early_node_map
[MAX_ACTIVE_REGIONS
];
221 static int __meminitdata nr_nodemap_entries
;
222 static unsigned long __meminitdata arch_zone_lowest_possible_pfn
[MAX_NR_ZONES
];
223 static unsigned long __meminitdata arch_zone_highest_possible_pfn
[MAX_NR_ZONES
];
224 static unsigned long __initdata required_kernelcore
;
225 static unsigned long __initdata required_movablecore
;
226 static unsigned long __meminitdata zone_movable_pfn
[MAX_NUMNODES
];
228 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
230 EXPORT_SYMBOL(movable_zone
);
231 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
234 int nr_node_ids __read_mostly
= MAX_NUMNODES
;
235 int nr_online_nodes __read_mostly
= 1;
236 EXPORT_SYMBOL(nr_node_ids
);
237 EXPORT_SYMBOL(nr_online_nodes
);
240 int page_group_by_mobility_disabled __read_mostly
;
242 static void set_pageblock_migratetype(struct page
*page
, int migratetype
)
245 if (unlikely(page_group_by_mobility_disabled
))
246 migratetype
= MIGRATE_UNMOVABLE
;
248 set_pageblock_flags_group(page
, (unsigned long)migratetype
,
249 PB_migrate
, PB_migrate_end
);
252 bool oom_killer_disabled __read_mostly
;
254 #ifdef CONFIG_DEBUG_VM
255 static int page_outside_zone_boundaries(struct zone
*zone
, struct page
*page
)
259 unsigned long pfn
= page_to_pfn(page
);
262 seq
= zone_span_seqbegin(zone
);
263 if (pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
)
265 else if (pfn
< zone
->zone_start_pfn
)
267 } while (zone_span_seqretry(zone
, seq
));
272 static int page_is_consistent(struct zone
*zone
, struct page
*page
)
274 if (!pfn_valid_within(page_to_pfn(page
)))
276 if (zone
!= page_zone(page
))
282 * Temporary debugging check for pages not lying within a given zone.
284 static int bad_range(struct zone
*zone
, struct page
*page
)
286 if (page_outside_zone_boundaries(zone
, page
))
288 if (!page_is_consistent(zone
, page
))
294 static inline int bad_range(struct zone
*zone
, struct page
*page
)
300 static void bad_page(struct page
*page
)
302 static unsigned long resume
;
303 static unsigned long nr_shown
;
304 static unsigned long nr_unshown
;
306 /* Don't complain about poisoned pages */
307 if (PageHWPoison(page
)) {
308 reset_page_mapcount(page
); /* remove PageBuddy */
313 * Allow a burst of 60 reports, then keep quiet for that minute;
314 * or allow a steady drip of one report per second.
316 if (nr_shown
== 60) {
317 if (time_before(jiffies
, resume
)) {
323 "BUG: Bad page state: %lu messages suppressed\n",
330 resume
= jiffies
+ 60 * HZ
;
332 printk(KERN_ALERT
"BUG: Bad page state in process %s pfn:%05lx\n",
333 current
->comm
, page_to_pfn(page
));
338 /* Leave bad fields for debug, except PageBuddy could make trouble */
339 reset_page_mapcount(page
); /* remove PageBuddy */
340 add_taint(TAINT_BAD_PAGE
);
344 * Higher-order pages are called "compound pages". They are structured thusly:
346 * The first PAGE_SIZE page is called the "head page".
348 * The remaining PAGE_SIZE pages are called "tail pages".
350 * All pages have PG_compound set. All pages have their ->private pointing at
351 * the head page (even the head page has this).
353 * The first tail page's ->lru.next holds the address of the compound page's
354 * put_page() function. Its ->lru.prev holds the order of allocation.
355 * This usage means that zero-order pages may not be compound.
358 static void free_compound_page(struct page
*page
)
360 __free_pages_ok(page
, compound_order(page
));
363 void prep_compound_page(struct page
*page
, unsigned long order
)
366 int nr_pages
= 1 << order
;
368 set_compound_page_dtor(page
, free_compound_page
);
369 set_compound_order(page
, order
);
371 for (i
= 1; i
< nr_pages
; i
++) {
372 struct page
*p
= page
+ i
;
374 set_page_count(p
, 0);
375 p
->first_page
= page
;
379 /* update __split_huge_page_refcount if you change this function */
380 static int destroy_compound_page(struct page
*page
, unsigned long order
)
383 int nr_pages
= 1 << order
;
386 if (unlikely(compound_order(page
) != order
) ||
387 unlikely(!PageHead(page
))) {
392 __ClearPageHead(page
);
394 for (i
= 1; i
< nr_pages
; i
++) {
395 struct page
*p
= page
+ i
;
397 if (unlikely(!PageTail(p
) || (p
->first_page
!= page
))) {
407 static inline void prep_zero_page(struct page
*page
, int order
, gfp_t gfp_flags
)
412 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
413 * and __GFP_HIGHMEM from hard or soft interrupt context.
415 VM_BUG_ON((gfp_flags
& __GFP_HIGHMEM
) && in_interrupt());
416 for (i
= 0; i
< (1 << order
); i
++)
417 clear_highpage(page
+ i
);
420 static inline void set_page_order(struct page
*page
, int order
)
422 set_page_private(page
, order
);
423 __SetPageBuddy(page
);
426 static inline void rmv_page_order(struct page
*page
)
428 __ClearPageBuddy(page
);
429 set_page_private(page
, 0);
433 * Locate the struct page for both the matching buddy in our
434 * pair (buddy1) and the combined O(n+1) page they form (page).
436 * 1) Any buddy B1 will have an order O twin B2 which satisfies
437 * the following equation:
439 * For example, if the starting buddy (buddy2) is #8 its order
441 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
443 * 2) Any buddy B will have an order O+1 parent P which
444 * satisfies the following equation:
447 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
449 static inline unsigned long
450 __find_buddy_index(unsigned long page_idx
, unsigned int order
)
452 return page_idx
^ (1 << order
);
456 * This function checks whether a page is free && is the buddy
457 * we can do coalesce a page and its buddy if
458 * (a) the buddy is not in a hole &&
459 * (b) the buddy is in the buddy system &&
460 * (c) a page and its buddy have the same order &&
461 * (d) a page and its buddy are in the same zone.
463 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
464 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
466 * For recording page's order, we use page_private(page).
468 static inline int page_is_buddy(struct page
*page
, struct page
*buddy
,
471 if (!pfn_valid_within(page_to_pfn(buddy
)))
474 if (page_zone_id(page
) != page_zone_id(buddy
))
477 if (PageBuddy(buddy
) && page_order(buddy
) == order
) {
478 VM_BUG_ON(page_count(buddy
) != 0);
485 * Freeing function for a buddy system allocator.
487 * The concept of a buddy system is to maintain direct-mapped table
488 * (containing bit values) for memory blocks of various "orders".
489 * The bottom level table contains the map for the smallest allocatable
490 * units of memory (here, pages), and each level above it describes
491 * pairs of units from the levels below, hence, "buddies".
492 * At a high level, all that happens here is marking the table entry
493 * at the bottom level available, and propagating the changes upward
494 * as necessary, plus some accounting needed to play nicely with other
495 * parts of the VM system.
496 * At each level, we keep a list of pages, which are heads of continuous
497 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
498 * order is recorded in page_private(page) field.
499 * So when we are allocating or freeing one, we can derive the state of the
500 * other. That is, if we allocate a small block, and both were
501 * free, the remainder of the region must be split into blocks.
502 * If a block is freed, and its buddy is also free, then this
503 * triggers coalescing into a block of larger size.
508 static inline void __free_one_page(struct page
*page
,
509 struct zone
*zone
, unsigned int order
,
512 unsigned long page_idx
;
513 unsigned long combined_idx
;
514 unsigned long uninitialized_var(buddy_idx
);
517 if (unlikely(PageCompound(page
)))
518 if (unlikely(destroy_compound_page(page
, order
)))
521 VM_BUG_ON(migratetype
== -1);
523 page_idx
= page_to_pfn(page
) & ((1 << MAX_ORDER
) - 1);
525 VM_BUG_ON(page_idx
& ((1 << order
) - 1));
526 VM_BUG_ON(bad_range(zone
, page
));
528 while (order
< MAX_ORDER
-1) {
529 buddy_idx
= __find_buddy_index(page_idx
, order
);
530 buddy
= page
+ (buddy_idx
- page_idx
);
531 if (!page_is_buddy(page
, buddy
, order
))
534 /* Our buddy is free, merge with it and move up one order. */
535 list_del(&buddy
->lru
);
536 zone
->free_area
[order
].nr_free
--;
537 rmv_page_order(buddy
);
538 combined_idx
= buddy_idx
& page_idx
;
539 page
= page
+ (combined_idx
- page_idx
);
540 page_idx
= combined_idx
;
543 set_page_order(page
, order
);
546 * If this is not the largest possible page, check if the buddy
547 * of the next-highest order is free. If it is, it's possible
548 * that pages are being freed that will coalesce soon. In case,
549 * that is happening, add the free page to the tail of the list
550 * so it's less likely to be used soon and more likely to be merged
551 * as a higher order page
553 if ((order
< MAX_ORDER
-2) && pfn_valid_within(page_to_pfn(buddy
))) {
554 struct page
*higher_page
, *higher_buddy
;
555 combined_idx
= buddy_idx
& page_idx
;
556 higher_page
= page
+ (combined_idx
- page_idx
);
557 buddy_idx
= __find_buddy_index(combined_idx
, order
+ 1);
558 higher_buddy
= page
+ (buddy_idx
- combined_idx
);
559 if (page_is_buddy(higher_page
, higher_buddy
, order
+ 1)) {
560 list_add_tail(&page
->lru
,
561 &zone
->free_area
[order
].free_list
[migratetype
]);
566 list_add(&page
->lru
, &zone
->free_area
[order
].free_list
[migratetype
]);
568 zone
->free_area
[order
].nr_free
++;
572 * free_page_mlock() -- clean up attempts to free and mlocked() page.
573 * Page should not be on lru, so no need to fix that up.
574 * free_pages_check() will verify...
576 static inline void free_page_mlock(struct page
*page
)
578 __dec_zone_page_state(page
, NR_MLOCK
);
579 __count_vm_event(UNEVICTABLE_MLOCKFREED
);
582 static inline int free_pages_check(struct page
*page
)
584 if (unlikely(page_mapcount(page
) |
585 (page
->mapping
!= NULL
) |
586 (atomic_read(&page
->_count
) != 0) |
587 (page
->flags
& PAGE_FLAGS_CHECK_AT_FREE
) |
588 (mem_cgroup_bad_page_check(page
)))) {
592 if (page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
)
593 page
->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
;
598 * Frees a number of pages from the PCP lists
599 * Assumes all pages on list are in same zone, and of same order.
600 * count is the number of pages to free.
602 * If the zone was previously in an "all pages pinned" state then look to
603 * see if this freeing clears that state.
605 * And clear the zone's pages_scanned counter, to hold off the "all pages are
606 * pinned" detection logic.
608 static void free_pcppages_bulk(struct zone
*zone
, int count
,
609 struct per_cpu_pages
*pcp
)
615 spin_lock(&zone
->lock
);
616 zone
->all_unreclaimable
= 0;
617 zone
->pages_scanned
= 0;
621 struct list_head
*list
;
624 * Remove pages from lists in a round-robin fashion. A
625 * batch_free count is maintained that is incremented when an
626 * empty list is encountered. This is so more pages are freed
627 * off fuller lists instead of spinning excessively around empty
632 if (++migratetype
== MIGRATE_PCPTYPES
)
634 list
= &pcp
->lists
[migratetype
];
635 } while (list_empty(list
));
637 /* This is the only non-empty list. Free them all. */
638 if (batch_free
== MIGRATE_PCPTYPES
)
639 batch_free
= to_free
;
642 page
= list_entry(list
->prev
, struct page
, lru
);
643 /* must delete as __free_one_page list manipulates */
644 list_del(&page
->lru
);
645 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
646 __free_one_page(page
, zone
, 0, page_private(page
));
647 trace_mm_page_pcpu_drain(page
, 0, page_private(page
));
648 } while (--to_free
&& --batch_free
&& !list_empty(list
));
650 __mod_zone_page_state(zone
, NR_FREE_PAGES
, count
);
651 spin_unlock(&zone
->lock
);
654 static void free_one_page(struct zone
*zone
, struct page
*page
, int order
,
657 spin_lock(&zone
->lock
);
658 zone
->all_unreclaimable
= 0;
659 zone
->pages_scanned
= 0;
661 __free_one_page(page
, zone
, order
, migratetype
);
662 __mod_zone_page_state(zone
, NR_FREE_PAGES
, 1 << order
);
663 spin_unlock(&zone
->lock
);
666 static bool free_pages_prepare(struct page
*page
, unsigned int order
)
671 trace_mm_page_free_direct(page
, order
);
672 kmemcheck_free_shadow(page
, order
);
675 page
->mapping
= NULL
;
676 for (i
= 0; i
< (1 << order
); i
++)
677 bad
+= free_pages_check(page
+ i
);
681 if (!PageHighMem(page
)) {
682 debug_check_no_locks_freed(page_address(page
),PAGE_SIZE
<<order
);
683 debug_check_no_obj_freed(page_address(page
),
686 arch_free_page(page
, order
);
687 kernel_map_pages(page
, 1 << order
, 0);
692 static void __free_pages_ok(struct page
*page
, unsigned int order
)
695 int wasMlocked
= __TestClearPageMlocked(page
);
697 if (!free_pages_prepare(page
, order
))
700 local_irq_save(flags
);
701 if (unlikely(wasMlocked
))
702 free_page_mlock(page
);
703 __count_vm_events(PGFREE
, 1 << order
);
704 free_one_page(page_zone(page
), page
, order
,
705 get_pageblock_migratetype(page
));
706 local_irq_restore(flags
);
710 * permit the bootmem allocator to evade page validation on high-order frees
712 void __meminit
__free_pages_bootmem(struct page
*page
, unsigned int order
)
715 __ClearPageReserved(page
);
716 set_page_count(page
, 0);
717 set_page_refcounted(page
);
723 for (loop
= 0; loop
< BITS_PER_LONG
; loop
++) {
724 struct page
*p
= &page
[loop
];
726 if (loop
+ 1 < BITS_PER_LONG
)
728 __ClearPageReserved(p
);
729 set_page_count(p
, 0);
732 set_page_refcounted(page
);
733 __free_pages(page
, order
);
739 * The order of subdivision here is critical for the IO subsystem.
740 * Please do not alter this order without good reasons and regression
741 * testing. Specifically, as large blocks of memory are subdivided,
742 * the order in which smaller blocks are delivered depends on the order
743 * they're subdivided in this function. This is the primary factor
744 * influencing the order in which pages are delivered to the IO
745 * subsystem according to empirical testing, and this is also justified
746 * by considering the behavior of a buddy system containing a single
747 * large block of memory acted on by a series of small allocations.
748 * This behavior is a critical factor in sglist merging's success.
752 static inline void expand(struct zone
*zone
, struct page
*page
,
753 int low
, int high
, struct free_area
*area
,
756 unsigned long size
= 1 << high
;
762 VM_BUG_ON(bad_range(zone
, &page
[size
]));
763 list_add(&page
[size
].lru
, &area
->free_list
[migratetype
]);
765 set_page_order(&page
[size
], high
);
770 * This page is about to be returned from the page allocator
772 static inline int check_new_page(struct page
*page
)
774 if (unlikely(page_mapcount(page
) |
775 (page
->mapping
!= NULL
) |
776 (atomic_read(&page
->_count
) != 0) |
777 (page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
) |
778 (mem_cgroup_bad_page_check(page
)))) {
785 static int prep_new_page(struct page
*page
, int order
, gfp_t gfp_flags
)
789 for (i
= 0; i
< (1 << order
); i
++) {
790 struct page
*p
= page
+ i
;
791 if (unlikely(check_new_page(p
)))
795 set_page_private(page
, 0);
796 set_page_refcounted(page
);
798 arch_alloc_page(page
, order
);
799 kernel_map_pages(page
, 1 << order
, 1);
801 if (gfp_flags
& __GFP_ZERO
)
802 prep_zero_page(page
, order
, gfp_flags
);
804 if (order
&& (gfp_flags
& __GFP_COMP
))
805 prep_compound_page(page
, order
);
811 * Go through the free lists for the given migratetype and remove
812 * the smallest available page from the freelists
815 struct page
*__rmqueue_smallest(struct zone
*zone
, unsigned int order
,
818 unsigned int current_order
;
819 struct free_area
* area
;
822 /* Find a page of the appropriate size in the preferred list */
823 for (current_order
= order
; current_order
< MAX_ORDER
; ++current_order
) {
824 area
= &(zone
->free_area
[current_order
]);
825 if (list_empty(&area
->free_list
[migratetype
]))
828 page
= list_entry(area
->free_list
[migratetype
].next
,
830 list_del(&page
->lru
);
831 rmv_page_order(page
);
833 expand(zone
, page
, order
, current_order
, area
, migratetype
);
842 * This array describes the order lists are fallen back to when
843 * the free lists for the desirable migrate type are depleted
845 static int fallbacks
[MIGRATE_TYPES
][MIGRATE_TYPES
-1] = {
846 [MIGRATE_UNMOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_MOVABLE
, MIGRATE_RESERVE
},
847 [MIGRATE_RECLAIMABLE
] = { MIGRATE_UNMOVABLE
, MIGRATE_MOVABLE
, MIGRATE_RESERVE
},
848 [MIGRATE_MOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_UNMOVABLE
, MIGRATE_RESERVE
},
849 [MIGRATE_RESERVE
] = { MIGRATE_RESERVE
, MIGRATE_RESERVE
, MIGRATE_RESERVE
}, /* Never used */
853 * Move the free pages in a range to the free lists of the requested type.
854 * Note that start_page and end_pages are not aligned on a pageblock
855 * boundary. If alignment is required, use move_freepages_block()
857 static int move_freepages(struct zone
*zone
,
858 struct page
*start_page
, struct page
*end_page
,
865 #ifndef CONFIG_HOLES_IN_ZONE
867 * page_zone is not safe to call in this context when
868 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
869 * anyway as we check zone boundaries in move_freepages_block().
870 * Remove at a later date when no bug reports exist related to
871 * grouping pages by mobility
873 BUG_ON(page_zone(start_page
) != page_zone(end_page
));
876 for (page
= start_page
; page
<= end_page
;) {
877 /* Make sure we are not inadvertently changing nodes */
878 VM_BUG_ON(page_to_nid(page
) != zone_to_nid(zone
));
880 if (!pfn_valid_within(page_to_pfn(page
))) {
885 if (!PageBuddy(page
)) {
890 order
= page_order(page
);
891 list_move(&page
->lru
,
892 &zone
->free_area
[order
].free_list
[migratetype
]);
894 pages_moved
+= 1 << order
;
900 static int move_freepages_block(struct zone
*zone
, struct page
*page
,
903 unsigned long start_pfn
, end_pfn
;
904 struct page
*start_page
, *end_page
;
906 start_pfn
= page_to_pfn(page
);
907 start_pfn
= start_pfn
& ~(pageblock_nr_pages
-1);
908 start_page
= pfn_to_page(start_pfn
);
909 end_page
= start_page
+ pageblock_nr_pages
- 1;
910 end_pfn
= start_pfn
+ pageblock_nr_pages
- 1;
912 /* Do not cross zone boundaries */
913 if (start_pfn
< zone
->zone_start_pfn
)
915 if (end_pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
)
918 return move_freepages(zone
, start_page
, end_page
, migratetype
);
921 static void change_pageblock_range(struct page
*pageblock_page
,
922 int start_order
, int migratetype
)
924 int nr_pageblocks
= 1 << (start_order
- pageblock_order
);
926 while (nr_pageblocks
--) {
927 set_pageblock_migratetype(pageblock_page
, migratetype
);
928 pageblock_page
+= pageblock_nr_pages
;
932 /* Remove an element from the buddy allocator from the fallback list */
933 static inline struct page
*
934 __rmqueue_fallback(struct zone
*zone
, int order
, int start_migratetype
)
936 struct free_area
* area
;
941 /* Find the largest possible block of pages in the other list */
942 for (current_order
= MAX_ORDER
-1; current_order
>= order
;
944 for (i
= 0; i
< MIGRATE_TYPES
- 1; i
++) {
945 migratetype
= fallbacks
[start_migratetype
][i
];
947 /* MIGRATE_RESERVE handled later if necessary */
948 if (migratetype
== MIGRATE_RESERVE
)
951 area
= &(zone
->free_area
[current_order
]);
952 if (list_empty(&area
->free_list
[migratetype
]))
955 page
= list_entry(area
->free_list
[migratetype
].next
,
960 * If breaking a large block of pages, move all free
961 * pages to the preferred allocation list. If falling
962 * back for a reclaimable kernel allocation, be more
963 * aggressive about taking ownership of free pages
965 if (unlikely(current_order
>= (pageblock_order
>> 1)) ||
966 start_migratetype
== MIGRATE_RECLAIMABLE
||
967 page_group_by_mobility_disabled
) {
969 pages
= move_freepages_block(zone
, page
,
972 /* Claim the whole block if over half of it is free */
973 if (pages
>= (1 << (pageblock_order
-1)) ||
974 page_group_by_mobility_disabled
)
975 set_pageblock_migratetype(page
,
978 migratetype
= start_migratetype
;
981 /* Remove the page from the freelists */
982 list_del(&page
->lru
);
983 rmv_page_order(page
);
985 /* Take ownership for orders >= pageblock_order */
986 if (current_order
>= pageblock_order
)
987 change_pageblock_range(page
, current_order
,
990 expand(zone
, page
, order
, current_order
, area
, migratetype
);
992 trace_mm_page_alloc_extfrag(page
, order
, current_order
,
993 start_migratetype
, migratetype
);
1003 * Do the hard work of removing an element from the buddy allocator.
1004 * Call me with the zone->lock already held.
1006 static struct page
*__rmqueue(struct zone
*zone
, unsigned int order
,
1012 page
= __rmqueue_smallest(zone
, order
, migratetype
);
1014 if (unlikely(!page
) && migratetype
!= MIGRATE_RESERVE
) {
1015 page
= __rmqueue_fallback(zone
, order
, migratetype
);
1018 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1019 * is used because __rmqueue_smallest is an inline function
1020 * and we want just one call site
1023 migratetype
= MIGRATE_RESERVE
;
1028 trace_mm_page_alloc_zone_locked(page
, order
, migratetype
);
1033 * Obtain a specified number of elements from the buddy allocator, all under
1034 * a single hold of the lock, for efficiency. Add them to the supplied list.
1035 * Returns the number of new pages which were placed at *list.
1037 static int rmqueue_bulk(struct zone
*zone
, unsigned int order
,
1038 unsigned long count
, struct list_head
*list
,
1039 int migratetype
, int cold
)
1043 spin_lock(&zone
->lock
);
1044 for (i
= 0; i
< count
; ++i
) {
1045 struct page
*page
= __rmqueue(zone
, order
, migratetype
);
1046 if (unlikely(page
== NULL
))
1050 * Split buddy pages returned by expand() are received here
1051 * in physical page order. The page is added to the callers and
1052 * list and the list head then moves forward. From the callers
1053 * perspective, the linked list is ordered by page number in
1054 * some conditions. This is useful for IO devices that can
1055 * merge IO requests if the physical pages are ordered
1058 if (likely(cold
== 0))
1059 list_add(&page
->lru
, list
);
1061 list_add_tail(&page
->lru
, list
);
1062 set_page_private(page
, migratetype
);
1065 __mod_zone_page_state(zone
, NR_FREE_PAGES
, -(i
<< order
));
1066 spin_unlock(&zone
->lock
);
1072 * Called from the vmstat counter updater to drain pagesets of this
1073 * currently executing processor on remote nodes after they have
1076 * Note that this function must be called with the thread pinned to
1077 * a single processor.
1079 void drain_zone_pages(struct zone
*zone
, struct per_cpu_pages
*pcp
)
1081 unsigned long flags
;
1084 local_irq_save(flags
);
1085 if (pcp
->count
>= pcp
->batch
)
1086 to_drain
= pcp
->batch
;
1088 to_drain
= pcp
->count
;
1089 free_pcppages_bulk(zone
, to_drain
, pcp
);
1090 pcp
->count
-= to_drain
;
1091 local_irq_restore(flags
);
1096 * Drain pages of the indicated processor.
1098 * The processor must either be the current processor and the
1099 * thread pinned to the current processor or a processor that
1102 static void drain_pages(unsigned int cpu
)
1104 unsigned long flags
;
1107 for_each_populated_zone(zone
) {
1108 struct per_cpu_pageset
*pset
;
1109 struct per_cpu_pages
*pcp
;
1111 local_irq_save(flags
);
1112 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
1116 free_pcppages_bulk(zone
, pcp
->count
, pcp
);
1119 local_irq_restore(flags
);
1124 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1126 void drain_local_pages(void *arg
)
1128 drain_pages(smp_processor_id());
1132 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1134 void drain_all_pages(void)
1136 on_each_cpu(drain_local_pages
, NULL
, 1);
1139 #ifdef CONFIG_HIBERNATION
1141 void mark_free_pages(struct zone
*zone
)
1143 unsigned long pfn
, max_zone_pfn
;
1144 unsigned long flags
;
1146 struct list_head
*curr
;
1148 if (!zone
->spanned_pages
)
1151 spin_lock_irqsave(&zone
->lock
, flags
);
1153 max_zone_pfn
= zone
->zone_start_pfn
+ zone
->spanned_pages
;
1154 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
1155 if (pfn_valid(pfn
)) {
1156 struct page
*page
= pfn_to_page(pfn
);
1158 if (!swsusp_page_is_forbidden(page
))
1159 swsusp_unset_page_free(page
);
1162 for_each_migratetype_order(order
, t
) {
1163 list_for_each(curr
, &zone
->free_area
[order
].free_list
[t
]) {
1166 pfn
= page_to_pfn(list_entry(curr
, struct page
, lru
));
1167 for (i
= 0; i
< (1UL << order
); i
++)
1168 swsusp_set_page_free(pfn_to_page(pfn
+ i
));
1171 spin_unlock_irqrestore(&zone
->lock
, flags
);
1173 #endif /* CONFIG_PM */
1176 * Free a 0-order page
1177 * cold == 1 ? free a cold page : free a hot page
1179 void free_hot_cold_page(struct page
*page
, int cold
)
1181 struct zone
*zone
= page_zone(page
);
1182 struct per_cpu_pages
*pcp
;
1183 unsigned long flags
;
1185 int wasMlocked
= __TestClearPageMlocked(page
);
1187 if (!free_pages_prepare(page
, 0))
1190 migratetype
= get_pageblock_migratetype(page
);
1191 set_page_private(page
, migratetype
);
1192 local_irq_save(flags
);
1193 if (unlikely(wasMlocked
))
1194 free_page_mlock(page
);
1195 __count_vm_event(PGFREE
);
1198 * We only track unmovable, reclaimable and movable on pcp lists.
1199 * Free ISOLATE pages back to the allocator because they are being
1200 * offlined but treat RESERVE as movable pages so we can get those
1201 * areas back if necessary. Otherwise, we may have to free
1202 * excessively into the page allocator
1204 if (migratetype
>= MIGRATE_PCPTYPES
) {
1205 if (unlikely(migratetype
== MIGRATE_ISOLATE
)) {
1206 free_one_page(zone
, page
, 0, migratetype
);
1209 migratetype
= MIGRATE_MOVABLE
;
1212 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
1214 list_add_tail(&page
->lru
, &pcp
->lists
[migratetype
]);
1216 list_add(&page
->lru
, &pcp
->lists
[migratetype
]);
1218 if (pcp
->count
>= pcp
->high
) {
1219 free_pcppages_bulk(zone
, pcp
->batch
, pcp
);
1220 pcp
->count
-= pcp
->batch
;
1224 local_irq_restore(flags
);
1228 * split_page takes a non-compound higher-order page, and splits it into
1229 * n (1<<order) sub-pages: page[0..n]
1230 * Each sub-page must be freed individually.
1232 * Note: this is probably too low level an operation for use in drivers.
1233 * Please consult with lkml before using this in your driver.
1235 void split_page(struct page
*page
, unsigned int order
)
1239 VM_BUG_ON(PageCompound(page
));
1240 VM_BUG_ON(!page_count(page
));
1242 #ifdef CONFIG_KMEMCHECK
1244 * Split shadow pages too, because free(page[0]) would
1245 * otherwise free the whole shadow.
1247 if (kmemcheck_page_is_tracked(page
))
1248 split_page(virt_to_page(page
[0].shadow
), order
);
1251 for (i
= 1; i
< (1 << order
); i
++)
1252 set_page_refcounted(page
+ i
);
1256 * Similar to split_page except the page is already free. As this is only
1257 * being used for migration, the migratetype of the block also changes.
1258 * As this is called with interrupts disabled, the caller is responsible
1259 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1262 * Note: this is probably too low level an operation for use in drivers.
1263 * Please consult with lkml before using this in your driver.
1265 int split_free_page(struct page
*page
)
1268 unsigned long watermark
;
1271 BUG_ON(!PageBuddy(page
));
1273 zone
= page_zone(page
);
1274 order
= page_order(page
);
1276 /* Obey watermarks as if the page was being allocated */
1277 watermark
= low_wmark_pages(zone
) + (1 << order
);
1278 if (!zone_watermark_ok(zone
, 0, watermark
, 0, 0))
1281 /* Remove page from free list */
1282 list_del(&page
->lru
);
1283 zone
->free_area
[order
].nr_free
--;
1284 rmv_page_order(page
);
1285 __mod_zone_page_state(zone
, NR_FREE_PAGES
, -(1UL << order
));
1287 /* Split into individual pages */
1288 set_page_refcounted(page
);
1289 split_page(page
, order
);
1291 if (order
>= pageblock_order
- 1) {
1292 struct page
*endpage
= page
+ (1 << order
) - 1;
1293 for (; page
< endpage
; page
+= pageblock_nr_pages
)
1294 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
1301 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1302 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1306 struct page
*buffered_rmqueue(struct zone
*preferred_zone
,
1307 struct zone
*zone
, int order
, gfp_t gfp_flags
,
1310 unsigned long flags
;
1312 int cold
= !!(gfp_flags
& __GFP_COLD
);
1315 if (likely(order
== 0)) {
1316 struct per_cpu_pages
*pcp
;
1317 struct list_head
*list
;
1319 local_irq_save(flags
);
1320 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
1321 list
= &pcp
->lists
[migratetype
];
1322 if (list_empty(list
)) {
1323 pcp
->count
+= rmqueue_bulk(zone
, 0,
1326 if (unlikely(list_empty(list
)))
1331 page
= list_entry(list
->prev
, struct page
, lru
);
1333 page
= list_entry(list
->next
, struct page
, lru
);
1335 list_del(&page
->lru
);
1338 if (unlikely(gfp_flags
& __GFP_NOFAIL
)) {
1340 * __GFP_NOFAIL is not to be used in new code.
1342 * All __GFP_NOFAIL callers should be fixed so that they
1343 * properly detect and handle allocation failures.
1345 * We most definitely don't want callers attempting to
1346 * allocate greater than order-1 page units with
1349 WARN_ON_ONCE(order
> 1);
1351 spin_lock_irqsave(&zone
->lock
, flags
);
1352 page
= __rmqueue(zone
, order
, migratetype
);
1353 spin_unlock(&zone
->lock
);
1356 __mod_zone_page_state(zone
, NR_FREE_PAGES
, -(1 << order
));
1359 __count_zone_vm_events(PGALLOC
, zone
, 1 << order
);
1360 zone_statistics(preferred_zone
, zone
, gfp_flags
);
1361 local_irq_restore(flags
);
1363 VM_BUG_ON(bad_range(zone
, page
));
1364 if (prep_new_page(page
, order
, gfp_flags
))
1369 local_irq_restore(flags
);
1373 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1374 #define ALLOC_WMARK_MIN WMARK_MIN
1375 #define ALLOC_WMARK_LOW WMARK_LOW
1376 #define ALLOC_WMARK_HIGH WMARK_HIGH
1377 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1379 /* Mask to get the watermark bits */
1380 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1382 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1383 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1384 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1386 #ifdef CONFIG_FAIL_PAGE_ALLOC
1388 static struct fail_page_alloc_attr
{
1389 struct fault_attr attr
;
1391 u32 ignore_gfp_highmem
;
1392 u32 ignore_gfp_wait
;
1395 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1397 struct dentry
*ignore_gfp_highmem_file
;
1398 struct dentry
*ignore_gfp_wait_file
;
1399 struct dentry
*min_order_file
;
1401 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1403 } fail_page_alloc
= {
1404 .attr
= FAULT_ATTR_INITIALIZER
,
1405 .ignore_gfp_wait
= 1,
1406 .ignore_gfp_highmem
= 1,
1410 static int __init
setup_fail_page_alloc(char *str
)
1412 return setup_fault_attr(&fail_page_alloc
.attr
, str
);
1414 __setup("fail_page_alloc=", setup_fail_page_alloc
);
1416 static int should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
1418 if (order
< fail_page_alloc
.min_order
)
1420 if (gfp_mask
& __GFP_NOFAIL
)
1422 if (fail_page_alloc
.ignore_gfp_highmem
&& (gfp_mask
& __GFP_HIGHMEM
))
1424 if (fail_page_alloc
.ignore_gfp_wait
&& (gfp_mask
& __GFP_WAIT
))
1427 return should_fail(&fail_page_alloc
.attr
, 1 << order
);
1430 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1432 static int __init
fail_page_alloc_debugfs(void)
1434 mode_t mode
= S_IFREG
| S_IRUSR
| S_IWUSR
;
1438 err
= init_fault_attr_dentries(&fail_page_alloc
.attr
,
1442 dir
= fail_page_alloc
.attr
.dentries
.dir
;
1444 fail_page_alloc
.ignore_gfp_wait_file
=
1445 debugfs_create_bool("ignore-gfp-wait", mode
, dir
,
1446 &fail_page_alloc
.ignore_gfp_wait
);
1448 fail_page_alloc
.ignore_gfp_highmem_file
=
1449 debugfs_create_bool("ignore-gfp-highmem", mode
, dir
,
1450 &fail_page_alloc
.ignore_gfp_highmem
);
1451 fail_page_alloc
.min_order_file
=
1452 debugfs_create_u32("min-order", mode
, dir
,
1453 &fail_page_alloc
.min_order
);
1455 if (!fail_page_alloc
.ignore_gfp_wait_file
||
1456 !fail_page_alloc
.ignore_gfp_highmem_file
||
1457 !fail_page_alloc
.min_order_file
) {
1459 debugfs_remove(fail_page_alloc
.ignore_gfp_wait_file
);
1460 debugfs_remove(fail_page_alloc
.ignore_gfp_highmem_file
);
1461 debugfs_remove(fail_page_alloc
.min_order_file
);
1462 cleanup_fault_attr_dentries(&fail_page_alloc
.attr
);
1468 late_initcall(fail_page_alloc_debugfs
);
1470 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1472 #else /* CONFIG_FAIL_PAGE_ALLOC */
1474 static inline int should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
1479 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1482 * Return true if free pages are above 'mark'. This takes into account the order
1483 * of the allocation.
1485 static bool __zone_watermark_ok(struct zone
*z
, int order
, unsigned long mark
,
1486 int classzone_idx
, int alloc_flags
, long free_pages
)
1488 /* free_pages my go negative - that's OK */
1492 free_pages
-= (1 << order
) + 1;
1493 if (alloc_flags
& ALLOC_HIGH
)
1495 if (alloc_flags
& ALLOC_HARDER
)
1498 if (free_pages
<= min
+ z
->lowmem_reserve
[classzone_idx
])
1500 for (o
= 0; o
< order
; o
++) {
1501 /* At the next order, this order's pages become unavailable */
1502 free_pages
-= z
->free_area
[o
].nr_free
<< o
;
1504 /* Require fewer higher order pages to be free */
1505 min
>>= min_free_order_shift
;
1507 if (free_pages
<= min
)
1513 bool zone_watermark_ok(struct zone
*z
, int order
, unsigned long mark
,
1514 int classzone_idx
, int alloc_flags
)
1516 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, alloc_flags
,
1517 zone_page_state(z
, NR_FREE_PAGES
));
1520 bool zone_watermark_ok_safe(struct zone
*z
, int order
, unsigned long mark
,
1521 int classzone_idx
, int alloc_flags
)
1523 long free_pages
= zone_page_state(z
, NR_FREE_PAGES
);
1525 if (z
->percpu_drift_mark
&& free_pages
< z
->percpu_drift_mark
)
1526 free_pages
= zone_page_state_snapshot(z
, NR_FREE_PAGES
);
1528 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, alloc_flags
,
1534 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1535 * skip over zones that are not allowed by the cpuset, or that have
1536 * been recently (in last second) found to be nearly full. See further
1537 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1538 * that have to skip over a lot of full or unallowed zones.
1540 * If the zonelist cache is present in the passed in zonelist, then
1541 * returns a pointer to the allowed node mask (either the current
1542 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1544 * If the zonelist cache is not available for this zonelist, does
1545 * nothing and returns NULL.
1547 * If the fullzones BITMAP in the zonelist cache is stale (more than
1548 * a second since last zap'd) then we zap it out (clear its bits.)
1550 * We hold off even calling zlc_setup, until after we've checked the
1551 * first zone in the zonelist, on the theory that most allocations will
1552 * be satisfied from that first zone, so best to examine that zone as
1553 * quickly as we can.
1555 static nodemask_t
*zlc_setup(struct zonelist
*zonelist
, int alloc_flags
)
1557 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1558 nodemask_t
*allowednodes
; /* zonelist_cache approximation */
1560 zlc
= zonelist
->zlcache_ptr
;
1564 if (time_after(jiffies
, zlc
->last_full_zap
+ HZ
)) {
1565 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
1566 zlc
->last_full_zap
= jiffies
;
1569 allowednodes
= !in_interrupt() && (alloc_flags
& ALLOC_CPUSET
) ?
1570 &cpuset_current_mems_allowed
:
1571 &node_states
[N_HIGH_MEMORY
];
1572 return allowednodes
;
1576 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1577 * if it is worth looking at further for free memory:
1578 * 1) Check that the zone isn't thought to be full (doesn't have its
1579 * bit set in the zonelist_cache fullzones BITMAP).
1580 * 2) Check that the zones node (obtained from the zonelist_cache
1581 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1582 * Return true (non-zero) if zone is worth looking at further, or
1583 * else return false (zero) if it is not.
1585 * This check -ignores- the distinction between various watermarks,
1586 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1587 * found to be full for any variation of these watermarks, it will
1588 * be considered full for up to one second by all requests, unless
1589 * we are so low on memory on all allowed nodes that we are forced
1590 * into the second scan of the zonelist.
1592 * In the second scan we ignore this zonelist cache and exactly
1593 * apply the watermarks to all zones, even it is slower to do so.
1594 * We are low on memory in the second scan, and should leave no stone
1595 * unturned looking for a free page.
1597 static int zlc_zone_worth_trying(struct zonelist
*zonelist
, struct zoneref
*z
,
1598 nodemask_t
*allowednodes
)
1600 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1601 int i
; /* index of *z in zonelist zones */
1602 int n
; /* node that zone *z is on */
1604 zlc
= zonelist
->zlcache_ptr
;
1608 i
= z
- zonelist
->_zonerefs
;
1611 /* This zone is worth trying if it is allowed but not full */
1612 return node_isset(n
, *allowednodes
) && !test_bit(i
, zlc
->fullzones
);
1616 * Given 'z' scanning a zonelist, set the corresponding bit in
1617 * zlc->fullzones, so that subsequent attempts to allocate a page
1618 * from that zone don't waste time re-examining it.
1620 static void zlc_mark_zone_full(struct zonelist
*zonelist
, struct zoneref
*z
)
1622 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1623 int i
; /* index of *z in zonelist zones */
1625 zlc
= zonelist
->zlcache_ptr
;
1629 i
= z
- zonelist
->_zonerefs
;
1631 set_bit(i
, zlc
->fullzones
);
1635 * clear all zones full, called after direct reclaim makes progress so that
1636 * a zone that was recently full is not skipped over for up to a second
1638 static void zlc_clear_zones_full(struct zonelist
*zonelist
)
1640 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1642 zlc
= zonelist
->zlcache_ptr
;
1646 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
1649 #else /* CONFIG_NUMA */
1651 static nodemask_t
*zlc_setup(struct zonelist
*zonelist
, int alloc_flags
)
1656 static int zlc_zone_worth_trying(struct zonelist
*zonelist
, struct zoneref
*z
,
1657 nodemask_t
*allowednodes
)
1662 static void zlc_mark_zone_full(struct zonelist
*zonelist
, struct zoneref
*z
)
1666 static void zlc_clear_zones_full(struct zonelist
*zonelist
)
1669 #endif /* CONFIG_NUMA */
1672 * get_page_from_freelist goes through the zonelist trying to allocate
1675 static struct page
*
1676 get_page_from_freelist(gfp_t gfp_mask
, nodemask_t
*nodemask
, unsigned int order
,
1677 struct zonelist
*zonelist
, int high_zoneidx
, int alloc_flags
,
1678 struct zone
*preferred_zone
, int migratetype
)
1681 struct page
*page
= NULL
;
1684 nodemask_t
*allowednodes
= NULL
;/* zonelist_cache approximation */
1685 int zlc_active
= 0; /* set if using zonelist_cache */
1686 int did_zlc_setup
= 0; /* just call zlc_setup() one time */
1688 classzone_idx
= zone_idx(preferred_zone
);
1691 * Scan zonelist, looking for a zone with enough free.
1692 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1694 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
1695 high_zoneidx
, nodemask
) {
1696 if (NUMA_BUILD
&& zlc_active
&&
1697 !zlc_zone_worth_trying(zonelist
, z
, allowednodes
))
1699 if ((alloc_flags
& ALLOC_CPUSET
) &&
1700 !cpuset_zone_allowed_softwall(zone
, gfp_mask
))
1703 BUILD_BUG_ON(ALLOC_NO_WATERMARKS
< NR_WMARK
);
1704 if (!(alloc_flags
& ALLOC_NO_WATERMARKS
)) {
1708 mark
= zone
->watermark
[alloc_flags
& ALLOC_WMARK_MASK
];
1709 if (zone_watermark_ok(zone
, order
, mark
,
1710 classzone_idx
, alloc_flags
))
1713 if (NUMA_BUILD
&& !did_zlc_setup
&& nr_online_nodes
> 1) {
1715 * we do zlc_setup if there are multiple nodes
1716 * and before considering the first zone allowed
1719 allowednodes
= zlc_setup(zonelist
, alloc_flags
);
1724 if (zone_reclaim_mode
== 0)
1725 goto this_zone_full
;
1728 * As we may have just activated ZLC, check if the first
1729 * eligible zone has failed zone_reclaim recently.
1731 if (NUMA_BUILD
&& zlc_active
&&
1732 !zlc_zone_worth_trying(zonelist
, z
, allowednodes
))
1735 ret
= zone_reclaim(zone
, gfp_mask
, order
);
1737 case ZONE_RECLAIM_NOSCAN
:
1740 case ZONE_RECLAIM_FULL
:
1741 /* scanned but unreclaimable */
1744 /* did we reclaim enough */
1745 if (!zone_watermark_ok(zone
, order
, mark
,
1746 classzone_idx
, alloc_flags
))
1747 goto this_zone_full
;
1752 page
= buffered_rmqueue(preferred_zone
, zone
, order
,
1753 gfp_mask
, migratetype
);
1758 zlc_mark_zone_full(zonelist
, z
);
1761 if (unlikely(NUMA_BUILD
&& page
== NULL
&& zlc_active
)) {
1762 /* Disable zlc cache for second zonelist scan */
1770 * Large machines with many possible nodes should not always dump per-node
1771 * meminfo in irq context.
1773 static inline bool should_suppress_show_mem(void)
1778 ret
= in_interrupt();
1783 static DEFINE_RATELIMIT_STATE(nopage_rs
,
1784 DEFAULT_RATELIMIT_INTERVAL
,
1785 DEFAULT_RATELIMIT_BURST
);
1787 void warn_alloc_failed(gfp_t gfp_mask
, int order
, const char *fmt
, ...)
1790 unsigned int filter
= SHOW_MEM_FILTER_NODES
;
1792 if ((gfp_mask
& __GFP_NOWARN
) || !__ratelimit(&nopage_rs
))
1796 * This documents exceptions given to allocations in certain
1797 * contexts that are allowed to allocate outside current's set
1800 if (!(gfp_mask
& __GFP_NOMEMALLOC
))
1801 if (test_thread_flag(TIF_MEMDIE
) ||
1802 (current
->flags
& (PF_MEMALLOC
| PF_EXITING
)))
1803 filter
&= ~SHOW_MEM_FILTER_NODES
;
1804 if (in_interrupt() || !(gfp_mask
& __GFP_WAIT
))
1805 filter
&= ~SHOW_MEM_FILTER_NODES
;
1808 printk(KERN_WARNING
);
1809 va_start(args
, fmt
);
1814 pr_warning("%s: page allocation failure: order:%d, mode:0x%x\n",
1815 current
->comm
, order
, gfp_mask
);
1818 if (!should_suppress_show_mem())
1823 should_alloc_retry(gfp_t gfp_mask
, unsigned int order
,
1824 unsigned long pages_reclaimed
)
1826 /* Do not loop if specifically requested */
1827 if (gfp_mask
& __GFP_NORETRY
)
1831 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1832 * means __GFP_NOFAIL, but that may not be true in other
1835 if (order
<= PAGE_ALLOC_COSTLY_ORDER
)
1839 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1840 * specified, then we retry until we no longer reclaim any pages
1841 * (above), or we've reclaimed an order of pages at least as
1842 * large as the allocation's order. In both cases, if the
1843 * allocation still fails, we stop retrying.
1845 if (gfp_mask
& __GFP_REPEAT
&& pages_reclaimed
< (1 << order
))
1849 * Don't let big-order allocations loop unless the caller
1850 * explicitly requests that.
1852 if (gfp_mask
& __GFP_NOFAIL
)
1858 static inline struct page
*
1859 __alloc_pages_may_oom(gfp_t gfp_mask
, unsigned int order
,
1860 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
1861 nodemask_t
*nodemask
, struct zone
*preferred_zone
,
1866 /* Acquire the OOM killer lock for the zones in zonelist */
1867 if (!try_set_zonelist_oom(zonelist
, gfp_mask
)) {
1868 schedule_timeout_uninterruptible(1);
1873 * Go through the zonelist yet one more time, keep very high watermark
1874 * here, this is only to catch a parallel oom killing, we must fail if
1875 * we're still under heavy pressure.
1877 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, nodemask
,
1878 order
, zonelist
, high_zoneidx
,
1879 ALLOC_WMARK_HIGH
|ALLOC_CPUSET
,
1880 preferred_zone
, migratetype
);
1884 if (!(gfp_mask
& __GFP_NOFAIL
)) {
1885 /* The OOM killer will not help higher order allocs */
1886 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
1888 /* The OOM killer does not needlessly kill tasks for lowmem */
1889 if (high_zoneidx
< ZONE_NORMAL
)
1892 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
1893 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
1894 * The caller should handle page allocation failure by itself if
1895 * it specifies __GFP_THISNODE.
1896 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
1898 if (gfp_mask
& __GFP_THISNODE
)
1901 /* Exhausted what can be done so it's blamo time */
1902 out_of_memory(zonelist
, gfp_mask
, order
, nodemask
);
1905 clear_zonelist_oom(zonelist
, gfp_mask
);
1909 #ifdef CONFIG_COMPACTION
1910 /* Try memory compaction for high-order allocations before reclaim */
1911 static struct page
*
1912 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
1913 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
1914 nodemask_t
*nodemask
, int alloc_flags
, struct zone
*preferred_zone
,
1915 int migratetype
, unsigned long *did_some_progress
,
1916 bool sync_migration
)
1920 if (!order
|| compaction_deferred(preferred_zone
))
1923 current
->flags
|= PF_MEMALLOC
;
1924 *did_some_progress
= try_to_compact_pages(zonelist
, order
, gfp_mask
,
1925 nodemask
, sync_migration
);
1926 current
->flags
&= ~PF_MEMALLOC
;
1927 if (*did_some_progress
!= COMPACT_SKIPPED
) {
1929 /* Page migration frees to the PCP lists but we want merging */
1930 drain_pages(get_cpu());
1933 page
= get_page_from_freelist(gfp_mask
, nodemask
,
1934 order
, zonelist
, high_zoneidx
,
1935 alloc_flags
, preferred_zone
,
1938 preferred_zone
->compact_considered
= 0;
1939 preferred_zone
->compact_defer_shift
= 0;
1940 count_vm_event(COMPACTSUCCESS
);
1945 * It's bad if compaction run occurs and fails.
1946 * The most likely reason is that pages exist,
1947 * but not enough to satisfy watermarks.
1949 count_vm_event(COMPACTFAIL
);
1950 defer_compaction(preferred_zone
);
1958 static inline struct page
*
1959 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
1960 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
1961 nodemask_t
*nodemask
, int alloc_flags
, struct zone
*preferred_zone
,
1962 int migratetype
, unsigned long *did_some_progress
,
1963 bool sync_migration
)
1967 #endif /* CONFIG_COMPACTION */
1969 /* The really slow allocator path where we enter direct reclaim */
1970 static inline struct page
*
1971 __alloc_pages_direct_reclaim(gfp_t gfp_mask
, unsigned int order
,
1972 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
1973 nodemask_t
*nodemask
, int alloc_flags
, struct zone
*preferred_zone
,
1974 int migratetype
, unsigned long *did_some_progress
)
1976 struct page
*page
= NULL
;
1977 struct reclaim_state reclaim_state
;
1978 bool drained
= false;
1982 /* We now go into synchronous reclaim */
1983 cpuset_memory_pressure_bump();
1984 current
->flags
|= PF_MEMALLOC
;
1985 lockdep_set_current_reclaim_state(gfp_mask
);
1986 reclaim_state
.reclaimed_slab
= 0;
1987 current
->reclaim_state
= &reclaim_state
;
1989 *did_some_progress
= try_to_free_pages(zonelist
, order
, gfp_mask
, nodemask
);
1991 current
->reclaim_state
= NULL
;
1992 lockdep_clear_current_reclaim_state();
1993 current
->flags
&= ~PF_MEMALLOC
;
1997 if (unlikely(!(*did_some_progress
)))
2000 /* After successful reclaim, reconsider all zones for allocation */
2002 zlc_clear_zones_full(zonelist
);
2005 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
,
2006 zonelist
, high_zoneidx
,
2007 alloc_flags
, preferred_zone
,
2011 * If an allocation failed after direct reclaim, it could be because
2012 * pages are pinned on the per-cpu lists. Drain them and try again
2014 if (!page
&& !drained
) {
2024 * This is called in the allocator slow-path if the allocation request is of
2025 * sufficient urgency to ignore watermarks and take other desperate measures
2027 static inline struct page
*
2028 __alloc_pages_high_priority(gfp_t gfp_mask
, unsigned int order
,
2029 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
2030 nodemask_t
*nodemask
, struct zone
*preferred_zone
,
2036 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
,
2037 zonelist
, high_zoneidx
, ALLOC_NO_WATERMARKS
,
2038 preferred_zone
, migratetype
);
2040 if (!page
&& gfp_mask
& __GFP_NOFAIL
)
2041 wait_iff_congested(preferred_zone
, BLK_RW_ASYNC
, HZ
/50);
2042 } while (!page
&& (gfp_mask
& __GFP_NOFAIL
));
2048 void wake_all_kswapd(unsigned int order
, struct zonelist
*zonelist
,
2049 enum zone_type high_zoneidx
,
2050 enum zone_type classzone_idx
)
2055 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
)
2056 wakeup_kswapd(zone
, order
, classzone_idx
);
2060 gfp_to_alloc_flags(gfp_t gfp_mask
)
2062 int alloc_flags
= ALLOC_WMARK_MIN
| ALLOC_CPUSET
;
2063 const gfp_t wait
= gfp_mask
& __GFP_WAIT
;
2065 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2066 BUILD_BUG_ON(__GFP_HIGH
!= (__force gfp_t
) ALLOC_HIGH
);
2069 * The caller may dip into page reserves a bit more if the caller
2070 * cannot run direct reclaim, or if the caller has realtime scheduling
2071 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2072 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2074 alloc_flags
|= (__force
int) (gfp_mask
& __GFP_HIGH
);
2078 * Not worth trying to allocate harder for
2079 * __GFP_NOMEMALLOC even if it can't schedule.
2081 if (!(gfp_mask
& __GFP_NOMEMALLOC
))
2082 alloc_flags
|= ALLOC_HARDER
;
2084 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2085 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
2087 alloc_flags
&= ~ALLOC_CPUSET
;
2088 } else if (unlikely(rt_task(current
)) && !in_interrupt())
2089 alloc_flags
|= ALLOC_HARDER
;
2091 if (likely(!(gfp_mask
& __GFP_NOMEMALLOC
))) {
2092 if (!in_interrupt() &&
2093 ((current
->flags
& PF_MEMALLOC
) ||
2094 unlikely(test_thread_flag(TIF_MEMDIE
))))
2095 alloc_flags
|= ALLOC_NO_WATERMARKS
;
2101 static inline struct page
*
2102 __alloc_pages_slowpath(gfp_t gfp_mask
, unsigned int order
,
2103 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
2104 nodemask_t
*nodemask
, struct zone
*preferred_zone
,
2107 const gfp_t wait
= gfp_mask
& __GFP_WAIT
;
2108 struct page
*page
= NULL
;
2110 unsigned long pages_reclaimed
= 0;
2111 unsigned long did_some_progress
;
2112 bool sync_migration
= false;
2115 * In the slowpath, we sanity check order to avoid ever trying to
2116 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2117 * be using allocators in order of preference for an area that is
2120 if (order
>= MAX_ORDER
) {
2121 WARN_ON_ONCE(!(gfp_mask
& __GFP_NOWARN
));
2126 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2127 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2128 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2129 * using a larger set of nodes after it has established that the
2130 * allowed per node queues are empty and that nodes are
2133 if (NUMA_BUILD
&& (gfp_mask
& GFP_THISNODE
) == GFP_THISNODE
)
2137 if (!(gfp_mask
& __GFP_NO_KSWAPD
))
2138 wake_all_kswapd(order
, zonelist
, high_zoneidx
,
2139 zone_idx(preferred_zone
));
2142 * OK, we're below the kswapd watermark and have kicked background
2143 * reclaim. Now things get more complex, so set up alloc_flags according
2144 * to how we want to proceed.
2146 alloc_flags
= gfp_to_alloc_flags(gfp_mask
);
2149 * Find the true preferred zone if the allocation is unconstrained by
2152 if (!(alloc_flags
& ALLOC_CPUSET
) && !nodemask
)
2153 first_zones_zonelist(zonelist
, high_zoneidx
, NULL
,
2157 /* This is the last chance, in general, before the goto nopage. */
2158 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
, zonelist
,
2159 high_zoneidx
, alloc_flags
& ~ALLOC_NO_WATERMARKS
,
2160 preferred_zone
, migratetype
);
2164 /* Allocate without watermarks if the context allows */
2165 if (alloc_flags
& ALLOC_NO_WATERMARKS
) {
2166 page
= __alloc_pages_high_priority(gfp_mask
, order
,
2167 zonelist
, high_zoneidx
, nodemask
,
2168 preferred_zone
, migratetype
);
2173 /* Atomic allocations - we can't balance anything */
2177 /* Avoid recursion of direct reclaim */
2178 if (current
->flags
& PF_MEMALLOC
)
2181 /* Avoid allocations with no watermarks from looping endlessly */
2182 if (test_thread_flag(TIF_MEMDIE
) && !(gfp_mask
& __GFP_NOFAIL
))
2186 * Try direct compaction. The first pass is asynchronous. Subsequent
2187 * attempts after direct reclaim are synchronous
2189 page
= __alloc_pages_direct_compact(gfp_mask
, order
,
2190 zonelist
, high_zoneidx
,
2192 alloc_flags
, preferred_zone
,
2193 migratetype
, &did_some_progress
,
2197 sync_migration
= true;
2199 /* Try direct reclaim and then allocating */
2200 page
= __alloc_pages_direct_reclaim(gfp_mask
, order
,
2201 zonelist
, high_zoneidx
,
2203 alloc_flags
, preferred_zone
,
2204 migratetype
, &did_some_progress
);
2209 * If we failed to make any progress reclaiming, then we are
2210 * running out of options and have to consider going OOM
2212 if (!did_some_progress
) {
2213 if ((gfp_mask
& __GFP_FS
) && !(gfp_mask
& __GFP_NORETRY
)) {
2214 if (oom_killer_disabled
)
2216 page
= __alloc_pages_may_oom(gfp_mask
, order
,
2217 zonelist
, high_zoneidx
,
2218 nodemask
, preferred_zone
,
2223 if (!(gfp_mask
& __GFP_NOFAIL
)) {
2225 * The oom killer is not called for high-order
2226 * allocations that may fail, so if no progress
2227 * is being made, there are no other options and
2228 * retrying is unlikely to help.
2230 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
2233 * The oom killer is not called for lowmem
2234 * allocations to prevent needlessly killing
2237 if (high_zoneidx
< ZONE_NORMAL
)
2245 * Suspend converts GFP_KERNEL to __GFP_WAIT which can
2246 * prevent reclaim making forward progress without
2247 * invoking OOM. Bail if we are suspending
2249 if (pm_suspending())
2253 /* Check if we should retry the allocation */
2254 pages_reclaimed
+= did_some_progress
;
2255 if (should_alloc_retry(gfp_mask
, order
, pages_reclaimed
)) {
2256 /* Wait for some write requests to complete then retry */
2257 wait_iff_congested(preferred_zone
, BLK_RW_ASYNC
, HZ
/50);
2261 * High-order allocations do not necessarily loop after
2262 * direct reclaim and reclaim/compaction depends on compaction
2263 * being called after reclaim so call directly if necessary
2265 page
= __alloc_pages_direct_compact(gfp_mask
, order
,
2266 zonelist
, high_zoneidx
,
2268 alloc_flags
, preferred_zone
,
2269 migratetype
, &did_some_progress
,
2276 warn_alloc_failed(gfp_mask
, order
, NULL
);
2279 if (kmemcheck_enabled
)
2280 kmemcheck_pagealloc_alloc(page
, order
, gfp_mask
);
2286 * This is the 'heart' of the zoned buddy allocator.
2289 __alloc_pages_nodemask(gfp_t gfp_mask
, unsigned int order
,
2290 struct zonelist
*zonelist
, nodemask_t
*nodemask
)
2292 enum zone_type high_zoneidx
= gfp_zone(gfp_mask
);
2293 struct zone
*preferred_zone
;
2295 int migratetype
= allocflags_to_migratetype(gfp_mask
);
2297 gfp_mask
&= gfp_allowed_mask
;
2299 lockdep_trace_alloc(gfp_mask
);
2301 might_sleep_if(gfp_mask
& __GFP_WAIT
);
2303 if (should_fail_alloc_page(gfp_mask
, order
))
2307 * Check the zones suitable for the gfp_mask contain at least one
2308 * valid zone. It's possible to have an empty zonelist as a result
2309 * of GFP_THISNODE and a memoryless node
2311 if (unlikely(!zonelist
->_zonerefs
->zone
))
2315 /* The preferred zone is used for statistics later */
2316 first_zones_zonelist(zonelist
, high_zoneidx
,
2317 nodemask
? : &cpuset_current_mems_allowed
,
2319 if (!preferred_zone
) {
2324 /* First allocation attempt */
2325 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, nodemask
, order
,
2326 zonelist
, high_zoneidx
, ALLOC_WMARK_LOW
|ALLOC_CPUSET
,
2327 preferred_zone
, migratetype
);
2328 if (unlikely(!page
))
2329 page
= __alloc_pages_slowpath(gfp_mask
, order
,
2330 zonelist
, high_zoneidx
, nodemask
,
2331 preferred_zone
, migratetype
);
2334 trace_mm_page_alloc(page
, order
, gfp_mask
, migratetype
);
2337 EXPORT_SYMBOL(__alloc_pages_nodemask
);
2340 * Common helper functions.
2342 unsigned long __get_free_pages(gfp_t gfp_mask
, unsigned int order
)
2347 * __get_free_pages() returns a 32-bit address, which cannot represent
2350 VM_BUG_ON((gfp_mask
& __GFP_HIGHMEM
) != 0);
2352 page
= alloc_pages(gfp_mask
, order
);
2355 return (unsigned long) page_address(page
);
2357 EXPORT_SYMBOL(__get_free_pages
);
2359 unsigned long get_zeroed_page(gfp_t gfp_mask
)
2361 return __get_free_pages(gfp_mask
| __GFP_ZERO
, 0);
2363 EXPORT_SYMBOL(get_zeroed_page
);
2365 void __pagevec_free(struct pagevec
*pvec
)
2367 int i
= pagevec_count(pvec
);
2370 trace_mm_pagevec_free(pvec
->pages
[i
], pvec
->cold
);
2371 free_hot_cold_page(pvec
->pages
[i
], pvec
->cold
);
2375 void __free_pages(struct page
*page
, unsigned int order
)
2377 if (put_page_testzero(page
)) {
2379 free_hot_cold_page(page
, 0);
2381 __free_pages_ok(page
, order
);
2385 EXPORT_SYMBOL(__free_pages
);
2387 void free_pages(unsigned long addr
, unsigned int order
)
2390 VM_BUG_ON(!virt_addr_valid((void *)addr
));
2391 __free_pages(virt_to_page((void *)addr
), order
);
2395 EXPORT_SYMBOL(free_pages
);
2397 static void *make_alloc_exact(unsigned long addr
, unsigned order
, size_t size
)
2400 unsigned long alloc_end
= addr
+ (PAGE_SIZE
<< order
);
2401 unsigned long used
= addr
+ PAGE_ALIGN(size
);
2403 split_page(virt_to_page((void *)addr
), order
);
2404 while (used
< alloc_end
) {
2409 return (void *)addr
;
2413 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2414 * @size: the number of bytes to allocate
2415 * @gfp_mask: GFP flags for the allocation
2417 * This function is similar to alloc_pages(), except that it allocates the
2418 * minimum number of pages to satisfy the request. alloc_pages() can only
2419 * allocate memory in power-of-two pages.
2421 * This function is also limited by MAX_ORDER.
2423 * Memory allocated by this function must be released by free_pages_exact().
2425 void *alloc_pages_exact(size_t size
, gfp_t gfp_mask
)
2427 unsigned int order
= get_order(size
);
2430 addr
= __get_free_pages(gfp_mask
, order
);
2431 return make_alloc_exact(addr
, order
, size
);
2433 EXPORT_SYMBOL(alloc_pages_exact
);
2436 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2438 * @nid: the preferred node ID where memory should be allocated
2439 * @size: the number of bytes to allocate
2440 * @gfp_mask: GFP flags for the allocation
2442 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2444 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2447 void *alloc_pages_exact_nid(int nid
, size_t size
, gfp_t gfp_mask
)
2449 unsigned order
= get_order(size
);
2450 struct page
*p
= alloc_pages_node(nid
, gfp_mask
, order
);
2453 return make_alloc_exact((unsigned long)page_address(p
), order
, size
);
2455 EXPORT_SYMBOL(alloc_pages_exact_nid
);
2458 * free_pages_exact - release memory allocated via alloc_pages_exact()
2459 * @virt: the value returned by alloc_pages_exact.
2460 * @size: size of allocation, same value as passed to alloc_pages_exact().
2462 * Release the memory allocated by a previous call to alloc_pages_exact.
2464 void free_pages_exact(void *virt
, size_t size
)
2466 unsigned long addr
= (unsigned long)virt
;
2467 unsigned long end
= addr
+ PAGE_ALIGN(size
);
2469 while (addr
< end
) {
2474 EXPORT_SYMBOL(free_pages_exact
);
2476 static unsigned int nr_free_zone_pages(int offset
)
2481 /* Just pick one node, since fallback list is circular */
2482 unsigned int sum
= 0;
2484 struct zonelist
*zonelist
= node_zonelist(numa_node_id(), GFP_KERNEL
);
2486 for_each_zone_zonelist(zone
, z
, zonelist
, offset
) {
2487 unsigned long size
= zone
->present_pages
;
2488 unsigned long high
= high_wmark_pages(zone
);
2497 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2499 unsigned int nr_free_buffer_pages(void)
2501 return nr_free_zone_pages(gfp_zone(GFP_USER
));
2503 EXPORT_SYMBOL_GPL(nr_free_buffer_pages
);
2506 * Amount of free RAM allocatable within all zones
2508 unsigned int nr_free_pagecache_pages(void)
2510 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE
));
2513 static inline void show_node(struct zone
*zone
)
2516 printk("Node %d ", zone_to_nid(zone
));
2519 void si_meminfo(struct sysinfo
*val
)
2521 val
->totalram
= totalram_pages
;
2523 val
->freeram
= global_page_state(NR_FREE_PAGES
);
2524 val
->bufferram
= nr_blockdev_pages();
2525 val
->totalhigh
= totalhigh_pages
;
2526 val
->freehigh
= nr_free_highpages();
2527 val
->mem_unit
= PAGE_SIZE
;
2530 EXPORT_SYMBOL(si_meminfo
);
2533 void si_meminfo_node(struct sysinfo
*val
, int nid
)
2535 pg_data_t
*pgdat
= NODE_DATA(nid
);
2537 val
->totalram
= pgdat
->node_present_pages
;
2538 val
->freeram
= node_page_state(nid
, NR_FREE_PAGES
);
2539 #ifdef CONFIG_HIGHMEM
2540 val
->totalhigh
= pgdat
->node_zones
[ZONE_HIGHMEM
].present_pages
;
2541 val
->freehigh
= zone_page_state(&pgdat
->node_zones
[ZONE_HIGHMEM
],
2547 val
->mem_unit
= PAGE_SIZE
;
2552 * Determine whether the node should be displayed or not, depending on whether
2553 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
2555 bool skip_free_areas_node(unsigned int flags
, int nid
)
2559 if (!(flags
& SHOW_MEM_FILTER_NODES
))
2563 ret
= !node_isset(nid
, cpuset_current_mems_allowed
);
2569 #define K(x) ((x) << (PAGE_SHIFT-10))
2572 * Show free area list (used inside shift_scroll-lock stuff)
2573 * We also calculate the percentage fragmentation. We do this by counting the
2574 * memory on each free list with the exception of the first item on the list.
2575 * Suppresses nodes that are not allowed by current's cpuset if
2576 * SHOW_MEM_FILTER_NODES is passed.
2578 void show_free_areas(unsigned int filter
)
2583 for_each_populated_zone(zone
) {
2584 if (skip_free_areas_node(filter
, zone_to_nid(zone
)))
2587 printk("%s per-cpu:\n", zone
->name
);
2589 for_each_online_cpu(cpu
) {
2590 struct per_cpu_pageset
*pageset
;
2592 pageset
= per_cpu_ptr(zone
->pageset
, cpu
);
2594 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2595 cpu
, pageset
->pcp
.high
,
2596 pageset
->pcp
.batch
, pageset
->pcp
.count
);
2600 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2601 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2603 " dirty:%lu writeback:%lu unstable:%lu\n"
2604 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2605 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
2606 global_page_state(NR_ACTIVE_ANON
),
2607 global_page_state(NR_INACTIVE_ANON
),
2608 global_page_state(NR_ISOLATED_ANON
),
2609 global_page_state(NR_ACTIVE_FILE
),
2610 global_page_state(NR_INACTIVE_FILE
),
2611 global_page_state(NR_ISOLATED_FILE
),
2612 global_page_state(NR_UNEVICTABLE
),
2613 global_page_state(NR_FILE_DIRTY
),
2614 global_page_state(NR_WRITEBACK
),
2615 global_page_state(NR_UNSTABLE_NFS
),
2616 global_page_state(NR_FREE_PAGES
),
2617 global_page_state(NR_SLAB_RECLAIMABLE
),
2618 global_page_state(NR_SLAB_UNRECLAIMABLE
),
2619 global_page_state(NR_FILE_MAPPED
),
2620 global_page_state(NR_SHMEM
),
2621 global_page_state(NR_PAGETABLE
),
2622 global_page_state(NR_BOUNCE
));
2624 for_each_populated_zone(zone
) {
2627 if (skip_free_areas_node(filter
, zone_to_nid(zone
)))
2635 " active_anon:%lukB"
2636 " inactive_anon:%lukB"
2637 " active_file:%lukB"
2638 " inactive_file:%lukB"
2639 " unevictable:%lukB"
2640 " isolated(anon):%lukB"
2641 " isolated(file):%lukB"
2648 " slab_reclaimable:%lukB"
2649 " slab_unreclaimable:%lukB"
2650 " kernel_stack:%lukB"
2654 " writeback_tmp:%lukB"
2655 " pages_scanned:%lu"
2656 " all_unreclaimable? %s"
2659 K(zone_page_state(zone
, NR_FREE_PAGES
)),
2660 K(min_wmark_pages(zone
)),
2661 K(low_wmark_pages(zone
)),
2662 K(high_wmark_pages(zone
)),
2663 K(zone_page_state(zone
, NR_ACTIVE_ANON
)),
2664 K(zone_page_state(zone
, NR_INACTIVE_ANON
)),
2665 K(zone_page_state(zone
, NR_ACTIVE_FILE
)),
2666 K(zone_page_state(zone
, NR_INACTIVE_FILE
)),
2667 K(zone_page_state(zone
, NR_UNEVICTABLE
)),
2668 K(zone_page_state(zone
, NR_ISOLATED_ANON
)),
2669 K(zone_page_state(zone
, NR_ISOLATED_FILE
)),
2670 K(zone
->present_pages
),
2671 K(zone_page_state(zone
, NR_MLOCK
)),
2672 K(zone_page_state(zone
, NR_FILE_DIRTY
)),
2673 K(zone_page_state(zone
, NR_WRITEBACK
)),
2674 K(zone_page_state(zone
, NR_FILE_MAPPED
)),
2675 K(zone_page_state(zone
, NR_SHMEM
)),
2676 K(zone_page_state(zone
, NR_SLAB_RECLAIMABLE
)),
2677 K(zone_page_state(zone
, NR_SLAB_UNRECLAIMABLE
)),
2678 zone_page_state(zone
, NR_KERNEL_STACK
) *
2680 K(zone_page_state(zone
, NR_PAGETABLE
)),
2681 K(zone_page_state(zone
, NR_UNSTABLE_NFS
)),
2682 K(zone_page_state(zone
, NR_BOUNCE
)),
2683 K(zone_page_state(zone
, NR_WRITEBACK_TEMP
)),
2684 zone
->pages_scanned
,
2685 (zone
->all_unreclaimable
? "yes" : "no")
2687 printk("lowmem_reserve[]:");
2688 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
2689 printk(" %lu", zone
->lowmem_reserve
[i
]);
2693 for_each_populated_zone(zone
) {
2694 unsigned long nr
[MAX_ORDER
], flags
, order
, total
= 0;
2696 if (skip_free_areas_node(filter
, zone_to_nid(zone
)))
2699 printk("%s: ", zone
->name
);
2701 spin_lock_irqsave(&zone
->lock
, flags
);
2702 for (order
= 0; order
< MAX_ORDER
; order
++) {
2703 nr
[order
] = zone
->free_area
[order
].nr_free
;
2704 total
+= nr
[order
] << order
;
2706 spin_unlock_irqrestore(&zone
->lock
, flags
);
2707 for (order
= 0; order
< MAX_ORDER
; order
++)
2708 printk("%lu*%lukB ", nr
[order
], K(1UL) << order
);
2709 printk("= %lukB\n", K(total
));
2712 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES
));
2714 show_swap_cache_info();
2717 static void zoneref_set_zone(struct zone
*zone
, struct zoneref
*zoneref
)
2719 zoneref
->zone
= zone
;
2720 zoneref
->zone_idx
= zone_idx(zone
);
2724 * Builds allocation fallback zone lists.
2726 * Add all populated zones of a node to the zonelist.
2728 static int build_zonelists_node(pg_data_t
*pgdat
, struct zonelist
*zonelist
,
2729 int nr_zones
, enum zone_type zone_type
)
2733 BUG_ON(zone_type
>= MAX_NR_ZONES
);
2738 zone
= pgdat
->node_zones
+ zone_type
;
2739 if (populated_zone(zone
)) {
2740 zoneref_set_zone(zone
,
2741 &zonelist
->_zonerefs
[nr_zones
++]);
2742 check_highest_zone(zone_type
);
2745 } while (zone_type
);
2752 * 0 = automatic detection of better ordering.
2753 * 1 = order by ([node] distance, -zonetype)
2754 * 2 = order by (-zonetype, [node] distance)
2756 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2757 * the same zonelist. So only NUMA can configure this param.
2759 #define ZONELIST_ORDER_DEFAULT 0
2760 #define ZONELIST_ORDER_NODE 1
2761 #define ZONELIST_ORDER_ZONE 2
2763 /* zonelist order in the kernel.
2764 * set_zonelist_order() will set this to NODE or ZONE.
2766 static int current_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
2767 static char zonelist_order_name
[3][8] = {"Default", "Node", "Zone"};
2771 /* The value user specified ....changed by config */
2772 static int user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
2773 /* string for sysctl */
2774 #define NUMA_ZONELIST_ORDER_LEN 16
2775 char numa_zonelist_order
[16] = "default";
2778 * interface for configure zonelist ordering.
2779 * command line option "numa_zonelist_order"
2780 * = "[dD]efault - default, automatic configuration.
2781 * = "[nN]ode - order by node locality, then by zone within node
2782 * = "[zZ]one - order by zone, then by locality within zone
2785 static int __parse_numa_zonelist_order(char *s
)
2787 if (*s
== 'd' || *s
== 'D') {
2788 user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
2789 } else if (*s
== 'n' || *s
== 'N') {
2790 user_zonelist_order
= ZONELIST_ORDER_NODE
;
2791 } else if (*s
== 'z' || *s
== 'Z') {
2792 user_zonelist_order
= ZONELIST_ORDER_ZONE
;
2795 "Ignoring invalid numa_zonelist_order value: "
2802 static __init
int setup_numa_zonelist_order(char *s
)
2809 ret
= __parse_numa_zonelist_order(s
);
2811 strlcpy(numa_zonelist_order
, s
, NUMA_ZONELIST_ORDER_LEN
);
2815 early_param("numa_zonelist_order", setup_numa_zonelist_order
);
2818 * sysctl handler for numa_zonelist_order
2820 int numa_zonelist_order_handler(ctl_table
*table
, int write
,
2821 void __user
*buffer
, size_t *length
,
2824 char saved_string
[NUMA_ZONELIST_ORDER_LEN
];
2826 static DEFINE_MUTEX(zl_order_mutex
);
2828 mutex_lock(&zl_order_mutex
);
2830 strcpy(saved_string
, (char*)table
->data
);
2831 ret
= proc_dostring(table
, write
, buffer
, length
, ppos
);
2835 int oldval
= user_zonelist_order
;
2836 if (__parse_numa_zonelist_order((char*)table
->data
)) {
2838 * bogus value. restore saved string
2840 strncpy((char*)table
->data
, saved_string
,
2841 NUMA_ZONELIST_ORDER_LEN
);
2842 user_zonelist_order
= oldval
;
2843 } else if (oldval
!= user_zonelist_order
) {
2844 mutex_lock(&zonelists_mutex
);
2845 build_all_zonelists(NULL
);
2846 mutex_unlock(&zonelists_mutex
);
2850 mutex_unlock(&zl_order_mutex
);
2855 #define MAX_NODE_LOAD (nr_online_nodes)
2856 static int node_load
[MAX_NUMNODES
];
2859 * find_next_best_node - find the next node that should appear in a given node's fallback list
2860 * @node: node whose fallback list we're appending
2861 * @used_node_mask: nodemask_t of already used nodes
2863 * We use a number of factors to determine which is the next node that should
2864 * appear on a given node's fallback list. The node should not have appeared
2865 * already in @node's fallback list, and it should be the next closest node
2866 * according to the distance array (which contains arbitrary distance values
2867 * from each node to each node in the system), and should also prefer nodes
2868 * with no CPUs, since presumably they'll have very little allocation pressure
2869 * on them otherwise.
2870 * It returns -1 if no node is found.
2872 static int find_next_best_node(int node
, nodemask_t
*used_node_mask
)
2875 int min_val
= INT_MAX
;
2877 const struct cpumask
*tmp
= cpumask_of_node(0);
2879 /* Use the local node if we haven't already */
2880 if (!node_isset(node
, *used_node_mask
)) {
2881 node_set(node
, *used_node_mask
);
2885 for_each_node_state(n
, N_HIGH_MEMORY
) {
2887 /* Don't want a node to appear more than once */
2888 if (node_isset(n
, *used_node_mask
))
2891 /* Use the distance array to find the distance */
2892 val
= node_distance(node
, n
);
2894 /* Penalize nodes under us ("prefer the next node") */
2897 /* Give preference to headless and unused nodes */
2898 tmp
= cpumask_of_node(n
);
2899 if (!cpumask_empty(tmp
))
2900 val
+= PENALTY_FOR_NODE_WITH_CPUS
;
2902 /* Slight preference for less loaded node */
2903 val
*= (MAX_NODE_LOAD
*MAX_NUMNODES
);
2904 val
+= node_load
[n
];
2906 if (val
< min_val
) {
2913 node_set(best_node
, *used_node_mask
);
2920 * Build zonelists ordered by node and zones within node.
2921 * This results in maximum locality--normal zone overflows into local
2922 * DMA zone, if any--but risks exhausting DMA zone.
2924 static void build_zonelists_in_node_order(pg_data_t
*pgdat
, int node
)
2927 struct zonelist
*zonelist
;
2929 zonelist
= &pgdat
->node_zonelists
[0];
2930 for (j
= 0; zonelist
->_zonerefs
[j
].zone
!= NULL
; j
++)
2932 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
,
2934 zonelist
->_zonerefs
[j
].zone
= NULL
;
2935 zonelist
->_zonerefs
[j
].zone_idx
= 0;
2939 * Build gfp_thisnode zonelists
2941 static void build_thisnode_zonelists(pg_data_t
*pgdat
)
2944 struct zonelist
*zonelist
;
2946 zonelist
= &pgdat
->node_zonelists
[1];
2947 j
= build_zonelists_node(pgdat
, zonelist
, 0, MAX_NR_ZONES
- 1);
2948 zonelist
->_zonerefs
[j
].zone
= NULL
;
2949 zonelist
->_zonerefs
[j
].zone_idx
= 0;
2953 * Build zonelists ordered by zone and nodes within zones.
2954 * This results in conserving DMA zone[s] until all Normal memory is
2955 * exhausted, but results in overflowing to remote node while memory
2956 * may still exist in local DMA zone.
2958 static int node_order
[MAX_NUMNODES
];
2960 static void build_zonelists_in_zone_order(pg_data_t
*pgdat
, int nr_nodes
)
2963 int zone_type
; /* needs to be signed */
2965 struct zonelist
*zonelist
;
2967 zonelist
= &pgdat
->node_zonelists
[0];
2969 for (zone_type
= MAX_NR_ZONES
- 1; zone_type
>= 0; zone_type
--) {
2970 for (j
= 0; j
< nr_nodes
; j
++) {
2971 node
= node_order
[j
];
2972 z
= &NODE_DATA(node
)->node_zones
[zone_type
];
2973 if (populated_zone(z
)) {
2975 &zonelist
->_zonerefs
[pos
++]);
2976 check_highest_zone(zone_type
);
2980 zonelist
->_zonerefs
[pos
].zone
= NULL
;
2981 zonelist
->_zonerefs
[pos
].zone_idx
= 0;
2984 static int default_zonelist_order(void)
2987 unsigned long low_kmem_size
,total_size
;
2991 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
2992 * If they are really small and used heavily, the system can fall
2993 * into OOM very easily.
2994 * This function detect ZONE_DMA/DMA32 size and configures zone order.
2996 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2999 for_each_online_node(nid
) {
3000 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
3001 z
= &NODE_DATA(nid
)->node_zones
[zone_type
];
3002 if (populated_zone(z
)) {
3003 if (zone_type
< ZONE_NORMAL
)
3004 low_kmem_size
+= z
->present_pages
;
3005 total_size
+= z
->present_pages
;
3006 } else if (zone_type
== ZONE_NORMAL
) {
3008 * If any node has only lowmem, then node order
3009 * is preferred to allow kernel allocations
3010 * locally; otherwise, they can easily infringe
3011 * on other nodes when there is an abundance of
3012 * lowmem available to allocate from.
3014 return ZONELIST_ORDER_NODE
;
3018 if (!low_kmem_size
|| /* there are no DMA area. */
3019 low_kmem_size
> total_size
/2) /* DMA/DMA32 is big. */
3020 return ZONELIST_ORDER_NODE
;
3022 * look into each node's config.
3023 * If there is a node whose DMA/DMA32 memory is very big area on
3024 * local memory, NODE_ORDER may be suitable.
3026 average_size
= total_size
/
3027 (nodes_weight(node_states
[N_HIGH_MEMORY
]) + 1);
3028 for_each_online_node(nid
) {
3031 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
3032 z
= &NODE_DATA(nid
)->node_zones
[zone_type
];
3033 if (populated_zone(z
)) {
3034 if (zone_type
< ZONE_NORMAL
)
3035 low_kmem_size
+= z
->present_pages
;
3036 total_size
+= z
->present_pages
;
3039 if (low_kmem_size
&&
3040 total_size
> average_size
&& /* ignore small node */
3041 low_kmem_size
> total_size
* 70/100)
3042 return ZONELIST_ORDER_NODE
;
3044 return ZONELIST_ORDER_ZONE
;
3047 static void set_zonelist_order(void)
3049 if (user_zonelist_order
== ZONELIST_ORDER_DEFAULT
)
3050 current_zonelist_order
= default_zonelist_order();
3052 current_zonelist_order
= user_zonelist_order
;
3055 static void build_zonelists(pg_data_t
*pgdat
)
3059 nodemask_t used_mask
;
3060 int local_node
, prev_node
;
3061 struct zonelist
*zonelist
;
3062 int order
= current_zonelist_order
;
3064 /* initialize zonelists */
3065 for (i
= 0; i
< MAX_ZONELISTS
; i
++) {
3066 zonelist
= pgdat
->node_zonelists
+ i
;
3067 zonelist
->_zonerefs
[0].zone
= NULL
;
3068 zonelist
->_zonerefs
[0].zone_idx
= 0;
3071 /* NUMA-aware ordering of nodes */
3072 local_node
= pgdat
->node_id
;
3073 load
= nr_online_nodes
;
3074 prev_node
= local_node
;
3075 nodes_clear(used_mask
);
3077 memset(node_order
, 0, sizeof(node_order
));
3080 while ((node
= find_next_best_node(local_node
, &used_mask
)) >= 0) {
3081 int distance
= node_distance(local_node
, node
);
3084 * If another node is sufficiently far away then it is better
3085 * to reclaim pages in a zone before going off node.
3087 if (distance
> RECLAIM_DISTANCE
)
3088 zone_reclaim_mode
= 1;
3091 * We don't want to pressure a particular node.
3092 * So adding penalty to the first node in same
3093 * distance group to make it round-robin.
3095 if (distance
!= node_distance(local_node
, prev_node
))
3096 node_load
[node
] = load
;
3100 if (order
== ZONELIST_ORDER_NODE
)
3101 build_zonelists_in_node_order(pgdat
, node
);
3103 node_order
[j
++] = node
; /* remember order */
3106 if (order
== ZONELIST_ORDER_ZONE
) {
3107 /* calculate node order -- i.e., DMA last! */
3108 build_zonelists_in_zone_order(pgdat
, j
);
3111 build_thisnode_zonelists(pgdat
);
3114 /* Construct the zonelist performance cache - see further mmzone.h */
3115 static void build_zonelist_cache(pg_data_t
*pgdat
)
3117 struct zonelist
*zonelist
;
3118 struct zonelist_cache
*zlc
;
3121 zonelist
= &pgdat
->node_zonelists
[0];
3122 zonelist
->zlcache_ptr
= zlc
= &zonelist
->zlcache
;
3123 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
3124 for (z
= zonelist
->_zonerefs
; z
->zone
; z
++)
3125 zlc
->z_to_n
[z
- zonelist
->_zonerefs
] = zonelist_node_idx(z
);
3128 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3130 * Return node id of node used for "local" allocations.
3131 * I.e., first node id of first zone in arg node's generic zonelist.
3132 * Used for initializing percpu 'numa_mem', which is used primarily
3133 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3135 int local_memory_node(int node
)
3139 (void)first_zones_zonelist(node_zonelist(node
, GFP_KERNEL
),
3140 gfp_zone(GFP_KERNEL
),
3147 #else /* CONFIG_NUMA */
3149 static void set_zonelist_order(void)
3151 current_zonelist_order
= ZONELIST_ORDER_ZONE
;
3154 static void build_zonelists(pg_data_t
*pgdat
)
3156 int node
, local_node
;
3158 struct zonelist
*zonelist
;
3160 local_node
= pgdat
->node_id
;
3162 zonelist
= &pgdat
->node_zonelists
[0];
3163 j
= build_zonelists_node(pgdat
, zonelist
, 0, MAX_NR_ZONES
- 1);
3166 * Now we build the zonelist so that it contains the zones
3167 * of all the other nodes.
3168 * We don't want to pressure a particular node, so when
3169 * building the zones for node N, we make sure that the
3170 * zones coming right after the local ones are those from
3171 * node N+1 (modulo N)
3173 for (node
= local_node
+ 1; node
< MAX_NUMNODES
; node
++) {
3174 if (!node_online(node
))
3176 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
,
3179 for (node
= 0; node
< local_node
; node
++) {
3180 if (!node_online(node
))
3182 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
,
3186 zonelist
->_zonerefs
[j
].zone
= NULL
;
3187 zonelist
->_zonerefs
[j
].zone_idx
= 0;
3190 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3191 static void build_zonelist_cache(pg_data_t
*pgdat
)
3193 pgdat
->node_zonelists
[0].zlcache_ptr
= NULL
;
3196 #endif /* CONFIG_NUMA */
3199 * Boot pageset table. One per cpu which is going to be used for all
3200 * zones and all nodes. The parameters will be set in such a way
3201 * that an item put on a list will immediately be handed over to
3202 * the buddy list. This is safe since pageset manipulation is done
3203 * with interrupts disabled.
3205 * The boot_pagesets must be kept even after bootup is complete for
3206 * unused processors and/or zones. They do play a role for bootstrapping
3207 * hotplugged processors.
3209 * zoneinfo_show() and maybe other functions do
3210 * not check if the processor is online before following the pageset pointer.
3211 * Other parts of the kernel may not check if the zone is available.
3213 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
);
3214 static DEFINE_PER_CPU(struct per_cpu_pageset
, boot_pageset
);
3215 static void setup_zone_pageset(struct zone
*zone
);
3218 * Global mutex to protect against size modification of zonelists
3219 * as well as to serialize pageset setup for the new populated zone.
3221 DEFINE_MUTEX(zonelists_mutex
);
3223 /* return values int ....just for stop_machine() */
3224 static __init_refok
int __build_all_zonelists(void *data
)
3230 memset(node_load
, 0, sizeof(node_load
));
3232 for_each_online_node(nid
) {
3233 pg_data_t
*pgdat
= NODE_DATA(nid
);
3235 build_zonelists(pgdat
);
3236 build_zonelist_cache(pgdat
);
3240 * Initialize the boot_pagesets that are going to be used
3241 * for bootstrapping processors. The real pagesets for
3242 * each zone will be allocated later when the per cpu
3243 * allocator is available.
3245 * boot_pagesets are used also for bootstrapping offline
3246 * cpus if the system is already booted because the pagesets
3247 * are needed to initialize allocators on a specific cpu too.
3248 * F.e. the percpu allocator needs the page allocator which
3249 * needs the percpu allocator in order to allocate its pagesets
3250 * (a chicken-egg dilemma).
3252 for_each_possible_cpu(cpu
) {
3253 setup_pageset(&per_cpu(boot_pageset
, cpu
), 0);
3255 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3257 * We now know the "local memory node" for each node--
3258 * i.e., the node of the first zone in the generic zonelist.
3259 * Set up numa_mem percpu variable for on-line cpus. During
3260 * boot, only the boot cpu should be on-line; we'll init the
3261 * secondary cpus' numa_mem as they come on-line. During
3262 * node/memory hotplug, we'll fixup all on-line cpus.
3264 if (cpu_online(cpu
))
3265 set_cpu_numa_mem(cpu
, local_memory_node(cpu_to_node(cpu
)));
3273 * Called with zonelists_mutex held always
3274 * unless system_state == SYSTEM_BOOTING.
3276 void __ref
build_all_zonelists(void *data
)
3278 set_zonelist_order();
3280 if (system_state
== SYSTEM_BOOTING
) {
3281 __build_all_zonelists(NULL
);
3282 mminit_verify_zonelist();
3283 cpuset_init_current_mems_allowed();
3285 /* we have to stop all cpus to guarantee there is no user
3287 #ifdef CONFIG_MEMORY_HOTPLUG
3289 setup_zone_pageset((struct zone
*)data
);
3291 stop_machine(__build_all_zonelists
, NULL
, NULL
);
3292 /* cpuset refresh routine should be here */
3294 vm_total_pages
= nr_free_pagecache_pages();
3296 * Disable grouping by mobility if the number of pages in the
3297 * system is too low to allow the mechanism to work. It would be
3298 * more accurate, but expensive to check per-zone. This check is
3299 * made on memory-hotadd so a system can start with mobility
3300 * disabled and enable it later
3302 if (vm_total_pages
< (pageblock_nr_pages
* MIGRATE_TYPES
))
3303 page_group_by_mobility_disabled
= 1;
3305 page_group_by_mobility_disabled
= 0;
3307 printk("Built %i zonelists in %s order, mobility grouping %s. "
3308 "Total pages: %ld\n",
3310 zonelist_order_name
[current_zonelist_order
],
3311 page_group_by_mobility_disabled
? "off" : "on",
3314 printk("Policy zone: %s\n", zone_names
[policy_zone
]);
3319 * Helper functions to size the waitqueue hash table.
3320 * Essentially these want to choose hash table sizes sufficiently
3321 * large so that collisions trying to wait on pages are rare.
3322 * But in fact, the number of active page waitqueues on typical
3323 * systems is ridiculously low, less than 200. So this is even
3324 * conservative, even though it seems large.
3326 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3327 * waitqueues, i.e. the size of the waitq table given the number of pages.
3329 #define PAGES_PER_WAITQUEUE 256
3331 #ifndef CONFIG_MEMORY_HOTPLUG
3332 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
3334 unsigned long size
= 1;
3336 pages
/= PAGES_PER_WAITQUEUE
;
3338 while (size
< pages
)
3342 * Once we have dozens or even hundreds of threads sleeping
3343 * on IO we've got bigger problems than wait queue collision.
3344 * Limit the size of the wait table to a reasonable size.
3346 size
= min(size
, 4096UL);
3348 return max(size
, 4UL);
3352 * A zone's size might be changed by hot-add, so it is not possible to determine
3353 * a suitable size for its wait_table. So we use the maximum size now.
3355 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3357 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3358 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3359 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3361 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3362 * or more by the traditional way. (See above). It equals:
3364 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3365 * ia64(16K page size) : = ( 8G + 4M)byte.
3366 * powerpc (64K page size) : = (32G +16M)byte.
3368 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
3375 * This is an integer logarithm so that shifts can be used later
3376 * to extract the more random high bits from the multiplicative
3377 * hash function before the remainder is taken.
3379 static inline unsigned long wait_table_bits(unsigned long size
)
3384 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3387 * Check if a pageblock contains reserved pages
3389 static int pageblock_is_reserved(unsigned long start_pfn
, unsigned long end_pfn
)
3393 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
3394 if (!pfn_valid_within(pfn
) || PageReserved(pfn_to_page(pfn
)))
3401 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3402 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3403 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3404 * higher will lead to a bigger reserve which will get freed as contiguous
3405 * blocks as reclaim kicks in
3407 static void setup_zone_migrate_reserve(struct zone
*zone
)
3409 unsigned long start_pfn
, pfn
, end_pfn
, block_end_pfn
;
3411 unsigned long block_migratetype
;
3415 * Get the start pfn, end pfn and the number of blocks to reserve
3416 * We have to be careful to be aligned to pageblock_nr_pages to
3417 * make sure that we always check pfn_valid for the first page in
3420 start_pfn
= zone
->zone_start_pfn
;
3421 end_pfn
= start_pfn
+ zone
->spanned_pages
;
3422 start_pfn
= roundup(start_pfn
, pageblock_nr_pages
);
3423 reserve
= roundup(min_wmark_pages(zone
), pageblock_nr_pages
) >>
3427 * Reserve blocks are generally in place to help high-order atomic
3428 * allocations that are short-lived. A min_free_kbytes value that
3429 * would result in more than 2 reserve blocks for atomic allocations
3430 * is assumed to be in place to help anti-fragmentation for the
3431 * future allocation of hugepages at runtime.
3433 reserve
= min(2, reserve
);
3435 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= pageblock_nr_pages
) {
3436 if (!pfn_valid(pfn
))
3438 page
= pfn_to_page(pfn
);
3440 /* Watch out for overlapping nodes */
3441 if (page_to_nid(page
) != zone_to_nid(zone
))
3444 /* Blocks with reserved pages will never free, skip them. */
3445 block_end_pfn
= min(pfn
+ pageblock_nr_pages
, end_pfn
);
3446 if (pageblock_is_reserved(pfn
, block_end_pfn
))
3449 block_migratetype
= get_pageblock_migratetype(page
);
3451 /* If this block is reserved, account for it */
3452 if (reserve
> 0 && block_migratetype
== MIGRATE_RESERVE
) {
3457 /* Suitable for reserving if this block is movable */
3458 if (reserve
> 0 && block_migratetype
== MIGRATE_MOVABLE
) {
3459 set_pageblock_migratetype(page
, MIGRATE_RESERVE
);
3460 move_freepages_block(zone
, page
, MIGRATE_RESERVE
);
3466 * If the reserve is met and this is a previous reserved block,
3469 if (block_migratetype
== MIGRATE_RESERVE
) {
3470 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
3471 move_freepages_block(zone
, page
, MIGRATE_MOVABLE
);
3477 * Initially all pages are reserved - free ones are freed
3478 * up by free_all_bootmem() once the early boot process is
3479 * done. Non-atomic initialization, single-pass.
3481 void __meminit
memmap_init_zone(unsigned long size
, int nid
, unsigned long zone
,
3482 unsigned long start_pfn
, enum memmap_context context
)
3485 unsigned long end_pfn
= start_pfn
+ size
;
3489 if (highest_memmap_pfn
< end_pfn
- 1)
3490 highest_memmap_pfn
= end_pfn
- 1;
3492 z
= &NODE_DATA(nid
)->node_zones
[zone
];
3493 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
3495 * There can be holes in boot-time mem_map[]s
3496 * handed to this function. They do not
3497 * exist on hotplugged memory.
3499 if (context
== MEMMAP_EARLY
) {
3500 if (!early_pfn_valid(pfn
))
3502 if (!early_pfn_in_nid(pfn
, nid
))
3505 page
= pfn_to_page(pfn
);
3506 set_page_links(page
, zone
, nid
, pfn
);
3507 mminit_verify_page_links(page
, zone
, nid
, pfn
);
3508 init_page_count(page
);
3509 reset_page_mapcount(page
);
3510 SetPageReserved(page
);
3512 * Mark the block movable so that blocks are reserved for
3513 * movable at startup. This will force kernel allocations
3514 * to reserve their blocks rather than leaking throughout
3515 * the address space during boot when many long-lived
3516 * kernel allocations are made. Later some blocks near
3517 * the start are marked MIGRATE_RESERVE by
3518 * setup_zone_migrate_reserve()
3520 * bitmap is created for zone's valid pfn range. but memmap
3521 * can be created for invalid pages (for alignment)
3522 * check here not to call set_pageblock_migratetype() against
3525 if ((z
->zone_start_pfn
<= pfn
)
3526 && (pfn
< z
->zone_start_pfn
+ z
->spanned_pages
)
3527 && !(pfn
& (pageblock_nr_pages
- 1)))
3528 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
3530 INIT_LIST_HEAD(&page
->lru
);
3531 #ifdef WANT_PAGE_VIRTUAL
3532 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3533 if (!is_highmem_idx(zone
))
3534 set_page_address(page
, __va(pfn
<< PAGE_SHIFT
));
3539 static void __meminit
zone_init_free_lists(struct zone
*zone
)
3542 for_each_migratetype_order(order
, t
) {
3543 INIT_LIST_HEAD(&zone
->free_area
[order
].free_list
[t
]);
3544 zone
->free_area
[order
].nr_free
= 0;
3548 #ifndef __HAVE_ARCH_MEMMAP_INIT
3549 #define memmap_init(size, nid, zone, start_pfn) \
3550 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3553 static int zone_batchsize(struct zone
*zone
)
3559 * The per-cpu-pages pools are set to around 1000th of the
3560 * size of the zone. But no more than 1/2 of a meg.
3562 * OK, so we don't know how big the cache is. So guess.
3564 batch
= zone
->present_pages
/ 1024;
3565 if (batch
* PAGE_SIZE
> 512 * 1024)
3566 batch
= (512 * 1024) / PAGE_SIZE
;
3567 batch
/= 4; /* We effectively *= 4 below */
3572 * Clamp the batch to a 2^n - 1 value. Having a power
3573 * of 2 value was found to be more likely to have
3574 * suboptimal cache aliasing properties in some cases.
3576 * For example if 2 tasks are alternately allocating
3577 * batches of pages, one task can end up with a lot
3578 * of pages of one half of the possible page colors
3579 * and the other with pages of the other colors.
3581 batch
= rounddown_pow_of_two(batch
+ batch
/2) - 1;
3586 /* The deferral and batching of frees should be suppressed under NOMMU
3589 * The problem is that NOMMU needs to be able to allocate large chunks
3590 * of contiguous memory as there's no hardware page translation to
3591 * assemble apparent contiguous memory from discontiguous pages.
3593 * Queueing large contiguous runs of pages for batching, however,
3594 * causes the pages to actually be freed in smaller chunks. As there
3595 * can be a significant delay between the individual batches being
3596 * recycled, this leads to the once large chunks of space being
3597 * fragmented and becoming unavailable for high-order allocations.
3603 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
)
3605 struct per_cpu_pages
*pcp
;
3608 memset(p
, 0, sizeof(*p
));
3612 pcp
->high
= 6 * batch
;
3613 pcp
->batch
= max(1UL, 1 * batch
);
3614 for (migratetype
= 0; migratetype
< MIGRATE_PCPTYPES
; migratetype
++)
3615 INIT_LIST_HEAD(&pcp
->lists
[migratetype
]);
3619 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3620 * to the value high for the pageset p.
3623 static void setup_pagelist_highmark(struct per_cpu_pageset
*p
,
3626 struct per_cpu_pages
*pcp
;
3630 pcp
->batch
= max(1UL, high
/4);
3631 if ((high
/4) > (PAGE_SHIFT
* 8))
3632 pcp
->batch
= PAGE_SHIFT
* 8;
3635 static void setup_zone_pageset(struct zone
*zone
)
3639 zone
->pageset
= alloc_percpu(struct per_cpu_pageset
);
3641 for_each_possible_cpu(cpu
) {
3642 struct per_cpu_pageset
*pcp
= per_cpu_ptr(zone
->pageset
, cpu
);
3644 setup_pageset(pcp
, zone_batchsize(zone
));
3646 if (percpu_pagelist_fraction
)
3647 setup_pagelist_highmark(pcp
,
3648 (zone
->present_pages
/
3649 percpu_pagelist_fraction
));
3654 * Allocate per cpu pagesets and initialize them.
3655 * Before this call only boot pagesets were available.
3657 void __init
setup_per_cpu_pageset(void)
3661 for_each_populated_zone(zone
)
3662 setup_zone_pageset(zone
);
3665 static noinline __init_refok
3666 int zone_wait_table_init(struct zone
*zone
, unsigned long zone_size_pages
)
3669 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
3673 * The per-page waitqueue mechanism uses hashed waitqueues
3676 zone
->wait_table_hash_nr_entries
=
3677 wait_table_hash_nr_entries(zone_size_pages
);
3678 zone
->wait_table_bits
=
3679 wait_table_bits(zone
->wait_table_hash_nr_entries
);
3680 alloc_size
= zone
->wait_table_hash_nr_entries
3681 * sizeof(wait_queue_head_t
);
3683 if (!slab_is_available()) {
3684 zone
->wait_table
= (wait_queue_head_t
*)
3685 alloc_bootmem_node_nopanic(pgdat
, alloc_size
);
3688 * This case means that a zone whose size was 0 gets new memory
3689 * via memory hot-add.
3690 * But it may be the case that a new node was hot-added. In
3691 * this case vmalloc() will not be able to use this new node's
3692 * memory - this wait_table must be initialized to use this new
3693 * node itself as well.
3694 * To use this new node's memory, further consideration will be
3697 zone
->wait_table
= vmalloc(alloc_size
);
3699 if (!zone
->wait_table
)
3702 for(i
= 0; i
< zone
->wait_table_hash_nr_entries
; ++i
)
3703 init_waitqueue_head(zone
->wait_table
+ i
);
3708 static int __zone_pcp_update(void *data
)
3710 struct zone
*zone
= data
;
3712 unsigned long batch
= zone_batchsize(zone
), flags
;
3714 for_each_possible_cpu(cpu
) {
3715 struct per_cpu_pageset
*pset
;
3716 struct per_cpu_pages
*pcp
;
3718 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
3721 local_irq_save(flags
);
3722 free_pcppages_bulk(zone
, pcp
->count
, pcp
);
3723 setup_pageset(pset
, batch
);
3724 local_irq_restore(flags
);
3729 void zone_pcp_update(struct zone
*zone
)
3731 stop_machine(__zone_pcp_update
, zone
, NULL
);
3734 static __meminit
void zone_pcp_init(struct zone
*zone
)
3737 * per cpu subsystem is not up at this point. The following code
3738 * relies on the ability of the linker to provide the
3739 * offset of a (static) per cpu variable into the per cpu area.
3741 zone
->pageset
= &boot_pageset
;
3743 if (zone
->present_pages
)
3744 printk(KERN_DEBUG
" %s zone: %lu pages, LIFO batch:%u\n",
3745 zone
->name
, zone
->present_pages
,
3746 zone_batchsize(zone
));
3749 __meminit
int init_currently_empty_zone(struct zone
*zone
,
3750 unsigned long zone_start_pfn
,
3752 enum memmap_context context
)
3754 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
3756 ret
= zone_wait_table_init(zone
, size
);
3759 pgdat
->nr_zones
= zone_idx(zone
) + 1;
3761 zone
->zone_start_pfn
= zone_start_pfn
;
3763 mminit_dprintk(MMINIT_TRACE
, "memmap_init",
3764 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3766 (unsigned long)zone_idx(zone
),
3767 zone_start_pfn
, (zone_start_pfn
+ size
));
3769 zone_init_free_lists(zone
);
3774 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3776 * Basic iterator support. Return the first range of PFNs for a node
3777 * Note: nid == MAX_NUMNODES returns first region regardless of node
3779 static int __meminit
first_active_region_index_in_nid(int nid
)
3783 for (i
= 0; i
< nr_nodemap_entries
; i
++)
3784 if (nid
== MAX_NUMNODES
|| early_node_map
[i
].nid
== nid
)
3791 * Basic iterator support. Return the next active range of PFNs for a node
3792 * Note: nid == MAX_NUMNODES returns next region regardless of node
3794 static int __meminit
next_active_region_index_in_nid(int index
, int nid
)
3796 for (index
= index
+ 1; index
< nr_nodemap_entries
; index
++)
3797 if (nid
== MAX_NUMNODES
|| early_node_map
[index
].nid
== nid
)
3803 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3805 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3806 * Architectures may implement their own version but if add_active_range()
3807 * was used and there are no special requirements, this is a convenient
3810 int __meminit
__early_pfn_to_nid(unsigned long pfn
)
3814 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
3815 unsigned long start_pfn
= early_node_map
[i
].start_pfn
;
3816 unsigned long end_pfn
= early_node_map
[i
].end_pfn
;
3818 if (start_pfn
<= pfn
&& pfn
< end_pfn
)
3819 return early_node_map
[i
].nid
;
3821 /* This is a memory hole */
3824 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3826 int __meminit
early_pfn_to_nid(unsigned long pfn
)
3830 nid
= __early_pfn_to_nid(pfn
);
3833 /* just returns 0 */
3837 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
3838 bool __meminit
early_pfn_in_nid(unsigned long pfn
, int node
)
3842 nid
= __early_pfn_to_nid(pfn
);
3843 if (nid
>= 0 && nid
!= node
)
3849 /* Basic iterator support to walk early_node_map[] */
3850 #define for_each_active_range_index_in_nid(i, nid) \
3851 for (i = first_active_region_index_in_nid(nid); i != -1; \
3852 i = next_active_region_index_in_nid(i, nid))
3855 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3856 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3857 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3859 * If an architecture guarantees that all ranges registered with
3860 * add_active_ranges() contain no holes and may be freed, this
3861 * this function may be used instead of calling free_bootmem() manually.
3863 void __init
free_bootmem_with_active_regions(int nid
,
3864 unsigned long max_low_pfn
)
3868 for_each_active_range_index_in_nid(i
, nid
) {
3869 unsigned long size_pages
= 0;
3870 unsigned long end_pfn
= early_node_map
[i
].end_pfn
;
3872 if (early_node_map
[i
].start_pfn
>= max_low_pfn
)
3875 if (end_pfn
> max_low_pfn
)
3876 end_pfn
= max_low_pfn
;
3878 size_pages
= end_pfn
- early_node_map
[i
].start_pfn
;
3879 free_bootmem_node(NODE_DATA(early_node_map
[i
].nid
),
3880 PFN_PHYS(early_node_map
[i
].start_pfn
),
3881 size_pages
<< PAGE_SHIFT
);
3885 #ifdef CONFIG_HAVE_MEMBLOCK
3887 * Basic iterator support. Return the last range of PFNs for a node
3888 * Note: nid == MAX_NUMNODES returns last region regardless of node
3890 static int __meminit
last_active_region_index_in_nid(int nid
)
3894 for (i
= nr_nodemap_entries
- 1; i
>= 0; i
--)
3895 if (nid
== MAX_NUMNODES
|| early_node_map
[i
].nid
== nid
)
3902 * Basic iterator support. Return the previous active range of PFNs for a node
3903 * Note: nid == MAX_NUMNODES returns next region regardless of node
3905 static int __meminit
previous_active_region_index_in_nid(int index
, int nid
)
3907 for (index
= index
- 1; index
>= 0; index
--)
3908 if (nid
== MAX_NUMNODES
|| early_node_map
[index
].nid
== nid
)
3914 #define for_each_active_range_index_in_nid_reverse(i, nid) \
3915 for (i = last_active_region_index_in_nid(nid); i != -1; \
3916 i = previous_active_region_index_in_nid(i, nid))
3918 u64 __init
find_memory_core_early(int nid
, u64 size
, u64 align
,
3919 u64 goal
, u64 limit
)
3923 /* Need to go over early_node_map to find out good range for node */
3924 for_each_active_range_index_in_nid_reverse(i
, nid
) {
3926 u64 ei_start
, ei_last
;
3927 u64 final_start
, final_end
;
3929 ei_last
= early_node_map
[i
].end_pfn
;
3930 ei_last
<<= PAGE_SHIFT
;
3931 ei_start
= early_node_map
[i
].start_pfn
;
3932 ei_start
<<= PAGE_SHIFT
;
3934 final_start
= max(ei_start
, goal
);
3935 final_end
= min(ei_last
, limit
);
3937 if (final_start
>= final_end
)
3940 addr
= memblock_find_in_range(final_start
, final_end
, size
, align
);
3942 if (addr
== MEMBLOCK_ERROR
)
3948 return MEMBLOCK_ERROR
;
3952 int __init
add_from_early_node_map(struct range
*range
, int az
,
3953 int nr_range
, int nid
)
3958 /* need to go over early_node_map to find out good range for node */
3959 for_each_active_range_index_in_nid(i
, nid
) {
3960 start
= early_node_map
[i
].start_pfn
;
3961 end
= early_node_map
[i
].end_pfn
;
3962 nr_range
= add_range(range
, az
, nr_range
, start
, end
);
3967 void __init
work_with_active_regions(int nid
, work_fn_t work_fn
, void *data
)
3972 for_each_active_range_index_in_nid(i
, nid
) {
3973 ret
= work_fn(early_node_map
[i
].start_pfn
,
3974 early_node_map
[i
].end_pfn
, data
);
3980 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3981 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3983 * If an architecture guarantees that all ranges registered with
3984 * add_active_ranges() contain no holes and may be freed, this
3985 * function may be used instead of calling memory_present() manually.
3987 void __init
sparse_memory_present_with_active_regions(int nid
)
3991 for_each_active_range_index_in_nid(i
, nid
)
3992 memory_present(early_node_map
[i
].nid
,
3993 early_node_map
[i
].start_pfn
,
3994 early_node_map
[i
].end_pfn
);
3998 * get_pfn_range_for_nid - Return the start and end page frames for a node
3999 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4000 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4001 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4003 * It returns the start and end page frame of a node based on information
4004 * provided by an arch calling add_active_range(). If called for a node
4005 * with no available memory, a warning is printed and the start and end
4008 void __meminit
get_pfn_range_for_nid(unsigned int nid
,
4009 unsigned long *start_pfn
, unsigned long *end_pfn
)
4015 for_each_active_range_index_in_nid(i
, nid
) {
4016 *start_pfn
= min(*start_pfn
, early_node_map
[i
].start_pfn
);
4017 *end_pfn
= max(*end_pfn
, early_node_map
[i
].end_pfn
);
4020 if (*start_pfn
== -1UL)
4025 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4026 * assumption is made that zones within a node are ordered in monotonic
4027 * increasing memory addresses so that the "highest" populated zone is used
4029 static void __init
find_usable_zone_for_movable(void)
4032 for (zone_index
= MAX_NR_ZONES
- 1; zone_index
>= 0; zone_index
--) {
4033 if (zone_index
== ZONE_MOVABLE
)
4036 if (arch_zone_highest_possible_pfn
[zone_index
] >
4037 arch_zone_lowest_possible_pfn
[zone_index
])
4041 VM_BUG_ON(zone_index
== -1);
4042 movable_zone
= zone_index
;
4046 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4047 * because it is sized independent of architecture. Unlike the other zones,
4048 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4049 * in each node depending on the size of each node and how evenly kernelcore
4050 * is distributed. This helper function adjusts the zone ranges
4051 * provided by the architecture for a given node by using the end of the
4052 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4053 * zones within a node are in order of monotonic increases memory addresses
4055 static void __meminit
adjust_zone_range_for_zone_movable(int nid
,
4056 unsigned long zone_type
,
4057 unsigned long node_start_pfn
,
4058 unsigned long node_end_pfn
,
4059 unsigned long *zone_start_pfn
,
4060 unsigned long *zone_end_pfn
)
4062 /* Only adjust if ZONE_MOVABLE is on this node */
4063 if (zone_movable_pfn
[nid
]) {
4064 /* Size ZONE_MOVABLE */
4065 if (zone_type
== ZONE_MOVABLE
) {
4066 *zone_start_pfn
= zone_movable_pfn
[nid
];
4067 *zone_end_pfn
= min(node_end_pfn
,
4068 arch_zone_highest_possible_pfn
[movable_zone
]);
4070 /* Adjust for ZONE_MOVABLE starting within this range */
4071 } else if (*zone_start_pfn
< zone_movable_pfn
[nid
] &&
4072 *zone_end_pfn
> zone_movable_pfn
[nid
]) {
4073 *zone_end_pfn
= zone_movable_pfn
[nid
];
4075 /* Check if this whole range is within ZONE_MOVABLE */
4076 } else if (*zone_start_pfn
>= zone_movable_pfn
[nid
])
4077 *zone_start_pfn
= *zone_end_pfn
;
4082 * Return the number of pages a zone spans in a node, including holes
4083 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4085 static unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
4086 unsigned long zone_type
,
4087 unsigned long *ignored
)
4089 unsigned long node_start_pfn
, node_end_pfn
;
4090 unsigned long zone_start_pfn
, zone_end_pfn
;
4092 /* Get the start and end of the node and zone */
4093 get_pfn_range_for_nid(nid
, &node_start_pfn
, &node_end_pfn
);
4094 zone_start_pfn
= arch_zone_lowest_possible_pfn
[zone_type
];
4095 zone_end_pfn
= arch_zone_highest_possible_pfn
[zone_type
];
4096 adjust_zone_range_for_zone_movable(nid
, zone_type
,
4097 node_start_pfn
, node_end_pfn
,
4098 &zone_start_pfn
, &zone_end_pfn
);
4100 /* Check that this node has pages within the zone's required range */
4101 if (zone_end_pfn
< node_start_pfn
|| zone_start_pfn
> node_end_pfn
)
4104 /* Move the zone boundaries inside the node if necessary */
4105 zone_end_pfn
= min(zone_end_pfn
, node_end_pfn
);
4106 zone_start_pfn
= max(zone_start_pfn
, node_start_pfn
);
4108 /* Return the spanned pages */
4109 return zone_end_pfn
- zone_start_pfn
;
4113 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4114 * then all holes in the requested range will be accounted for.
4116 unsigned long __meminit
__absent_pages_in_range(int nid
,
4117 unsigned long range_start_pfn
,
4118 unsigned long range_end_pfn
)
4121 unsigned long prev_end_pfn
= 0, hole_pages
= 0;
4122 unsigned long start_pfn
;
4124 /* Find the end_pfn of the first active range of pfns in the node */
4125 i
= first_active_region_index_in_nid(nid
);
4129 prev_end_pfn
= min(early_node_map
[i
].start_pfn
, range_end_pfn
);
4131 /* Account for ranges before physical memory on this node */
4132 if (early_node_map
[i
].start_pfn
> range_start_pfn
)
4133 hole_pages
= prev_end_pfn
- range_start_pfn
;
4135 /* Find all holes for the zone within the node */
4136 for (; i
!= -1; i
= next_active_region_index_in_nid(i
, nid
)) {
4138 /* No need to continue if prev_end_pfn is outside the zone */
4139 if (prev_end_pfn
>= range_end_pfn
)
4142 /* Make sure the end of the zone is not within the hole */
4143 start_pfn
= min(early_node_map
[i
].start_pfn
, range_end_pfn
);
4144 prev_end_pfn
= max(prev_end_pfn
, range_start_pfn
);
4146 /* Update the hole size cound and move on */
4147 if (start_pfn
> range_start_pfn
) {
4148 BUG_ON(prev_end_pfn
> start_pfn
);
4149 hole_pages
+= start_pfn
- prev_end_pfn
;
4151 prev_end_pfn
= early_node_map
[i
].end_pfn
;
4154 /* Account for ranges past physical memory on this node */
4155 if (range_end_pfn
> prev_end_pfn
)
4156 hole_pages
+= range_end_pfn
-
4157 max(range_start_pfn
, prev_end_pfn
);
4163 * absent_pages_in_range - Return number of page frames in holes within a range
4164 * @start_pfn: The start PFN to start searching for holes
4165 * @end_pfn: The end PFN to stop searching for holes
4167 * It returns the number of pages frames in memory holes within a range.
4169 unsigned long __init
absent_pages_in_range(unsigned long start_pfn
,
4170 unsigned long end_pfn
)
4172 return __absent_pages_in_range(MAX_NUMNODES
, start_pfn
, end_pfn
);
4175 /* Return the number of page frames in holes in a zone on a node */
4176 static unsigned long __meminit
zone_absent_pages_in_node(int nid
,
4177 unsigned long zone_type
,
4178 unsigned long *ignored
)
4180 unsigned long node_start_pfn
, node_end_pfn
;
4181 unsigned long zone_start_pfn
, zone_end_pfn
;
4183 get_pfn_range_for_nid(nid
, &node_start_pfn
, &node_end_pfn
);
4184 zone_start_pfn
= max(arch_zone_lowest_possible_pfn
[zone_type
],
4186 zone_end_pfn
= min(arch_zone_highest_possible_pfn
[zone_type
],
4189 adjust_zone_range_for_zone_movable(nid
, zone_type
,
4190 node_start_pfn
, node_end_pfn
,
4191 &zone_start_pfn
, &zone_end_pfn
);
4192 return __absent_pages_in_range(nid
, zone_start_pfn
, zone_end_pfn
);
4196 static inline unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
4197 unsigned long zone_type
,
4198 unsigned long *zones_size
)
4200 return zones_size
[zone_type
];
4203 static inline unsigned long __meminit
zone_absent_pages_in_node(int nid
,
4204 unsigned long zone_type
,
4205 unsigned long *zholes_size
)
4210 return zholes_size
[zone_type
];
4215 static void __meminit
calculate_node_totalpages(struct pglist_data
*pgdat
,
4216 unsigned long *zones_size
, unsigned long *zholes_size
)
4218 unsigned long realtotalpages
, totalpages
= 0;
4221 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
4222 totalpages
+= zone_spanned_pages_in_node(pgdat
->node_id
, i
,
4224 pgdat
->node_spanned_pages
= totalpages
;
4226 realtotalpages
= totalpages
;
4227 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
4229 zone_absent_pages_in_node(pgdat
->node_id
, i
,
4231 pgdat
->node_present_pages
= realtotalpages
;
4232 printk(KERN_DEBUG
"On node %d totalpages: %lu\n", pgdat
->node_id
,
4236 #ifndef CONFIG_SPARSEMEM
4238 * Calculate the size of the zone->blockflags rounded to an unsigned long
4239 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4240 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4241 * round what is now in bits to nearest long in bits, then return it in
4244 static unsigned long __init
usemap_size(unsigned long zonesize
)
4246 unsigned long usemapsize
;
4248 usemapsize
= roundup(zonesize
, pageblock_nr_pages
);
4249 usemapsize
= usemapsize
>> pageblock_order
;
4250 usemapsize
*= NR_PAGEBLOCK_BITS
;
4251 usemapsize
= roundup(usemapsize
, 8 * sizeof(unsigned long));
4253 return usemapsize
/ 8;
4256 static void __init
setup_usemap(struct pglist_data
*pgdat
,
4257 struct zone
*zone
, unsigned long zonesize
)
4259 unsigned long usemapsize
= usemap_size(zonesize
);
4260 zone
->pageblock_flags
= NULL
;
4262 zone
->pageblock_flags
= alloc_bootmem_node_nopanic(pgdat
,
4266 static inline void setup_usemap(struct pglist_data
*pgdat
,
4267 struct zone
*zone
, unsigned long zonesize
) {}
4268 #endif /* CONFIG_SPARSEMEM */
4270 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4272 /* Return a sensible default order for the pageblock size. */
4273 static inline int pageblock_default_order(void)
4275 if (HPAGE_SHIFT
> PAGE_SHIFT
)
4276 return HUGETLB_PAGE_ORDER
;
4281 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4282 static inline void __init
set_pageblock_order(unsigned int order
)
4284 /* Check that pageblock_nr_pages has not already been setup */
4285 if (pageblock_order
)
4289 * Assume the largest contiguous order of interest is a huge page.
4290 * This value may be variable depending on boot parameters on IA64
4292 pageblock_order
= order
;
4294 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4297 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4298 * and pageblock_default_order() are unused as pageblock_order is set
4299 * at compile-time. See include/linux/pageblock-flags.h for the values of
4300 * pageblock_order based on the kernel config
4302 static inline int pageblock_default_order(unsigned int order
)
4306 #define set_pageblock_order(x) do {} while (0)
4308 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4311 * Set up the zone data structures:
4312 * - mark all pages reserved
4313 * - mark all memory queues empty
4314 * - clear the memory bitmaps
4316 static void __paginginit
free_area_init_core(struct pglist_data
*pgdat
,
4317 unsigned long *zones_size
, unsigned long *zholes_size
)
4320 int nid
= pgdat
->node_id
;
4321 unsigned long zone_start_pfn
= pgdat
->node_start_pfn
;
4324 pgdat_resize_init(pgdat
);
4325 pgdat
->nr_zones
= 0;
4326 init_waitqueue_head(&pgdat
->kswapd_wait
);
4327 pgdat
->kswapd_max_order
= 0;
4328 pgdat_page_cgroup_init(pgdat
);
4330 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
4331 struct zone
*zone
= pgdat
->node_zones
+ j
;
4332 unsigned long size
, realsize
, memmap_pages
;
4335 size
= zone_spanned_pages_in_node(nid
, j
, zones_size
);
4336 realsize
= size
- zone_absent_pages_in_node(nid
, j
,
4340 * Adjust realsize so that it accounts for how much memory
4341 * is used by this zone for memmap. This affects the watermark
4342 * and per-cpu initialisations
4345 PAGE_ALIGN(size
* sizeof(struct page
)) >> PAGE_SHIFT
;
4346 if (realsize
>= memmap_pages
) {
4347 realsize
-= memmap_pages
;
4350 " %s zone: %lu pages used for memmap\n",
4351 zone_names
[j
], memmap_pages
);
4354 " %s zone: %lu pages exceeds realsize %lu\n",
4355 zone_names
[j
], memmap_pages
, realsize
);
4357 /* Account for reserved pages */
4358 if (j
== 0 && realsize
> dma_reserve
) {
4359 realsize
-= dma_reserve
;
4360 printk(KERN_DEBUG
" %s zone: %lu pages reserved\n",
4361 zone_names
[0], dma_reserve
);
4364 if (!is_highmem_idx(j
))
4365 nr_kernel_pages
+= realsize
;
4366 nr_all_pages
+= realsize
;
4368 zone
->spanned_pages
= size
;
4369 zone
->present_pages
= realsize
;
4372 zone
->min_unmapped_pages
= (realsize
*sysctl_min_unmapped_ratio
)
4374 zone
->min_slab_pages
= (realsize
* sysctl_min_slab_ratio
) / 100;
4376 zone
->name
= zone_names
[j
];
4377 spin_lock_init(&zone
->lock
);
4378 spin_lock_init(&zone
->lru_lock
);
4379 zone_seqlock_init(zone
);
4380 zone
->zone_pgdat
= pgdat
;
4382 zone_pcp_init(zone
);
4384 INIT_LIST_HEAD(&zone
->lru
[l
].list
);
4385 zone
->reclaim_stat
.recent_rotated
[0] = 0;
4386 zone
->reclaim_stat
.recent_rotated
[1] = 0;
4387 zone
->reclaim_stat
.recent_scanned
[0] = 0;
4388 zone
->reclaim_stat
.recent_scanned
[1] = 0;
4389 zap_zone_vm_stats(zone
);
4394 set_pageblock_order(pageblock_default_order());
4395 setup_usemap(pgdat
, zone
, size
);
4396 ret
= init_currently_empty_zone(zone
, zone_start_pfn
,
4397 size
, MEMMAP_EARLY
);
4399 memmap_init(size
, nid
, j
, zone_start_pfn
);
4400 zone_start_pfn
+= size
;
4404 static void __init_refok
alloc_node_mem_map(struct pglist_data
*pgdat
)
4406 /* Skip empty nodes */
4407 if (!pgdat
->node_spanned_pages
)
4410 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4411 /* ia64 gets its own node_mem_map, before this, without bootmem */
4412 if (!pgdat
->node_mem_map
) {
4413 unsigned long size
, start
, end
;
4417 * The zone's endpoints aren't required to be MAX_ORDER
4418 * aligned but the node_mem_map endpoints must be in order
4419 * for the buddy allocator to function correctly.
4421 start
= pgdat
->node_start_pfn
& ~(MAX_ORDER_NR_PAGES
- 1);
4422 end
= pgdat
->node_start_pfn
+ pgdat
->node_spanned_pages
;
4423 end
= ALIGN(end
, MAX_ORDER_NR_PAGES
);
4424 size
= (end
- start
) * sizeof(struct page
);
4425 map
= alloc_remap(pgdat
->node_id
, size
);
4427 map
= alloc_bootmem_node_nopanic(pgdat
, size
);
4428 pgdat
->node_mem_map
= map
+ (pgdat
->node_start_pfn
- start
);
4430 #ifndef CONFIG_NEED_MULTIPLE_NODES
4432 * With no DISCONTIG, the global mem_map is just set as node 0's
4434 if (pgdat
== NODE_DATA(0)) {
4435 mem_map
= NODE_DATA(0)->node_mem_map
;
4436 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4437 if (page_to_pfn(mem_map
) != pgdat
->node_start_pfn
)
4438 mem_map
-= (pgdat
->node_start_pfn
- ARCH_PFN_OFFSET
);
4439 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4442 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4445 void __paginginit
free_area_init_node(int nid
, unsigned long *zones_size
,
4446 unsigned long node_start_pfn
, unsigned long *zholes_size
)
4448 pg_data_t
*pgdat
= NODE_DATA(nid
);
4450 pgdat
->node_id
= nid
;
4451 pgdat
->node_start_pfn
= node_start_pfn
;
4452 calculate_node_totalpages(pgdat
, zones_size
, zholes_size
);
4454 alloc_node_mem_map(pgdat
);
4455 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4456 printk(KERN_DEBUG
"free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4457 nid
, (unsigned long)pgdat
,
4458 (unsigned long)pgdat
->node_mem_map
);
4461 free_area_init_core(pgdat
, zones_size
, zholes_size
);
4464 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4466 #if MAX_NUMNODES > 1
4468 * Figure out the number of possible node ids.
4470 static void __init
setup_nr_node_ids(void)
4473 unsigned int highest
= 0;
4475 for_each_node_mask(node
, node_possible_map
)
4477 nr_node_ids
= highest
+ 1;
4480 static inline void setup_nr_node_ids(void)
4486 * add_active_range - Register a range of PFNs backed by physical memory
4487 * @nid: The node ID the range resides on
4488 * @start_pfn: The start PFN of the available physical memory
4489 * @end_pfn: The end PFN of the available physical memory
4491 * These ranges are stored in an early_node_map[] and later used by
4492 * free_area_init_nodes() to calculate zone sizes and holes. If the
4493 * range spans a memory hole, it is up to the architecture to ensure
4494 * the memory is not freed by the bootmem allocator. If possible
4495 * the range being registered will be merged with existing ranges.
4497 void __init
add_active_range(unsigned int nid
, unsigned long start_pfn
,
4498 unsigned long end_pfn
)
4502 mminit_dprintk(MMINIT_TRACE
, "memory_register",
4503 "Entering add_active_range(%d, %#lx, %#lx) "
4504 "%d entries of %d used\n",
4505 nid
, start_pfn
, end_pfn
,
4506 nr_nodemap_entries
, MAX_ACTIVE_REGIONS
);
4508 mminit_validate_memmodel_limits(&start_pfn
, &end_pfn
);
4510 /* Merge with existing active regions if possible */
4511 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
4512 if (early_node_map
[i
].nid
!= nid
)
4515 /* Skip if an existing region covers this new one */
4516 if (start_pfn
>= early_node_map
[i
].start_pfn
&&
4517 end_pfn
<= early_node_map
[i
].end_pfn
)
4520 /* Merge forward if suitable */
4521 if (start_pfn
<= early_node_map
[i
].end_pfn
&&
4522 end_pfn
> early_node_map
[i
].end_pfn
) {
4523 early_node_map
[i
].end_pfn
= end_pfn
;
4527 /* Merge backward if suitable */
4528 if (start_pfn
< early_node_map
[i
].start_pfn
&&
4529 end_pfn
>= early_node_map
[i
].start_pfn
) {
4530 early_node_map
[i
].start_pfn
= start_pfn
;
4535 /* Check that early_node_map is large enough */
4536 if (i
>= MAX_ACTIVE_REGIONS
) {
4537 printk(KERN_CRIT
"More than %d memory regions, truncating\n",
4538 MAX_ACTIVE_REGIONS
);
4542 early_node_map
[i
].nid
= nid
;
4543 early_node_map
[i
].start_pfn
= start_pfn
;
4544 early_node_map
[i
].end_pfn
= end_pfn
;
4545 nr_nodemap_entries
= i
+ 1;
4549 * remove_active_range - Shrink an existing registered range of PFNs
4550 * @nid: The node id the range is on that should be shrunk
4551 * @start_pfn: The new PFN of the range
4552 * @end_pfn: The new PFN of the range
4554 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
4555 * The map is kept near the end physical page range that has already been
4556 * registered. This function allows an arch to shrink an existing registered
4559 void __init
remove_active_range(unsigned int nid
, unsigned long start_pfn
,
4560 unsigned long end_pfn
)
4565 printk(KERN_DEBUG
"remove_active_range (%d, %lu, %lu)\n",
4566 nid
, start_pfn
, end_pfn
);
4568 /* Find the old active region end and shrink */
4569 for_each_active_range_index_in_nid(i
, nid
) {
4570 if (early_node_map
[i
].start_pfn
>= start_pfn
&&
4571 early_node_map
[i
].end_pfn
<= end_pfn
) {
4573 early_node_map
[i
].start_pfn
= 0;
4574 early_node_map
[i
].end_pfn
= 0;
4578 if (early_node_map
[i
].start_pfn
< start_pfn
&&
4579 early_node_map
[i
].end_pfn
> start_pfn
) {
4580 unsigned long temp_end_pfn
= early_node_map
[i
].end_pfn
;
4581 early_node_map
[i
].end_pfn
= start_pfn
;
4582 if (temp_end_pfn
> end_pfn
)
4583 add_active_range(nid
, end_pfn
, temp_end_pfn
);
4586 if (early_node_map
[i
].start_pfn
>= start_pfn
&&
4587 early_node_map
[i
].end_pfn
> end_pfn
&&
4588 early_node_map
[i
].start_pfn
< end_pfn
) {
4589 early_node_map
[i
].start_pfn
= end_pfn
;
4597 /* remove the blank ones */
4598 for (i
= nr_nodemap_entries
- 1; i
> 0; i
--) {
4599 if (early_node_map
[i
].nid
!= nid
)
4601 if (early_node_map
[i
].end_pfn
)
4603 /* we found it, get rid of it */
4604 for (j
= i
; j
< nr_nodemap_entries
- 1; j
++)
4605 memcpy(&early_node_map
[j
], &early_node_map
[j
+1],
4606 sizeof(early_node_map
[j
]));
4607 j
= nr_nodemap_entries
- 1;
4608 memset(&early_node_map
[j
], 0, sizeof(early_node_map
[j
]));
4609 nr_nodemap_entries
--;
4614 * remove_all_active_ranges - Remove all currently registered regions
4616 * During discovery, it may be found that a table like SRAT is invalid
4617 * and an alternative discovery method must be used. This function removes
4618 * all currently registered regions.
4620 void __init
remove_all_active_ranges(void)
4622 memset(early_node_map
, 0, sizeof(early_node_map
));
4623 nr_nodemap_entries
= 0;
4626 /* Compare two active node_active_regions */
4627 static int __init
cmp_node_active_region(const void *a
, const void *b
)
4629 struct node_active_region
*arange
= (struct node_active_region
*)a
;
4630 struct node_active_region
*brange
= (struct node_active_region
*)b
;
4632 /* Done this way to avoid overflows */
4633 if (arange
->start_pfn
> brange
->start_pfn
)
4635 if (arange
->start_pfn
< brange
->start_pfn
)
4641 /* sort the node_map by start_pfn */
4642 void __init
sort_node_map(void)
4644 sort(early_node_map
, (size_t)nr_nodemap_entries
,
4645 sizeof(struct node_active_region
),
4646 cmp_node_active_region
, NULL
);
4649 /* Find the lowest pfn for a node */
4650 static unsigned long __init
find_min_pfn_for_node(int nid
)
4653 unsigned long min_pfn
= ULONG_MAX
;
4655 /* Assuming a sorted map, the first range found has the starting pfn */
4656 for_each_active_range_index_in_nid(i
, nid
)
4657 min_pfn
= min(min_pfn
, early_node_map
[i
].start_pfn
);
4659 if (min_pfn
== ULONG_MAX
) {
4661 "Could not find start_pfn for node %d\n", nid
);
4669 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4671 * It returns the minimum PFN based on information provided via
4672 * add_active_range().
4674 unsigned long __init
find_min_pfn_with_active_regions(void)
4676 return find_min_pfn_for_node(MAX_NUMNODES
);
4680 * early_calculate_totalpages()
4681 * Sum pages in active regions for movable zone.
4682 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4684 static unsigned long __init
early_calculate_totalpages(void)
4687 unsigned long totalpages
= 0;
4689 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
4690 unsigned long pages
= early_node_map
[i
].end_pfn
-
4691 early_node_map
[i
].start_pfn
;
4692 totalpages
+= pages
;
4694 node_set_state(early_node_map
[i
].nid
, N_HIGH_MEMORY
);
4700 * Find the PFN the Movable zone begins in each node. Kernel memory
4701 * is spread evenly between nodes as long as the nodes have enough
4702 * memory. When they don't, some nodes will have more kernelcore than
4705 static void __init
find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn
)
4708 unsigned long usable_startpfn
;
4709 unsigned long kernelcore_node
, kernelcore_remaining
;
4710 /* save the state before borrow the nodemask */
4711 nodemask_t saved_node_state
= node_states
[N_HIGH_MEMORY
];
4712 unsigned long totalpages
= early_calculate_totalpages();
4713 int usable_nodes
= nodes_weight(node_states
[N_HIGH_MEMORY
]);
4716 * If movablecore was specified, calculate what size of
4717 * kernelcore that corresponds so that memory usable for
4718 * any allocation type is evenly spread. If both kernelcore
4719 * and movablecore are specified, then the value of kernelcore
4720 * will be used for required_kernelcore if it's greater than
4721 * what movablecore would have allowed.
4723 if (required_movablecore
) {
4724 unsigned long corepages
;
4727 * Round-up so that ZONE_MOVABLE is at least as large as what
4728 * was requested by the user
4730 required_movablecore
=
4731 roundup(required_movablecore
, MAX_ORDER_NR_PAGES
);
4732 corepages
= totalpages
- required_movablecore
;
4734 required_kernelcore
= max(required_kernelcore
, corepages
);
4737 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4738 if (!required_kernelcore
)
4741 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4742 find_usable_zone_for_movable();
4743 usable_startpfn
= arch_zone_lowest_possible_pfn
[movable_zone
];
4746 /* Spread kernelcore memory as evenly as possible throughout nodes */
4747 kernelcore_node
= required_kernelcore
/ usable_nodes
;
4748 for_each_node_state(nid
, N_HIGH_MEMORY
) {
4750 * Recalculate kernelcore_node if the division per node
4751 * now exceeds what is necessary to satisfy the requested
4752 * amount of memory for the kernel
4754 if (required_kernelcore
< kernelcore_node
)
4755 kernelcore_node
= required_kernelcore
/ usable_nodes
;
4758 * As the map is walked, we track how much memory is usable
4759 * by the kernel using kernelcore_remaining. When it is
4760 * 0, the rest of the node is usable by ZONE_MOVABLE
4762 kernelcore_remaining
= kernelcore_node
;
4764 /* Go through each range of PFNs within this node */
4765 for_each_active_range_index_in_nid(i
, nid
) {
4766 unsigned long start_pfn
, end_pfn
;
4767 unsigned long size_pages
;
4769 start_pfn
= max(early_node_map
[i
].start_pfn
,
4770 zone_movable_pfn
[nid
]);
4771 end_pfn
= early_node_map
[i
].end_pfn
;
4772 if (start_pfn
>= end_pfn
)
4775 /* Account for what is only usable for kernelcore */
4776 if (start_pfn
< usable_startpfn
) {
4777 unsigned long kernel_pages
;
4778 kernel_pages
= min(end_pfn
, usable_startpfn
)
4781 kernelcore_remaining
-= min(kernel_pages
,
4782 kernelcore_remaining
);
4783 required_kernelcore
-= min(kernel_pages
,
4784 required_kernelcore
);
4786 /* Continue if range is now fully accounted */
4787 if (end_pfn
<= usable_startpfn
) {
4790 * Push zone_movable_pfn to the end so
4791 * that if we have to rebalance
4792 * kernelcore across nodes, we will
4793 * not double account here
4795 zone_movable_pfn
[nid
] = end_pfn
;
4798 start_pfn
= usable_startpfn
;
4802 * The usable PFN range for ZONE_MOVABLE is from
4803 * start_pfn->end_pfn. Calculate size_pages as the
4804 * number of pages used as kernelcore
4806 size_pages
= end_pfn
- start_pfn
;
4807 if (size_pages
> kernelcore_remaining
)
4808 size_pages
= kernelcore_remaining
;
4809 zone_movable_pfn
[nid
] = start_pfn
+ size_pages
;
4812 * Some kernelcore has been met, update counts and
4813 * break if the kernelcore for this node has been
4816 required_kernelcore
-= min(required_kernelcore
,
4818 kernelcore_remaining
-= size_pages
;
4819 if (!kernelcore_remaining
)
4825 * If there is still required_kernelcore, we do another pass with one
4826 * less node in the count. This will push zone_movable_pfn[nid] further
4827 * along on the nodes that still have memory until kernelcore is
4831 if (usable_nodes
&& required_kernelcore
> usable_nodes
)
4834 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4835 for (nid
= 0; nid
< MAX_NUMNODES
; nid
++)
4836 zone_movable_pfn
[nid
] =
4837 roundup(zone_movable_pfn
[nid
], MAX_ORDER_NR_PAGES
);
4840 /* restore the node_state */
4841 node_states
[N_HIGH_MEMORY
] = saved_node_state
;
4844 /* Any regular memory on that node ? */
4845 static void check_for_regular_memory(pg_data_t
*pgdat
)
4847 #ifdef CONFIG_HIGHMEM
4848 enum zone_type zone_type
;
4850 for (zone_type
= 0; zone_type
<= ZONE_NORMAL
; zone_type
++) {
4851 struct zone
*zone
= &pgdat
->node_zones
[zone_type
];
4852 if (zone
->present_pages
)
4853 node_set_state(zone_to_nid(zone
), N_NORMAL_MEMORY
);
4859 * free_area_init_nodes - Initialise all pg_data_t and zone data
4860 * @max_zone_pfn: an array of max PFNs for each zone
4862 * This will call free_area_init_node() for each active node in the system.
4863 * Using the page ranges provided by add_active_range(), the size of each
4864 * zone in each node and their holes is calculated. If the maximum PFN
4865 * between two adjacent zones match, it is assumed that the zone is empty.
4866 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4867 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4868 * starts where the previous one ended. For example, ZONE_DMA32 starts
4869 * at arch_max_dma_pfn.
4871 void __init
free_area_init_nodes(unsigned long *max_zone_pfn
)
4876 /* Sort early_node_map as initialisation assumes it is sorted */
4879 /* Record where the zone boundaries are */
4880 memset(arch_zone_lowest_possible_pfn
, 0,
4881 sizeof(arch_zone_lowest_possible_pfn
));
4882 memset(arch_zone_highest_possible_pfn
, 0,
4883 sizeof(arch_zone_highest_possible_pfn
));
4884 arch_zone_lowest_possible_pfn
[0] = find_min_pfn_with_active_regions();
4885 arch_zone_highest_possible_pfn
[0] = max_zone_pfn
[0];
4886 for (i
= 1; i
< MAX_NR_ZONES
; i
++) {
4887 if (i
== ZONE_MOVABLE
)
4889 arch_zone_lowest_possible_pfn
[i
] =
4890 arch_zone_highest_possible_pfn
[i
-1];
4891 arch_zone_highest_possible_pfn
[i
] =
4892 max(max_zone_pfn
[i
], arch_zone_lowest_possible_pfn
[i
]);
4894 arch_zone_lowest_possible_pfn
[ZONE_MOVABLE
] = 0;
4895 arch_zone_highest_possible_pfn
[ZONE_MOVABLE
] = 0;
4897 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4898 memset(zone_movable_pfn
, 0, sizeof(zone_movable_pfn
));
4899 find_zone_movable_pfns_for_nodes(zone_movable_pfn
);
4901 /* Print out the zone ranges */
4902 printk("Zone PFN ranges:\n");
4903 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
4904 if (i
== ZONE_MOVABLE
)
4906 printk(" %-8s ", zone_names
[i
]);
4907 if (arch_zone_lowest_possible_pfn
[i
] ==
4908 arch_zone_highest_possible_pfn
[i
])
4911 printk("%0#10lx -> %0#10lx\n",
4912 arch_zone_lowest_possible_pfn
[i
],
4913 arch_zone_highest_possible_pfn
[i
]);
4916 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4917 printk("Movable zone start PFN for each node\n");
4918 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
4919 if (zone_movable_pfn
[i
])
4920 printk(" Node %d: %lu\n", i
, zone_movable_pfn
[i
]);
4923 /* Print out the early_node_map[] */
4924 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries
);
4925 for (i
= 0; i
< nr_nodemap_entries
; i
++)
4926 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map
[i
].nid
,
4927 early_node_map
[i
].start_pfn
,
4928 early_node_map
[i
].end_pfn
);
4930 /* Initialise every node */
4931 mminit_verify_pageflags_layout();
4932 setup_nr_node_ids();
4933 for_each_online_node(nid
) {
4934 pg_data_t
*pgdat
= NODE_DATA(nid
);
4935 free_area_init_node(nid
, NULL
,
4936 find_min_pfn_for_node(nid
), NULL
);
4938 /* Any memory on that node */
4939 if (pgdat
->node_present_pages
)
4940 node_set_state(nid
, N_HIGH_MEMORY
);
4941 check_for_regular_memory(pgdat
);
4945 static int __init
cmdline_parse_core(char *p
, unsigned long *core
)
4947 unsigned long long coremem
;
4951 coremem
= memparse(p
, &p
);
4952 *core
= coremem
>> PAGE_SHIFT
;
4954 /* Paranoid check that UL is enough for the coremem value */
4955 WARN_ON((coremem
>> PAGE_SHIFT
) > ULONG_MAX
);
4961 * kernelcore=size sets the amount of memory for use for allocations that
4962 * cannot be reclaimed or migrated.
4964 static int __init
cmdline_parse_kernelcore(char *p
)
4966 return cmdline_parse_core(p
, &required_kernelcore
);
4970 * movablecore=size sets the amount of memory for use for allocations that
4971 * can be reclaimed or migrated.
4973 static int __init
cmdline_parse_movablecore(char *p
)
4975 return cmdline_parse_core(p
, &required_movablecore
);
4978 early_param("kernelcore", cmdline_parse_kernelcore
);
4979 early_param("movablecore", cmdline_parse_movablecore
);
4981 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4984 * set_dma_reserve - set the specified number of pages reserved in the first zone
4985 * @new_dma_reserve: The number of pages to mark reserved
4987 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4988 * In the DMA zone, a significant percentage may be consumed by kernel image
4989 * and other unfreeable allocations which can skew the watermarks badly. This
4990 * function may optionally be used to account for unfreeable pages in the
4991 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4992 * smaller per-cpu batchsize.
4994 void __init
set_dma_reserve(unsigned long new_dma_reserve
)
4996 dma_reserve
= new_dma_reserve
;
4999 void __init
free_area_init(unsigned long *zones_size
)
5001 free_area_init_node(0, zones_size
,
5002 __pa(PAGE_OFFSET
) >> PAGE_SHIFT
, NULL
);
5005 static int page_alloc_cpu_notify(struct notifier_block
*self
,
5006 unsigned long action
, void *hcpu
)
5008 int cpu
= (unsigned long)hcpu
;
5010 if (action
== CPU_DEAD
|| action
== CPU_DEAD_FROZEN
) {
5014 * Spill the event counters of the dead processor
5015 * into the current processors event counters.
5016 * This artificially elevates the count of the current
5019 vm_events_fold_cpu(cpu
);
5022 * Zero the differential counters of the dead processor
5023 * so that the vm statistics are consistent.
5025 * This is only okay since the processor is dead and cannot
5026 * race with what we are doing.
5028 refresh_cpu_vm_stats(cpu
);
5033 void __init
page_alloc_init(void)
5035 hotcpu_notifier(page_alloc_cpu_notify
, 0);
5039 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5040 * or min_free_kbytes changes.
5042 static void calculate_totalreserve_pages(void)
5044 struct pglist_data
*pgdat
;
5045 unsigned long reserve_pages
= 0;
5046 enum zone_type i
, j
;
5048 for_each_online_pgdat(pgdat
) {
5049 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
5050 struct zone
*zone
= pgdat
->node_zones
+ i
;
5051 unsigned long max
= 0;
5053 /* Find valid and maximum lowmem_reserve in the zone */
5054 for (j
= i
; j
< MAX_NR_ZONES
; j
++) {
5055 if (zone
->lowmem_reserve
[j
] > max
)
5056 max
= zone
->lowmem_reserve
[j
];
5059 /* we treat the high watermark as reserved pages. */
5060 max
+= high_wmark_pages(zone
);
5062 if (max
> zone
->present_pages
)
5063 max
= zone
->present_pages
;
5064 reserve_pages
+= max
;
5067 totalreserve_pages
= reserve_pages
;
5071 * setup_per_zone_lowmem_reserve - called whenever
5072 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5073 * has a correct pages reserved value, so an adequate number of
5074 * pages are left in the zone after a successful __alloc_pages().
5076 static void setup_per_zone_lowmem_reserve(void)
5078 struct pglist_data
*pgdat
;
5079 enum zone_type j
, idx
;
5081 for_each_online_pgdat(pgdat
) {
5082 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
5083 struct zone
*zone
= pgdat
->node_zones
+ j
;
5084 unsigned long present_pages
= zone
->present_pages
;
5086 zone
->lowmem_reserve
[j
] = 0;
5090 struct zone
*lower_zone
;
5094 if (sysctl_lowmem_reserve_ratio
[idx
] < 1)
5095 sysctl_lowmem_reserve_ratio
[idx
] = 1;
5097 lower_zone
= pgdat
->node_zones
+ idx
;
5098 lower_zone
->lowmem_reserve
[j
] = present_pages
/
5099 sysctl_lowmem_reserve_ratio
[idx
];
5100 present_pages
+= lower_zone
->present_pages
;
5105 /* update totalreserve_pages */
5106 calculate_totalreserve_pages();
5110 * setup_per_zone_wmarks - called when min_free_kbytes changes
5111 * or when memory is hot-{added|removed}
5113 * Ensures that the watermark[min,low,high] values for each zone are set
5114 * correctly with respect to min_free_kbytes.
5116 void setup_per_zone_wmarks(void)
5118 unsigned long pages_min
= min_free_kbytes
>> (PAGE_SHIFT
- 10);
5119 unsigned long lowmem_pages
= 0;
5121 unsigned long flags
;
5123 /* Calculate total number of !ZONE_HIGHMEM pages */
5124 for_each_zone(zone
) {
5125 if (!is_highmem(zone
))
5126 lowmem_pages
+= zone
->present_pages
;
5129 for_each_zone(zone
) {
5132 spin_lock_irqsave(&zone
->lock
, flags
);
5133 tmp
= (u64
)pages_min
* zone
->present_pages
;
5134 do_div(tmp
, lowmem_pages
);
5135 if (is_highmem(zone
)) {
5137 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5138 * need highmem pages, so cap pages_min to a small
5141 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5142 * deltas controls asynch page reclaim, and so should
5143 * not be capped for highmem.
5147 min_pages
= zone
->present_pages
/ 1024;
5148 if (min_pages
< SWAP_CLUSTER_MAX
)
5149 min_pages
= SWAP_CLUSTER_MAX
;
5150 if (min_pages
> 128)
5152 zone
->watermark
[WMARK_MIN
] = min_pages
;
5155 * If it's a lowmem zone, reserve a number of pages
5156 * proportionate to the zone's size.
5158 zone
->watermark
[WMARK_MIN
] = tmp
;
5161 zone
->watermark
[WMARK_LOW
] = min_wmark_pages(zone
) + (tmp
>> 2);
5162 zone
->watermark
[WMARK_HIGH
] = min_wmark_pages(zone
) + (tmp
>> 1);
5163 setup_zone_migrate_reserve(zone
);
5164 spin_unlock_irqrestore(&zone
->lock
, flags
);
5167 /* update totalreserve_pages */
5168 calculate_totalreserve_pages();
5172 * The inactive anon list should be small enough that the VM never has to
5173 * do too much work, but large enough that each inactive page has a chance
5174 * to be referenced again before it is swapped out.
5176 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5177 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5178 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5179 * the anonymous pages are kept on the inactive list.
5182 * memory ratio inactive anon
5183 * -------------------------------------
5192 static void __meminit
calculate_zone_inactive_ratio(struct zone
*zone
)
5194 unsigned int gb
, ratio
;
5196 /* Zone size in gigabytes */
5197 gb
= zone
->present_pages
>> (30 - PAGE_SHIFT
);
5199 ratio
= int_sqrt(10 * gb
);
5203 zone
->inactive_ratio
= ratio
;
5206 static void __meminit
setup_per_zone_inactive_ratio(void)
5211 calculate_zone_inactive_ratio(zone
);
5215 * Initialise min_free_kbytes.
5217 * For small machines we want it small (128k min). For large machines
5218 * we want it large (64MB max). But it is not linear, because network
5219 * bandwidth does not increase linearly with machine size. We use
5221 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5222 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5238 int __meminit
init_per_zone_wmark_min(void)
5240 unsigned long lowmem_kbytes
;
5242 lowmem_kbytes
= nr_free_buffer_pages() * (PAGE_SIZE
>> 10);
5244 min_free_kbytes
= int_sqrt(lowmem_kbytes
* 16);
5245 if (min_free_kbytes
< 128)
5246 min_free_kbytes
= 128;
5247 if (min_free_kbytes
> 65536)
5248 min_free_kbytes
= 65536;
5249 setup_per_zone_wmarks();
5250 refresh_zone_stat_thresholds();
5251 setup_per_zone_lowmem_reserve();
5252 setup_per_zone_inactive_ratio();
5255 module_init(init_per_zone_wmark_min
)
5258 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5259 * that we can call two helper functions whenever min_free_kbytes
5262 int min_free_kbytes_sysctl_handler(ctl_table
*table
, int write
,
5263 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5265 proc_dointvec(table
, write
, buffer
, length
, ppos
);
5267 setup_per_zone_wmarks();
5272 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table
*table
, int write
,
5273 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5278 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5283 zone
->min_unmapped_pages
= (zone
->present_pages
*
5284 sysctl_min_unmapped_ratio
) / 100;
5288 int sysctl_min_slab_ratio_sysctl_handler(ctl_table
*table
, int write
,
5289 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5294 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5299 zone
->min_slab_pages
= (zone
->present_pages
*
5300 sysctl_min_slab_ratio
) / 100;
5306 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5307 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5308 * whenever sysctl_lowmem_reserve_ratio changes.
5310 * The reserve ratio obviously has absolutely no relation with the
5311 * minimum watermarks. The lowmem reserve ratio can only make sense
5312 * if in function of the boot time zone sizes.
5314 int lowmem_reserve_ratio_sysctl_handler(ctl_table
*table
, int write
,
5315 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5317 proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5318 setup_per_zone_lowmem_reserve();
5323 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5324 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5325 * can have before it gets flushed back to buddy allocator.
5328 int percpu_pagelist_fraction_sysctl_handler(ctl_table
*table
, int write
,
5329 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5335 ret
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5336 if (!write
|| (ret
== -EINVAL
))
5338 for_each_populated_zone(zone
) {
5339 for_each_possible_cpu(cpu
) {
5341 high
= zone
->present_pages
/ percpu_pagelist_fraction
;
5342 setup_pagelist_highmark(
5343 per_cpu_ptr(zone
->pageset
, cpu
), high
);
5349 int hashdist
= HASHDIST_DEFAULT
;
5352 static int __init
set_hashdist(char *str
)
5356 hashdist
= simple_strtoul(str
, &str
, 0);
5359 __setup("hashdist=", set_hashdist
);
5363 * allocate a large system hash table from bootmem
5364 * - it is assumed that the hash table must contain an exact power-of-2
5365 * quantity of entries
5366 * - limit is the number of hash buckets, not the total allocation size
5368 void *__init
alloc_large_system_hash(const char *tablename
,
5369 unsigned long bucketsize
,
5370 unsigned long numentries
,
5373 unsigned int *_hash_shift
,
5374 unsigned int *_hash_mask
,
5375 unsigned long limit
)
5377 unsigned long long max
= limit
;
5378 unsigned long log2qty
, size
;
5381 /* allow the kernel cmdline to have a say */
5383 /* round applicable memory size up to nearest megabyte */
5384 numentries
= nr_kernel_pages
;
5385 numentries
+= (1UL << (20 - PAGE_SHIFT
)) - 1;
5386 numentries
>>= 20 - PAGE_SHIFT
;
5387 numentries
<<= 20 - PAGE_SHIFT
;
5389 /* limit to 1 bucket per 2^scale bytes of low memory */
5390 if (scale
> PAGE_SHIFT
)
5391 numentries
>>= (scale
- PAGE_SHIFT
);
5393 numentries
<<= (PAGE_SHIFT
- scale
);
5395 /* Make sure we've got at least a 0-order allocation.. */
5396 if (unlikely(flags
& HASH_SMALL
)) {
5397 /* Makes no sense without HASH_EARLY */
5398 WARN_ON(!(flags
& HASH_EARLY
));
5399 if (!(numentries
>> *_hash_shift
)) {
5400 numentries
= 1UL << *_hash_shift
;
5401 BUG_ON(!numentries
);
5403 } else if (unlikely((numentries
* bucketsize
) < PAGE_SIZE
))
5404 numentries
= PAGE_SIZE
/ bucketsize
;
5406 numentries
= roundup_pow_of_two(numentries
);
5408 /* limit allocation size to 1/16 total memory by default */
5410 max
= ((unsigned long long)nr_all_pages
<< PAGE_SHIFT
) >> 4;
5411 do_div(max
, bucketsize
);
5414 if (numentries
> max
)
5417 log2qty
= ilog2(numentries
);
5420 size
= bucketsize
<< log2qty
;
5421 if (flags
& HASH_EARLY
)
5422 table
= alloc_bootmem_nopanic(size
);
5424 table
= __vmalloc(size
, GFP_ATOMIC
, PAGE_KERNEL
);
5427 * If bucketsize is not a power-of-two, we may free
5428 * some pages at the end of hash table which
5429 * alloc_pages_exact() automatically does
5431 if (get_order(size
) < MAX_ORDER
) {
5432 table
= alloc_pages_exact(size
, GFP_ATOMIC
);
5433 kmemleak_alloc(table
, size
, 1, GFP_ATOMIC
);
5436 } while (!table
&& size
> PAGE_SIZE
&& --log2qty
);
5439 panic("Failed to allocate %s hash table\n", tablename
);
5441 printk(KERN_INFO
"%s hash table entries: %ld (order: %d, %lu bytes)\n",
5444 ilog2(size
) - PAGE_SHIFT
,
5448 *_hash_shift
= log2qty
;
5450 *_hash_mask
= (1 << log2qty
) - 1;
5455 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5456 static inline unsigned long *get_pageblock_bitmap(struct zone
*zone
,
5459 #ifdef CONFIG_SPARSEMEM
5460 return __pfn_to_section(pfn
)->pageblock_flags
;
5462 return zone
->pageblock_flags
;
5463 #endif /* CONFIG_SPARSEMEM */
5466 static inline int pfn_to_bitidx(struct zone
*zone
, unsigned long pfn
)
5468 #ifdef CONFIG_SPARSEMEM
5469 pfn
&= (PAGES_PER_SECTION
-1);
5470 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
5472 pfn
= pfn
- zone
->zone_start_pfn
;
5473 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
5474 #endif /* CONFIG_SPARSEMEM */
5478 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5479 * @page: The page within the block of interest
5480 * @start_bitidx: The first bit of interest to retrieve
5481 * @end_bitidx: The last bit of interest
5482 * returns pageblock_bits flags
5484 unsigned long get_pageblock_flags_group(struct page
*page
,
5485 int start_bitidx
, int end_bitidx
)
5488 unsigned long *bitmap
;
5489 unsigned long pfn
, bitidx
;
5490 unsigned long flags
= 0;
5491 unsigned long value
= 1;
5493 zone
= page_zone(page
);
5494 pfn
= page_to_pfn(page
);
5495 bitmap
= get_pageblock_bitmap(zone
, pfn
);
5496 bitidx
= pfn_to_bitidx(zone
, pfn
);
5498 for (; start_bitidx
<= end_bitidx
; start_bitidx
++, value
<<= 1)
5499 if (test_bit(bitidx
+ start_bitidx
, bitmap
))
5506 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5507 * @page: The page within the block of interest
5508 * @start_bitidx: The first bit of interest
5509 * @end_bitidx: The last bit of interest
5510 * @flags: The flags to set
5512 void set_pageblock_flags_group(struct page
*page
, unsigned long flags
,
5513 int start_bitidx
, int end_bitidx
)
5516 unsigned long *bitmap
;
5517 unsigned long pfn
, bitidx
;
5518 unsigned long value
= 1;
5520 zone
= page_zone(page
);
5521 pfn
= page_to_pfn(page
);
5522 bitmap
= get_pageblock_bitmap(zone
, pfn
);
5523 bitidx
= pfn_to_bitidx(zone
, pfn
);
5524 VM_BUG_ON(pfn
< zone
->zone_start_pfn
);
5525 VM_BUG_ON(pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
);
5527 for (; start_bitidx
<= end_bitidx
; start_bitidx
++, value
<<= 1)
5529 __set_bit(bitidx
+ start_bitidx
, bitmap
);
5531 __clear_bit(bitidx
+ start_bitidx
, bitmap
);
5535 * This is designed as sub function...plz see page_isolation.c also.
5536 * set/clear page block's type to be ISOLATE.
5537 * page allocater never alloc memory from ISOLATE block.
5541 __count_immobile_pages(struct zone
*zone
, struct page
*page
, int count
)
5543 unsigned long pfn
, iter
, found
;
5545 * For avoiding noise data, lru_add_drain_all() should be called
5546 * If ZONE_MOVABLE, the zone never contains immobile pages
5548 if (zone_idx(zone
) == ZONE_MOVABLE
)
5551 if (get_pageblock_migratetype(page
) == MIGRATE_MOVABLE
)
5554 pfn
= page_to_pfn(page
);
5555 for (found
= 0, iter
= 0; iter
< pageblock_nr_pages
; iter
++) {
5556 unsigned long check
= pfn
+ iter
;
5558 if (!pfn_valid_within(check
))
5561 page
= pfn_to_page(check
);
5562 if (!page_count(page
)) {
5563 if (PageBuddy(page
))
5564 iter
+= (1 << page_order(page
)) - 1;
5570 * If there are RECLAIMABLE pages, we need to check it.
5571 * But now, memory offline itself doesn't call shrink_slab()
5572 * and it still to be fixed.
5575 * If the page is not RAM, page_count()should be 0.
5576 * we don't need more check. This is an _used_ not-movable page.
5578 * The problematic thing here is PG_reserved pages. PG_reserved
5579 * is set to both of a memory hole page and a _used_ kernel
5588 bool is_pageblock_removable_nolock(struct page
*page
)
5590 struct zone
*zone
= page_zone(page
);
5591 unsigned long pfn
= page_to_pfn(page
);
5594 * We have to be careful here because we are iterating over memory
5595 * sections which are not zone aware so we might end up outside of
5596 * the zone but still within the section.
5598 if (!zone
|| zone
->zone_start_pfn
> pfn
||
5599 zone
->zone_start_pfn
+ zone
->spanned_pages
<= pfn
)
5602 return __count_immobile_pages(zone
, page
, 0);
5605 int set_migratetype_isolate(struct page
*page
)
5608 unsigned long flags
, pfn
;
5609 struct memory_isolate_notify arg
;
5613 zone
= page_zone(page
);
5615 spin_lock_irqsave(&zone
->lock
, flags
);
5617 pfn
= page_to_pfn(page
);
5618 arg
.start_pfn
= pfn
;
5619 arg
.nr_pages
= pageblock_nr_pages
;
5620 arg
.pages_found
= 0;
5623 * It may be possible to isolate a pageblock even if the
5624 * migratetype is not MIGRATE_MOVABLE. The memory isolation
5625 * notifier chain is used by balloon drivers to return the
5626 * number of pages in a range that are held by the balloon
5627 * driver to shrink memory. If all the pages are accounted for
5628 * by balloons, are free, or on the LRU, isolation can continue.
5629 * Later, for example, when memory hotplug notifier runs, these
5630 * pages reported as "can be isolated" should be isolated(freed)
5631 * by the balloon driver through the memory notifier chain.
5633 notifier_ret
= memory_isolate_notify(MEM_ISOLATE_COUNT
, &arg
);
5634 notifier_ret
= notifier_to_errno(notifier_ret
);
5638 * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself.
5639 * We just check MOVABLE pages.
5641 if (__count_immobile_pages(zone
, page
, arg
.pages_found
))
5645 * immobile means "not-on-lru" paes. If immobile is larger than
5646 * removable-by-driver pages reported by notifier, we'll fail.
5651 set_pageblock_migratetype(page
, MIGRATE_ISOLATE
);
5652 move_freepages_block(zone
, page
, MIGRATE_ISOLATE
);
5655 spin_unlock_irqrestore(&zone
->lock
, flags
);
5661 void unset_migratetype_isolate(struct page
*page
)
5664 unsigned long flags
;
5665 zone
= page_zone(page
);
5666 spin_lock_irqsave(&zone
->lock
, flags
);
5667 if (get_pageblock_migratetype(page
) != MIGRATE_ISOLATE
)
5669 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
5670 move_freepages_block(zone
, page
, MIGRATE_MOVABLE
);
5672 spin_unlock_irqrestore(&zone
->lock
, flags
);
5675 #ifdef CONFIG_MEMORY_HOTREMOVE
5677 * All pages in the range must be isolated before calling this.
5680 __offline_isolated_pages(unsigned long start_pfn
, unsigned long end_pfn
)
5686 unsigned long flags
;
5687 /* find the first valid pfn */
5688 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++)
5693 zone
= page_zone(pfn_to_page(pfn
));
5694 spin_lock_irqsave(&zone
->lock
, flags
);
5696 while (pfn
< end_pfn
) {
5697 if (!pfn_valid(pfn
)) {
5701 page
= pfn_to_page(pfn
);
5702 BUG_ON(page_count(page
));
5703 BUG_ON(!PageBuddy(page
));
5704 order
= page_order(page
);
5705 #ifdef CONFIG_DEBUG_VM
5706 printk(KERN_INFO
"remove from free list %lx %d %lx\n",
5707 pfn
, 1 << order
, end_pfn
);
5709 list_del(&page
->lru
);
5710 rmv_page_order(page
);
5711 zone
->free_area
[order
].nr_free
--;
5712 __mod_zone_page_state(zone
, NR_FREE_PAGES
,
5714 for (i
= 0; i
< (1 << order
); i
++)
5715 SetPageReserved((page
+i
));
5716 pfn
+= (1 << order
);
5718 spin_unlock_irqrestore(&zone
->lock
, flags
);
5722 #ifdef CONFIG_MEMORY_FAILURE
5723 bool is_free_buddy_page(struct page
*page
)
5725 struct zone
*zone
= page_zone(page
);
5726 unsigned long pfn
= page_to_pfn(page
);
5727 unsigned long flags
;
5730 spin_lock_irqsave(&zone
->lock
, flags
);
5731 for (order
= 0; order
< MAX_ORDER
; order
++) {
5732 struct page
*page_head
= page
- (pfn
& ((1 << order
) - 1));
5734 if (PageBuddy(page_head
) && page_order(page_head
) >= order
)
5737 spin_unlock_irqrestore(&zone
->lock
, flags
);
5739 return order
< MAX_ORDER
;
5743 static struct trace_print_flags pageflag_names
[] = {
5744 {1UL << PG_locked
, "locked" },
5745 {1UL << PG_error
, "error" },
5746 {1UL << PG_referenced
, "referenced" },
5747 {1UL << PG_uptodate
, "uptodate" },
5748 {1UL << PG_dirty
, "dirty" },
5749 {1UL << PG_lru
, "lru" },
5750 {1UL << PG_active
, "active" },
5751 {1UL << PG_slab
, "slab" },
5752 {1UL << PG_owner_priv_1
, "owner_priv_1" },
5753 {1UL << PG_arch_1
, "arch_1" },
5754 {1UL << PG_reserved
, "reserved" },
5755 {1UL << PG_private
, "private" },
5756 {1UL << PG_private_2
, "private_2" },
5757 {1UL << PG_writeback
, "writeback" },
5758 #ifdef CONFIG_PAGEFLAGS_EXTENDED
5759 {1UL << PG_head
, "head" },
5760 {1UL << PG_tail
, "tail" },
5762 {1UL << PG_compound
, "compound" },
5764 {1UL << PG_swapcache
, "swapcache" },
5765 {1UL << PG_mappedtodisk
, "mappedtodisk" },
5766 {1UL << PG_reclaim
, "reclaim" },
5767 {1UL << PG_swapbacked
, "swapbacked" },
5768 {1UL << PG_unevictable
, "unevictable" },
5770 {1UL << PG_mlocked
, "mlocked" },
5772 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
5773 {1UL << PG_uncached
, "uncached" },
5775 #ifdef CONFIG_MEMORY_FAILURE
5776 {1UL << PG_hwpoison
, "hwpoison" },
5781 static void dump_page_flags(unsigned long flags
)
5783 const char *delim
= "";
5787 printk(KERN_ALERT
"page flags: %#lx(", flags
);
5789 /* remove zone id */
5790 flags
&= (1UL << NR_PAGEFLAGS
) - 1;
5792 for (i
= 0; pageflag_names
[i
].name
&& flags
; i
++) {
5794 mask
= pageflag_names
[i
].mask
;
5795 if ((flags
& mask
) != mask
)
5799 printk("%s%s", delim
, pageflag_names
[i
].name
);
5803 /* check for left over flags */
5805 printk("%s%#lx", delim
, flags
);
5810 void dump_page(struct page
*page
)
5813 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
5814 page
, atomic_read(&page
->_count
), page_mapcount(page
),
5815 page
->mapping
, page
->index
);
5816 dump_page_flags(page
->flags
);
5817 mem_cgroup_print_bad_page(page
);