ARM: cpu topology: Add debugfs interface for cpu_power
[cmplus.git] / mm / page_alloc.c
blobe2f474da7ee2bcae724d8cd7b66bc594c4ed602f
1 /*
2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/memory.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <linux/ftrace_event.h>
58 #include <linux/memcontrol.h>
59 #include <linux/prefetch.h>
61 #include <asm/tlbflush.h>
62 #include <asm/div64.h>
63 #include "internal.h"
65 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
66 DEFINE_PER_CPU(int, numa_node);
67 EXPORT_PER_CPU_SYMBOL(numa_node);
68 #endif
70 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
72 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
73 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
74 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
75 * defined in <linux/topology.h>.
77 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
78 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
79 #endif
82 * Array of node states.
84 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
85 [N_POSSIBLE] = NODE_MASK_ALL,
86 [N_ONLINE] = { { [0] = 1UL } },
87 #ifndef CONFIG_NUMA
88 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
89 #ifdef CONFIG_HIGHMEM
90 [N_HIGH_MEMORY] = { { [0] = 1UL } },
91 #endif
92 [N_CPU] = { { [0] = 1UL } },
93 #endif /* NUMA */
95 EXPORT_SYMBOL(node_states);
97 unsigned long totalram_pages __read_mostly;
98 unsigned long totalreserve_pages __read_mostly;
99 int percpu_pagelist_fraction;
100 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
102 #ifdef CONFIG_PM_SLEEP
104 * The following functions are used by the suspend/hibernate code to temporarily
105 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
106 * while devices are suspended. To avoid races with the suspend/hibernate code,
107 * they should always be called with pm_mutex held (gfp_allowed_mask also should
108 * only be modified with pm_mutex held, unless the suspend/hibernate code is
109 * guaranteed not to run in parallel with that modification).
112 static gfp_t saved_gfp_mask;
114 void pm_restore_gfp_mask(void)
116 WARN_ON(!mutex_is_locked(&pm_mutex));
117 if (saved_gfp_mask) {
118 gfp_allowed_mask = saved_gfp_mask;
119 saved_gfp_mask = 0;
123 void pm_restrict_gfp_mask(void)
125 WARN_ON(!mutex_is_locked(&pm_mutex));
126 WARN_ON(saved_gfp_mask);
127 saved_gfp_mask = gfp_allowed_mask;
128 gfp_allowed_mask &= ~GFP_IOFS;
131 static bool pm_suspending(void)
133 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
134 return false;
135 return true;
138 #else
140 static bool pm_suspending(void)
142 return false;
144 #endif /* CONFIG_PM_SLEEP */
146 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
147 int pageblock_order __read_mostly;
148 #endif
150 static void __free_pages_ok(struct page *page, unsigned int order);
153 * results with 256, 32 in the lowmem_reserve sysctl:
154 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
155 * 1G machine -> (16M dma, 784M normal, 224M high)
156 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
157 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
158 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
160 * TBD: should special case ZONE_DMA32 machines here - in those we normally
161 * don't need any ZONE_NORMAL reservation
163 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
164 #ifdef CONFIG_ZONE_DMA
165 256,
166 #endif
167 #ifdef CONFIG_ZONE_DMA32
168 256,
169 #endif
170 #ifdef CONFIG_HIGHMEM
172 #endif
176 EXPORT_SYMBOL(totalram_pages);
178 static char * const zone_names[MAX_NR_ZONES] = {
179 #ifdef CONFIG_ZONE_DMA
180 "DMA",
181 #endif
182 #ifdef CONFIG_ZONE_DMA32
183 "DMA32",
184 #endif
185 "Normal",
186 #ifdef CONFIG_HIGHMEM
187 "HighMem",
188 #endif
189 "Movable",
192 int min_free_kbytes = 1024;
193 int min_free_order_shift = 1;
195 static unsigned long __meminitdata nr_kernel_pages;
196 static unsigned long __meminitdata nr_all_pages;
197 static unsigned long __meminitdata dma_reserve;
199 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
201 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
202 * ranges of memory (RAM) that may be registered with add_active_range().
203 * Ranges passed to add_active_range() will be merged if possible
204 * so the number of times add_active_range() can be called is
205 * related to the number of nodes and the number of holes
207 #ifdef CONFIG_MAX_ACTIVE_REGIONS
208 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
209 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
210 #else
211 #if MAX_NUMNODES >= 32
212 /* If there can be many nodes, allow up to 50 holes per node */
213 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
214 #else
215 /* By default, allow up to 256 distinct regions */
216 #define MAX_ACTIVE_REGIONS 256
217 #endif
218 #endif
220 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
221 static int __meminitdata nr_nodemap_entries;
222 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
223 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
224 static unsigned long __initdata required_kernelcore;
225 static unsigned long __initdata required_movablecore;
226 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
228 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
229 int movable_zone;
230 EXPORT_SYMBOL(movable_zone);
231 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
233 #if MAX_NUMNODES > 1
234 int nr_node_ids __read_mostly = MAX_NUMNODES;
235 int nr_online_nodes __read_mostly = 1;
236 EXPORT_SYMBOL(nr_node_ids);
237 EXPORT_SYMBOL(nr_online_nodes);
238 #endif
240 int page_group_by_mobility_disabled __read_mostly;
242 static void set_pageblock_migratetype(struct page *page, int migratetype)
245 if (unlikely(page_group_by_mobility_disabled))
246 migratetype = MIGRATE_UNMOVABLE;
248 set_pageblock_flags_group(page, (unsigned long)migratetype,
249 PB_migrate, PB_migrate_end);
252 bool oom_killer_disabled __read_mostly;
254 #ifdef CONFIG_DEBUG_VM
255 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
257 int ret = 0;
258 unsigned seq;
259 unsigned long pfn = page_to_pfn(page);
261 do {
262 seq = zone_span_seqbegin(zone);
263 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
264 ret = 1;
265 else if (pfn < zone->zone_start_pfn)
266 ret = 1;
267 } while (zone_span_seqretry(zone, seq));
269 return ret;
272 static int page_is_consistent(struct zone *zone, struct page *page)
274 if (!pfn_valid_within(page_to_pfn(page)))
275 return 0;
276 if (zone != page_zone(page))
277 return 0;
279 return 1;
282 * Temporary debugging check for pages not lying within a given zone.
284 static int bad_range(struct zone *zone, struct page *page)
286 if (page_outside_zone_boundaries(zone, page))
287 return 1;
288 if (!page_is_consistent(zone, page))
289 return 1;
291 return 0;
293 #else
294 static inline int bad_range(struct zone *zone, struct page *page)
296 return 0;
298 #endif
300 static void bad_page(struct page *page)
302 static unsigned long resume;
303 static unsigned long nr_shown;
304 static unsigned long nr_unshown;
306 /* Don't complain about poisoned pages */
307 if (PageHWPoison(page)) {
308 reset_page_mapcount(page); /* remove PageBuddy */
309 return;
313 * Allow a burst of 60 reports, then keep quiet for that minute;
314 * or allow a steady drip of one report per second.
316 if (nr_shown == 60) {
317 if (time_before(jiffies, resume)) {
318 nr_unshown++;
319 goto out;
321 if (nr_unshown) {
322 printk(KERN_ALERT
323 "BUG: Bad page state: %lu messages suppressed\n",
324 nr_unshown);
325 nr_unshown = 0;
327 nr_shown = 0;
329 if (nr_shown++ == 0)
330 resume = jiffies + 60 * HZ;
332 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
333 current->comm, page_to_pfn(page));
334 dump_page(page);
336 dump_stack();
337 out:
338 /* Leave bad fields for debug, except PageBuddy could make trouble */
339 reset_page_mapcount(page); /* remove PageBuddy */
340 add_taint(TAINT_BAD_PAGE);
344 * Higher-order pages are called "compound pages". They are structured thusly:
346 * The first PAGE_SIZE page is called the "head page".
348 * The remaining PAGE_SIZE pages are called "tail pages".
350 * All pages have PG_compound set. All pages have their ->private pointing at
351 * the head page (even the head page has this).
353 * The first tail page's ->lru.next holds the address of the compound page's
354 * put_page() function. Its ->lru.prev holds the order of allocation.
355 * This usage means that zero-order pages may not be compound.
358 static void free_compound_page(struct page *page)
360 __free_pages_ok(page, compound_order(page));
363 void prep_compound_page(struct page *page, unsigned long order)
365 int i;
366 int nr_pages = 1 << order;
368 set_compound_page_dtor(page, free_compound_page);
369 set_compound_order(page, order);
370 __SetPageHead(page);
371 for (i = 1; i < nr_pages; i++) {
372 struct page *p = page + i;
373 __SetPageTail(p);
374 set_page_count(p, 0);
375 p->first_page = page;
379 /* update __split_huge_page_refcount if you change this function */
380 static int destroy_compound_page(struct page *page, unsigned long order)
382 int i;
383 int nr_pages = 1 << order;
384 int bad = 0;
386 if (unlikely(compound_order(page) != order) ||
387 unlikely(!PageHead(page))) {
388 bad_page(page);
389 bad++;
392 __ClearPageHead(page);
394 for (i = 1; i < nr_pages; i++) {
395 struct page *p = page + i;
397 if (unlikely(!PageTail(p) || (p->first_page != page))) {
398 bad_page(page);
399 bad++;
401 __ClearPageTail(p);
404 return bad;
407 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
409 int i;
412 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
413 * and __GFP_HIGHMEM from hard or soft interrupt context.
415 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
416 for (i = 0; i < (1 << order); i++)
417 clear_highpage(page + i);
420 static inline void set_page_order(struct page *page, int order)
422 set_page_private(page, order);
423 __SetPageBuddy(page);
426 static inline void rmv_page_order(struct page *page)
428 __ClearPageBuddy(page);
429 set_page_private(page, 0);
433 * Locate the struct page for both the matching buddy in our
434 * pair (buddy1) and the combined O(n+1) page they form (page).
436 * 1) Any buddy B1 will have an order O twin B2 which satisfies
437 * the following equation:
438 * B2 = B1 ^ (1 << O)
439 * For example, if the starting buddy (buddy2) is #8 its order
440 * 1 buddy is #10:
441 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
443 * 2) Any buddy B will have an order O+1 parent P which
444 * satisfies the following equation:
445 * P = B & ~(1 << O)
447 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
449 static inline unsigned long
450 __find_buddy_index(unsigned long page_idx, unsigned int order)
452 return page_idx ^ (1 << order);
456 * This function checks whether a page is free && is the buddy
457 * we can do coalesce a page and its buddy if
458 * (a) the buddy is not in a hole &&
459 * (b) the buddy is in the buddy system &&
460 * (c) a page and its buddy have the same order &&
461 * (d) a page and its buddy are in the same zone.
463 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
464 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
466 * For recording page's order, we use page_private(page).
468 static inline int page_is_buddy(struct page *page, struct page *buddy,
469 int order)
471 if (!pfn_valid_within(page_to_pfn(buddy)))
472 return 0;
474 if (page_zone_id(page) != page_zone_id(buddy))
475 return 0;
477 if (PageBuddy(buddy) && page_order(buddy) == order) {
478 VM_BUG_ON(page_count(buddy) != 0);
479 return 1;
481 return 0;
485 * Freeing function for a buddy system allocator.
487 * The concept of a buddy system is to maintain direct-mapped table
488 * (containing bit values) for memory blocks of various "orders".
489 * The bottom level table contains the map for the smallest allocatable
490 * units of memory (here, pages), and each level above it describes
491 * pairs of units from the levels below, hence, "buddies".
492 * At a high level, all that happens here is marking the table entry
493 * at the bottom level available, and propagating the changes upward
494 * as necessary, plus some accounting needed to play nicely with other
495 * parts of the VM system.
496 * At each level, we keep a list of pages, which are heads of continuous
497 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
498 * order is recorded in page_private(page) field.
499 * So when we are allocating or freeing one, we can derive the state of the
500 * other. That is, if we allocate a small block, and both were
501 * free, the remainder of the region must be split into blocks.
502 * If a block is freed, and its buddy is also free, then this
503 * triggers coalescing into a block of larger size.
505 * -- wli
508 static inline void __free_one_page(struct page *page,
509 struct zone *zone, unsigned int order,
510 int migratetype)
512 unsigned long page_idx;
513 unsigned long combined_idx;
514 unsigned long uninitialized_var(buddy_idx);
515 struct page *buddy;
517 if (unlikely(PageCompound(page)))
518 if (unlikely(destroy_compound_page(page, order)))
519 return;
521 VM_BUG_ON(migratetype == -1);
523 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
525 VM_BUG_ON(page_idx & ((1 << order) - 1));
526 VM_BUG_ON(bad_range(zone, page));
528 while (order < MAX_ORDER-1) {
529 buddy_idx = __find_buddy_index(page_idx, order);
530 buddy = page + (buddy_idx - page_idx);
531 if (!page_is_buddy(page, buddy, order))
532 break;
534 /* Our buddy is free, merge with it and move up one order. */
535 list_del(&buddy->lru);
536 zone->free_area[order].nr_free--;
537 rmv_page_order(buddy);
538 combined_idx = buddy_idx & page_idx;
539 page = page + (combined_idx - page_idx);
540 page_idx = combined_idx;
541 order++;
543 set_page_order(page, order);
546 * If this is not the largest possible page, check if the buddy
547 * of the next-highest order is free. If it is, it's possible
548 * that pages are being freed that will coalesce soon. In case,
549 * that is happening, add the free page to the tail of the list
550 * so it's less likely to be used soon and more likely to be merged
551 * as a higher order page
553 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
554 struct page *higher_page, *higher_buddy;
555 combined_idx = buddy_idx & page_idx;
556 higher_page = page + (combined_idx - page_idx);
557 buddy_idx = __find_buddy_index(combined_idx, order + 1);
558 higher_buddy = page + (buddy_idx - combined_idx);
559 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
560 list_add_tail(&page->lru,
561 &zone->free_area[order].free_list[migratetype]);
562 goto out;
566 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
567 out:
568 zone->free_area[order].nr_free++;
572 * free_page_mlock() -- clean up attempts to free and mlocked() page.
573 * Page should not be on lru, so no need to fix that up.
574 * free_pages_check() will verify...
576 static inline void free_page_mlock(struct page *page)
578 __dec_zone_page_state(page, NR_MLOCK);
579 __count_vm_event(UNEVICTABLE_MLOCKFREED);
582 static inline int free_pages_check(struct page *page)
584 if (unlikely(page_mapcount(page) |
585 (page->mapping != NULL) |
586 (atomic_read(&page->_count) != 0) |
587 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
588 (mem_cgroup_bad_page_check(page)))) {
589 bad_page(page);
590 return 1;
592 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
593 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
594 return 0;
598 * Frees a number of pages from the PCP lists
599 * Assumes all pages on list are in same zone, and of same order.
600 * count is the number of pages to free.
602 * If the zone was previously in an "all pages pinned" state then look to
603 * see if this freeing clears that state.
605 * And clear the zone's pages_scanned counter, to hold off the "all pages are
606 * pinned" detection logic.
608 static void free_pcppages_bulk(struct zone *zone, int count,
609 struct per_cpu_pages *pcp)
611 int migratetype = 0;
612 int batch_free = 0;
613 int to_free = count;
615 spin_lock(&zone->lock);
616 zone->all_unreclaimable = 0;
617 zone->pages_scanned = 0;
619 while (to_free) {
620 struct page *page;
621 struct list_head *list;
624 * Remove pages from lists in a round-robin fashion. A
625 * batch_free count is maintained that is incremented when an
626 * empty list is encountered. This is so more pages are freed
627 * off fuller lists instead of spinning excessively around empty
628 * lists
630 do {
631 batch_free++;
632 if (++migratetype == MIGRATE_PCPTYPES)
633 migratetype = 0;
634 list = &pcp->lists[migratetype];
635 } while (list_empty(list));
637 /* This is the only non-empty list. Free them all. */
638 if (batch_free == MIGRATE_PCPTYPES)
639 batch_free = to_free;
641 do {
642 page = list_entry(list->prev, struct page, lru);
643 /* must delete as __free_one_page list manipulates */
644 list_del(&page->lru);
645 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
646 __free_one_page(page, zone, 0, page_private(page));
647 trace_mm_page_pcpu_drain(page, 0, page_private(page));
648 } while (--to_free && --batch_free && !list_empty(list));
650 __mod_zone_page_state(zone, NR_FREE_PAGES, count);
651 spin_unlock(&zone->lock);
654 static void free_one_page(struct zone *zone, struct page *page, int order,
655 int migratetype)
657 spin_lock(&zone->lock);
658 zone->all_unreclaimable = 0;
659 zone->pages_scanned = 0;
661 __free_one_page(page, zone, order, migratetype);
662 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
663 spin_unlock(&zone->lock);
666 static bool free_pages_prepare(struct page *page, unsigned int order)
668 int i;
669 int bad = 0;
671 trace_mm_page_free_direct(page, order);
672 kmemcheck_free_shadow(page, order);
674 if (PageAnon(page))
675 page->mapping = NULL;
676 for (i = 0; i < (1 << order); i++)
677 bad += free_pages_check(page + i);
678 if (bad)
679 return false;
681 if (!PageHighMem(page)) {
682 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
683 debug_check_no_obj_freed(page_address(page),
684 PAGE_SIZE << order);
686 arch_free_page(page, order);
687 kernel_map_pages(page, 1 << order, 0);
689 return true;
692 static void __free_pages_ok(struct page *page, unsigned int order)
694 unsigned long flags;
695 int wasMlocked = __TestClearPageMlocked(page);
697 if (!free_pages_prepare(page, order))
698 return;
700 local_irq_save(flags);
701 if (unlikely(wasMlocked))
702 free_page_mlock(page);
703 __count_vm_events(PGFREE, 1 << order);
704 free_one_page(page_zone(page), page, order,
705 get_pageblock_migratetype(page));
706 local_irq_restore(flags);
710 * permit the bootmem allocator to evade page validation on high-order frees
712 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
714 if (order == 0) {
715 __ClearPageReserved(page);
716 set_page_count(page, 0);
717 set_page_refcounted(page);
718 __free_page(page);
719 } else {
720 int loop;
722 prefetchw(page);
723 for (loop = 0; loop < BITS_PER_LONG; loop++) {
724 struct page *p = &page[loop];
726 if (loop + 1 < BITS_PER_LONG)
727 prefetchw(p + 1);
728 __ClearPageReserved(p);
729 set_page_count(p, 0);
732 set_page_refcounted(page);
733 __free_pages(page, order);
739 * The order of subdivision here is critical for the IO subsystem.
740 * Please do not alter this order without good reasons and regression
741 * testing. Specifically, as large blocks of memory are subdivided,
742 * the order in which smaller blocks are delivered depends on the order
743 * they're subdivided in this function. This is the primary factor
744 * influencing the order in which pages are delivered to the IO
745 * subsystem according to empirical testing, and this is also justified
746 * by considering the behavior of a buddy system containing a single
747 * large block of memory acted on by a series of small allocations.
748 * This behavior is a critical factor in sglist merging's success.
750 * -- wli
752 static inline void expand(struct zone *zone, struct page *page,
753 int low, int high, struct free_area *area,
754 int migratetype)
756 unsigned long size = 1 << high;
758 while (high > low) {
759 area--;
760 high--;
761 size >>= 1;
762 VM_BUG_ON(bad_range(zone, &page[size]));
763 list_add(&page[size].lru, &area->free_list[migratetype]);
764 area->nr_free++;
765 set_page_order(&page[size], high);
770 * This page is about to be returned from the page allocator
772 static inline int check_new_page(struct page *page)
774 if (unlikely(page_mapcount(page) |
775 (page->mapping != NULL) |
776 (atomic_read(&page->_count) != 0) |
777 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
778 (mem_cgroup_bad_page_check(page)))) {
779 bad_page(page);
780 return 1;
782 return 0;
785 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
787 int i;
789 for (i = 0; i < (1 << order); i++) {
790 struct page *p = page + i;
791 if (unlikely(check_new_page(p)))
792 return 1;
795 set_page_private(page, 0);
796 set_page_refcounted(page);
798 arch_alloc_page(page, order);
799 kernel_map_pages(page, 1 << order, 1);
801 if (gfp_flags & __GFP_ZERO)
802 prep_zero_page(page, order, gfp_flags);
804 if (order && (gfp_flags & __GFP_COMP))
805 prep_compound_page(page, order);
807 return 0;
811 * Go through the free lists for the given migratetype and remove
812 * the smallest available page from the freelists
814 static inline
815 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
816 int migratetype)
818 unsigned int current_order;
819 struct free_area * area;
820 struct page *page;
822 /* Find a page of the appropriate size in the preferred list */
823 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
824 area = &(zone->free_area[current_order]);
825 if (list_empty(&area->free_list[migratetype]))
826 continue;
828 page = list_entry(area->free_list[migratetype].next,
829 struct page, lru);
830 list_del(&page->lru);
831 rmv_page_order(page);
832 area->nr_free--;
833 expand(zone, page, order, current_order, area, migratetype);
834 return page;
837 return NULL;
842 * This array describes the order lists are fallen back to when
843 * the free lists for the desirable migrate type are depleted
845 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
846 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
847 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
848 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
849 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
853 * Move the free pages in a range to the free lists of the requested type.
854 * Note that start_page and end_pages are not aligned on a pageblock
855 * boundary. If alignment is required, use move_freepages_block()
857 static int move_freepages(struct zone *zone,
858 struct page *start_page, struct page *end_page,
859 int migratetype)
861 struct page *page;
862 unsigned long order;
863 int pages_moved = 0;
865 #ifndef CONFIG_HOLES_IN_ZONE
867 * page_zone is not safe to call in this context when
868 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
869 * anyway as we check zone boundaries in move_freepages_block().
870 * Remove at a later date when no bug reports exist related to
871 * grouping pages by mobility
873 BUG_ON(page_zone(start_page) != page_zone(end_page));
874 #endif
876 for (page = start_page; page <= end_page;) {
877 /* Make sure we are not inadvertently changing nodes */
878 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
880 if (!pfn_valid_within(page_to_pfn(page))) {
881 page++;
882 continue;
885 if (!PageBuddy(page)) {
886 page++;
887 continue;
890 order = page_order(page);
891 list_move(&page->lru,
892 &zone->free_area[order].free_list[migratetype]);
893 page += 1 << order;
894 pages_moved += 1 << order;
897 return pages_moved;
900 static int move_freepages_block(struct zone *zone, struct page *page,
901 int migratetype)
903 unsigned long start_pfn, end_pfn;
904 struct page *start_page, *end_page;
906 start_pfn = page_to_pfn(page);
907 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
908 start_page = pfn_to_page(start_pfn);
909 end_page = start_page + pageblock_nr_pages - 1;
910 end_pfn = start_pfn + pageblock_nr_pages - 1;
912 /* Do not cross zone boundaries */
913 if (start_pfn < zone->zone_start_pfn)
914 start_page = page;
915 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
916 return 0;
918 return move_freepages(zone, start_page, end_page, migratetype);
921 static void change_pageblock_range(struct page *pageblock_page,
922 int start_order, int migratetype)
924 int nr_pageblocks = 1 << (start_order - pageblock_order);
926 while (nr_pageblocks--) {
927 set_pageblock_migratetype(pageblock_page, migratetype);
928 pageblock_page += pageblock_nr_pages;
932 /* Remove an element from the buddy allocator from the fallback list */
933 static inline struct page *
934 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
936 struct free_area * area;
937 int current_order;
938 struct page *page;
939 int migratetype, i;
941 /* Find the largest possible block of pages in the other list */
942 for (current_order = MAX_ORDER-1; current_order >= order;
943 --current_order) {
944 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
945 migratetype = fallbacks[start_migratetype][i];
947 /* MIGRATE_RESERVE handled later if necessary */
948 if (migratetype == MIGRATE_RESERVE)
949 continue;
951 area = &(zone->free_area[current_order]);
952 if (list_empty(&area->free_list[migratetype]))
953 continue;
955 page = list_entry(area->free_list[migratetype].next,
956 struct page, lru);
957 area->nr_free--;
960 * If breaking a large block of pages, move all free
961 * pages to the preferred allocation list. If falling
962 * back for a reclaimable kernel allocation, be more
963 * aggressive about taking ownership of free pages
965 if (unlikely(current_order >= (pageblock_order >> 1)) ||
966 start_migratetype == MIGRATE_RECLAIMABLE ||
967 page_group_by_mobility_disabled) {
968 unsigned long pages;
969 pages = move_freepages_block(zone, page,
970 start_migratetype);
972 /* Claim the whole block if over half of it is free */
973 if (pages >= (1 << (pageblock_order-1)) ||
974 page_group_by_mobility_disabled)
975 set_pageblock_migratetype(page,
976 start_migratetype);
978 migratetype = start_migratetype;
981 /* Remove the page from the freelists */
982 list_del(&page->lru);
983 rmv_page_order(page);
985 /* Take ownership for orders >= pageblock_order */
986 if (current_order >= pageblock_order)
987 change_pageblock_range(page, current_order,
988 start_migratetype);
990 expand(zone, page, order, current_order, area, migratetype);
992 trace_mm_page_alloc_extfrag(page, order, current_order,
993 start_migratetype, migratetype);
995 return page;
999 return NULL;
1003 * Do the hard work of removing an element from the buddy allocator.
1004 * Call me with the zone->lock already held.
1006 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1007 int migratetype)
1009 struct page *page;
1011 retry_reserve:
1012 page = __rmqueue_smallest(zone, order, migratetype);
1014 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1015 page = __rmqueue_fallback(zone, order, migratetype);
1018 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1019 * is used because __rmqueue_smallest is an inline function
1020 * and we want just one call site
1022 if (!page) {
1023 migratetype = MIGRATE_RESERVE;
1024 goto retry_reserve;
1028 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1029 return page;
1033 * Obtain a specified number of elements from the buddy allocator, all under
1034 * a single hold of the lock, for efficiency. Add them to the supplied list.
1035 * Returns the number of new pages which were placed at *list.
1037 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1038 unsigned long count, struct list_head *list,
1039 int migratetype, int cold)
1041 int i;
1043 spin_lock(&zone->lock);
1044 for (i = 0; i < count; ++i) {
1045 struct page *page = __rmqueue(zone, order, migratetype);
1046 if (unlikely(page == NULL))
1047 break;
1050 * Split buddy pages returned by expand() are received here
1051 * in physical page order. The page is added to the callers and
1052 * list and the list head then moves forward. From the callers
1053 * perspective, the linked list is ordered by page number in
1054 * some conditions. This is useful for IO devices that can
1055 * merge IO requests if the physical pages are ordered
1056 * properly.
1058 if (likely(cold == 0))
1059 list_add(&page->lru, list);
1060 else
1061 list_add_tail(&page->lru, list);
1062 set_page_private(page, migratetype);
1063 list = &page->lru;
1065 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1066 spin_unlock(&zone->lock);
1067 return i;
1070 #ifdef CONFIG_NUMA
1072 * Called from the vmstat counter updater to drain pagesets of this
1073 * currently executing processor on remote nodes after they have
1074 * expired.
1076 * Note that this function must be called with the thread pinned to
1077 * a single processor.
1079 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1081 unsigned long flags;
1082 int to_drain;
1084 local_irq_save(flags);
1085 if (pcp->count >= pcp->batch)
1086 to_drain = pcp->batch;
1087 else
1088 to_drain = pcp->count;
1089 free_pcppages_bulk(zone, to_drain, pcp);
1090 pcp->count -= to_drain;
1091 local_irq_restore(flags);
1093 #endif
1096 * Drain pages of the indicated processor.
1098 * The processor must either be the current processor and the
1099 * thread pinned to the current processor or a processor that
1100 * is not online.
1102 static void drain_pages(unsigned int cpu)
1104 unsigned long flags;
1105 struct zone *zone;
1107 for_each_populated_zone(zone) {
1108 struct per_cpu_pageset *pset;
1109 struct per_cpu_pages *pcp;
1111 local_irq_save(flags);
1112 pset = per_cpu_ptr(zone->pageset, cpu);
1114 pcp = &pset->pcp;
1115 if (pcp->count) {
1116 free_pcppages_bulk(zone, pcp->count, pcp);
1117 pcp->count = 0;
1119 local_irq_restore(flags);
1124 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1126 void drain_local_pages(void *arg)
1128 drain_pages(smp_processor_id());
1132 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1134 void drain_all_pages(void)
1136 on_each_cpu(drain_local_pages, NULL, 1);
1139 #ifdef CONFIG_HIBERNATION
1141 void mark_free_pages(struct zone *zone)
1143 unsigned long pfn, max_zone_pfn;
1144 unsigned long flags;
1145 int order, t;
1146 struct list_head *curr;
1148 if (!zone->spanned_pages)
1149 return;
1151 spin_lock_irqsave(&zone->lock, flags);
1153 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1154 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1155 if (pfn_valid(pfn)) {
1156 struct page *page = pfn_to_page(pfn);
1158 if (!swsusp_page_is_forbidden(page))
1159 swsusp_unset_page_free(page);
1162 for_each_migratetype_order(order, t) {
1163 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1164 unsigned long i;
1166 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1167 for (i = 0; i < (1UL << order); i++)
1168 swsusp_set_page_free(pfn_to_page(pfn + i));
1171 spin_unlock_irqrestore(&zone->lock, flags);
1173 #endif /* CONFIG_PM */
1176 * Free a 0-order page
1177 * cold == 1 ? free a cold page : free a hot page
1179 void free_hot_cold_page(struct page *page, int cold)
1181 struct zone *zone = page_zone(page);
1182 struct per_cpu_pages *pcp;
1183 unsigned long flags;
1184 int migratetype;
1185 int wasMlocked = __TestClearPageMlocked(page);
1187 if (!free_pages_prepare(page, 0))
1188 return;
1190 migratetype = get_pageblock_migratetype(page);
1191 set_page_private(page, migratetype);
1192 local_irq_save(flags);
1193 if (unlikely(wasMlocked))
1194 free_page_mlock(page);
1195 __count_vm_event(PGFREE);
1198 * We only track unmovable, reclaimable and movable on pcp lists.
1199 * Free ISOLATE pages back to the allocator because they are being
1200 * offlined but treat RESERVE as movable pages so we can get those
1201 * areas back if necessary. Otherwise, we may have to free
1202 * excessively into the page allocator
1204 if (migratetype >= MIGRATE_PCPTYPES) {
1205 if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1206 free_one_page(zone, page, 0, migratetype);
1207 goto out;
1209 migratetype = MIGRATE_MOVABLE;
1212 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1213 if (cold)
1214 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1215 else
1216 list_add(&page->lru, &pcp->lists[migratetype]);
1217 pcp->count++;
1218 if (pcp->count >= pcp->high) {
1219 free_pcppages_bulk(zone, pcp->batch, pcp);
1220 pcp->count -= pcp->batch;
1223 out:
1224 local_irq_restore(flags);
1228 * split_page takes a non-compound higher-order page, and splits it into
1229 * n (1<<order) sub-pages: page[0..n]
1230 * Each sub-page must be freed individually.
1232 * Note: this is probably too low level an operation for use in drivers.
1233 * Please consult with lkml before using this in your driver.
1235 void split_page(struct page *page, unsigned int order)
1237 int i;
1239 VM_BUG_ON(PageCompound(page));
1240 VM_BUG_ON(!page_count(page));
1242 #ifdef CONFIG_KMEMCHECK
1244 * Split shadow pages too, because free(page[0]) would
1245 * otherwise free the whole shadow.
1247 if (kmemcheck_page_is_tracked(page))
1248 split_page(virt_to_page(page[0].shadow), order);
1249 #endif
1251 for (i = 1; i < (1 << order); i++)
1252 set_page_refcounted(page + i);
1256 * Similar to split_page except the page is already free. As this is only
1257 * being used for migration, the migratetype of the block also changes.
1258 * As this is called with interrupts disabled, the caller is responsible
1259 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1260 * are enabled.
1262 * Note: this is probably too low level an operation for use in drivers.
1263 * Please consult with lkml before using this in your driver.
1265 int split_free_page(struct page *page)
1267 unsigned int order;
1268 unsigned long watermark;
1269 struct zone *zone;
1271 BUG_ON(!PageBuddy(page));
1273 zone = page_zone(page);
1274 order = page_order(page);
1276 /* Obey watermarks as if the page was being allocated */
1277 watermark = low_wmark_pages(zone) + (1 << order);
1278 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1279 return 0;
1281 /* Remove page from free list */
1282 list_del(&page->lru);
1283 zone->free_area[order].nr_free--;
1284 rmv_page_order(page);
1285 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order));
1287 /* Split into individual pages */
1288 set_page_refcounted(page);
1289 split_page(page, order);
1291 if (order >= pageblock_order - 1) {
1292 struct page *endpage = page + (1 << order) - 1;
1293 for (; page < endpage; page += pageblock_nr_pages)
1294 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1297 return 1 << order;
1301 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1302 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1303 * or two.
1305 static inline
1306 struct page *buffered_rmqueue(struct zone *preferred_zone,
1307 struct zone *zone, int order, gfp_t gfp_flags,
1308 int migratetype)
1310 unsigned long flags;
1311 struct page *page;
1312 int cold = !!(gfp_flags & __GFP_COLD);
1314 again:
1315 if (likely(order == 0)) {
1316 struct per_cpu_pages *pcp;
1317 struct list_head *list;
1319 local_irq_save(flags);
1320 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1321 list = &pcp->lists[migratetype];
1322 if (list_empty(list)) {
1323 pcp->count += rmqueue_bulk(zone, 0,
1324 pcp->batch, list,
1325 migratetype, cold);
1326 if (unlikely(list_empty(list)))
1327 goto failed;
1330 if (cold)
1331 page = list_entry(list->prev, struct page, lru);
1332 else
1333 page = list_entry(list->next, struct page, lru);
1335 list_del(&page->lru);
1336 pcp->count--;
1337 } else {
1338 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1340 * __GFP_NOFAIL is not to be used in new code.
1342 * All __GFP_NOFAIL callers should be fixed so that they
1343 * properly detect and handle allocation failures.
1345 * We most definitely don't want callers attempting to
1346 * allocate greater than order-1 page units with
1347 * __GFP_NOFAIL.
1349 WARN_ON_ONCE(order > 1);
1351 spin_lock_irqsave(&zone->lock, flags);
1352 page = __rmqueue(zone, order, migratetype);
1353 spin_unlock(&zone->lock);
1354 if (!page)
1355 goto failed;
1356 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1359 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1360 zone_statistics(preferred_zone, zone, gfp_flags);
1361 local_irq_restore(flags);
1363 VM_BUG_ON(bad_range(zone, page));
1364 if (prep_new_page(page, order, gfp_flags))
1365 goto again;
1366 return page;
1368 failed:
1369 local_irq_restore(flags);
1370 return NULL;
1373 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1374 #define ALLOC_WMARK_MIN WMARK_MIN
1375 #define ALLOC_WMARK_LOW WMARK_LOW
1376 #define ALLOC_WMARK_HIGH WMARK_HIGH
1377 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1379 /* Mask to get the watermark bits */
1380 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1382 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1383 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1384 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1386 #ifdef CONFIG_FAIL_PAGE_ALLOC
1388 static struct fail_page_alloc_attr {
1389 struct fault_attr attr;
1391 u32 ignore_gfp_highmem;
1392 u32 ignore_gfp_wait;
1393 u32 min_order;
1395 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1397 struct dentry *ignore_gfp_highmem_file;
1398 struct dentry *ignore_gfp_wait_file;
1399 struct dentry *min_order_file;
1401 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1403 } fail_page_alloc = {
1404 .attr = FAULT_ATTR_INITIALIZER,
1405 .ignore_gfp_wait = 1,
1406 .ignore_gfp_highmem = 1,
1407 .min_order = 1,
1410 static int __init setup_fail_page_alloc(char *str)
1412 return setup_fault_attr(&fail_page_alloc.attr, str);
1414 __setup("fail_page_alloc=", setup_fail_page_alloc);
1416 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1418 if (order < fail_page_alloc.min_order)
1419 return 0;
1420 if (gfp_mask & __GFP_NOFAIL)
1421 return 0;
1422 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1423 return 0;
1424 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1425 return 0;
1427 return should_fail(&fail_page_alloc.attr, 1 << order);
1430 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1432 static int __init fail_page_alloc_debugfs(void)
1434 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1435 struct dentry *dir;
1436 int err;
1438 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1439 "fail_page_alloc");
1440 if (err)
1441 return err;
1442 dir = fail_page_alloc.attr.dentries.dir;
1444 fail_page_alloc.ignore_gfp_wait_file =
1445 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1446 &fail_page_alloc.ignore_gfp_wait);
1448 fail_page_alloc.ignore_gfp_highmem_file =
1449 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1450 &fail_page_alloc.ignore_gfp_highmem);
1451 fail_page_alloc.min_order_file =
1452 debugfs_create_u32("min-order", mode, dir,
1453 &fail_page_alloc.min_order);
1455 if (!fail_page_alloc.ignore_gfp_wait_file ||
1456 !fail_page_alloc.ignore_gfp_highmem_file ||
1457 !fail_page_alloc.min_order_file) {
1458 err = -ENOMEM;
1459 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1460 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1461 debugfs_remove(fail_page_alloc.min_order_file);
1462 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1465 return err;
1468 late_initcall(fail_page_alloc_debugfs);
1470 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1472 #else /* CONFIG_FAIL_PAGE_ALLOC */
1474 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1476 return 0;
1479 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1482 * Return true if free pages are above 'mark'. This takes into account the order
1483 * of the allocation.
1485 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1486 int classzone_idx, int alloc_flags, long free_pages)
1488 /* free_pages my go negative - that's OK */
1489 long min = mark;
1490 int o;
1492 free_pages -= (1 << order) + 1;
1493 if (alloc_flags & ALLOC_HIGH)
1494 min -= min / 2;
1495 if (alloc_flags & ALLOC_HARDER)
1496 min -= min / 4;
1498 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1499 return false;
1500 for (o = 0; o < order; o++) {
1501 /* At the next order, this order's pages become unavailable */
1502 free_pages -= z->free_area[o].nr_free << o;
1504 /* Require fewer higher order pages to be free */
1505 min >>= min_free_order_shift;
1507 if (free_pages <= min)
1508 return false;
1510 return true;
1513 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1514 int classzone_idx, int alloc_flags)
1516 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1517 zone_page_state(z, NR_FREE_PAGES));
1520 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1521 int classzone_idx, int alloc_flags)
1523 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1525 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1526 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1528 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1529 free_pages);
1532 #ifdef CONFIG_NUMA
1534 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1535 * skip over zones that are not allowed by the cpuset, or that have
1536 * been recently (in last second) found to be nearly full. See further
1537 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1538 * that have to skip over a lot of full or unallowed zones.
1540 * If the zonelist cache is present in the passed in zonelist, then
1541 * returns a pointer to the allowed node mask (either the current
1542 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1544 * If the zonelist cache is not available for this zonelist, does
1545 * nothing and returns NULL.
1547 * If the fullzones BITMAP in the zonelist cache is stale (more than
1548 * a second since last zap'd) then we zap it out (clear its bits.)
1550 * We hold off even calling zlc_setup, until after we've checked the
1551 * first zone in the zonelist, on the theory that most allocations will
1552 * be satisfied from that first zone, so best to examine that zone as
1553 * quickly as we can.
1555 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1557 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1558 nodemask_t *allowednodes; /* zonelist_cache approximation */
1560 zlc = zonelist->zlcache_ptr;
1561 if (!zlc)
1562 return NULL;
1564 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1565 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1566 zlc->last_full_zap = jiffies;
1569 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1570 &cpuset_current_mems_allowed :
1571 &node_states[N_HIGH_MEMORY];
1572 return allowednodes;
1576 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1577 * if it is worth looking at further for free memory:
1578 * 1) Check that the zone isn't thought to be full (doesn't have its
1579 * bit set in the zonelist_cache fullzones BITMAP).
1580 * 2) Check that the zones node (obtained from the zonelist_cache
1581 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1582 * Return true (non-zero) if zone is worth looking at further, or
1583 * else return false (zero) if it is not.
1585 * This check -ignores- the distinction between various watermarks,
1586 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1587 * found to be full for any variation of these watermarks, it will
1588 * be considered full for up to one second by all requests, unless
1589 * we are so low on memory on all allowed nodes that we are forced
1590 * into the second scan of the zonelist.
1592 * In the second scan we ignore this zonelist cache and exactly
1593 * apply the watermarks to all zones, even it is slower to do so.
1594 * We are low on memory in the second scan, and should leave no stone
1595 * unturned looking for a free page.
1597 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1598 nodemask_t *allowednodes)
1600 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1601 int i; /* index of *z in zonelist zones */
1602 int n; /* node that zone *z is on */
1604 zlc = zonelist->zlcache_ptr;
1605 if (!zlc)
1606 return 1;
1608 i = z - zonelist->_zonerefs;
1609 n = zlc->z_to_n[i];
1611 /* This zone is worth trying if it is allowed but not full */
1612 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1616 * Given 'z' scanning a zonelist, set the corresponding bit in
1617 * zlc->fullzones, so that subsequent attempts to allocate a page
1618 * from that zone don't waste time re-examining it.
1620 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1622 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1623 int i; /* index of *z in zonelist zones */
1625 zlc = zonelist->zlcache_ptr;
1626 if (!zlc)
1627 return;
1629 i = z - zonelist->_zonerefs;
1631 set_bit(i, zlc->fullzones);
1635 * clear all zones full, called after direct reclaim makes progress so that
1636 * a zone that was recently full is not skipped over for up to a second
1638 static void zlc_clear_zones_full(struct zonelist *zonelist)
1640 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1642 zlc = zonelist->zlcache_ptr;
1643 if (!zlc)
1644 return;
1646 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1649 #else /* CONFIG_NUMA */
1651 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1653 return NULL;
1656 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1657 nodemask_t *allowednodes)
1659 return 1;
1662 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1666 static void zlc_clear_zones_full(struct zonelist *zonelist)
1669 #endif /* CONFIG_NUMA */
1672 * get_page_from_freelist goes through the zonelist trying to allocate
1673 * a page.
1675 static struct page *
1676 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1677 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1678 struct zone *preferred_zone, int migratetype)
1680 struct zoneref *z;
1681 struct page *page = NULL;
1682 int classzone_idx;
1683 struct zone *zone;
1684 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1685 int zlc_active = 0; /* set if using zonelist_cache */
1686 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1688 classzone_idx = zone_idx(preferred_zone);
1689 zonelist_scan:
1691 * Scan zonelist, looking for a zone with enough free.
1692 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1694 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1695 high_zoneidx, nodemask) {
1696 if (NUMA_BUILD && zlc_active &&
1697 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1698 continue;
1699 if ((alloc_flags & ALLOC_CPUSET) &&
1700 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1701 continue;
1703 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1704 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1705 unsigned long mark;
1706 int ret;
1708 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1709 if (zone_watermark_ok(zone, order, mark,
1710 classzone_idx, alloc_flags))
1711 goto try_this_zone;
1713 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1715 * we do zlc_setup if there are multiple nodes
1716 * and before considering the first zone allowed
1717 * by the cpuset.
1719 allowednodes = zlc_setup(zonelist, alloc_flags);
1720 zlc_active = 1;
1721 did_zlc_setup = 1;
1724 if (zone_reclaim_mode == 0)
1725 goto this_zone_full;
1728 * As we may have just activated ZLC, check if the first
1729 * eligible zone has failed zone_reclaim recently.
1731 if (NUMA_BUILD && zlc_active &&
1732 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1733 continue;
1735 ret = zone_reclaim(zone, gfp_mask, order);
1736 switch (ret) {
1737 case ZONE_RECLAIM_NOSCAN:
1738 /* did not scan */
1739 continue;
1740 case ZONE_RECLAIM_FULL:
1741 /* scanned but unreclaimable */
1742 continue;
1743 default:
1744 /* did we reclaim enough */
1745 if (!zone_watermark_ok(zone, order, mark,
1746 classzone_idx, alloc_flags))
1747 goto this_zone_full;
1751 try_this_zone:
1752 page = buffered_rmqueue(preferred_zone, zone, order,
1753 gfp_mask, migratetype);
1754 if (page)
1755 break;
1756 this_zone_full:
1757 if (NUMA_BUILD)
1758 zlc_mark_zone_full(zonelist, z);
1761 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1762 /* Disable zlc cache for second zonelist scan */
1763 zlc_active = 0;
1764 goto zonelist_scan;
1766 return page;
1770 * Large machines with many possible nodes should not always dump per-node
1771 * meminfo in irq context.
1773 static inline bool should_suppress_show_mem(void)
1775 bool ret = false;
1777 #if NODES_SHIFT > 8
1778 ret = in_interrupt();
1779 #endif
1780 return ret;
1783 static DEFINE_RATELIMIT_STATE(nopage_rs,
1784 DEFAULT_RATELIMIT_INTERVAL,
1785 DEFAULT_RATELIMIT_BURST);
1787 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
1789 va_list args;
1790 unsigned int filter = SHOW_MEM_FILTER_NODES;
1792 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
1793 return;
1796 * This documents exceptions given to allocations in certain
1797 * contexts that are allowed to allocate outside current's set
1798 * of allowed nodes.
1800 if (!(gfp_mask & __GFP_NOMEMALLOC))
1801 if (test_thread_flag(TIF_MEMDIE) ||
1802 (current->flags & (PF_MEMALLOC | PF_EXITING)))
1803 filter &= ~SHOW_MEM_FILTER_NODES;
1804 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
1805 filter &= ~SHOW_MEM_FILTER_NODES;
1807 if (fmt) {
1808 printk(KERN_WARNING);
1809 va_start(args, fmt);
1810 vprintk(fmt, args);
1811 va_end(args);
1814 pr_warning("%s: page allocation failure: order:%d, mode:0x%x\n",
1815 current->comm, order, gfp_mask);
1817 dump_stack();
1818 if (!should_suppress_show_mem())
1819 show_mem(filter);
1822 static inline int
1823 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1824 unsigned long pages_reclaimed)
1826 /* Do not loop if specifically requested */
1827 if (gfp_mask & __GFP_NORETRY)
1828 return 0;
1831 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1832 * means __GFP_NOFAIL, but that may not be true in other
1833 * implementations.
1835 if (order <= PAGE_ALLOC_COSTLY_ORDER)
1836 return 1;
1839 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1840 * specified, then we retry until we no longer reclaim any pages
1841 * (above), or we've reclaimed an order of pages at least as
1842 * large as the allocation's order. In both cases, if the
1843 * allocation still fails, we stop retrying.
1845 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1846 return 1;
1849 * Don't let big-order allocations loop unless the caller
1850 * explicitly requests that.
1852 if (gfp_mask & __GFP_NOFAIL)
1853 return 1;
1855 return 0;
1858 static inline struct page *
1859 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1860 struct zonelist *zonelist, enum zone_type high_zoneidx,
1861 nodemask_t *nodemask, struct zone *preferred_zone,
1862 int migratetype)
1864 struct page *page;
1866 /* Acquire the OOM killer lock for the zones in zonelist */
1867 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
1868 schedule_timeout_uninterruptible(1);
1869 return NULL;
1873 * Go through the zonelist yet one more time, keep very high watermark
1874 * here, this is only to catch a parallel oom killing, we must fail if
1875 * we're still under heavy pressure.
1877 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1878 order, zonelist, high_zoneidx,
1879 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
1880 preferred_zone, migratetype);
1881 if (page)
1882 goto out;
1884 if (!(gfp_mask & __GFP_NOFAIL)) {
1885 /* The OOM killer will not help higher order allocs */
1886 if (order > PAGE_ALLOC_COSTLY_ORDER)
1887 goto out;
1888 /* The OOM killer does not needlessly kill tasks for lowmem */
1889 if (high_zoneidx < ZONE_NORMAL)
1890 goto out;
1892 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
1893 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
1894 * The caller should handle page allocation failure by itself if
1895 * it specifies __GFP_THISNODE.
1896 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
1898 if (gfp_mask & __GFP_THISNODE)
1899 goto out;
1901 /* Exhausted what can be done so it's blamo time */
1902 out_of_memory(zonelist, gfp_mask, order, nodemask);
1904 out:
1905 clear_zonelist_oom(zonelist, gfp_mask);
1906 return page;
1909 #ifdef CONFIG_COMPACTION
1910 /* Try memory compaction for high-order allocations before reclaim */
1911 static struct page *
1912 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1913 struct zonelist *zonelist, enum zone_type high_zoneidx,
1914 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1915 int migratetype, unsigned long *did_some_progress,
1916 bool sync_migration)
1918 struct page *page;
1920 if (!order || compaction_deferred(preferred_zone))
1921 return NULL;
1923 current->flags |= PF_MEMALLOC;
1924 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
1925 nodemask, sync_migration);
1926 current->flags &= ~PF_MEMALLOC;
1927 if (*did_some_progress != COMPACT_SKIPPED) {
1929 /* Page migration frees to the PCP lists but we want merging */
1930 drain_pages(get_cpu());
1931 put_cpu();
1933 page = get_page_from_freelist(gfp_mask, nodemask,
1934 order, zonelist, high_zoneidx,
1935 alloc_flags, preferred_zone,
1936 migratetype);
1937 if (page) {
1938 preferred_zone->compact_considered = 0;
1939 preferred_zone->compact_defer_shift = 0;
1940 count_vm_event(COMPACTSUCCESS);
1941 return page;
1945 * It's bad if compaction run occurs and fails.
1946 * The most likely reason is that pages exist,
1947 * but not enough to satisfy watermarks.
1949 count_vm_event(COMPACTFAIL);
1950 defer_compaction(preferred_zone);
1952 cond_resched();
1955 return NULL;
1957 #else
1958 static inline struct page *
1959 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1960 struct zonelist *zonelist, enum zone_type high_zoneidx,
1961 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1962 int migratetype, unsigned long *did_some_progress,
1963 bool sync_migration)
1965 return NULL;
1967 #endif /* CONFIG_COMPACTION */
1969 /* The really slow allocator path where we enter direct reclaim */
1970 static inline struct page *
1971 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1972 struct zonelist *zonelist, enum zone_type high_zoneidx,
1973 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1974 int migratetype, unsigned long *did_some_progress)
1976 struct page *page = NULL;
1977 struct reclaim_state reclaim_state;
1978 bool drained = false;
1980 cond_resched();
1982 /* We now go into synchronous reclaim */
1983 cpuset_memory_pressure_bump();
1984 current->flags |= PF_MEMALLOC;
1985 lockdep_set_current_reclaim_state(gfp_mask);
1986 reclaim_state.reclaimed_slab = 0;
1987 current->reclaim_state = &reclaim_state;
1989 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1991 current->reclaim_state = NULL;
1992 lockdep_clear_current_reclaim_state();
1993 current->flags &= ~PF_MEMALLOC;
1995 cond_resched();
1997 if (unlikely(!(*did_some_progress)))
1998 return NULL;
2000 /* After successful reclaim, reconsider all zones for allocation */
2001 if (NUMA_BUILD)
2002 zlc_clear_zones_full(zonelist);
2004 retry:
2005 page = get_page_from_freelist(gfp_mask, nodemask, order,
2006 zonelist, high_zoneidx,
2007 alloc_flags, preferred_zone,
2008 migratetype);
2011 * If an allocation failed after direct reclaim, it could be because
2012 * pages are pinned on the per-cpu lists. Drain them and try again
2014 if (!page && !drained) {
2015 drain_all_pages();
2016 drained = true;
2017 goto retry;
2020 return page;
2024 * This is called in the allocator slow-path if the allocation request is of
2025 * sufficient urgency to ignore watermarks and take other desperate measures
2027 static inline struct page *
2028 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2029 struct zonelist *zonelist, enum zone_type high_zoneidx,
2030 nodemask_t *nodemask, struct zone *preferred_zone,
2031 int migratetype)
2033 struct page *page;
2035 do {
2036 page = get_page_from_freelist(gfp_mask, nodemask, order,
2037 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
2038 preferred_zone, migratetype);
2040 if (!page && gfp_mask & __GFP_NOFAIL)
2041 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2042 } while (!page && (gfp_mask & __GFP_NOFAIL));
2044 return page;
2047 static inline
2048 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
2049 enum zone_type high_zoneidx,
2050 enum zone_type classzone_idx)
2052 struct zoneref *z;
2053 struct zone *zone;
2055 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
2056 wakeup_kswapd(zone, order, classzone_idx);
2059 static inline int
2060 gfp_to_alloc_flags(gfp_t gfp_mask)
2062 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2063 const gfp_t wait = gfp_mask & __GFP_WAIT;
2065 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2066 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2069 * The caller may dip into page reserves a bit more if the caller
2070 * cannot run direct reclaim, or if the caller has realtime scheduling
2071 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2072 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2074 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2076 if (!wait) {
2078 * Not worth trying to allocate harder for
2079 * __GFP_NOMEMALLOC even if it can't schedule.
2081 if (!(gfp_mask & __GFP_NOMEMALLOC))
2082 alloc_flags |= ALLOC_HARDER;
2084 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2085 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
2087 alloc_flags &= ~ALLOC_CPUSET;
2088 } else if (unlikely(rt_task(current)) && !in_interrupt())
2089 alloc_flags |= ALLOC_HARDER;
2091 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2092 if (!in_interrupt() &&
2093 ((current->flags & PF_MEMALLOC) ||
2094 unlikely(test_thread_flag(TIF_MEMDIE))))
2095 alloc_flags |= ALLOC_NO_WATERMARKS;
2098 return alloc_flags;
2101 static inline struct page *
2102 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2103 struct zonelist *zonelist, enum zone_type high_zoneidx,
2104 nodemask_t *nodemask, struct zone *preferred_zone,
2105 int migratetype)
2107 const gfp_t wait = gfp_mask & __GFP_WAIT;
2108 struct page *page = NULL;
2109 int alloc_flags;
2110 unsigned long pages_reclaimed = 0;
2111 unsigned long did_some_progress;
2112 bool sync_migration = false;
2115 * In the slowpath, we sanity check order to avoid ever trying to
2116 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2117 * be using allocators in order of preference for an area that is
2118 * too large.
2120 if (order >= MAX_ORDER) {
2121 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2122 return NULL;
2126 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2127 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2128 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2129 * using a larger set of nodes after it has established that the
2130 * allowed per node queues are empty and that nodes are
2131 * over allocated.
2133 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2134 goto nopage;
2136 restart:
2137 if (!(gfp_mask & __GFP_NO_KSWAPD))
2138 wake_all_kswapd(order, zonelist, high_zoneidx,
2139 zone_idx(preferred_zone));
2142 * OK, we're below the kswapd watermark and have kicked background
2143 * reclaim. Now things get more complex, so set up alloc_flags according
2144 * to how we want to proceed.
2146 alloc_flags = gfp_to_alloc_flags(gfp_mask);
2149 * Find the true preferred zone if the allocation is unconstrained by
2150 * cpusets.
2152 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2153 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2154 &preferred_zone);
2156 rebalance:
2157 /* This is the last chance, in general, before the goto nopage. */
2158 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2159 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2160 preferred_zone, migratetype);
2161 if (page)
2162 goto got_pg;
2164 /* Allocate without watermarks if the context allows */
2165 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2166 page = __alloc_pages_high_priority(gfp_mask, order,
2167 zonelist, high_zoneidx, nodemask,
2168 preferred_zone, migratetype);
2169 if (page)
2170 goto got_pg;
2173 /* Atomic allocations - we can't balance anything */
2174 if (!wait)
2175 goto nopage;
2177 /* Avoid recursion of direct reclaim */
2178 if (current->flags & PF_MEMALLOC)
2179 goto nopage;
2181 /* Avoid allocations with no watermarks from looping endlessly */
2182 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2183 goto nopage;
2186 * Try direct compaction. The first pass is asynchronous. Subsequent
2187 * attempts after direct reclaim are synchronous
2189 page = __alloc_pages_direct_compact(gfp_mask, order,
2190 zonelist, high_zoneidx,
2191 nodemask,
2192 alloc_flags, preferred_zone,
2193 migratetype, &did_some_progress,
2194 sync_migration);
2195 if (page)
2196 goto got_pg;
2197 sync_migration = true;
2199 /* Try direct reclaim and then allocating */
2200 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2201 zonelist, high_zoneidx,
2202 nodemask,
2203 alloc_flags, preferred_zone,
2204 migratetype, &did_some_progress);
2205 if (page)
2206 goto got_pg;
2209 * If we failed to make any progress reclaiming, then we are
2210 * running out of options and have to consider going OOM
2212 if (!did_some_progress) {
2213 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
2214 if (oom_killer_disabled)
2215 goto nopage;
2216 page = __alloc_pages_may_oom(gfp_mask, order,
2217 zonelist, high_zoneidx,
2218 nodemask, preferred_zone,
2219 migratetype);
2220 if (page)
2221 goto got_pg;
2223 if (!(gfp_mask & __GFP_NOFAIL)) {
2225 * The oom killer is not called for high-order
2226 * allocations that may fail, so if no progress
2227 * is being made, there are no other options and
2228 * retrying is unlikely to help.
2230 if (order > PAGE_ALLOC_COSTLY_ORDER)
2231 goto nopage;
2233 * The oom killer is not called for lowmem
2234 * allocations to prevent needlessly killing
2235 * innocent tasks.
2237 if (high_zoneidx < ZONE_NORMAL)
2238 goto nopage;
2241 goto restart;
2245 * Suspend converts GFP_KERNEL to __GFP_WAIT which can
2246 * prevent reclaim making forward progress without
2247 * invoking OOM. Bail if we are suspending
2249 if (pm_suspending())
2250 goto nopage;
2253 /* Check if we should retry the allocation */
2254 pages_reclaimed += did_some_progress;
2255 if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
2256 /* Wait for some write requests to complete then retry */
2257 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2258 goto rebalance;
2259 } else {
2261 * High-order allocations do not necessarily loop after
2262 * direct reclaim and reclaim/compaction depends on compaction
2263 * being called after reclaim so call directly if necessary
2265 page = __alloc_pages_direct_compact(gfp_mask, order,
2266 zonelist, high_zoneidx,
2267 nodemask,
2268 alloc_flags, preferred_zone,
2269 migratetype, &did_some_progress,
2270 sync_migration);
2271 if (page)
2272 goto got_pg;
2275 nopage:
2276 warn_alloc_failed(gfp_mask, order, NULL);
2277 return page;
2278 got_pg:
2279 if (kmemcheck_enabled)
2280 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2281 return page;
2286 * This is the 'heart' of the zoned buddy allocator.
2288 struct page *
2289 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2290 struct zonelist *zonelist, nodemask_t *nodemask)
2292 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2293 struct zone *preferred_zone;
2294 struct page *page;
2295 int migratetype = allocflags_to_migratetype(gfp_mask);
2297 gfp_mask &= gfp_allowed_mask;
2299 lockdep_trace_alloc(gfp_mask);
2301 might_sleep_if(gfp_mask & __GFP_WAIT);
2303 if (should_fail_alloc_page(gfp_mask, order))
2304 return NULL;
2307 * Check the zones suitable for the gfp_mask contain at least one
2308 * valid zone. It's possible to have an empty zonelist as a result
2309 * of GFP_THISNODE and a memoryless node
2311 if (unlikely(!zonelist->_zonerefs->zone))
2312 return NULL;
2314 get_mems_allowed();
2315 /* The preferred zone is used for statistics later */
2316 first_zones_zonelist(zonelist, high_zoneidx,
2317 nodemask ? : &cpuset_current_mems_allowed,
2318 &preferred_zone);
2319 if (!preferred_zone) {
2320 put_mems_allowed();
2321 return NULL;
2324 /* First allocation attempt */
2325 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2326 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
2327 preferred_zone, migratetype);
2328 if (unlikely(!page))
2329 page = __alloc_pages_slowpath(gfp_mask, order,
2330 zonelist, high_zoneidx, nodemask,
2331 preferred_zone, migratetype);
2332 put_mems_allowed();
2334 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2335 return page;
2337 EXPORT_SYMBOL(__alloc_pages_nodemask);
2340 * Common helper functions.
2342 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2344 struct page *page;
2347 * __get_free_pages() returns a 32-bit address, which cannot represent
2348 * a highmem page
2350 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2352 page = alloc_pages(gfp_mask, order);
2353 if (!page)
2354 return 0;
2355 return (unsigned long) page_address(page);
2357 EXPORT_SYMBOL(__get_free_pages);
2359 unsigned long get_zeroed_page(gfp_t gfp_mask)
2361 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2363 EXPORT_SYMBOL(get_zeroed_page);
2365 void __pagevec_free(struct pagevec *pvec)
2367 int i = pagevec_count(pvec);
2369 while (--i >= 0) {
2370 trace_mm_pagevec_free(pvec->pages[i], pvec->cold);
2371 free_hot_cold_page(pvec->pages[i], pvec->cold);
2375 void __free_pages(struct page *page, unsigned int order)
2377 if (put_page_testzero(page)) {
2378 if (order == 0)
2379 free_hot_cold_page(page, 0);
2380 else
2381 __free_pages_ok(page, order);
2385 EXPORT_SYMBOL(__free_pages);
2387 void free_pages(unsigned long addr, unsigned int order)
2389 if (addr != 0) {
2390 VM_BUG_ON(!virt_addr_valid((void *)addr));
2391 __free_pages(virt_to_page((void *)addr), order);
2395 EXPORT_SYMBOL(free_pages);
2397 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2399 if (addr) {
2400 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2401 unsigned long used = addr + PAGE_ALIGN(size);
2403 split_page(virt_to_page((void *)addr), order);
2404 while (used < alloc_end) {
2405 free_page(used);
2406 used += PAGE_SIZE;
2409 return (void *)addr;
2413 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2414 * @size: the number of bytes to allocate
2415 * @gfp_mask: GFP flags for the allocation
2417 * This function is similar to alloc_pages(), except that it allocates the
2418 * minimum number of pages to satisfy the request. alloc_pages() can only
2419 * allocate memory in power-of-two pages.
2421 * This function is also limited by MAX_ORDER.
2423 * Memory allocated by this function must be released by free_pages_exact().
2425 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2427 unsigned int order = get_order(size);
2428 unsigned long addr;
2430 addr = __get_free_pages(gfp_mask, order);
2431 return make_alloc_exact(addr, order, size);
2433 EXPORT_SYMBOL(alloc_pages_exact);
2436 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2437 * pages on a node.
2438 * @nid: the preferred node ID where memory should be allocated
2439 * @size: the number of bytes to allocate
2440 * @gfp_mask: GFP flags for the allocation
2442 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2443 * back.
2444 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2445 * but is not exact.
2447 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2449 unsigned order = get_order(size);
2450 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2451 if (!p)
2452 return NULL;
2453 return make_alloc_exact((unsigned long)page_address(p), order, size);
2455 EXPORT_SYMBOL(alloc_pages_exact_nid);
2458 * free_pages_exact - release memory allocated via alloc_pages_exact()
2459 * @virt: the value returned by alloc_pages_exact.
2460 * @size: size of allocation, same value as passed to alloc_pages_exact().
2462 * Release the memory allocated by a previous call to alloc_pages_exact.
2464 void free_pages_exact(void *virt, size_t size)
2466 unsigned long addr = (unsigned long)virt;
2467 unsigned long end = addr + PAGE_ALIGN(size);
2469 while (addr < end) {
2470 free_page(addr);
2471 addr += PAGE_SIZE;
2474 EXPORT_SYMBOL(free_pages_exact);
2476 static unsigned int nr_free_zone_pages(int offset)
2478 struct zoneref *z;
2479 struct zone *zone;
2481 /* Just pick one node, since fallback list is circular */
2482 unsigned int sum = 0;
2484 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2486 for_each_zone_zonelist(zone, z, zonelist, offset) {
2487 unsigned long size = zone->present_pages;
2488 unsigned long high = high_wmark_pages(zone);
2489 if (size > high)
2490 sum += size - high;
2493 return sum;
2497 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2499 unsigned int nr_free_buffer_pages(void)
2501 return nr_free_zone_pages(gfp_zone(GFP_USER));
2503 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2506 * Amount of free RAM allocatable within all zones
2508 unsigned int nr_free_pagecache_pages(void)
2510 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2513 static inline void show_node(struct zone *zone)
2515 if (NUMA_BUILD)
2516 printk("Node %d ", zone_to_nid(zone));
2519 void si_meminfo(struct sysinfo *val)
2521 val->totalram = totalram_pages;
2522 val->sharedram = 0;
2523 val->freeram = global_page_state(NR_FREE_PAGES);
2524 val->bufferram = nr_blockdev_pages();
2525 val->totalhigh = totalhigh_pages;
2526 val->freehigh = nr_free_highpages();
2527 val->mem_unit = PAGE_SIZE;
2530 EXPORT_SYMBOL(si_meminfo);
2532 #ifdef CONFIG_NUMA
2533 void si_meminfo_node(struct sysinfo *val, int nid)
2535 pg_data_t *pgdat = NODE_DATA(nid);
2537 val->totalram = pgdat->node_present_pages;
2538 val->freeram = node_page_state(nid, NR_FREE_PAGES);
2539 #ifdef CONFIG_HIGHMEM
2540 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2541 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2542 NR_FREE_PAGES);
2543 #else
2544 val->totalhigh = 0;
2545 val->freehigh = 0;
2546 #endif
2547 val->mem_unit = PAGE_SIZE;
2549 #endif
2552 * Determine whether the node should be displayed or not, depending on whether
2553 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
2555 bool skip_free_areas_node(unsigned int flags, int nid)
2557 bool ret = false;
2559 if (!(flags & SHOW_MEM_FILTER_NODES))
2560 goto out;
2562 get_mems_allowed();
2563 ret = !node_isset(nid, cpuset_current_mems_allowed);
2564 put_mems_allowed();
2565 out:
2566 return ret;
2569 #define K(x) ((x) << (PAGE_SHIFT-10))
2572 * Show free area list (used inside shift_scroll-lock stuff)
2573 * We also calculate the percentage fragmentation. We do this by counting the
2574 * memory on each free list with the exception of the first item on the list.
2575 * Suppresses nodes that are not allowed by current's cpuset if
2576 * SHOW_MEM_FILTER_NODES is passed.
2578 void show_free_areas(unsigned int filter)
2580 int cpu;
2581 struct zone *zone;
2583 for_each_populated_zone(zone) {
2584 if (skip_free_areas_node(filter, zone_to_nid(zone)))
2585 continue;
2586 show_node(zone);
2587 printk("%s per-cpu:\n", zone->name);
2589 for_each_online_cpu(cpu) {
2590 struct per_cpu_pageset *pageset;
2592 pageset = per_cpu_ptr(zone->pageset, cpu);
2594 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2595 cpu, pageset->pcp.high,
2596 pageset->pcp.batch, pageset->pcp.count);
2600 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2601 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2602 " unevictable:%lu"
2603 " dirty:%lu writeback:%lu unstable:%lu\n"
2604 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2605 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
2606 global_page_state(NR_ACTIVE_ANON),
2607 global_page_state(NR_INACTIVE_ANON),
2608 global_page_state(NR_ISOLATED_ANON),
2609 global_page_state(NR_ACTIVE_FILE),
2610 global_page_state(NR_INACTIVE_FILE),
2611 global_page_state(NR_ISOLATED_FILE),
2612 global_page_state(NR_UNEVICTABLE),
2613 global_page_state(NR_FILE_DIRTY),
2614 global_page_state(NR_WRITEBACK),
2615 global_page_state(NR_UNSTABLE_NFS),
2616 global_page_state(NR_FREE_PAGES),
2617 global_page_state(NR_SLAB_RECLAIMABLE),
2618 global_page_state(NR_SLAB_UNRECLAIMABLE),
2619 global_page_state(NR_FILE_MAPPED),
2620 global_page_state(NR_SHMEM),
2621 global_page_state(NR_PAGETABLE),
2622 global_page_state(NR_BOUNCE));
2624 for_each_populated_zone(zone) {
2625 int i;
2627 if (skip_free_areas_node(filter, zone_to_nid(zone)))
2628 continue;
2629 show_node(zone);
2630 printk("%s"
2631 " free:%lukB"
2632 " min:%lukB"
2633 " low:%lukB"
2634 " high:%lukB"
2635 " active_anon:%lukB"
2636 " inactive_anon:%lukB"
2637 " active_file:%lukB"
2638 " inactive_file:%lukB"
2639 " unevictable:%lukB"
2640 " isolated(anon):%lukB"
2641 " isolated(file):%lukB"
2642 " present:%lukB"
2643 " mlocked:%lukB"
2644 " dirty:%lukB"
2645 " writeback:%lukB"
2646 " mapped:%lukB"
2647 " shmem:%lukB"
2648 " slab_reclaimable:%lukB"
2649 " slab_unreclaimable:%lukB"
2650 " kernel_stack:%lukB"
2651 " pagetables:%lukB"
2652 " unstable:%lukB"
2653 " bounce:%lukB"
2654 " writeback_tmp:%lukB"
2655 " pages_scanned:%lu"
2656 " all_unreclaimable? %s"
2657 "\n",
2658 zone->name,
2659 K(zone_page_state(zone, NR_FREE_PAGES)),
2660 K(min_wmark_pages(zone)),
2661 K(low_wmark_pages(zone)),
2662 K(high_wmark_pages(zone)),
2663 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2664 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2665 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2666 K(zone_page_state(zone, NR_INACTIVE_FILE)),
2667 K(zone_page_state(zone, NR_UNEVICTABLE)),
2668 K(zone_page_state(zone, NR_ISOLATED_ANON)),
2669 K(zone_page_state(zone, NR_ISOLATED_FILE)),
2670 K(zone->present_pages),
2671 K(zone_page_state(zone, NR_MLOCK)),
2672 K(zone_page_state(zone, NR_FILE_DIRTY)),
2673 K(zone_page_state(zone, NR_WRITEBACK)),
2674 K(zone_page_state(zone, NR_FILE_MAPPED)),
2675 K(zone_page_state(zone, NR_SHMEM)),
2676 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2677 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
2678 zone_page_state(zone, NR_KERNEL_STACK) *
2679 THREAD_SIZE / 1024,
2680 K(zone_page_state(zone, NR_PAGETABLE)),
2681 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2682 K(zone_page_state(zone, NR_BOUNCE)),
2683 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
2684 zone->pages_scanned,
2685 (zone->all_unreclaimable ? "yes" : "no")
2687 printk("lowmem_reserve[]:");
2688 for (i = 0; i < MAX_NR_ZONES; i++)
2689 printk(" %lu", zone->lowmem_reserve[i]);
2690 printk("\n");
2693 for_each_populated_zone(zone) {
2694 unsigned long nr[MAX_ORDER], flags, order, total = 0;
2696 if (skip_free_areas_node(filter, zone_to_nid(zone)))
2697 continue;
2698 show_node(zone);
2699 printk("%s: ", zone->name);
2701 spin_lock_irqsave(&zone->lock, flags);
2702 for (order = 0; order < MAX_ORDER; order++) {
2703 nr[order] = zone->free_area[order].nr_free;
2704 total += nr[order] << order;
2706 spin_unlock_irqrestore(&zone->lock, flags);
2707 for (order = 0; order < MAX_ORDER; order++)
2708 printk("%lu*%lukB ", nr[order], K(1UL) << order);
2709 printk("= %lukB\n", K(total));
2712 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2714 show_swap_cache_info();
2717 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2719 zoneref->zone = zone;
2720 zoneref->zone_idx = zone_idx(zone);
2724 * Builds allocation fallback zone lists.
2726 * Add all populated zones of a node to the zonelist.
2728 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2729 int nr_zones, enum zone_type zone_type)
2731 struct zone *zone;
2733 BUG_ON(zone_type >= MAX_NR_ZONES);
2734 zone_type++;
2736 do {
2737 zone_type--;
2738 zone = pgdat->node_zones + zone_type;
2739 if (populated_zone(zone)) {
2740 zoneref_set_zone(zone,
2741 &zonelist->_zonerefs[nr_zones++]);
2742 check_highest_zone(zone_type);
2745 } while (zone_type);
2746 return nr_zones;
2751 * zonelist_order:
2752 * 0 = automatic detection of better ordering.
2753 * 1 = order by ([node] distance, -zonetype)
2754 * 2 = order by (-zonetype, [node] distance)
2756 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2757 * the same zonelist. So only NUMA can configure this param.
2759 #define ZONELIST_ORDER_DEFAULT 0
2760 #define ZONELIST_ORDER_NODE 1
2761 #define ZONELIST_ORDER_ZONE 2
2763 /* zonelist order in the kernel.
2764 * set_zonelist_order() will set this to NODE or ZONE.
2766 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2767 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2770 #ifdef CONFIG_NUMA
2771 /* The value user specified ....changed by config */
2772 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2773 /* string for sysctl */
2774 #define NUMA_ZONELIST_ORDER_LEN 16
2775 char numa_zonelist_order[16] = "default";
2778 * interface for configure zonelist ordering.
2779 * command line option "numa_zonelist_order"
2780 * = "[dD]efault - default, automatic configuration.
2781 * = "[nN]ode - order by node locality, then by zone within node
2782 * = "[zZ]one - order by zone, then by locality within zone
2785 static int __parse_numa_zonelist_order(char *s)
2787 if (*s == 'd' || *s == 'D') {
2788 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2789 } else if (*s == 'n' || *s == 'N') {
2790 user_zonelist_order = ZONELIST_ORDER_NODE;
2791 } else if (*s == 'z' || *s == 'Z') {
2792 user_zonelist_order = ZONELIST_ORDER_ZONE;
2793 } else {
2794 printk(KERN_WARNING
2795 "Ignoring invalid numa_zonelist_order value: "
2796 "%s\n", s);
2797 return -EINVAL;
2799 return 0;
2802 static __init int setup_numa_zonelist_order(char *s)
2804 int ret;
2806 if (!s)
2807 return 0;
2809 ret = __parse_numa_zonelist_order(s);
2810 if (ret == 0)
2811 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
2813 return ret;
2815 early_param("numa_zonelist_order", setup_numa_zonelist_order);
2818 * sysctl handler for numa_zonelist_order
2820 int numa_zonelist_order_handler(ctl_table *table, int write,
2821 void __user *buffer, size_t *length,
2822 loff_t *ppos)
2824 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2825 int ret;
2826 static DEFINE_MUTEX(zl_order_mutex);
2828 mutex_lock(&zl_order_mutex);
2829 if (write)
2830 strcpy(saved_string, (char*)table->data);
2831 ret = proc_dostring(table, write, buffer, length, ppos);
2832 if (ret)
2833 goto out;
2834 if (write) {
2835 int oldval = user_zonelist_order;
2836 if (__parse_numa_zonelist_order((char*)table->data)) {
2838 * bogus value. restore saved string
2840 strncpy((char*)table->data, saved_string,
2841 NUMA_ZONELIST_ORDER_LEN);
2842 user_zonelist_order = oldval;
2843 } else if (oldval != user_zonelist_order) {
2844 mutex_lock(&zonelists_mutex);
2845 build_all_zonelists(NULL);
2846 mutex_unlock(&zonelists_mutex);
2849 out:
2850 mutex_unlock(&zl_order_mutex);
2851 return ret;
2855 #define MAX_NODE_LOAD (nr_online_nodes)
2856 static int node_load[MAX_NUMNODES];
2859 * find_next_best_node - find the next node that should appear in a given node's fallback list
2860 * @node: node whose fallback list we're appending
2861 * @used_node_mask: nodemask_t of already used nodes
2863 * We use a number of factors to determine which is the next node that should
2864 * appear on a given node's fallback list. The node should not have appeared
2865 * already in @node's fallback list, and it should be the next closest node
2866 * according to the distance array (which contains arbitrary distance values
2867 * from each node to each node in the system), and should also prefer nodes
2868 * with no CPUs, since presumably they'll have very little allocation pressure
2869 * on them otherwise.
2870 * It returns -1 if no node is found.
2872 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2874 int n, val;
2875 int min_val = INT_MAX;
2876 int best_node = -1;
2877 const struct cpumask *tmp = cpumask_of_node(0);
2879 /* Use the local node if we haven't already */
2880 if (!node_isset(node, *used_node_mask)) {
2881 node_set(node, *used_node_mask);
2882 return node;
2885 for_each_node_state(n, N_HIGH_MEMORY) {
2887 /* Don't want a node to appear more than once */
2888 if (node_isset(n, *used_node_mask))
2889 continue;
2891 /* Use the distance array to find the distance */
2892 val = node_distance(node, n);
2894 /* Penalize nodes under us ("prefer the next node") */
2895 val += (n < node);
2897 /* Give preference to headless and unused nodes */
2898 tmp = cpumask_of_node(n);
2899 if (!cpumask_empty(tmp))
2900 val += PENALTY_FOR_NODE_WITH_CPUS;
2902 /* Slight preference for less loaded node */
2903 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2904 val += node_load[n];
2906 if (val < min_val) {
2907 min_val = val;
2908 best_node = n;
2912 if (best_node >= 0)
2913 node_set(best_node, *used_node_mask);
2915 return best_node;
2920 * Build zonelists ordered by node and zones within node.
2921 * This results in maximum locality--normal zone overflows into local
2922 * DMA zone, if any--but risks exhausting DMA zone.
2924 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2926 int j;
2927 struct zonelist *zonelist;
2929 zonelist = &pgdat->node_zonelists[0];
2930 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2932 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2933 MAX_NR_ZONES - 1);
2934 zonelist->_zonerefs[j].zone = NULL;
2935 zonelist->_zonerefs[j].zone_idx = 0;
2939 * Build gfp_thisnode zonelists
2941 static void build_thisnode_zonelists(pg_data_t *pgdat)
2943 int j;
2944 struct zonelist *zonelist;
2946 zonelist = &pgdat->node_zonelists[1];
2947 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2948 zonelist->_zonerefs[j].zone = NULL;
2949 zonelist->_zonerefs[j].zone_idx = 0;
2953 * Build zonelists ordered by zone and nodes within zones.
2954 * This results in conserving DMA zone[s] until all Normal memory is
2955 * exhausted, but results in overflowing to remote node while memory
2956 * may still exist in local DMA zone.
2958 static int node_order[MAX_NUMNODES];
2960 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2962 int pos, j, node;
2963 int zone_type; /* needs to be signed */
2964 struct zone *z;
2965 struct zonelist *zonelist;
2967 zonelist = &pgdat->node_zonelists[0];
2968 pos = 0;
2969 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2970 for (j = 0; j < nr_nodes; j++) {
2971 node = node_order[j];
2972 z = &NODE_DATA(node)->node_zones[zone_type];
2973 if (populated_zone(z)) {
2974 zoneref_set_zone(z,
2975 &zonelist->_zonerefs[pos++]);
2976 check_highest_zone(zone_type);
2980 zonelist->_zonerefs[pos].zone = NULL;
2981 zonelist->_zonerefs[pos].zone_idx = 0;
2984 static int default_zonelist_order(void)
2986 int nid, zone_type;
2987 unsigned long low_kmem_size,total_size;
2988 struct zone *z;
2989 int average_size;
2991 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
2992 * If they are really small and used heavily, the system can fall
2993 * into OOM very easily.
2994 * This function detect ZONE_DMA/DMA32 size and configures zone order.
2996 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2997 low_kmem_size = 0;
2998 total_size = 0;
2999 for_each_online_node(nid) {
3000 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3001 z = &NODE_DATA(nid)->node_zones[zone_type];
3002 if (populated_zone(z)) {
3003 if (zone_type < ZONE_NORMAL)
3004 low_kmem_size += z->present_pages;
3005 total_size += z->present_pages;
3006 } else if (zone_type == ZONE_NORMAL) {
3008 * If any node has only lowmem, then node order
3009 * is preferred to allow kernel allocations
3010 * locally; otherwise, they can easily infringe
3011 * on other nodes when there is an abundance of
3012 * lowmem available to allocate from.
3014 return ZONELIST_ORDER_NODE;
3018 if (!low_kmem_size || /* there are no DMA area. */
3019 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3020 return ZONELIST_ORDER_NODE;
3022 * look into each node's config.
3023 * If there is a node whose DMA/DMA32 memory is very big area on
3024 * local memory, NODE_ORDER may be suitable.
3026 average_size = total_size /
3027 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
3028 for_each_online_node(nid) {
3029 low_kmem_size = 0;
3030 total_size = 0;
3031 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3032 z = &NODE_DATA(nid)->node_zones[zone_type];
3033 if (populated_zone(z)) {
3034 if (zone_type < ZONE_NORMAL)
3035 low_kmem_size += z->present_pages;
3036 total_size += z->present_pages;
3039 if (low_kmem_size &&
3040 total_size > average_size && /* ignore small node */
3041 low_kmem_size > total_size * 70/100)
3042 return ZONELIST_ORDER_NODE;
3044 return ZONELIST_ORDER_ZONE;
3047 static void set_zonelist_order(void)
3049 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3050 current_zonelist_order = default_zonelist_order();
3051 else
3052 current_zonelist_order = user_zonelist_order;
3055 static void build_zonelists(pg_data_t *pgdat)
3057 int j, node, load;
3058 enum zone_type i;
3059 nodemask_t used_mask;
3060 int local_node, prev_node;
3061 struct zonelist *zonelist;
3062 int order = current_zonelist_order;
3064 /* initialize zonelists */
3065 for (i = 0; i < MAX_ZONELISTS; i++) {
3066 zonelist = pgdat->node_zonelists + i;
3067 zonelist->_zonerefs[0].zone = NULL;
3068 zonelist->_zonerefs[0].zone_idx = 0;
3071 /* NUMA-aware ordering of nodes */
3072 local_node = pgdat->node_id;
3073 load = nr_online_nodes;
3074 prev_node = local_node;
3075 nodes_clear(used_mask);
3077 memset(node_order, 0, sizeof(node_order));
3078 j = 0;
3080 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3081 int distance = node_distance(local_node, node);
3084 * If another node is sufficiently far away then it is better
3085 * to reclaim pages in a zone before going off node.
3087 if (distance > RECLAIM_DISTANCE)
3088 zone_reclaim_mode = 1;
3091 * We don't want to pressure a particular node.
3092 * So adding penalty to the first node in same
3093 * distance group to make it round-robin.
3095 if (distance != node_distance(local_node, prev_node))
3096 node_load[node] = load;
3098 prev_node = node;
3099 load--;
3100 if (order == ZONELIST_ORDER_NODE)
3101 build_zonelists_in_node_order(pgdat, node);
3102 else
3103 node_order[j++] = node; /* remember order */
3106 if (order == ZONELIST_ORDER_ZONE) {
3107 /* calculate node order -- i.e., DMA last! */
3108 build_zonelists_in_zone_order(pgdat, j);
3111 build_thisnode_zonelists(pgdat);
3114 /* Construct the zonelist performance cache - see further mmzone.h */
3115 static void build_zonelist_cache(pg_data_t *pgdat)
3117 struct zonelist *zonelist;
3118 struct zonelist_cache *zlc;
3119 struct zoneref *z;
3121 zonelist = &pgdat->node_zonelists[0];
3122 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3123 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3124 for (z = zonelist->_zonerefs; z->zone; z++)
3125 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3128 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3130 * Return node id of node used for "local" allocations.
3131 * I.e., first node id of first zone in arg node's generic zonelist.
3132 * Used for initializing percpu 'numa_mem', which is used primarily
3133 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3135 int local_memory_node(int node)
3137 struct zone *zone;
3139 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3140 gfp_zone(GFP_KERNEL),
3141 NULL,
3142 &zone);
3143 return zone->node;
3145 #endif
3147 #else /* CONFIG_NUMA */
3149 static void set_zonelist_order(void)
3151 current_zonelist_order = ZONELIST_ORDER_ZONE;
3154 static void build_zonelists(pg_data_t *pgdat)
3156 int node, local_node;
3157 enum zone_type j;
3158 struct zonelist *zonelist;
3160 local_node = pgdat->node_id;
3162 zonelist = &pgdat->node_zonelists[0];
3163 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3166 * Now we build the zonelist so that it contains the zones
3167 * of all the other nodes.
3168 * We don't want to pressure a particular node, so when
3169 * building the zones for node N, we make sure that the
3170 * zones coming right after the local ones are those from
3171 * node N+1 (modulo N)
3173 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3174 if (!node_online(node))
3175 continue;
3176 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3177 MAX_NR_ZONES - 1);
3179 for (node = 0; node < local_node; node++) {
3180 if (!node_online(node))
3181 continue;
3182 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3183 MAX_NR_ZONES - 1);
3186 zonelist->_zonerefs[j].zone = NULL;
3187 zonelist->_zonerefs[j].zone_idx = 0;
3190 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3191 static void build_zonelist_cache(pg_data_t *pgdat)
3193 pgdat->node_zonelists[0].zlcache_ptr = NULL;
3196 #endif /* CONFIG_NUMA */
3199 * Boot pageset table. One per cpu which is going to be used for all
3200 * zones and all nodes. The parameters will be set in such a way
3201 * that an item put on a list will immediately be handed over to
3202 * the buddy list. This is safe since pageset manipulation is done
3203 * with interrupts disabled.
3205 * The boot_pagesets must be kept even after bootup is complete for
3206 * unused processors and/or zones. They do play a role for bootstrapping
3207 * hotplugged processors.
3209 * zoneinfo_show() and maybe other functions do
3210 * not check if the processor is online before following the pageset pointer.
3211 * Other parts of the kernel may not check if the zone is available.
3213 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3214 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3215 static void setup_zone_pageset(struct zone *zone);
3218 * Global mutex to protect against size modification of zonelists
3219 * as well as to serialize pageset setup for the new populated zone.
3221 DEFINE_MUTEX(zonelists_mutex);
3223 /* return values int ....just for stop_machine() */
3224 static __init_refok int __build_all_zonelists(void *data)
3226 int nid;
3227 int cpu;
3229 #ifdef CONFIG_NUMA
3230 memset(node_load, 0, sizeof(node_load));
3231 #endif
3232 for_each_online_node(nid) {
3233 pg_data_t *pgdat = NODE_DATA(nid);
3235 build_zonelists(pgdat);
3236 build_zonelist_cache(pgdat);
3240 * Initialize the boot_pagesets that are going to be used
3241 * for bootstrapping processors. The real pagesets for
3242 * each zone will be allocated later when the per cpu
3243 * allocator is available.
3245 * boot_pagesets are used also for bootstrapping offline
3246 * cpus if the system is already booted because the pagesets
3247 * are needed to initialize allocators on a specific cpu too.
3248 * F.e. the percpu allocator needs the page allocator which
3249 * needs the percpu allocator in order to allocate its pagesets
3250 * (a chicken-egg dilemma).
3252 for_each_possible_cpu(cpu) {
3253 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3255 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3257 * We now know the "local memory node" for each node--
3258 * i.e., the node of the first zone in the generic zonelist.
3259 * Set up numa_mem percpu variable for on-line cpus. During
3260 * boot, only the boot cpu should be on-line; we'll init the
3261 * secondary cpus' numa_mem as they come on-line. During
3262 * node/memory hotplug, we'll fixup all on-line cpus.
3264 if (cpu_online(cpu))
3265 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3266 #endif
3269 return 0;
3273 * Called with zonelists_mutex held always
3274 * unless system_state == SYSTEM_BOOTING.
3276 void __ref build_all_zonelists(void *data)
3278 set_zonelist_order();
3280 if (system_state == SYSTEM_BOOTING) {
3281 __build_all_zonelists(NULL);
3282 mminit_verify_zonelist();
3283 cpuset_init_current_mems_allowed();
3284 } else {
3285 /* we have to stop all cpus to guarantee there is no user
3286 of zonelist */
3287 #ifdef CONFIG_MEMORY_HOTPLUG
3288 if (data)
3289 setup_zone_pageset((struct zone *)data);
3290 #endif
3291 stop_machine(__build_all_zonelists, NULL, NULL);
3292 /* cpuset refresh routine should be here */
3294 vm_total_pages = nr_free_pagecache_pages();
3296 * Disable grouping by mobility if the number of pages in the
3297 * system is too low to allow the mechanism to work. It would be
3298 * more accurate, but expensive to check per-zone. This check is
3299 * made on memory-hotadd so a system can start with mobility
3300 * disabled and enable it later
3302 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3303 page_group_by_mobility_disabled = 1;
3304 else
3305 page_group_by_mobility_disabled = 0;
3307 printk("Built %i zonelists in %s order, mobility grouping %s. "
3308 "Total pages: %ld\n",
3309 nr_online_nodes,
3310 zonelist_order_name[current_zonelist_order],
3311 page_group_by_mobility_disabled ? "off" : "on",
3312 vm_total_pages);
3313 #ifdef CONFIG_NUMA
3314 printk("Policy zone: %s\n", zone_names[policy_zone]);
3315 #endif
3319 * Helper functions to size the waitqueue hash table.
3320 * Essentially these want to choose hash table sizes sufficiently
3321 * large so that collisions trying to wait on pages are rare.
3322 * But in fact, the number of active page waitqueues on typical
3323 * systems is ridiculously low, less than 200. So this is even
3324 * conservative, even though it seems large.
3326 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3327 * waitqueues, i.e. the size of the waitq table given the number of pages.
3329 #define PAGES_PER_WAITQUEUE 256
3331 #ifndef CONFIG_MEMORY_HOTPLUG
3332 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3334 unsigned long size = 1;
3336 pages /= PAGES_PER_WAITQUEUE;
3338 while (size < pages)
3339 size <<= 1;
3342 * Once we have dozens or even hundreds of threads sleeping
3343 * on IO we've got bigger problems than wait queue collision.
3344 * Limit the size of the wait table to a reasonable size.
3346 size = min(size, 4096UL);
3348 return max(size, 4UL);
3350 #else
3352 * A zone's size might be changed by hot-add, so it is not possible to determine
3353 * a suitable size for its wait_table. So we use the maximum size now.
3355 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3357 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3358 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3359 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3361 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3362 * or more by the traditional way. (See above). It equals:
3364 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3365 * ia64(16K page size) : = ( 8G + 4M)byte.
3366 * powerpc (64K page size) : = (32G +16M)byte.
3368 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3370 return 4096UL;
3372 #endif
3375 * This is an integer logarithm so that shifts can be used later
3376 * to extract the more random high bits from the multiplicative
3377 * hash function before the remainder is taken.
3379 static inline unsigned long wait_table_bits(unsigned long size)
3381 return ffz(~size);
3384 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3387 * Check if a pageblock contains reserved pages
3389 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3391 unsigned long pfn;
3393 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3394 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3395 return 1;
3397 return 0;
3401 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3402 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3403 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3404 * higher will lead to a bigger reserve which will get freed as contiguous
3405 * blocks as reclaim kicks in
3407 static void setup_zone_migrate_reserve(struct zone *zone)
3409 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
3410 struct page *page;
3411 unsigned long block_migratetype;
3412 int reserve;
3415 * Get the start pfn, end pfn and the number of blocks to reserve
3416 * We have to be careful to be aligned to pageblock_nr_pages to
3417 * make sure that we always check pfn_valid for the first page in
3418 * the block.
3420 start_pfn = zone->zone_start_pfn;
3421 end_pfn = start_pfn + zone->spanned_pages;
3422 start_pfn = roundup(start_pfn, pageblock_nr_pages);
3423 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3424 pageblock_order;
3427 * Reserve blocks are generally in place to help high-order atomic
3428 * allocations that are short-lived. A min_free_kbytes value that
3429 * would result in more than 2 reserve blocks for atomic allocations
3430 * is assumed to be in place to help anti-fragmentation for the
3431 * future allocation of hugepages at runtime.
3433 reserve = min(2, reserve);
3435 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3436 if (!pfn_valid(pfn))
3437 continue;
3438 page = pfn_to_page(pfn);
3440 /* Watch out for overlapping nodes */
3441 if (page_to_nid(page) != zone_to_nid(zone))
3442 continue;
3444 /* Blocks with reserved pages will never free, skip them. */
3445 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3446 if (pageblock_is_reserved(pfn, block_end_pfn))
3447 continue;
3449 block_migratetype = get_pageblock_migratetype(page);
3451 /* If this block is reserved, account for it */
3452 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
3453 reserve--;
3454 continue;
3457 /* Suitable for reserving if this block is movable */
3458 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
3459 set_pageblock_migratetype(page, MIGRATE_RESERVE);
3460 move_freepages_block(zone, page, MIGRATE_RESERVE);
3461 reserve--;
3462 continue;
3466 * If the reserve is met and this is a previous reserved block,
3467 * take it back
3469 if (block_migratetype == MIGRATE_RESERVE) {
3470 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3471 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3477 * Initially all pages are reserved - free ones are freed
3478 * up by free_all_bootmem() once the early boot process is
3479 * done. Non-atomic initialization, single-pass.
3481 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
3482 unsigned long start_pfn, enum memmap_context context)
3484 struct page *page;
3485 unsigned long end_pfn = start_pfn + size;
3486 unsigned long pfn;
3487 struct zone *z;
3489 if (highest_memmap_pfn < end_pfn - 1)
3490 highest_memmap_pfn = end_pfn - 1;
3492 z = &NODE_DATA(nid)->node_zones[zone];
3493 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3495 * There can be holes in boot-time mem_map[]s
3496 * handed to this function. They do not
3497 * exist on hotplugged memory.
3499 if (context == MEMMAP_EARLY) {
3500 if (!early_pfn_valid(pfn))
3501 continue;
3502 if (!early_pfn_in_nid(pfn, nid))
3503 continue;
3505 page = pfn_to_page(pfn);
3506 set_page_links(page, zone, nid, pfn);
3507 mminit_verify_page_links(page, zone, nid, pfn);
3508 init_page_count(page);
3509 reset_page_mapcount(page);
3510 SetPageReserved(page);
3512 * Mark the block movable so that blocks are reserved for
3513 * movable at startup. This will force kernel allocations
3514 * to reserve their blocks rather than leaking throughout
3515 * the address space during boot when many long-lived
3516 * kernel allocations are made. Later some blocks near
3517 * the start are marked MIGRATE_RESERVE by
3518 * setup_zone_migrate_reserve()
3520 * bitmap is created for zone's valid pfn range. but memmap
3521 * can be created for invalid pages (for alignment)
3522 * check here not to call set_pageblock_migratetype() against
3523 * pfn out of zone.
3525 if ((z->zone_start_pfn <= pfn)
3526 && (pfn < z->zone_start_pfn + z->spanned_pages)
3527 && !(pfn & (pageblock_nr_pages - 1)))
3528 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3530 INIT_LIST_HEAD(&page->lru);
3531 #ifdef WANT_PAGE_VIRTUAL
3532 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3533 if (!is_highmem_idx(zone))
3534 set_page_address(page, __va(pfn << PAGE_SHIFT));
3535 #endif
3539 static void __meminit zone_init_free_lists(struct zone *zone)
3541 int order, t;
3542 for_each_migratetype_order(order, t) {
3543 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
3544 zone->free_area[order].nr_free = 0;
3548 #ifndef __HAVE_ARCH_MEMMAP_INIT
3549 #define memmap_init(size, nid, zone, start_pfn) \
3550 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3551 #endif
3553 static int zone_batchsize(struct zone *zone)
3555 #ifdef CONFIG_MMU
3556 int batch;
3559 * The per-cpu-pages pools are set to around 1000th of the
3560 * size of the zone. But no more than 1/2 of a meg.
3562 * OK, so we don't know how big the cache is. So guess.
3564 batch = zone->present_pages / 1024;
3565 if (batch * PAGE_SIZE > 512 * 1024)
3566 batch = (512 * 1024) / PAGE_SIZE;
3567 batch /= 4; /* We effectively *= 4 below */
3568 if (batch < 1)
3569 batch = 1;
3572 * Clamp the batch to a 2^n - 1 value. Having a power
3573 * of 2 value was found to be more likely to have
3574 * suboptimal cache aliasing properties in some cases.
3576 * For example if 2 tasks are alternately allocating
3577 * batches of pages, one task can end up with a lot
3578 * of pages of one half of the possible page colors
3579 * and the other with pages of the other colors.
3581 batch = rounddown_pow_of_two(batch + batch/2) - 1;
3583 return batch;
3585 #else
3586 /* The deferral and batching of frees should be suppressed under NOMMU
3587 * conditions.
3589 * The problem is that NOMMU needs to be able to allocate large chunks
3590 * of contiguous memory as there's no hardware page translation to
3591 * assemble apparent contiguous memory from discontiguous pages.
3593 * Queueing large contiguous runs of pages for batching, however,
3594 * causes the pages to actually be freed in smaller chunks. As there
3595 * can be a significant delay between the individual batches being
3596 * recycled, this leads to the once large chunks of space being
3597 * fragmented and becoming unavailable for high-order allocations.
3599 return 0;
3600 #endif
3603 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
3605 struct per_cpu_pages *pcp;
3606 int migratetype;
3608 memset(p, 0, sizeof(*p));
3610 pcp = &p->pcp;
3611 pcp->count = 0;
3612 pcp->high = 6 * batch;
3613 pcp->batch = max(1UL, 1 * batch);
3614 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3615 INIT_LIST_HEAD(&pcp->lists[migratetype]);
3619 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3620 * to the value high for the pageset p.
3623 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3624 unsigned long high)
3626 struct per_cpu_pages *pcp;
3628 pcp = &p->pcp;
3629 pcp->high = high;
3630 pcp->batch = max(1UL, high/4);
3631 if ((high/4) > (PAGE_SHIFT * 8))
3632 pcp->batch = PAGE_SHIFT * 8;
3635 static void setup_zone_pageset(struct zone *zone)
3637 int cpu;
3639 zone->pageset = alloc_percpu(struct per_cpu_pageset);
3641 for_each_possible_cpu(cpu) {
3642 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
3644 setup_pageset(pcp, zone_batchsize(zone));
3646 if (percpu_pagelist_fraction)
3647 setup_pagelist_highmark(pcp,
3648 (zone->present_pages /
3649 percpu_pagelist_fraction));
3654 * Allocate per cpu pagesets and initialize them.
3655 * Before this call only boot pagesets were available.
3657 void __init setup_per_cpu_pageset(void)
3659 struct zone *zone;
3661 for_each_populated_zone(zone)
3662 setup_zone_pageset(zone);
3665 static noinline __init_refok
3666 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
3668 int i;
3669 struct pglist_data *pgdat = zone->zone_pgdat;
3670 size_t alloc_size;
3673 * The per-page waitqueue mechanism uses hashed waitqueues
3674 * per zone.
3676 zone->wait_table_hash_nr_entries =
3677 wait_table_hash_nr_entries(zone_size_pages);
3678 zone->wait_table_bits =
3679 wait_table_bits(zone->wait_table_hash_nr_entries);
3680 alloc_size = zone->wait_table_hash_nr_entries
3681 * sizeof(wait_queue_head_t);
3683 if (!slab_is_available()) {
3684 zone->wait_table = (wait_queue_head_t *)
3685 alloc_bootmem_node_nopanic(pgdat, alloc_size);
3686 } else {
3688 * This case means that a zone whose size was 0 gets new memory
3689 * via memory hot-add.
3690 * But it may be the case that a new node was hot-added. In
3691 * this case vmalloc() will not be able to use this new node's
3692 * memory - this wait_table must be initialized to use this new
3693 * node itself as well.
3694 * To use this new node's memory, further consideration will be
3695 * necessary.
3697 zone->wait_table = vmalloc(alloc_size);
3699 if (!zone->wait_table)
3700 return -ENOMEM;
3702 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
3703 init_waitqueue_head(zone->wait_table + i);
3705 return 0;
3708 static int __zone_pcp_update(void *data)
3710 struct zone *zone = data;
3711 int cpu;
3712 unsigned long batch = zone_batchsize(zone), flags;
3714 for_each_possible_cpu(cpu) {
3715 struct per_cpu_pageset *pset;
3716 struct per_cpu_pages *pcp;
3718 pset = per_cpu_ptr(zone->pageset, cpu);
3719 pcp = &pset->pcp;
3721 local_irq_save(flags);
3722 free_pcppages_bulk(zone, pcp->count, pcp);
3723 setup_pageset(pset, batch);
3724 local_irq_restore(flags);
3726 return 0;
3729 void zone_pcp_update(struct zone *zone)
3731 stop_machine(__zone_pcp_update, zone, NULL);
3734 static __meminit void zone_pcp_init(struct zone *zone)
3737 * per cpu subsystem is not up at this point. The following code
3738 * relies on the ability of the linker to provide the
3739 * offset of a (static) per cpu variable into the per cpu area.
3741 zone->pageset = &boot_pageset;
3743 if (zone->present_pages)
3744 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
3745 zone->name, zone->present_pages,
3746 zone_batchsize(zone));
3749 __meminit int init_currently_empty_zone(struct zone *zone,
3750 unsigned long zone_start_pfn,
3751 unsigned long size,
3752 enum memmap_context context)
3754 struct pglist_data *pgdat = zone->zone_pgdat;
3755 int ret;
3756 ret = zone_wait_table_init(zone, size);
3757 if (ret)
3758 return ret;
3759 pgdat->nr_zones = zone_idx(zone) + 1;
3761 zone->zone_start_pfn = zone_start_pfn;
3763 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3764 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3765 pgdat->node_id,
3766 (unsigned long)zone_idx(zone),
3767 zone_start_pfn, (zone_start_pfn + size));
3769 zone_init_free_lists(zone);
3771 return 0;
3774 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3776 * Basic iterator support. Return the first range of PFNs for a node
3777 * Note: nid == MAX_NUMNODES returns first region regardless of node
3779 static int __meminit first_active_region_index_in_nid(int nid)
3781 int i;
3783 for (i = 0; i < nr_nodemap_entries; i++)
3784 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3785 return i;
3787 return -1;
3791 * Basic iterator support. Return the next active range of PFNs for a node
3792 * Note: nid == MAX_NUMNODES returns next region regardless of node
3794 static int __meminit next_active_region_index_in_nid(int index, int nid)
3796 for (index = index + 1; index < nr_nodemap_entries; index++)
3797 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3798 return index;
3800 return -1;
3803 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3805 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3806 * Architectures may implement their own version but if add_active_range()
3807 * was used and there are no special requirements, this is a convenient
3808 * alternative
3810 int __meminit __early_pfn_to_nid(unsigned long pfn)
3812 int i;
3814 for (i = 0; i < nr_nodemap_entries; i++) {
3815 unsigned long start_pfn = early_node_map[i].start_pfn;
3816 unsigned long end_pfn = early_node_map[i].end_pfn;
3818 if (start_pfn <= pfn && pfn < end_pfn)
3819 return early_node_map[i].nid;
3821 /* This is a memory hole */
3822 return -1;
3824 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3826 int __meminit early_pfn_to_nid(unsigned long pfn)
3828 int nid;
3830 nid = __early_pfn_to_nid(pfn);
3831 if (nid >= 0)
3832 return nid;
3833 /* just returns 0 */
3834 return 0;
3837 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
3838 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3840 int nid;
3842 nid = __early_pfn_to_nid(pfn);
3843 if (nid >= 0 && nid != node)
3844 return false;
3845 return true;
3847 #endif
3849 /* Basic iterator support to walk early_node_map[] */
3850 #define for_each_active_range_index_in_nid(i, nid) \
3851 for (i = first_active_region_index_in_nid(nid); i != -1; \
3852 i = next_active_region_index_in_nid(i, nid))
3855 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3856 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3857 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3859 * If an architecture guarantees that all ranges registered with
3860 * add_active_ranges() contain no holes and may be freed, this
3861 * this function may be used instead of calling free_bootmem() manually.
3863 void __init free_bootmem_with_active_regions(int nid,
3864 unsigned long max_low_pfn)
3866 int i;
3868 for_each_active_range_index_in_nid(i, nid) {
3869 unsigned long size_pages = 0;
3870 unsigned long end_pfn = early_node_map[i].end_pfn;
3872 if (early_node_map[i].start_pfn >= max_low_pfn)
3873 continue;
3875 if (end_pfn > max_low_pfn)
3876 end_pfn = max_low_pfn;
3878 size_pages = end_pfn - early_node_map[i].start_pfn;
3879 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3880 PFN_PHYS(early_node_map[i].start_pfn),
3881 size_pages << PAGE_SHIFT);
3885 #ifdef CONFIG_HAVE_MEMBLOCK
3887 * Basic iterator support. Return the last range of PFNs for a node
3888 * Note: nid == MAX_NUMNODES returns last region regardless of node
3890 static int __meminit last_active_region_index_in_nid(int nid)
3892 int i;
3894 for (i = nr_nodemap_entries - 1; i >= 0; i--)
3895 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3896 return i;
3898 return -1;
3902 * Basic iterator support. Return the previous active range of PFNs for a node
3903 * Note: nid == MAX_NUMNODES returns next region regardless of node
3905 static int __meminit previous_active_region_index_in_nid(int index, int nid)
3907 for (index = index - 1; index >= 0; index--)
3908 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3909 return index;
3911 return -1;
3914 #define for_each_active_range_index_in_nid_reverse(i, nid) \
3915 for (i = last_active_region_index_in_nid(nid); i != -1; \
3916 i = previous_active_region_index_in_nid(i, nid))
3918 u64 __init find_memory_core_early(int nid, u64 size, u64 align,
3919 u64 goal, u64 limit)
3921 int i;
3923 /* Need to go over early_node_map to find out good range for node */
3924 for_each_active_range_index_in_nid_reverse(i, nid) {
3925 u64 addr;
3926 u64 ei_start, ei_last;
3927 u64 final_start, final_end;
3929 ei_last = early_node_map[i].end_pfn;
3930 ei_last <<= PAGE_SHIFT;
3931 ei_start = early_node_map[i].start_pfn;
3932 ei_start <<= PAGE_SHIFT;
3934 final_start = max(ei_start, goal);
3935 final_end = min(ei_last, limit);
3937 if (final_start >= final_end)
3938 continue;
3940 addr = memblock_find_in_range(final_start, final_end, size, align);
3942 if (addr == MEMBLOCK_ERROR)
3943 continue;
3945 return addr;
3948 return MEMBLOCK_ERROR;
3950 #endif
3952 int __init add_from_early_node_map(struct range *range, int az,
3953 int nr_range, int nid)
3955 int i;
3956 u64 start, end;
3958 /* need to go over early_node_map to find out good range for node */
3959 for_each_active_range_index_in_nid(i, nid) {
3960 start = early_node_map[i].start_pfn;
3961 end = early_node_map[i].end_pfn;
3962 nr_range = add_range(range, az, nr_range, start, end);
3964 return nr_range;
3967 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3969 int i;
3970 int ret;
3972 for_each_active_range_index_in_nid(i, nid) {
3973 ret = work_fn(early_node_map[i].start_pfn,
3974 early_node_map[i].end_pfn, data);
3975 if (ret)
3976 break;
3980 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3981 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3983 * If an architecture guarantees that all ranges registered with
3984 * add_active_ranges() contain no holes and may be freed, this
3985 * function may be used instead of calling memory_present() manually.
3987 void __init sparse_memory_present_with_active_regions(int nid)
3989 int i;
3991 for_each_active_range_index_in_nid(i, nid)
3992 memory_present(early_node_map[i].nid,
3993 early_node_map[i].start_pfn,
3994 early_node_map[i].end_pfn);
3998 * get_pfn_range_for_nid - Return the start and end page frames for a node
3999 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4000 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4001 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4003 * It returns the start and end page frame of a node based on information
4004 * provided by an arch calling add_active_range(). If called for a node
4005 * with no available memory, a warning is printed and the start and end
4006 * PFNs will be 0.
4008 void __meminit get_pfn_range_for_nid(unsigned int nid,
4009 unsigned long *start_pfn, unsigned long *end_pfn)
4011 int i;
4012 *start_pfn = -1UL;
4013 *end_pfn = 0;
4015 for_each_active_range_index_in_nid(i, nid) {
4016 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
4017 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
4020 if (*start_pfn == -1UL)
4021 *start_pfn = 0;
4025 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4026 * assumption is made that zones within a node are ordered in monotonic
4027 * increasing memory addresses so that the "highest" populated zone is used
4029 static void __init find_usable_zone_for_movable(void)
4031 int zone_index;
4032 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4033 if (zone_index == ZONE_MOVABLE)
4034 continue;
4036 if (arch_zone_highest_possible_pfn[zone_index] >
4037 arch_zone_lowest_possible_pfn[zone_index])
4038 break;
4041 VM_BUG_ON(zone_index == -1);
4042 movable_zone = zone_index;
4046 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4047 * because it is sized independent of architecture. Unlike the other zones,
4048 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4049 * in each node depending on the size of each node and how evenly kernelcore
4050 * is distributed. This helper function adjusts the zone ranges
4051 * provided by the architecture for a given node by using the end of the
4052 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4053 * zones within a node are in order of monotonic increases memory addresses
4055 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4056 unsigned long zone_type,
4057 unsigned long node_start_pfn,
4058 unsigned long node_end_pfn,
4059 unsigned long *zone_start_pfn,
4060 unsigned long *zone_end_pfn)
4062 /* Only adjust if ZONE_MOVABLE is on this node */
4063 if (zone_movable_pfn[nid]) {
4064 /* Size ZONE_MOVABLE */
4065 if (zone_type == ZONE_MOVABLE) {
4066 *zone_start_pfn = zone_movable_pfn[nid];
4067 *zone_end_pfn = min(node_end_pfn,
4068 arch_zone_highest_possible_pfn[movable_zone]);
4070 /* Adjust for ZONE_MOVABLE starting within this range */
4071 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4072 *zone_end_pfn > zone_movable_pfn[nid]) {
4073 *zone_end_pfn = zone_movable_pfn[nid];
4075 /* Check if this whole range is within ZONE_MOVABLE */
4076 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4077 *zone_start_pfn = *zone_end_pfn;
4082 * Return the number of pages a zone spans in a node, including holes
4083 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4085 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4086 unsigned long zone_type,
4087 unsigned long *ignored)
4089 unsigned long node_start_pfn, node_end_pfn;
4090 unsigned long zone_start_pfn, zone_end_pfn;
4092 /* Get the start and end of the node and zone */
4093 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4094 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4095 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4096 adjust_zone_range_for_zone_movable(nid, zone_type,
4097 node_start_pfn, node_end_pfn,
4098 &zone_start_pfn, &zone_end_pfn);
4100 /* Check that this node has pages within the zone's required range */
4101 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4102 return 0;
4104 /* Move the zone boundaries inside the node if necessary */
4105 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4106 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4108 /* Return the spanned pages */
4109 return zone_end_pfn - zone_start_pfn;
4113 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4114 * then all holes in the requested range will be accounted for.
4116 unsigned long __meminit __absent_pages_in_range(int nid,
4117 unsigned long range_start_pfn,
4118 unsigned long range_end_pfn)
4120 int i = 0;
4121 unsigned long prev_end_pfn = 0, hole_pages = 0;
4122 unsigned long start_pfn;
4124 /* Find the end_pfn of the first active range of pfns in the node */
4125 i = first_active_region_index_in_nid(nid);
4126 if (i == -1)
4127 return 0;
4129 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
4131 /* Account for ranges before physical memory on this node */
4132 if (early_node_map[i].start_pfn > range_start_pfn)
4133 hole_pages = prev_end_pfn - range_start_pfn;
4135 /* Find all holes for the zone within the node */
4136 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
4138 /* No need to continue if prev_end_pfn is outside the zone */
4139 if (prev_end_pfn >= range_end_pfn)
4140 break;
4142 /* Make sure the end of the zone is not within the hole */
4143 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
4144 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
4146 /* Update the hole size cound and move on */
4147 if (start_pfn > range_start_pfn) {
4148 BUG_ON(prev_end_pfn > start_pfn);
4149 hole_pages += start_pfn - prev_end_pfn;
4151 prev_end_pfn = early_node_map[i].end_pfn;
4154 /* Account for ranges past physical memory on this node */
4155 if (range_end_pfn > prev_end_pfn)
4156 hole_pages += range_end_pfn -
4157 max(range_start_pfn, prev_end_pfn);
4159 return hole_pages;
4163 * absent_pages_in_range - Return number of page frames in holes within a range
4164 * @start_pfn: The start PFN to start searching for holes
4165 * @end_pfn: The end PFN to stop searching for holes
4167 * It returns the number of pages frames in memory holes within a range.
4169 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4170 unsigned long end_pfn)
4172 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4175 /* Return the number of page frames in holes in a zone on a node */
4176 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4177 unsigned long zone_type,
4178 unsigned long *ignored)
4180 unsigned long node_start_pfn, node_end_pfn;
4181 unsigned long zone_start_pfn, zone_end_pfn;
4183 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4184 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
4185 node_start_pfn);
4186 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
4187 node_end_pfn);
4189 adjust_zone_range_for_zone_movable(nid, zone_type,
4190 node_start_pfn, node_end_pfn,
4191 &zone_start_pfn, &zone_end_pfn);
4192 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4195 #else
4196 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4197 unsigned long zone_type,
4198 unsigned long *zones_size)
4200 return zones_size[zone_type];
4203 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4204 unsigned long zone_type,
4205 unsigned long *zholes_size)
4207 if (!zholes_size)
4208 return 0;
4210 return zholes_size[zone_type];
4213 #endif
4215 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4216 unsigned long *zones_size, unsigned long *zholes_size)
4218 unsigned long realtotalpages, totalpages = 0;
4219 enum zone_type i;
4221 for (i = 0; i < MAX_NR_ZONES; i++)
4222 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4223 zones_size);
4224 pgdat->node_spanned_pages = totalpages;
4226 realtotalpages = totalpages;
4227 for (i = 0; i < MAX_NR_ZONES; i++)
4228 realtotalpages -=
4229 zone_absent_pages_in_node(pgdat->node_id, i,
4230 zholes_size);
4231 pgdat->node_present_pages = realtotalpages;
4232 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4233 realtotalpages);
4236 #ifndef CONFIG_SPARSEMEM
4238 * Calculate the size of the zone->blockflags rounded to an unsigned long
4239 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4240 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4241 * round what is now in bits to nearest long in bits, then return it in
4242 * bytes.
4244 static unsigned long __init usemap_size(unsigned long zonesize)
4246 unsigned long usemapsize;
4248 usemapsize = roundup(zonesize, pageblock_nr_pages);
4249 usemapsize = usemapsize >> pageblock_order;
4250 usemapsize *= NR_PAGEBLOCK_BITS;
4251 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4253 return usemapsize / 8;
4256 static void __init setup_usemap(struct pglist_data *pgdat,
4257 struct zone *zone, unsigned long zonesize)
4259 unsigned long usemapsize = usemap_size(zonesize);
4260 zone->pageblock_flags = NULL;
4261 if (usemapsize)
4262 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4263 usemapsize);
4265 #else
4266 static inline void setup_usemap(struct pglist_data *pgdat,
4267 struct zone *zone, unsigned long zonesize) {}
4268 #endif /* CONFIG_SPARSEMEM */
4270 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4272 /* Return a sensible default order for the pageblock size. */
4273 static inline int pageblock_default_order(void)
4275 if (HPAGE_SHIFT > PAGE_SHIFT)
4276 return HUGETLB_PAGE_ORDER;
4278 return MAX_ORDER-1;
4281 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4282 static inline void __init set_pageblock_order(unsigned int order)
4284 /* Check that pageblock_nr_pages has not already been setup */
4285 if (pageblock_order)
4286 return;
4289 * Assume the largest contiguous order of interest is a huge page.
4290 * This value may be variable depending on boot parameters on IA64
4292 pageblock_order = order;
4294 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4297 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4298 * and pageblock_default_order() are unused as pageblock_order is set
4299 * at compile-time. See include/linux/pageblock-flags.h for the values of
4300 * pageblock_order based on the kernel config
4302 static inline int pageblock_default_order(unsigned int order)
4304 return MAX_ORDER-1;
4306 #define set_pageblock_order(x) do {} while (0)
4308 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4311 * Set up the zone data structures:
4312 * - mark all pages reserved
4313 * - mark all memory queues empty
4314 * - clear the memory bitmaps
4316 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4317 unsigned long *zones_size, unsigned long *zholes_size)
4319 enum zone_type j;
4320 int nid = pgdat->node_id;
4321 unsigned long zone_start_pfn = pgdat->node_start_pfn;
4322 int ret;
4324 pgdat_resize_init(pgdat);
4325 pgdat->nr_zones = 0;
4326 init_waitqueue_head(&pgdat->kswapd_wait);
4327 pgdat->kswapd_max_order = 0;
4328 pgdat_page_cgroup_init(pgdat);
4330 for (j = 0; j < MAX_NR_ZONES; j++) {
4331 struct zone *zone = pgdat->node_zones + j;
4332 unsigned long size, realsize, memmap_pages;
4333 enum lru_list l;
4335 size = zone_spanned_pages_in_node(nid, j, zones_size);
4336 realsize = size - zone_absent_pages_in_node(nid, j,
4337 zholes_size);
4340 * Adjust realsize so that it accounts for how much memory
4341 * is used by this zone for memmap. This affects the watermark
4342 * and per-cpu initialisations
4344 memmap_pages =
4345 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
4346 if (realsize >= memmap_pages) {
4347 realsize -= memmap_pages;
4348 if (memmap_pages)
4349 printk(KERN_DEBUG
4350 " %s zone: %lu pages used for memmap\n",
4351 zone_names[j], memmap_pages);
4352 } else
4353 printk(KERN_WARNING
4354 " %s zone: %lu pages exceeds realsize %lu\n",
4355 zone_names[j], memmap_pages, realsize);
4357 /* Account for reserved pages */
4358 if (j == 0 && realsize > dma_reserve) {
4359 realsize -= dma_reserve;
4360 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
4361 zone_names[0], dma_reserve);
4364 if (!is_highmem_idx(j))
4365 nr_kernel_pages += realsize;
4366 nr_all_pages += realsize;
4368 zone->spanned_pages = size;
4369 zone->present_pages = realsize;
4370 #ifdef CONFIG_NUMA
4371 zone->node = nid;
4372 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
4373 / 100;
4374 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
4375 #endif
4376 zone->name = zone_names[j];
4377 spin_lock_init(&zone->lock);
4378 spin_lock_init(&zone->lru_lock);
4379 zone_seqlock_init(zone);
4380 zone->zone_pgdat = pgdat;
4382 zone_pcp_init(zone);
4383 for_each_lru(l)
4384 INIT_LIST_HEAD(&zone->lru[l].list);
4385 zone->reclaim_stat.recent_rotated[0] = 0;
4386 zone->reclaim_stat.recent_rotated[1] = 0;
4387 zone->reclaim_stat.recent_scanned[0] = 0;
4388 zone->reclaim_stat.recent_scanned[1] = 0;
4389 zap_zone_vm_stats(zone);
4390 zone->flags = 0;
4391 if (!size)
4392 continue;
4394 set_pageblock_order(pageblock_default_order());
4395 setup_usemap(pgdat, zone, size);
4396 ret = init_currently_empty_zone(zone, zone_start_pfn,
4397 size, MEMMAP_EARLY);
4398 BUG_ON(ret);
4399 memmap_init(size, nid, j, zone_start_pfn);
4400 zone_start_pfn += size;
4404 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4406 /* Skip empty nodes */
4407 if (!pgdat->node_spanned_pages)
4408 return;
4410 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4411 /* ia64 gets its own node_mem_map, before this, without bootmem */
4412 if (!pgdat->node_mem_map) {
4413 unsigned long size, start, end;
4414 struct page *map;
4417 * The zone's endpoints aren't required to be MAX_ORDER
4418 * aligned but the node_mem_map endpoints must be in order
4419 * for the buddy allocator to function correctly.
4421 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4422 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4423 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4424 size = (end - start) * sizeof(struct page);
4425 map = alloc_remap(pgdat->node_id, size);
4426 if (!map)
4427 map = alloc_bootmem_node_nopanic(pgdat, size);
4428 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4430 #ifndef CONFIG_NEED_MULTIPLE_NODES
4432 * With no DISCONTIG, the global mem_map is just set as node 0's
4434 if (pgdat == NODE_DATA(0)) {
4435 mem_map = NODE_DATA(0)->node_mem_map;
4436 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4437 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4438 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4439 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4441 #endif
4442 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4445 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4446 unsigned long node_start_pfn, unsigned long *zholes_size)
4448 pg_data_t *pgdat = NODE_DATA(nid);
4450 pgdat->node_id = nid;
4451 pgdat->node_start_pfn = node_start_pfn;
4452 calculate_node_totalpages(pgdat, zones_size, zholes_size);
4454 alloc_node_mem_map(pgdat);
4455 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4456 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4457 nid, (unsigned long)pgdat,
4458 (unsigned long)pgdat->node_mem_map);
4459 #endif
4461 free_area_init_core(pgdat, zones_size, zholes_size);
4464 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4466 #if MAX_NUMNODES > 1
4468 * Figure out the number of possible node ids.
4470 static void __init setup_nr_node_ids(void)
4472 unsigned int node;
4473 unsigned int highest = 0;
4475 for_each_node_mask(node, node_possible_map)
4476 highest = node;
4477 nr_node_ids = highest + 1;
4479 #else
4480 static inline void setup_nr_node_ids(void)
4483 #endif
4486 * add_active_range - Register a range of PFNs backed by physical memory
4487 * @nid: The node ID the range resides on
4488 * @start_pfn: The start PFN of the available physical memory
4489 * @end_pfn: The end PFN of the available physical memory
4491 * These ranges are stored in an early_node_map[] and later used by
4492 * free_area_init_nodes() to calculate zone sizes and holes. If the
4493 * range spans a memory hole, it is up to the architecture to ensure
4494 * the memory is not freed by the bootmem allocator. If possible
4495 * the range being registered will be merged with existing ranges.
4497 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
4498 unsigned long end_pfn)
4500 int i;
4502 mminit_dprintk(MMINIT_TRACE, "memory_register",
4503 "Entering add_active_range(%d, %#lx, %#lx) "
4504 "%d entries of %d used\n",
4505 nid, start_pfn, end_pfn,
4506 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
4508 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
4510 /* Merge with existing active regions if possible */
4511 for (i = 0; i < nr_nodemap_entries; i++) {
4512 if (early_node_map[i].nid != nid)
4513 continue;
4515 /* Skip if an existing region covers this new one */
4516 if (start_pfn >= early_node_map[i].start_pfn &&
4517 end_pfn <= early_node_map[i].end_pfn)
4518 return;
4520 /* Merge forward if suitable */
4521 if (start_pfn <= early_node_map[i].end_pfn &&
4522 end_pfn > early_node_map[i].end_pfn) {
4523 early_node_map[i].end_pfn = end_pfn;
4524 return;
4527 /* Merge backward if suitable */
4528 if (start_pfn < early_node_map[i].start_pfn &&
4529 end_pfn >= early_node_map[i].start_pfn) {
4530 early_node_map[i].start_pfn = start_pfn;
4531 return;
4535 /* Check that early_node_map is large enough */
4536 if (i >= MAX_ACTIVE_REGIONS) {
4537 printk(KERN_CRIT "More than %d memory regions, truncating\n",
4538 MAX_ACTIVE_REGIONS);
4539 return;
4542 early_node_map[i].nid = nid;
4543 early_node_map[i].start_pfn = start_pfn;
4544 early_node_map[i].end_pfn = end_pfn;
4545 nr_nodemap_entries = i + 1;
4549 * remove_active_range - Shrink an existing registered range of PFNs
4550 * @nid: The node id the range is on that should be shrunk
4551 * @start_pfn: The new PFN of the range
4552 * @end_pfn: The new PFN of the range
4554 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
4555 * The map is kept near the end physical page range that has already been
4556 * registered. This function allows an arch to shrink an existing registered
4557 * range.
4559 void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
4560 unsigned long end_pfn)
4562 int i, j;
4563 int removed = 0;
4565 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
4566 nid, start_pfn, end_pfn);
4568 /* Find the old active region end and shrink */
4569 for_each_active_range_index_in_nid(i, nid) {
4570 if (early_node_map[i].start_pfn >= start_pfn &&
4571 early_node_map[i].end_pfn <= end_pfn) {
4572 /* clear it */
4573 early_node_map[i].start_pfn = 0;
4574 early_node_map[i].end_pfn = 0;
4575 removed = 1;
4576 continue;
4578 if (early_node_map[i].start_pfn < start_pfn &&
4579 early_node_map[i].end_pfn > start_pfn) {
4580 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
4581 early_node_map[i].end_pfn = start_pfn;
4582 if (temp_end_pfn > end_pfn)
4583 add_active_range(nid, end_pfn, temp_end_pfn);
4584 continue;
4586 if (early_node_map[i].start_pfn >= start_pfn &&
4587 early_node_map[i].end_pfn > end_pfn &&
4588 early_node_map[i].start_pfn < end_pfn) {
4589 early_node_map[i].start_pfn = end_pfn;
4590 continue;
4594 if (!removed)
4595 return;
4597 /* remove the blank ones */
4598 for (i = nr_nodemap_entries - 1; i > 0; i--) {
4599 if (early_node_map[i].nid != nid)
4600 continue;
4601 if (early_node_map[i].end_pfn)
4602 continue;
4603 /* we found it, get rid of it */
4604 for (j = i; j < nr_nodemap_entries - 1; j++)
4605 memcpy(&early_node_map[j], &early_node_map[j+1],
4606 sizeof(early_node_map[j]));
4607 j = nr_nodemap_entries - 1;
4608 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
4609 nr_nodemap_entries--;
4614 * remove_all_active_ranges - Remove all currently registered regions
4616 * During discovery, it may be found that a table like SRAT is invalid
4617 * and an alternative discovery method must be used. This function removes
4618 * all currently registered regions.
4620 void __init remove_all_active_ranges(void)
4622 memset(early_node_map, 0, sizeof(early_node_map));
4623 nr_nodemap_entries = 0;
4626 /* Compare two active node_active_regions */
4627 static int __init cmp_node_active_region(const void *a, const void *b)
4629 struct node_active_region *arange = (struct node_active_region *)a;
4630 struct node_active_region *brange = (struct node_active_region *)b;
4632 /* Done this way to avoid overflows */
4633 if (arange->start_pfn > brange->start_pfn)
4634 return 1;
4635 if (arange->start_pfn < brange->start_pfn)
4636 return -1;
4638 return 0;
4641 /* sort the node_map by start_pfn */
4642 void __init sort_node_map(void)
4644 sort(early_node_map, (size_t)nr_nodemap_entries,
4645 sizeof(struct node_active_region),
4646 cmp_node_active_region, NULL);
4649 /* Find the lowest pfn for a node */
4650 static unsigned long __init find_min_pfn_for_node(int nid)
4652 int i;
4653 unsigned long min_pfn = ULONG_MAX;
4655 /* Assuming a sorted map, the first range found has the starting pfn */
4656 for_each_active_range_index_in_nid(i, nid)
4657 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
4659 if (min_pfn == ULONG_MAX) {
4660 printk(KERN_WARNING
4661 "Could not find start_pfn for node %d\n", nid);
4662 return 0;
4665 return min_pfn;
4669 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4671 * It returns the minimum PFN based on information provided via
4672 * add_active_range().
4674 unsigned long __init find_min_pfn_with_active_regions(void)
4676 return find_min_pfn_for_node(MAX_NUMNODES);
4680 * early_calculate_totalpages()
4681 * Sum pages in active regions for movable zone.
4682 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4684 static unsigned long __init early_calculate_totalpages(void)
4686 int i;
4687 unsigned long totalpages = 0;
4689 for (i = 0; i < nr_nodemap_entries; i++) {
4690 unsigned long pages = early_node_map[i].end_pfn -
4691 early_node_map[i].start_pfn;
4692 totalpages += pages;
4693 if (pages)
4694 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
4696 return totalpages;
4700 * Find the PFN the Movable zone begins in each node. Kernel memory
4701 * is spread evenly between nodes as long as the nodes have enough
4702 * memory. When they don't, some nodes will have more kernelcore than
4703 * others
4705 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
4707 int i, nid;
4708 unsigned long usable_startpfn;
4709 unsigned long kernelcore_node, kernelcore_remaining;
4710 /* save the state before borrow the nodemask */
4711 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
4712 unsigned long totalpages = early_calculate_totalpages();
4713 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
4716 * If movablecore was specified, calculate what size of
4717 * kernelcore that corresponds so that memory usable for
4718 * any allocation type is evenly spread. If both kernelcore
4719 * and movablecore are specified, then the value of kernelcore
4720 * will be used for required_kernelcore if it's greater than
4721 * what movablecore would have allowed.
4723 if (required_movablecore) {
4724 unsigned long corepages;
4727 * Round-up so that ZONE_MOVABLE is at least as large as what
4728 * was requested by the user
4730 required_movablecore =
4731 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4732 corepages = totalpages - required_movablecore;
4734 required_kernelcore = max(required_kernelcore, corepages);
4737 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4738 if (!required_kernelcore)
4739 goto out;
4741 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4742 find_usable_zone_for_movable();
4743 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4745 restart:
4746 /* Spread kernelcore memory as evenly as possible throughout nodes */
4747 kernelcore_node = required_kernelcore / usable_nodes;
4748 for_each_node_state(nid, N_HIGH_MEMORY) {
4750 * Recalculate kernelcore_node if the division per node
4751 * now exceeds what is necessary to satisfy the requested
4752 * amount of memory for the kernel
4754 if (required_kernelcore < kernelcore_node)
4755 kernelcore_node = required_kernelcore / usable_nodes;
4758 * As the map is walked, we track how much memory is usable
4759 * by the kernel using kernelcore_remaining. When it is
4760 * 0, the rest of the node is usable by ZONE_MOVABLE
4762 kernelcore_remaining = kernelcore_node;
4764 /* Go through each range of PFNs within this node */
4765 for_each_active_range_index_in_nid(i, nid) {
4766 unsigned long start_pfn, end_pfn;
4767 unsigned long size_pages;
4769 start_pfn = max(early_node_map[i].start_pfn,
4770 zone_movable_pfn[nid]);
4771 end_pfn = early_node_map[i].end_pfn;
4772 if (start_pfn >= end_pfn)
4773 continue;
4775 /* Account for what is only usable for kernelcore */
4776 if (start_pfn < usable_startpfn) {
4777 unsigned long kernel_pages;
4778 kernel_pages = min(end_pfn, usable_startpfn)
4779 - start_pfn;
4781 kernelcore_remaining -= min(kernel_pages,
4782 kernelcore_remaining);
4783 required_kernelcore -= min(kernel_pages,
4784 required_kernelcore);
4786 /* Continue if range is now fully accounted */
4787 if (end_pfn <= usable_startpfn) {
4790 * Push zone_movable_pfn to the end so
4791 * that if we have to rebalance
4792 * kernelcore across nodes, we will
4793 * not double account here
4795 zone_movable_pfn[nid] = end_pfn;
4796 continue;
4798 start_pfn = usable_startpfn;
4802 * The usable PFN range for ZONE_MOVABLE is from
4803 * start_pfn->end_pfn. Calculate size_pages as the
4804 * number of pages used as kernelcore
4806 size_pages = end_pfn - start_pfn;
4807 if (size_pages > kernelcore_remaining)
4808 size_pages = kernelcore_remaining;
4809 zone_movable_pfn[nid] = start_pfn + size_pages;
4812 * Some kernelcore has been met, update counts and
4813 * break if the kernelcore for this node has been
4814 * satisified
4816 required_kernelcore -= min(required_kernelcore,
4817 size_pages);
4818 kernelcore_remaining -= size_pages;
4819 if (!kernelcore_remaining)
4820 break;
4825 * If there is still required_kernelcore, we do another pass with one
4826 * less node in the count. This will push zone_movable_pfn[nid] further
4827 * along on the nodes that still have memory until kernelcore is
4828 * satisified
4830 usable_nodes--;
4831 if (usable_nodes && required_kernelcore > usable_nodes)
4832 goto restart;
4834 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4835 for (nid = 0; nid < MAX_NUMNODES; nid++)
4836 zone_movable_pfn[nid] =
4837 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4839 out:
4840 /* restore the node_state */
4841 node_states[N_HIGH_MEMORY] = saved_node_state;
4844 /* Any regular memory on that node ? */
4845 static void check_for_regular_memory(pg_data_t *pgdat)
4847 #ifdef CONFIG_HIGHMEM
4848 enum zone_type zone_type;
4850 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4851 struct zone *zone = &pgdat->node_zones[zone_type];
4852 if (zone->present_pages)
4853 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4855 #endif
4859 * free_area_init_nodes - Initialise all pg_data_t and zone data
4860 * @max_zone_pfn: an array of max PFNs for each zone
4862 * This will call free_area_init_node() for each active node in the system.
4863 * Using the page ranges provided by add_active_range(), the size of each
4864 * zone in each node and their holes is calculated. If the maximum PFN
4865 * between two adjacent zones match, it is assumed that the zone is empty.
4866 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4867 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4868 * starts where the previous one ended. For example, ZONE_DMA32 starts
4869 * at arch_max_dma_pfn.
4871 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4873 unsigned long nid;
4874 int i;
4876 /* Sort early_node_map as initialisation assumes it is sorted */
4877 sort_node_map();
4879 /* Record where the zone boundaries are */
4880 memset(arch_zone_lowest_possible_pfn, 0,
4881 sizeof(arch_zone_lowest_possible_pfn));
4882 memset(arch_zone_highest_possible_pfn, 0,
4883 sizeof(arch_zone_highest_possible_pfn));
4884 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4885 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4886 for (i = 1; i < MAX_NR_ZONES; i++) {
4887 if (i == ZONE_MOVABLE)
4888 continue;
4889 arch_zone_lowest_possible_pfn[i] =
4890 arch_zone_highest_possible_pfn[i-1];
4891 arch_zone_highest_possible_pfn[i] =
4892 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4894 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4895 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4897 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4898 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4899 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4901 /* Print out the zone ranges */
4902 printk("Zone PFN ranges:\n");
4903 for (i = 0; i < MAX_NR_ZONES; i++) {
4904 if (i == ZONE_MOVABLE)
4905 continue;
4906 printk(" %-8s ", zone_names[i]);
4907 if (arch_zone_lowest_possible_pfn[i] ==
4908 arch_zone_highest_possible_pfn[i])
4909 printk("empty\n");
4910 else
4911 printk("%0#10lx -> %0#10lx\n",
4912 arch_zone_lowest_possible_pfn[i],
4913 arch_zone_highest_possible_pfn[i]);
4916 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4917 printk("Movable zone start PFN for each node\n");
4918 for (i = 0; i < MAX_NUMNODES; i++) {
4919 if (zone_movable_pfn[i])
4920 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4923 /* Print out the early_node_map[] */
4924 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4925 for (i = 0; i < nr_nodemap_entries; i++)
4926 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4927 early_node_map[i].start_pfn,
4928 early_node_map[i].end_pfn);
4930 /* Initialise every node */
4931 mminit_verify_pageflags_layout();
4932 setup_nr_node_ids();
4933 for_each_online_node(nid) {
4934 pg_data_t *pgdat = NODE_DATA(nid);
4935 free_area_init_node(nid, NULL,
4936 find_min_pfn_for_node(nid), NULL);
4938 /* Any memory on that node */
4939 if (pgdat->node_present_pages)
4940 node_set_state(nid, N_HIGH_MEMORY);
4941 check_for_regular_memory(pgdat);
4945 static int __init cmdline_parse_core(char *p, unsigned long *core)
4947 unsigned long long coremem;
4948 if (!p)
4949 return -EINVAL;
4951 coremem = memparse(p, &p);
4952 *core = coremem >> PAGE_SHIFT;
4954 /* Paranoid check that UL is enough for the coremem value */
4955 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4957 return 0;
4961 * kernelcore=size sets the amount of memory for use for allocations that
4962 * cannot be reclaimed or migrated.
4964 static int __init cmdline_parse_kernelcore(char *p)
4966 return cmdline_parse_core(p, &required_kernelcore);
4970 * movablecore=size sets the amount of memory for use for allocations that
4971 * can be reclaimed or migrated.
4973 static int __init cmdline_parse_movablecore(char *p)
4975 return cmdline_parse_core(p, &required_movablecore);
4978 early_param("kernelcore", cmdline_parse_kernelcore);
4979 early_param("movablecore", cmdline_parse_movablecore);
4981 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4984 * set_dma_reserve - set the specified number of pages reserved in the first zone
4985 * @new_dma_reserve: The number of pages to mark reserved
4987 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4988 * In the DMA zone, a significant percentage may be consumed by kernel image
4989 * and other unfreeable allocations which can skew the watermarks badly. This
4990 * function may optionally be used to account for unfreeable pages in the
4991 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4992 * smaller per-cpu batchsize.
4994 void __init set_dma_reserve(unsigned long new_dma_reserve)
4996 dma_reserve = new_dma_reserve;
4999 void __init free_area_init(unsigned long *zones_size)
5001 free_area_init_node(0, zones_size,
5002 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5005 static int page_alloc_cpu_notify(struct notifier_block *self,
5006 unsigned long action, void *hcpu)
5008 int cpu = (unsigned long)hcpu;
5010 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5011 drain_pages(cpu);
5014 * Spill the event counters of the dead processor
5015 * into the current processors event counters.
5016 * This artificially elevates the count of the current
5017 * processor.
5019 vm_events_fold_cpu(cpu);
5022 * Zero the differential counters of the dead processor
5023 * so that the vm statistics are consistent.
5025 * This is only okay since the processor is dead and cannot
5026 * race with what we are doing.
5028 refresh_cpu_vm_stats(cpu);
5030 return NOTIFY_OK;
5033 void __init page_alloc_init(void)
5035 hotcpu_notifier(page_alloc_cpu_notify, 0);
5039 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5040 * or min_free_kbytes changes.
5042 static void calculate_totalreserve_pages(void)
5044 struct pglist_data *pgdat;
5045 unsigned long reserve_pages = 0;
5046 enum zone_type i, j;
5048 for_each_online_pgdat(pgdat) {
5049 for (i = 0; i < MAX_NR_ZONES; i++) {
5050 struct zone *zone = pgdat->node_zones + i;
5051 unsigned long max = 0;
5053 /* Find valid and maximum lowmem_reserve in the zone */
5054 for (j = i; j < MAX_NR_ZONES; j++) {
5055 if (zone->lowmem_reserve[j] > max)
5056 max = zone->lowmem_reserve[j];
5059 /* we treat the high watermark as reserved pages. */
5060 max += high_wmark_pages(zone);
5062 if (max > zone->present_pages)
5063 max = zone->present_pages;
5064 reserve_pages += max;
5067 totalreserve_pages = reserve_pages;
5071 * setup_per_zone_lowmem_reserve - called whenever
5072 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5073 * has a correct pages reserved value, so an adequate number of
5074 * pages are left in the zone after a successful __alloc_pages().
5076 static void setup_per_zone_lowmem_reserve(void)
5078 struct pglist_data *pgdat;
5079 enum zone_type j, idx;
5081 for_each_online_pgdat(pgdat) {
5082 for (j = 0; j < MAX_NR_ZONES; j++) {
5083 struct zone *zone = pgdat->node_zones + j;
5084 unsigned long present_pages = zone->present_pages;
5086 zone->lowmem_reserve[j] = 0;
5088 idx = j;
5089 while (idx) {
5090 struct zone *lower_zone;
5092 idx--;
5094 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5095 sysctl_lowmem_reserve_ratio[idx] = 1;
5097 lower_zone = pgdat->node_zones + idx;
5098 lower_zone->lowmem_reserve[j] = present_pages /
5099 sysctl_lowmem_reserve_ratio[idx];
5100 present_pages += lower_zone->present_pages;
5105 /* update totalreserve_pages */
5106 calculate_totalreserve_pages();
5110 * setup_per_zone_wmarks - called when min_free_kbytes changes
5111 * or when memory is hot-{added|removed}
5113 * Ensures that the watermark[min,low,high] values for each zone are set
5114 * correctly with respect to min_free_kbytes.
5116 void setup_per_zone_wmarks(void)
5118 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5119 unsigned long lowmem_pages = 0;
5120 struct zone *zone;
5121 unsigned long flags;
5123 /* Calculate total number of !ZONE_HIGHMEM pages */
5124 for_each_zone(zone) {
5125 if (!is_highmem(zone))
5126 lowmem_pages += zone->present_pages;
5129 for_each_zone(zone) {
5130 u64 tmp;
5132 spin_lock_irqsave(&zone->lock, flags);
5133 tmp = (u64)pages_min * zone->present_pages;
5134 do_div(tmp, lowmem_pages);
5135 if (is_highmem(zone)) {
5137 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5138 * need highmem pages, so cap pages_min to a small
5139 * value here.
5141 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5142 * deltas controls asynch page reclaim, and so should
5143 * not be capped for highmem.
5145 int min_pages;
5147 min_pages = zone->present_pages / 1024;
5148 if (min_pages < SWAP_CLUSTER_MAX)
5149 min_pages = SWAP_CLUSTER_MAX;
5150 if (min_pages > 128)
5151 min_pages = 128;
5152 zone->watermark[WMARK_MIN] = min_pages;
5153 } else {
5155 * If it's a lowmem zone, reserve a number of pages
5156 * proportionate to the zone's size.
5158 zone->watermark[WMARK_MIN] = tmp;
5161 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5162 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5163 setup_zone_migrate_reserve(zone);
5164 spin_unlock_irqrestore(&zone->lock, flags);
5167 /* update totalreserve_pages */
5168 calculate_totalreserve_pages();
5172 * The inactive anon list should be small enough that the VM never has to
5173 * do too much work, but large enough that each inactive page has a chance
5174 * to be referenced again before it is swapped out.
5176 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5177 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5178 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5179 * the anonymous pages are kept on the inactive list.
5181 * total target max
5182 * memory ratio inactive anon
5183 * -------------------------------------
5184 * 10MB 1 5MB
5185 * 100MB 1 50MB
5186 * 1GB 3 250MB
5187 * 10GB 10 0.9GB
5188 * 100GB 31 3GB
5189 * 1TB 101 10GB
5190 * 10TB 320 32GB
5192 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5194 unsigned int gb, ratio;
5196 /* Zone size in gigabytes */
5197 gb = zone->present_pages >> (30 - PAGE_SHIFT);
5198 if (gb)
5199 ratio = int_sqrt(10 * gb);
5200 else
5201 ratio = 1;
5203 zone->inactive_ratio = ratio;
5206 static void __meminit setup_per_zone_inactive_ratio(void)
5208 struct zone *zone;
5210 for_each_zone(zone)
5211 calculate_zone_inactive_ratio(zone);
5215 * Initialise min_free_kbytes.
5217 * For small machines we want it small (128k min). For large machines
5218 * we want it large (64MB max). But it is not linear, because network
5219 * bandwidth does not increase linearly with machine size. We use
5221 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5222 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5224 * which yields
5226 * 16MB: 512k
5227 * 32MB: 724k
5228 * 64MB: 1024k
5229 * 128MB: 1448k
5230 * 256MB: 2048k
5231 * 512MB: 2896k
5232 * 1024MB: 4096k
5233 * 2048MB: 5792k
5234 * 4096MB: 8192k
5235 * 8192MB: 11584k
5236 * 16384MB: 16384k
5238 int __meminit init_per_zone_wmark_min(void)
5240 unsigned long lowmem_kbytes;
5242 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5244 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5245 if (min_free_kbytes < 128)
5246 min_free_kbytes = 128;
5247 if (min_free_kbytes > 65536)
5248 min_free_kbytes = 65536;
5249 setup_per_zone_wmarks();
5250 refresh_zone_stat_thresholds();
5251 setup_per_zone_lowmem_reserve();
5252 setup_per_zone_inactive_ratio();
5253 return 0;
5255 module_init(init_per_zone_wmark_min)
5258 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5259 * that we can call two helper functions whenever min_free_kbytes
5260 * changes.
5262 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
5263 void __user *buffer, size_t *length, loff_t *ppos)
5265 proc_dointvec(table, write, buffer, length, ppos);
5266 if (write)
5267 setup_per_zone_wmarks();
5268 return 0;
5271 #ifdef CONFIG_NUMA
5272 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
5273 void __user *buffer, size_t *length, loff_t *ppos)
5275 struct zone *zone;
5276 int rc;
5278 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5279 if (rc)
5280 return rc;
5282 for_each_zone(zone)
5283 zone->min_unmapped_pages = (zone->present_pages *
5284 sysctl_min_unmapped_ratio) / 100;
5285 return 0;
5288 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
5289 void __user *buffer, size_t *length, loff_t *ppos)
5291 struct zone *zone;
5292 int rc;
5294 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5295 if (rc)
5296 return rc;
5298 for_each_zone(zone)
5299 zone->min_slab_pages = (zone->present_pages *
5300 sysctl_min_slab_ratio) / 100;
5301 return 0;
5303 #endif
5306 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5307 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5308 * whenever sysctl_lowmem_reserve_ratio changes.
5310 * The reserve ratio obviously has absolutely no relation with the
5311 * minimum watermarks. The lowmem reserve ratio can only make sense
5312 * if in function of the boot time zone sizes.
5314 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
5315 void __user *buffer, size_t *length, loff_t *ppos)
5317 proc_dointvec_minmax(table, write, buffer, length, ppos);
5318 setup_per_zone_lowmem_reserve();
5319 return 0;
5323 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5324 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5325 * can have before it gets flushed back to buddy allocator.
5328 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
5329 void __user *buffer, size_t *length, loff_t *ppos)
5331 struct zone *zone;
5332 unsigned int cpu;
5333 int ret;
5335 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5336 if (!write || (ret == -EINVAL))
5337 return ret;
5338 for_each_populated_zone(zone) {
5339 for_each_possible_cpu(cpu) {
5340 unsigned long high;
5341 high = zone->present_pages / percpu_pagelist_fraction;
5342 setup_pagelist_highmark(
5343 per_cpu_ptr(zone->pageset, cpu), high);
5346 return 0;
5349 int hashdist = HASHDIST_DEFAULT;
5351 #ifdef CONFIG_NUMA
5352 static int __init set_hashdist(char *str)
5354 if (!str)
5355 return 0;
5356 hashdist = simple_strtoul(str, &str, 0);
5357 return 1;
5359 __setup("hashdist=", set_hashdist);
5360 #endif
5363 * allocate a large system hash table from bootmem
5364 * - it is assumed that the hash table must contain an exact power-of-2
5365 * quantity of entries
5366 * - limit is the number of hash buckets, not the total allocation size
5368 void *__init alloc_large_system_hash(const char *tablename,
5369 unsigned long bucketsize,
5370 unsigned long numentries,
5371 int scale,
5372 int flags,
5373 unsigned int *_hash_shift,
5374 unsigned int *_hash_mask,
5375 unsigned long limit)
5377 unsigned long long max = limit;
5378 unsigned long log2qty, size;
5379 void *table = NULL;
5381 /* allow the kernel cmdline to have a say */
5382 if (!numentries) {
5383 /* round applicable memory size up to nearest megabyte */
5384 numentries = nr_kernel_pages;
5385 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5386 numentries >>= 20 - PAGE_SHIFT;
5387 numentries <<= 20 - PAGE_SHIFT;
5389 /* limit to 1 bucket per 2^scale bytes of low memory */
5390 if (scale > PAGE_SHIFT)
5391 numentries >>= (scale - PAGE_SHIFT);
5392 else
5393 numentries <<= (PAGE_SHIFT - scale);
5395 /* Make sure we've got at least a 0-order allocation.. */
5396 if (unlikely(flags & HASH_SMALL)) {
5397 /* Makes no sense without HASH_EARLY */
5398 WARN_ON(!(flags & HASH_EARLY));
5399 if (!(numentries >> *_hash_shift)) {
5400 numentries = 1UL << *_hash_shift;
5401 BUG_ON(!numentries);
5403 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5404 numentries = PAGE_SIZE / bucketsize;
5406 numentries = roundup_pow_of_two(numentries);
5408 /* limit allocation size to 1/16 total memory by default */
5409 if (max == 0) {
5410 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5411 do_div(max, bucketsize);
5414 if (numentries > max)
5415 numentries = max;
5417 log2qty = ilog2(numentries);
5419 do {
5420 size = bucketsize << log2qty;
5421 if (flags & HASH_EARLY)
5422 table = alloc_bootmem_nopanic(size);
5423 else if (hashdist)
5424 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5425 else {
5427 * If bucketsize is not a power-of-two, we may free
5428 * some pages at the end of hash table which
5429 * alloc_pages_exact() automatically does
5431 if (get_order(size) < MAX_ORDER) {
5432 table = alloc_pages_exact(size, GFP_ATOMIC);
5433 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5436 } while (!table && size > PAGE_SIZE && --log2qty);
5438 if (!table)
5439 panic("Failed to allocate %s hash table\n", tablename);
5441 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
5442 tablename,
5443 (1UL << log2qty),
5444 ilog2(size) - PAGE_SHIFT,
5445 size);
5447 if (_hash_shift)
5448 *_hash_shift = log2qty;
5449 if (_hash_mask)
5450 *_hash_mask = (1 << log2qty) - 1;
5452 return table;
5455 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5456 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5457 unsigned long pfn)
5459 #ifdef CONFIG_SPARSEMEM
5460 return __pfn_to_section(pfn)->pageblock_flags;
5461 #else
5462 return zone->pageblock_flags;
5463 #endif /* CONFIG_SPARSEMEM */
5466 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5468 #ifdef CONFIG_SPARSEMEM
5469 pfn &= (PAGES_PER_SECTION-1);
5470 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5471 #else
5472 pfn = pfn - zone->zone_start_pfn;
5473 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5474 #endif /* CONFIG_SPARSEMEM */
5478 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5479 * @page: The page within the block of interest
5480 * @start_bitidx: The first bit of interest to retrieve
5481 * @end_bitidx: The last bit of interest
5482 * returns pageblock_bits flags
5484 unsigned long get_pageblock_flags_group(struct page *page,
5485 int start_bitidx, int end_bitidx)
5487 struct zone *zone;
5488 unsigned long *bitmap;
5489 unsigned long pfn, bitidx;
5490 unsigned long flags = 0;
5491 unsigned long value = 1;
5493 zone = page_zone(page);
5494 pfn = page_to_pfn(page);
5495 bitmap = get_pageblock_bitmap(zone, pfn);
5496 bitidx = pfn_to_bitidx(zone, pfn);
5498 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5499 if (test_bit(bitidx + start_bitidx, bitmap))
5500 flags |= value;
5502 return flags;
5506 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5507 * @page: The page within the block of interest
5508 * @start_bitidx: The first bit of interest
5509 * @end_bitidx: The last bit of interest
5510 * @flags: The flags to set
5512 void set_pageblock_flags_group(struct page *page, unsigned long flags,
5513 int start_bitidx, int end_bitidx)
5515 struct zone *zone;
5516 unsigned long *bitmap;
5517 unsigned long pfn, bitidx;
5518 unsigned long value = 1;
5520 zone = page_zone(page);
5521 pfn = page_to_pfn(page);
5522 bitmap = get_pageblock_bitmap(zone, pfn);
5523 bitidx = pfn_to_bitidx(zone, pfn);
5524 VM_BUG_ON(pfn < zone->zone_start_pfn);
5525 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
5527 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5528 if (flags & value)
5529 __set_bit(bitidx + start_bitidx, bitmap);
5530 else
5531 __clear_bit(bitidx + start_bitidx, bitmap);
5535 * This is designed as sub function...plz see page_isolation.c also.
5536 * set/clear page block's type to be ISOLATE.
5537 * page allocater never alloc memory from ISOLATE block.
5540 static int
5541 __count_immobile_pages(struct zone *zone, struct page *page, int count)
5543 unsigned long pfn, iter, found;
5545 * For avoiding noise data, lru_add_drain_all() should be called
5546 * If ZONE_MOVABLE, the zone never contains immobile pages
5548 if (zone_idx(zone) == ZONE_MOVABLE)
5549 return true;
5551 if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE)
5552 return true;
5554 pfn = page_to_pfn(page);
5555 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5556 unsigned long check = pfn + iter;
5558 if (!pfn_valid_within(check))
5559 continue;
5561 page = pfn_to_page(check);
5562 if (!page_count(page)) {
5563 if (PageBuddy(page))
5564 iter += (1 << page_order(page)) - 1;
5565 continue;
5567 if (!PageLRU(page))
5568 found++;
5570 * If there are RECLAIMABLE pages, we need to check it.
5571 * But now, memory offline itself doesn't call shrink_slab()
5572 * and it still to be fixed.
5575 * If the page is not RAM, page_count()should be 0.
5576 * we don't need more check. This is an _used_ not-movable page.
5578 * The problematic thing here is PG_reserved pages. PG_reserved
5579 * is set to both of a memory hole page and a _used_ kernel
5580 * page at boot.
5582 if (found > count)
5583 return false;
5585 return true;
5588 bool is_pageblock_removable_nolock(struct page *page)
5590 struct zone *zone = page_zone(page);
5591 unsigned long pfn = page_to_pfn(page);
5594 * We have to be careful here because we are iterating over memory
5595 * sections which are not zone aware so we might end up outside of
5596 * the zone but still within the section.
5598 if (!zone || zone->zone_start_pfn > pfn ||
5599 zone->zone_start_pfn + zone->spanned_pages <= pfn)
5600 return false;
5602 return __count_immobile_pages(zone, page, 0);
5605 int set_migratetype_isolate(struct page *page)
5607 struct zone *zone;
5608 unsigned long flags, pfn;
5609 struct memory_isolate_notify arg;
5610 int notifier_ret;
5611 int ret = -EBUSY;
5613 zone = page_zone(page);
5615 spin_lock_irqsave(&zone->lock, flags);
5617 pfn = page_to_pfn(page);
5618 arg.start_pfn = pfn;
5619 arg.nr_pages = pageblock_nr_pages;
5620 arg.pages_found = 0;
5623 * It may be possible to isolate a pageblock even if the
5624 * migratetype is not MIGRATE_MOVABLE. The memory isolation
5625 * notifier chain is used by balloon drivers to return the
5626 * number of pages in a range that are held by the balloon
5627 * driver to shrink memory. If all the pages are accounted for
5628 * by balloons, are free, or on the LRU, isolation can continue.
5629 * Later, for example, when memory hotplug notifier runs, these
5630 * pages reported as "can be isolated" should be isolated(freed)
5631 * by the balloon driver through the memory notifier chain.
5633 notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
5634 notifier_ret = notifier_to_errno(notifier_ret);
5635 if (notifier_ret)
5636 goto out;
5638 * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself.
5639 * We just check MOVABLE pages.
5641 if (__count_immobile_pages(zone, page, arg.pages_found))
5642 ret = 0;
5645 * immobile means "not-on-lru" paes. If immobile is larger than
5646 * removable-by-driver pages reported by notifier, we'll fail.
5649 out:
5650 if (!ret) {
5651 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
5652 move_freepages_block(zone, page, MIGRATE_ISOLATE);
5655 spin_unlock_irqrestore(&zone->lock, flags);
5656 if (!ret)
5657 drain_all_pages();
5658 return ret;
5661 void unset_migratetype_isolate(struct page *page)
5663 struct zone *zone;
5664 unsigned long flags;
5665 zone = page_zone(page);
5666 spin_lock_irqsave(&zone->lock, flags);
5667 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
5668 goto out;
5669 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5670 move_freepages_block(zone, page, MIGRATE_MOVABLE);
5671 out:
5672 spin_unlock_irqrestore(&zone->lock, flags);
5675 #ifdef CONFIG_MEMORY_HOTREMOVE
5677 * All pages in the range must be isolated before calling this.
5679 void
5680 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5682 struct page *page;
5683 struct zone *zone;
5684 int order, i;
5685 unsigned long pfn;
5686 unsigned long flags;
5687 /* find the first valid pfn */
5688 for (pfn = start_pfn; pfn < end_pfn; pfn++)
5689 if (pfn_valid(pfn))
5690 break;
5691 if (pfn == end_pfn)
5692 return;
5693 zone = page_zone(pfn_to_page(pfn));
5694 spin_lock_irqsave(&zone->lock, flags);
5695 pfn = start_pfn;
5696 while (pfn < end_pfn) {
5697 if (!pfn_valid(pfn)) {
5698 pfn++;
5699 continue;
5701 page = pfn_to_page(pfn);
5702 BUG_ON(page_count(page));
5703 BUG_ON(!PageBuddy(page));
5704 order = page_order(page);
5705 #ifdef CONFIG_DEBUG_VM
5706 printk(KERN_INFO "remove from free list %lx %d %lx\n",
5707 pfn, 1 << order, end_pfn);
5708 #endif
5709 list_del(&page->lru);
5710 rmv_page_order(page);
5711 zone->free_area[order].nr_free--;
5712 __mod_zone_page_state(zone, NR_FREE_PAGES,
5713 - (1UL << order));
5714 for (i = 0; i < (1 << order); i++)
5715 SetPageReserved((page+i));
5716 pfn += (1 << order);
5718 spin_unlock_irqrestore(&zone->lock, flags);
5720 #endif
5722 #ifdef CONFIG_MEMORY_FAILURE
5723 bool is_free_buddy_page(struct page *page)
5725 struct zone *zone = page_zone(page);
5726 unsigned long pfn = page_to_pfn(page);
5727 unsigned long flags;
5728 int order;
5730 spin_lock_irqsave(&zone->lock, flags);
5731 for (order = 0; order < MAX_ORDER; order++) {
5732 struct page *page_head = page - (pfn & ((1 << order) - 1));
5734 if (PageBuddy(page_head) && page_order(page_head) >= order)
5735 break;
5737 spin_unlock_irqrestore(&zone->lock, flags);
5739 return order < MAX_ORDER;
5741 #endif
5743 static struct trace_print_flags pageflag_names[] = {
5744 {1UL << PG_locked, "locked" },
5745 {1UL << PG_error, "error" },
5746 {1UL << PG_referenced, "referenced" },
5747 {1UL << PG_uptodate, "uptodate" },
5748 {1UL << PG_dirty, "dirty" },
5749 {1UL << PG_lru, "lru" },
5750 {1UL << PG_active, "active" },
5751 {1UL << PG_slab, "slab" },
5752 {1UL << PG_owner_priv_1, "owner_priv_1" },
5753 {1UL << PG_arch_1, "arch_1" },
5754 {1UL << PG_reserved, "reserved" },
5755 {1UL << PG_private, "private" },
5756 {1UL << PG_private_2, "private_2" },
5757 {1UL << PG_writeback, "writeback" },
5758 #ifdef CONFIG_PAGEFLAGS_EXTENDED
5759 {1UL << PG_head, "head" },
5760 {1UL << PG_tail, "tail" },
5761 #else
5762 {1UL << PG_compound, "compound" },
5763 #endif
5764 {1UL << PG_swapcache, "swapcache" },
5765 {1UL << PG_mappedtodisk, "mappedtodisk" },
5766 {1UL << PG_reclaim, "reclaim" },
5767 {1UL << PG_swapbacked, "swapbacked" },
5768 {1UL << PG_unevictable, "unevictable" },
5769 #ifdef CONFIG_MMU
5770 {1UL << PG_mlocked, "mlocked" },
5771 #endif
5772 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
5773 {1UL << PG_uncached, "uncached" },
5774 #endif
5775 #ifdef CONFIG_MEMORY_FAILURE
5776 {1UL << PG_hwpoison, "hwpoison" },
5777 #endif
5778 {-1UL, NULL },
5781 static void dump_page_flags(unsigned long flags)
5783 const char *delim = "";
5784 unsigned long mask;
5785 int i;
5787 printk(KERN_ALERT "page flags: %#lx(", flags);
5789 /* remove zone id */
5790 flags &= (1UL << NR_PAGEFLAGS) - 1;
5792 for (i = 0; pageflag_names[i].name && flags; i++) {
5794 mask = pageflag_names[i].mask;
5795 if ((flags & mask) != mask)
5796 continue;
5798 flags &= ~mask;
5799 printk("%s%s", delim, pageflag_names[i].name);
5800 delim = "|";
5803 /* check for left over flags */
5804 if (flags)
5805 printk("%s%#lx", delim, flags);
5807 printk(")\n");
5810 void dump_page(struct page *page)
5812 printk(KERN_ALERT
5813 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
5814 page, atomic_read(&page->_count), page_mapcount(page),
5815 page->mapping, page->index);
5816 dump_page_flags(page->flags);
5817 mem_cgroup_print_bad_page(page);