2 * Resizable virtual memory filesystem for Linux.
4 * Copyright (C) 2000 Linus Torvalds.
6 * 2000-2001 Christoph Rohland
9 * Copyright (C) 2002-2005 Hugh Dickins.
10 * Copyright (C) 2002-2005 VERITAS Software Corporation.
11 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 * Extended attribute support for tmpfs:
14 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
18 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 * This file is released under the GPL.
24 #include <linux/init.h>
25 #include <linux/vfs.h>
26 #include <linux/mount.h>
27 #include <linux/pagemap.h>
28 #include <linux/file.h>
30 #include <linux/module.h>
31 #include <linux/percpu_counter.h>
32 #include <linux/swap.h>
34 static struct vfsmount
*shm_mnt
;
38 * This virtual memory filesystem is heavily based on the ramfs. It
39 * extends ramfs by the ability to use swap and honor resource limits
40 * which makes it a completely usable filesystem.
43 #include <linux/xattr.h>
44 #include <linux/exportfs.h>
45 #include <linux/posix_acl.h>
46 #include <linux/generic_acl.h>
47 #include <linux/mman.h>
48 #include <linux/string.h>
49 #include <linux/slab.h>
50 #include <linux/backing-dev.h>
51 #include <linux/shmem_fs.h>
52 #include <linux/writeback.h>
53 #include <linux/blkdev.h>
54 #include <linux/security.h>
55 #include <linux/swapops.h>
56 #include <linux/mempolicy.h>
57 #include <linux/namei.h>
58 #include <linux/ctype.h>
59 #include <linux/migrate.h>
60 #include <linux/highmem.h>
61 #include <linux/seq_file.h>
62 #include <linux/magic.h>
64 #include <asm/uaccess.h>
65 #include <asm/div64.h>
66 #include <asm/pgtable.h>
69 * The maximum size of a shmem/tmpfs file is limited by the maximum size of
70 * its triple-indirect swap vector - see illustration at shmem_swp_entry().
72 * With 4kB page size, maximum file size is just over 2TB on a 32-bit kernel,
73 * but one eighth of that on a 64-bit kernel. With 8kB page size, maximum
74 * file size is just over 4TB on a 64-bit kernel, but 16TB on a 32-bit kernel,
75 * MAX_LFS_FILESIZE being then more restrictive than swap vector layout.
77 * We use / and * instead of shifts in the definitions below, so that the swap
78 * vector can be tested with small even values (e.g. 20) for ENTRIES_PER_PAGE.
80 #define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
81 #define ENTRIES_PER_PAGEPAGE ((unsigned long long)ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
83 #define SHMSWP_MAX_INDEX (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
84 #define SHMSWP_MAX_BYTES (SHMSWP_MAX_INDEX << PAGE_CACHE_SHIFT)
86 #define SHMEM_MAX_BYTES min_t(unsigned long long, SHMSWP_MAX_BYTES, MAX_LFS_FILESIZE)
87 #define SHMEM_MAX_INDEX ((unsigned long)((SHMEM_MAX_BYTES+1) >> PAGE_CACHE_SHIFT))
89 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
90 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
92 /* info->flags needs VM_flags to handle pagein/truncate races efficiently */
93 #define SHMEM_PAGEIN VM_READ
94 #define SHMEM_TRUNCATE VM_WRITE
96 /* Definition to limit shmem_truncate's steps between cond_rescheds */
97 #define LATENCY_LIMIT 64
99 /* Pretend that each entry is of this size in directory's i_size */
100 #define BOGO_DIRENT_SIZE 20
103 struct list_head list
; /* anchored by shmem_inode_info->xattr_list */
104 char *name
; /* xattr name */
109 /* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
111 SGP_READ
, /* don't exceed i_size, don't allocate page */
112 SGP_CACHE
, /* don't exceed i_size, may allocate page */
113 SGP_DIRTY
, /* like SGP_CACHE, but set new page dirty */
114 SGP_WRITE
, /* may exceed i_size, may allocate page */
118 static unsigned long shmem_default_max_blocks(void)
120 return totalram_pages
/ 2;
123 static unsigned long shmem_default_max_inodes(void)
125 return min(totalram_pages
- totalhigh_pages
, totalram_pages
/ 2);
129 static int shmem_getpage(struct inode
*inode
, unsigned long idx
,
130 struct page
**pagep
, enum sgp_type sgp
, int *type
);
132 static inline struct page
*shmem_dir_alloc(gfp_t gfp_mask
)
135 * The above definition of ENTRIES_PER_PAGE, and the use of
136 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
137 * might be reconsidered if it ever diverges from PAGE_SIZE.
139 * Mobility flags are masked out as swap vectors cannot move
141 return alloc_pages((gfp_mask
& ~GFP_MOVABLE_MASK
) | __GFP_ZERO
,
142 PAGE_CACHE_SHIFT
-PAGE_SHIFT
);
145 static inline void shmem_dir_free(struct page
*page
)
147 __free_pages(page
, PAGE_CACHE_SHIFT
-PAGE_SHIFT
);
150 static struct page
**shmem_dir_map(struct page
*page
)
152 return (struct page
**)kmap_atomic(page
, KM_USER0
);
155 static inline void shmem_dir_unmap(struct page
**dir
)
157 kunmap_atomic(dir
, KM_USER0
);
160 static swp_entry_t
*shmem_swp_map(struct page
*page
)
162 return (swp_entry_t
*)kmap_atomic(page
, KM_USER1
);
165 static inline void shmem_swp_balance_unmap(void)
168 * When passing a pointer to an i_direct entry, to code which
169 * also handles indirect entries and so will shmem_swp_unmap,
170 * we must arrange for the preempt count to remain in balance.
171 * What kmap_atomic of a lowmem page does depends on config
172 * and architecture, so pretend to kmap_atomic some lowmem page.
174 (void) kmap_atomic(ZERO_PAGE(0), KM_USER1
);
177 static inline void shmem_swp_unmap(swp_entry_t
*entry
)
179 kunmap_atomic(entry
, KM_USER1
);
182 static inline struct shmem_sb_info
*SHMEM_SB(struct super_block
*sb
)
184 return sb
->s_fs_info
;
188 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
189 * for shared memory and for shared anonymous (/dev/zero) mappings
190 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
191 * consistent with the pre-accounting of private mappings ...
193 static inline int shmem_acct_size(unsigned long flags
, loff_t size
)
195 return (flags
& VM_NORESERVE
) ?
196 0 : security_vm_enough_memory_kern(VM_ACCT(size
));
199 static inline void shmem_unacct_size(unsigned long flags
, loff_t size
)
201 if (!(flags
& VM_NORESERVE
))
202 vm_unacct_memory(VM_ACCT(size
));
206 * ... whereas tmpfs objects are accounted incrementally as
207 * pages are allocated, in order to allow huge sparse files.
208 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
209 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
211 static inline int shmem_acct_block(unsigned long flags
)
213 return (flags
& VM_NORESERVE
) ?
214 security_vm_enough_memory_kern(VM_ACCT(PAGE_CACHE_SIZE
)) : 0;
217 static inline void shmem_unacct_blocks(unsigned long flags
, long pages
)
219 if (flags
& VM_NORESERVE
)
220 vm_unacct_memory(pages
* VM_ACCT(PAGE_CACHE_SIZE
));
223 static const struct super_operations shmem_ops
;
224 static const struct address_space_operations shmem_aops
;
225 static const struct file_operations shmem_file_operations
;
226 static const struct inode_operations shmem_inode_operations
;
227 static const struct inode_operations shmem_dir_inode_operations
;
228 static const struct inode_operations shmem_special_inode_operations
;
229 static const struct vm_operations_struct shmem_vm_ops
;
231 static struct backing_dev_info shmem_backing_dev_info __read_mostly
= {
232 .ra_pages
= 0, /* No readahead */
233 .capabilities
= BDI_CAP_NO_ACCT_AND_WRITEBACK
| BDI_CAP_SWAP_BACKED
,
236 static LIST_HEAD(shmem_swaplist
);
237 static DEFINE_MUTEX(shmem_swaplist_mutex
);
239 static void shmem_free_blocks(struct inode
*inode
, long pages
)
241 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
242 if (sbinfo
->max_blocks
) {
243 percpu_counter_add(&sbinfo
->used_blocks
, -pages
);
244 spin_lock(&inode
->i_lock
);
245 inode
->i_blocks
-= pages
*BLOCKS_PER_PAGE
;
246 spin_unlock(&inode
->i_lock
);
250 static int shmem_reserve_inode(struct super_block
*sb
)
252 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
253 if (sbinfo
->max_inodes
) {
254 spin_lock(&sbinfo
->stat_lock
);
255 if (!sbinfo
->free_inodes
) {
256 spin_unlock(&sbinfo
->stat_lock
);
259 sbinfo
->free_inodes
--;
260 spin_unlock(&sbinfo
->stat_lock
);
265 static void shmem_free_inode(struct super_block
*sb
)
267 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
268 if (sbinfo
->max_inodes
) {
269 spin_lock(&sbinfo
->stat_lock
);
270 sbinfo
->free_inodes
++;
271 spin_unlock(&sbinfo
->stat_lock
);
276 * shmem_recalc_inode - recalculate the size of an inode
277 * @inode: inode to recalc
279 * We have to calculate the free blocks since the mm can drop
280 * undirtied hole pages behind our back.
282 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
283 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
285 * It has to be called with the spinlock held.
287 static void shmem_recalc_inode(struct inode
*inode
)
289 struct shmem_inode_info
*info
= SHMEM_I(inode
);
292 freed
= info
->alloced
- info
->swapped
- inode
->i_mapping
->nrpages
;
294 info
->alloced
-= freed
;
295 shmem_unacct_blocks(info
->flags
, freed
);
296 shmem_free_blocks(inode
, freed
);
301 * shmem_swp_entry - find the swap vector position in the info structure
302 * @info: info structure for the inode
303 * @index: index of the page to find
304 * @page: optional page to add to the structure. Has to be preset to
307 * If there is no space allocated yet it will return NULL when
308 * page is NULL, else it will use the page for the needed block,
309 * setting it to NULL on return to indicate that it has been used.
311 * The swap vector is organized the following way:
313 * There are SHMEM_NR_DIRECT entries directly stored in the
314 * shmem_inode_info structure. So small files do not need an addional
317 * For pages with index > SHMEM_NR_DIRECT there is the pointer
318 * i_indirect which points to a page which holds in the first half
319 * doubly indirect blocks, in the second half triple indirect blocks:
321 * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
322 * following layout (for SHMEM_NR_DIRECT == 16):
324 * i_indirect -> dir --> 16-19
337 static swp_entry_t
*shmem_swp_entry(struct shmem_inode_info
*info
, unsigned long index
, struct page
**page
)
339 unsigned long offset
;
343 if (index
< SHMEM_NR_DIRECT
) {
344 shmem_swp_balance_unmap();
345 return info
->i_direct
+index
;
347 if (!info
->i_indirect
) {
349 info
->i_indirect
= *page
;
352 return NULL
; /* need another page */
355 index
-= SHMEM_NR_DIRECT
;
356 offset
= index
% ENTRIES_PER_PAGE
;
357 index
/= ENTRIES_PER_PAGE
;
358 dir
= shmem_dir_map(info
->i_indirect
);
360 if (index
>= ENTRIES_PER_PAGE
/2) {
361 index
-= ENTRIES_PER_PAGE
/2;
362 dir
+= ENTRIES_PER_PAGE
/2 + index
/ENTRIES_PER_PAGE
;
363 index
%= ENTRIES_PER_PAGE
;
370 shmem_dir_unmap(dir
);
371 return NULL
; /* need another page */
373 shmem_dir_unmap(dir
);
374 dir
= shmem_dir_map(subdir
);
380 if (!page
|| !(subdir
= *page
)) {
381 shmem_dir_unmap(dir
);
382 return NULL
; /* need a page */
387 shmem_dir_unmap(dir
);
388 return shmem_swp_map(subdir
) + offset
;
391 static void shmem_swp_set(struct shmem_inode_info
*info
, swp_entry_t
*entry
, unsigned long value
)
393 long incdec
= value
? 1: -1;
396 info
->swapped
+= incdec
;
397 if ((unsigned long)(entry
- info
->i_direct
) >= SHMEM_NR_DIRECT
) {
398 struct page
*page
= kmap_atomic_to_page(entry
);
399 set_page_private(page
, page_private(page
) + incdec
);
404 * shmem_swp_alloc - get the position of the swap entry for the page.
405 * @info: info structure for the inode
406 * @index: index of the page to find
407 * @sgp: check and recheck i_size? skip allocation?
409 * If the entry does not exist, allocate it.
411 static swp_entry_t
*shmem_swp_alloc(struct shmem_inode_info
*info
, unsigned long index
, enum sgp_type sgp
)
413 struct inode
*inode
= &info
->vfs_inode
;
414 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
415 struct page
*page
= NULL
;
418 if (sgp
!= SGP_WRITE
&&
419 ((loff_t
) index
<< PAGE_CACHE_SHIFT
) >= i_size_read(inode
))
420 return ERR_PTR(-EINVAL
);
422 while (!(entry
= shmem_swp_entry(info
, index
, &page
))) {
424 return shmem_swp_map(ZERO_PAGE(0));
426 * Test used_blocks against 1 less max_blocks, since we have 1 data
427 * page (and perhaps indirect index pages) yet to allocate:
428 * a waste to allocate index if we cannot allocate data.
430 if (sbinfo
->max_blocks
) {
431 if (percpu_counter_compare(&sbinfo
->used_blocks
,
432 sbinfo
->max_blocks
- 1) >= 0)
433 return ERR_PTR(-ENOSPC
);
434 percpu_counter_inc(&sbinfo
->used_blocks
);
435 spin_lock(&inode
->i_lock
);
436 inode
->i_blocks
+= BLOCKS_PER_PAGE
;
437 spin_unlock(&inode
->i_lock
);
440 spin_unlock(&info
->lock
);
441 page
= shmem_dir_alloc(mapping_gfp_mask(inode
->i_mapping
));
442 spin_lock(&info
->lock
);
445 shmem_free_blocks(inode
, 1);
446 return ERR_PTR(-ENOMEM
);
448 if (sgp
!= SGP_WRITE
&&
449 ((loff_t
) index
<< PAGE_CACHE_SHIFT
) >= i_size_read(inode
)) {
450 entry
= ERR_PTR(-EINVAL
);
453 if (info
->next_index
<= index
)
454 info
->next_index
= index
+ 1;
457 /* another task gave its page, or truncated the file */
458 shmem_free_blocks(inode
, 1);
459 shmem_dir_free(page
);
461 if (info
->next_index
<= index
&& !IS_ERR(entry
))
462 info
->next_index
= index
+ 1;
467 * shmem_free_swp - free some swap entries in a directory
468 * @dir: pointer to the directory
469 * @edir: pointer after last entry of the directory
470 * @punch_lock: pointer to spinlock when needed for the holepunch case
472 static int shmem_free_swp(swp_entry_t
*dir
, swp_entry_t
*edir
,
473 spinlock_t
*punch_lock
)
475 spinlock_t
*punch_unlock
= NULL
;
479 for (ptr
= dir
; ptr
< edir
; ptr
++) {
481 if (unlikely(punch_lock
)) {
482 punch_unlock
= punch_lock
;
484 spin_lock(punch_unlock
);
488 free_swap_and_cache(*ptr
);
489 *ptr
= (swp_entry_t
){0};
494 spin_unlock(punch_unlock
);
498 static int shmem_map_and_free_swp(struct page
*subdir
, int offset
,
499 int limit
, struct page
***dir
, spinlock_t
*punch_lock
)
504 ptr
= shmem_swp_map(subdir
);
505 for (; offset
< limit
; offset
+= LATENCY_LIMIT
) {
506 int size
= limit
- offset
;
507 if (size
> LATENCY_LIMIT
)
508 size
= LATENCY_LIMIT
;
509 freed
+= shmem_free_swp(ptr
+offset
, ptr
+offset
+size
,
511 if (need_resched()) {
512 shmem_swp_unmap(ptr
);
514 shmem_dir_unmap(*dir
);
518 ptr
= shmem_swp_map(subdir
);
521 shmem_swp_unmap(ptr
);
525 static void shmem_free_pages(struct list_head
*next
)
531 page
= container_of(next
, struct page
, lru
);
533 shmem_dir_free(page
);
535 if (freed
>= LATENCY_LIMIT
) {
542 void shmem_truncate_range(struct inode
*inode
, loff_t start
, loff_t end
)
544 struct shmem_inode_info
*info
= SHMEM_I(inode
);
549 unsigned long diroff
;
555 LIST_HEAD(pages_to_free
);
556 long nr_pages_to_free
= 0;
557 long nr_swaps_freed
= 0;
561 spinlock_t
*needs_lock
;
562 spinlock_t
*punch_lock
;
563 unsigned long upper_limit
;
565 truncate_inode_pages_range(inode
->i_mapping
, start
, end
);
567 inode
->i_ctime
= inode
->i_mtime
= CURRENT_TIME
;
568 idx
= (start
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
569 if (idx
>= info
->next_index
)
572 spin_lock(&info
->lock
);
573 info
->flags
|= SHMEM_TRUNCATE
;
574 if (likely(end
== (loff_t
) -1)) {
575 limit
= info
->next_index
;
576 upper_limit
= SHMEM_MAX_INDEX
;
577 info
->next_index
= idx
;
581 if (end
+ 1 >= inode
->i_size
) { /* we may free a little more */
582 limit
= (inode
->i_size
+ PAGE_CACHE_SIZE
- 1) >>
584 upper_limit
= SHMEM_MAX_INDEX
;
586 limit
= (end
+ 1) >> PAGE_CACHE_SHIFT
;
589 needs_lock
= &info
->lock
;
593 topdir
= info
->i_indirect
;
594 if (topdir
&& idx
<= SHMEM_NR_DIRECT
&& !punch_hole
) {
595 info
->i_indirect
= NULL
;
597 list_add(&topdir
->lru
, &pages_to_free
);
599 spin_unlock(&info
->lock
);
601 if (info
->swapped
&& idx
< SHMEM_NR_DIRECT
) {
602 ptr
= info
->i_direct
;
604 if (size
> SHMEM_NR_DIRECT
)
605 size
= SHMEM_NR_DIRECT
;
606 nr_swaps_freed
= shmem_free_swp(ptr
+idx
, ptr
+size
, needs_lock
);
610 * If there are no indirect blocks or we are punching a hole
611 * below indirect blocks, nothing to be done.
613 if (!topdir
|| limit
<= SHMEM_NR_DIRECT
)
617 * The truncation case has already dropped info->lock, and we're safe
618 * because i_size and next_index have already been lowered, preventing
619 * access beyond. But in the punch_hole case, we still need to take
620 * the lock when updating the swap directory, because there might be
621 * racing accesses by shmem_getpage(SGP_CACHE), shmem_unuse_inode or
622 * shmem_writepage. However, whenever we find we can remove a whole
623 * directory page (not at the misaligned start or end of the range),
624 * we first NULLify its pointer in the level above, and then have no
625 * need to take the lock when updating its contents: needs_lock and
626 * punch_lock (either pointing to info->lock or NULL) manage this.
629 upper_limit
-= SHMEM_NR_DIRECT
;
630 limit
-= SHMEM_NR_DIRECT
;
631 idx
= (idx
> SHMEM_NR_DIRECT
)? (idx
- SHMEM_NR_DIRECT
): 0;
632 offset
= idx
% ENTRIES_PER_PAGE
;
635 dir
= shmem_dir_map(topdir
);
636 stage
= ENTRIES_PER_PAGEPAGE
/2;
637 if (idx
< ENTRIES_PER_PAGEPAGE
/2) {
639 diroff
= idx
/ENTRIES_PER_PAGE
;
641 dir
+= ENTRIES_PER_PAGE
/2;
642 dir
+= (idx
- ENTRIES_PER_PAGEPAGE
/2)/ENTRIES_PER_PAGEPAGE
;
644 stage
+= ENTRIES_PER_PAGEPAGE
;
647 diroff
= ((idx
- ENTRIES_PER_PAGEPAGE
/2) %
648 ENTRIES_PER_PAGEPAGE
) / ENTRIES_PER_PAGE
;
649 if (!diroff
&& !offset
&& upper_limit
>= stage
) {
651 spin_lock(needs_lock
);
653 spin_unlock(needs_lock
);
658 list_add(&middir
->lru
, &pages_to_free
);
660 shmem_dir_unmap(dir
);
661 dir
= shmem_dir_map(middir
);
669 for (; idx
< limit
; idx
+= ENTRIES_PER_PAGE
, diroff
++) {
670 if (unlikely(idx
== stage
)) {
671 shmem_dir_unmap(dir
);
672 dir
= shmem_dir_map(topdir
) +
673 ENTRIES_PER_PAGE
/2 + idx
/ENTRIES_PER_PAGEPAGE
;
676 idx
+= ENTRIES_PER_PAGEPAGE
;
680 stage
= idx
+ ENTRIES_PER_PAGEPAGE
;
683 needs_lock
= &info
->lock
;
684 if (upper_limit
>= stage
) {
686 spin_lock(needs_lock
);
688 spin_unlock(needs_lock
);
693 list_add(&middir
->lru
, &pages_to_free
);
695 shmem_dir_unmap(dir
);
697 dir
= shmem_dir_map(middir
);
700 punch_lock
= needs_lock
;
701 subdir
= dir
[diroff
];
702 if (subdir
&& !offset
&& upper_limit
-idx
>= ENTRIES_PER_PAGE
) {
704 spin_lock(needs_lock
);
706 spin_unlock(needs_lock
);
711 list_add(&subdir
->lru
, &pages_to_free
);
713 if (subdir
&& page_private(subdir
) /* has swap entries */) {
715 if (size
> ENTRIES_PER_PAGE
)
716 size
= ENTRIES_PER_PAGE
;
717 freed
= shmem_map_and_free_swp(subdir
,
718 offset
, size
, &dir
, punch_lock
);
720 dir
= shmem_dir_map(middir
);
721 nr_swaps_freed
+= freed
;
722 if (offset
|| punch_lock
) {
723 spin_lock(&info
->lock
);
724 set_page_private(subdir
,
725 page_private(subdir
) - freed
);
726 spin_unlock(&info
->lock
);
728 BUG_ON(page_private(subdir
) != freed
);
733 shmem_dir_unmap(dir
);
735 if (inode
->i_mapping
->nrpages
&& (info
->flags
& SHMEM_PAGEIN
)) {
737 * Call truncate_inode_pages again: racing shmem_unuse_inode
738 * may have swizzled a page in from swap since
739 * truncate_pagecache or generic_delete_inode did it, before we
740 * lowered next_index. Also, though shmem_getpage checks
741 * i_size before adding to cache, no recheck after: so fix the
742 * narrow window there too.
744 truncate_inode_pages_range(inode
->i_mapping
, start
, end
);
747 spin_lock(&info
->lock
);
748 info
->flags
&= ~SHMEM_TRUNCATE
;
749 info
->swapped
-= nr_swaps_freed
;
750 if (nr_pages_to_free
)
751 shmem_free_blocks(inode
, nr_pages_to_free
);
752 shmem_recalc_inode(inode
);
753 spin_unlock(&info
->lock
);
756 * Empty swap vector directory pages to be freed?
758 if (!list_empty(&pages_to_free
)) {
759 pages_to_free
.prev
->next
= NULL
;
760 shmem_free_pages(pages_to_free
.next
);
763 EXPORT_SYMBOL_GPL(shmem_truncate_range
);
765 static int shmem_setattr(struct dentry
*dentry
, struct iattr
*attr
)
767 struct inode
*inode
= dentry
->d_inode
;
770 error
= inode_change_ok(inode
, attr
);
774 if (S_ISREG(inode
->i_mode
) && (attr
->ia_valid
& ATTR_SIZE
)) {
775 loff_t oldsize
= inode
->i_size
;
776 loff_t newsize
= attr
->ia_size
;
777 struct page
*page
= NULL
;
779 if (newsize
< oldsize
) {
781 * If truncating down to a partial page, then
782 * if that page is already allocated, hold it
783 * in memory until the truncation is over, so
784 * truncate_partial_page cannot miss it were
785 * it assigned to swap.
787 if (newsize
& (PAGE_CACHE_SIZE
-1)) {
788 (void) shmem_getpage(inode
,
789 newsize
>> PAGE_CACHE_SHIFT
,
790 &page
, SGP_READ
, NULL
);
795 * Reset SHMEM_PAGEIN flag so that shmem_truncate can
796 * detect if any pages might have been added to cache
797 * after truncate_inode_pages. But we needn't bother
798 * if it's being fully truncated to zero-length: the
799 * nrpages check is efficient enough in that case.
802 struct shmem_inode_info
*info
= SHMEM_I(inode
);
803 spin_lock(&info
->lock
);
804 info
->flags
&= ~SHMEM_PAGEIN
;
805 spin_unlock(&info
->lock
);
808 if (newsize
!= oldsize
) {
809 i_size_write(inode
, newsize
);
810 inode
->i_ctime
= inode
->i_mtime
= CURRENT_TIME
;
812 if (newsize
< oldsize
) {
813 loff_t holebegin
= round_up(newsize
, PAGE_SIZE
);
814 unmap_mapping_range(inode
->i_mapping
, holebegin
, 0, 1);
815 shmem_truncate_range(inode
, newsize
, (loff_t
)-1);
816 /* unmap again to remove racily COWed private pages */
817 unmap_mapping_range(inode
->i_mapping
, holebegin
, 0, 1);
820 page_cache_release(page
);
823 setattr_copy(inode
, attr
);
824 #ifdef CONFIG_TMPFS_POSIX_ACL
825 if (attr
->ia_valid
& ATTR_MODE
)
826 error
= generic_acl_chmod(inode
);
831 static void shmem_evict_inode(struct inode
*inode
)
833 struct shmem_inode_info
*info
= SHMEM_I(inode
);
834 struct shmem_xattr
*xattr
, *nxattr
;
836 if (inode
->i_mapping
->a_ops
== &shmem_aops
) {
837 shmem_unacct_size(info
->flags
, inode
->i_size
);
839 shmem_truncate_range(inode
, 0, (loff_t
)-1);
840 if (!list_empty(&info
->swaplist
)) {
841 mutex_lock(&shmem_swaplist_mutex
);
842 list_del_init(&info
->swaplist
);
843 mutex_unlock(&shmem_swaplist_mutex
);
847 list_for_each_entry_safe(xattr
, nxattr
, &info
->xattr_list
, list
) {
851 BUG_ON(inode
->i_blocks
);
852 shmem_free_inode(inode
->i_sb
);
853 end_writeback(inode
);
856 static inline int shmem_find_swp(swp_entry_t entry
, swp_entry_t
*dir
, swp_entry_t
*edir
)
860 for (ptr
= dir
; ptr
< edir
; ptr
++) {
861 if (ptr
->val
== entry
.val
)
867 static int shmem_unuse_inode(struct shmem_inode_info
*info
, swp_entry_t entry
, struct page
*page
)
869 struct address_space
*mapping
;
881 ptr
= info
->i_direct
;
882 spin_lock(&info
->lock
);
883 if (!info
->swapped
) {
884 list_del_init(&info
->swaplist
);
887 limit
= info
->next_index
;
889 if (size
> SHMEM_NR_DIRECT
)
890 size
= SHMEM_NR_DIRECT
;
891 offset
= shmem_find_swp(entry
, ptr
, ptr
+size
);
893 shmem_swp_balance_unmap();
896 if (!info
->i_indirect
)
899 dir
= shmem_dir_map(info
->i_indirect
);
900 stage
= SHMEM_NR_DIRECT
+ ENTRIES_PER_PAGEPAGE
/2;
902 for (idx
= SHMEM_NR_DIRECT
; idx
< limit
; idx
+= ENTRIES_PER_PAGE
, dir
++) {
903 if (unlikely(idx
== stage
)) {
904 shmem_dir_unmap(dir
-1);
905 if (cond_resched_lock(&info
->lock
)) {
906 /* check it has not been truncated */
907 if (limit
> info
->next_index
) {
908 limit
= info
->next_index
;
913 dir
= shmem_dir_map(info
->i_indirect
) +
914 ENTRIES_PER_PAGE
/2 + idx
/ENTRIES_PER_PAGEPAGE
;
917 idx
+= ENTRIES_PER_PAGEPAGE
;
921 stage
= idx
+ ENTRIES_PER_PAGEPAGE
;
923 shmem_dir_unmap(dir
);
924 dir
= shmem_dir_map(subdir
);
927 if (subdir
&& page_private(subdir
)) {
928 ptr
= shmem_swp_map(subdir
);
930 if (size
> ENTRIES_PER_PAGE
)
931 size
= ENTRIES_PER_PAGE
;
932 offset
= shmem_find_swp(entry
, ptr
, ptr
+size
);
933 shmem_swp_unmap(ptr
);
935 shmem_dir_unmap(dir
);
936 ptr
= shmem_swp_map(subdir
);
942 shmem_dir_unmap(dir
-1);
944 spin_unlock(&info
->lock
);
951 * Move _head_ to start search for next from here.
952 * But be careful: shmem_evict_inode checks list_empty without taking
953 * mutex, and there's an instant in list_move_tail when info->swaplist
954 * would appear empty, if it were the only one on shmem_swaplist. We
955 * could avoid doing it if inode NULL; or use this minor optimization.
957 if (shmem_swaplist
.next
!= &info
->swaplist
)
958 list_move_tail(&shmem_swaplist
, &info
->swaplist
);
961 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
962 * but also to hold up shmem_evict_inode(): so inode cannot be freed
963 * beneath us (pagelock doesn't help until the page is in pagecache).
965 mapping
= info
->vfs_inode
.i_mapping
;
966 error
= add_to_page_cache_locked(page
, mapping
, idx
, GFP_NOWAIT
);
967 /* which does mem_cgroup_uncharge_cache_page on error */
969 if (error
== -EEXIST
) {
970 struct page
*filepage
= find_get_page(mapping
, idx
);
974 * There might be a more uptodate page coming down
975 * from a stacked writepage: forget our swappage if so.
977 if (PageUptodate(filepage
))
979 page_cache_release(filepage
);
983 delete_from_swap_cache(page
);
984 set_page_dirty(page
);
985 info
->flags
|= SHMEM_PAGEIN
;
986 shmem_swp_set(info
, ptr
, 0);
988 error
= 1; /* not an error, but entry was found */
990 shmem_swp_unmap(ptr
);
991 spin_unlock(&info
->lock
);
996 * shmem_unuse() search for an eventually swapped out shmem page.
998 int shmem_unuse(swp_entry_t entry
, struct page
*page
)
1000 struct list_head
*p
, *next
;
1001 struct shmem_inode_info
*info
;
1006 * Charge page using GFP_KERNEL while we can wait, before taking
1007 * the shmem_swaplist_mutex which might hold up shmem_writepage().
1008 * Charged back to the user (not to caller) when swap account is used.
1009 * add_to_page_cache() will be called with GFP_NOWAIT.
1011 error
= mem_cgroup_cache_charge(page
, current
->mm
, GFP_KERNEL
);
1015 * Try to preload while we can wait, to not make a habit of
1016 * draining atomic reserves; but don't latch on to this cpu,
1017 * it's okay if sometimes we get rescheduled after this.
1019 error
= radix_tree_preload(GFP_KERNEL
);
1022 radix_tree_preload_end();
1024 mutex_lock(&shmem_swaplist_mutex
);
1025 list_for_each_safe(p
, next
, &shmem_swaplist
) {
1026 info
= list_entry(p
, struct shmem_inode_info
, swaplist
);
1027 found
= shmem_unuse_inode(info
, entry
, page
);
1032 mutex_unlock(&shmem_swaplist_mutex
);
1036 mem_cgroup_uncharge_cache_page(page
);
1041 page_cache_release(page
);
1046 * Move the page from the page cache to the swap cache.
1048 static int shmem_writepage(struct page
*page
, struct writeback_control
*wbc
)
1050 struct shmem_inode_info
*info
;
1051 swp_entry_t
*entry
, swap
;
1052 struct address_space
*mapping
;
1053 unsigned long index
;
1054 struct inode
*inode
;
1056 BUG_ON(!PageLocked(page
));
1057 mapping
= page
->mapping
;
1058 index
= page
->index
;
1059 inode
= mapping
->host
;
1060 info
= SHMEM_I(inode
);
1061 if (info
->flags
& VM_LOCKED
)
1063 if (!total_swap_pages
)
1067 * shmem_backing_dev_info's capabilities prevent regular writeback or
1068 * sync from ever calling shmem_writepage; but a stacking filesystem
1069 * may use the ->writepage of its underlying filesystem, in which case
1070 * tmpfs should write out to swap only in response to memory pressure,
1071 * and not for the writeback threads or sync. However, in those cases,
1072 * we do still want to check if there's a redundant swappage to be
1075 if (wbc
->for_reclaim
)
1076 swap
= get_swap_page();
1081 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1082 * if it's not already there. Do it now because we cannot take
1083 * mutex while holding spinlock, and must do so before the page
1084 * is moved to swap cache, when its pagelock no longer protects
1085 * the inode from eviction. But don't unlock the mutex until
1086 * we've taken the spinlock, because shmem_unuse_inode() will
1087 * prune a !swapped inode from the swaplist under both locks.
1090 mutex_lock(&shmem_swaplist_mutex
);
1091 if (list_empty(&info
->swaplist
))
1092 list_add_tail(&info
->swaplist
, &shmem_swaplist
);
1095 spin_lock(&info
->lock
);
1097 mutex_unlock(&shmem_swaplist_mutex
);
1099 if (index
>= info
->next_index
) {
1100 BUG_ON(!(info
->flags
& SHMEM_TRUNCATE
));
1103 entry
= shmem_swp_entry(info
, index
, NULL
);
1106 * The more uptodate page coming down from a stacked
1107 * writepage should replace our old swappage.
1109 free_swap_and_cache(*entry
);
1110 shmem_swp_set(info
, entry
, 0);
1112 shmem_recalc_inode(inode
);
1114 if (swap
.val
&& add_to_swap_cache(page
, swap
, GFP_ATOMIC
) == 0) {
1115 delete_from_page_cache(page
);
1116 shmem_swp_set(info
, entry
, swap
.val
);
1117 shmem_swp_unmap(entry
);
1118 swap_shmem_alloc(swap
);
1119 spin_unlock(&info
->lock
);
1120 BUG_ON(page_mapped(page
));
1121 swap_writepage(page
, wbc
);
1125 shmem_swp_unmap(entry
);
1127 spin_unlock(&info
->lock
);
1129 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
1130 * clear SWAP_HAS_CACHE flag.
1132 swapcache_free(swap
, NULL
);
1134 set_page_dirty(page
);
1135 if (wbc
->for_reclaim
)
1136 return AOP_WRITEPAGE_ACTIVATE
; /* Return with page locked */
1143 static void shmem_show_mpol(struct seq_file
*seq
, struct mempolicy
*mpol
)
1147 if (!mpol
|| mpol
->mode
== MPOL_DEFAULT
)
1148 return; /* show nothing */
1150 mpol_to_str(buffer
, sizeof(buffer
), mpol
, 1);
1152 seq_printf(seq
, ",mpol=%s", buffer
);
1155 static struct mempolicy
*shmem_get_sbmpol(struct shmem_sb_info
*sbinfo
)
1157 struct mempolicy
*mpol
= NULL
;
1159 spin_lock(&sbinfo
->stat_lock
); /* prevent replace/use races */
1160 mpol
= sbinfo
->mpol
;
1162 spin_unlock(&sbinfo
->stat_lock
);
1166 #endif /* CONFIG_TMPFS */
1168 static struct page
*shmem_swapin(swp_entry_t entry
, gfp_t gfp
,
1169 struct shmem_inode_info
*info
, unsigned long idx
)
1171 struct mempolicy mpol
, *spol
;
1172 struct vm_area_struct pvma
;
1175 spol
= mpol_cond_copy(&mpol
,
1176 mpol_shared_policy_lookup(&info
->policy
, idx
));
1178 /* Create a pseudo vma that just contains the policy */
1180 pvma
.vm_pgoff
= idx
;
1182 pvma
.vm_policy
= spol
;
1183 page
= swapin_readahead(entry
, gfp
, &pvma
, 0);
1187 static struct page
*shmem_alloc_page(gfp_t gfp
,
1188 struct shmem_inode_info
*info
, unsigned long idx
)
1190 struct vm_area_struct pvma
;
1192 /* Create a pseudo vma that just contains the policy */
1194 pvma
.vm_pgoff
= idx
;
1196 pvma
.vm_policy
= mpol_shared_policy_lookup(&info
->policy
, idx
);
1199 * alloc_page_vma() will drop the shared policy reference
1201 return alloc_page_vma(gfp
, &pvma
, 0);
1203 #else /* !CONFIG_NUMA */
1205 static inline void shmem_show_mpol(struct seq_file
*seq
, struct mempolicy
*p
)
1208 #endif /* CONFIG_TMPFS */
1210 static inline struct page
*shmem_swapin(swp_entry_t entry
, gfp_t gfp
,
1211 struct shmem_inode_info
*info
, unsigned long idx
)
1213 return swapin_readahead(entry
, gfp
, NULL
, 0);
1216 static inline struct page
*shmem_alloc_page(gfp_t gfp
,
1217 struct shmem_inode_info
*info
, unsigned long idx
)
1219 return alloc_page(gfp
);
1221 #endif /* CONFIG_NUMA */
1223 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
1224 static inline struct mempolicy
*shmem_get_sbmpol(struct shmem_sb_info
*sbinfo
)
1231 * shmem_getpage - either get the page from swap or allocate a new one
1233 * If we allocate a new one we do not mark it dirty. That's up to the
1234 * vm. If we swap it in we mark it dirty since we also free the swap
1235 * entry since a page cannot live in both the swap and page cache
1237 static int shmem_getpage(struct inode
*inode
, unsigned long idx
,
1238 struct page
**pagep
, enum sgp_type sgp
, int *type
)
1240 struct address_space
*mapping
= inode
->i_mapping
;
1241 struct shmem_inode_info
*info
= SHMEM_I(inode
);
1242 struct shmem_sb_info
*sbinfo
;
1243 struct page
*filepage
= *pagep
;
1244 struct page
*swappage
;
1245 struct page
*prealloc_page
= NULL
;
1251 if (idx
>= SHMEM_MAX_INDEX
)
1258 * Normally, filepage is NULL on entry, and either found
1259 * uptodate immediately, or allocated and zeroed, or read
1260 * in under swappage, which is then assigned to filepage.
1261 * But shmem_readpage (required for splice) passes in a locked
1262 * filepage, which may be found not uptodate by other callers
1263 * too, and may need to be copied from the swappage read in.
1267 filepage
= find_lock_page(mapping
, idx
);
1268 if (filepage
&& PageUptodate(filepage
))
1270 gfp
= mapping_gfp_mask(mapping
);
1273 * Try to preload while we can wait, to not make a habit of
1274 * draining atomic reserves; but don't latch on to this cpu.
1276 error
= radix_tree_preload(gfp
& ~__GFP_HIGHMEM
);
1279 radix_tree_preload_end();
1280 if (sgp
!= SGP_READ
&& !prealloc_page
) {
1281 /* We don't care if this fails */
1282 prealloc_page
= shmem_alloc_page(gfp
, info
, idx
);
1283 if (prealloc_page
) {
1284 if (mem_cgroup_cache_charge(prealloc_page
,
1285 current
->mm
, GFP_KERNEL
)) {
1286 page_cache_release(prealloc_page
);
1287 prealloc_page
= NULL
;
1294 spin_lock(&info
->lock
);
1295 shmem_recalc_inode(inode
);
1296 entry
= shmem_swp_alloc(info
, idx
, sgp
);
1297 if (IS_ERR(entry
)) {
1298 spin_unlock(&info
->lock
);
1299 error
= PTR_ERR(entry
);
1305 /* Look it up and read it in.. */
1306 swappage
= lookup_swap_cache(swap
);
1308 shmem_swp_unmap(entry
);
1309 spin_unlock(&info
->lock
);
1310 /* here we actually do the io */
1312 *type
|= VM_FAULT_MAJOR
;
1313 swappage
= shmem_swapin(swap
, gfp
, info
, idx
);
1315 spin_lock(&info
->lock
);
1316 entry
= shmem_swp_alloc(info
, idx
, sgp
);
1318 error
= PTR_ERR(entry
);
1320 if (entry
->val
== swap
.val
)
1322 shmem_swp_unmap(entry
);
1324 spin_unlock(&info
->lock
);
1329 wait_on_page_locked(swappage
);
1330 page_cache_release(swappage
);
1334 /* We have to do this with page locked to prevent races */
1335 if (!trylock_page(swappage
)) {
1336 shmem_swp_unmap(entry
);
1337 spin_unlock(&info
->lock
);
1338 wait_on_page_locked(swappage
);
1339 page_cache_release(swappage
);
1342 if (PageWriteback(swappage
)) {
1343 shmem_swp_unmap(entry
);
1344 spin_unlock(&info
->lock
);
1345 wait_on_page_writeback(swappage
);
1346 unlock_page(swappage
);
1347 page_cache_release(swappage
);
1350 if (!PageUptodate(swappage
)) {
1351 shmem_swp_unmap(entry
);
1352 spin_unlock(&info
->lock
);
1353 unlock_page(swappage
);
1354 page_cache_release(swappage
);
1360 shmem_swp_set(info
, entry
, 0);
1361 shmem_swp_unmap(entry
);
1362 delete_from_swap_cache(swappage
);
1363 spin_unlock(&info
->lock
);
1364 copy_highpage(filepage
, swappage
);
1365 unlock_page(swappage
);
1366 page_cache_release(swappage
);
1367 flush_dcache_page(filepage
);
1368 SetPageUptodate(filepage
);
1369 set_page_dirty(filepage
);
1371 } else if (!(error
= add_to_page_cache_locked(swappage
, mapping
,
1372 idx
, GFP_NOWAIT
))) {
1373 info
->flags
|= SHMEM_PAGEIN
;
1374 shmem_swp_set(info
, entry
, 0);
1375 shmem_swp_unmap(entry
);
1376 delete_from_swap_cache(swappage
);
1377 spin_unlock(&info
->lock
);
1378 filepage
= swappage
;
1379 set_page_dirty(filepage
);
1382 shmem_swp_unmap(entry
);
1383 spin_unlock(&info
->lock
);
1384 if (error
== -ENOMEM
) {
1386 * reclaim from proper memory cgroup and
1387 * call memcg's OOM if needed.
1389 error
= mem_cgroup_shmem_charge_fallback(
1394 unlock_page(swappage
);
1395 page_cache_release(swappage
);
1399 unlock_page(swappage
);
1400 page_cache_release(swappage
);
1403 } else if (sgp
== SGP_READ
&& !filepage
) {
1404 shmem_swp_unmap(entry
);
1405 filepage
= find_get_page(mapping
, idx
);
1407 (!PageUptodate(filepage
) || !trylock_page(filepage
))) {
1408 spin_unlock(&info
->lock
);
1409 wait_on_page_locked(filepage
);
1410 page_cache_release(filepage
);
1414 spin_unlock(&info
->lock
);
1416 shmem_swp_unmap(entry
);
1417 sbinfo
= SHMEM_SB(inode
->i_sb
);
1418 if (sbinfo
->max_blocks
) {
1419 if (percpu_counter_compare(&sbinfo
->used_blocks
,
1420 sbinfo
->max_blocks
) >= 0 ||
1421 shmem_acct_block(info
->flags
))
1423 percpu_counter_inc(&sbinfo
->used_blocks
);
1424 spin_lock(&inode
->i_lock
);
1425 inode
->i_blocks
+= BLOCKS_PER_PAGE
;
1426 spin_unlock(&inode
->i_lock
);
1427 } else if (shmem_acct_block(info
->flags
))
1433 if (!prealloc_page
) {
1434 spin_unlock(&info
->lock
);
1435 filepage
= shmem_alloc_page(gfp
, info
, idx
);
1437 shmem_unacct_blocks(info
->flags
, 1);
1438 shmem_free_blocks(inode
, 1);
1442 SetPageSwapBacked(filepage
);
1445 * Precharge page while we can wait, compensate
1448 error
= mem_cgroup_cache_charge(filepage
,
1449 current
->mm
, GFP_KERNEL
);
1451 page_cache_release(filepage
);
1452 shmem_unacct_blocks(info
->flags
, 1);
1453 shmem_free_blocks(inode
, 1);
1458 spin_lock(&info
->lock
);
1460 filepage
= prealloc_page
;
1461 prealloc_page
= NULL
;
1462 SetPageSwapBacked(filepage
);
1465 entry
= shmem_swp_alloc(info
, idx
, sgp
);
1467 error
= PTR_ERR(entry
);
1470 shmem_swp_unmap(entry
);
1472 ret
= error
|| swap
.val
;
1474 mem_cgroup_uncharge_cache_page(filepage
);
1476 ret
= add_to_page_cache_lru(filepage
, mapping
,
1479 * At add_to_page_cache_lru() failure, uncharge will
1480 * be done automatically.
1483 spin_unlock(&info
->lock
);
1484 page_cache_release(filepage
);
1485 shmem_unacct_blocks(info
->flags
, 1);
1486 shmem_free_blocks(inode
, 1);
1492 info
->flags
|= SHMEM_PAGEIN
;
1496 spin_unlock(&info
->lock
);
1497 clear_highpage(filepage
);
1498 flush_dcache_page(filepage
);
1499 SetPageUptodate(filepage
);
1500 if (sgp
== SGP_DIRTY
)
1501 set_page_dirty(filepage
);
1510 * Perhaps the page was brought in from swap between find_lock_page
1511 * and taking info->lock? We allow for that at add_to_page_cache_lru,
1512 * but must also avoid reporting a spurious ENOSPC while working on a
1513 * full tmpfs. (When filepage has been passed in to shmem_getpage, it
1514 * is already in page cache, which prevents this race from occurring.)
1517 struct page
*page
= find_get_page(mapping
, idx
);
1519 spin_unlock(&info
->lock
);
1520 page_cache_release(page
);
1524 spin_unlock(&info
->lock
);
1527 if (*pagep
!= filepage
) {
1528 unlock_page(filepage
);
1529 page_cache_release(filepage
);
1532 if (prealloc_page
) {
1533 mem_cgroup_uncharge_cache_page(prealloc_page
);
1534 page_cache_release(prealloc_page
);
1539 static int shmem_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
1541 struct inode
*inode
= vma
->vm_file
->f_path
.dentry
->d_inode
;
1545 if (((loff_t
)vmf
->pgoff
<< PAGE_CACHE_SHIFT
) >= i_size_read(inode
))
1546 return VM_FAULT_SIGBUS
;
1548 error
= shmem_getpage(inode
, vmf
->pgoff
, &vmf
->page
, SGP_CACHE
, &ret
);
1550 return ((error
== -ENOMEM
) ? VM_FAULT_OOM
: VM_FAULT_SIGBUS
);
1551 if (ret
& VM_FAULT_MAJOR
) {
1552 count_vm_event(PGMAJFAULT
);
1553 mem_cgroup_count_vm_event(vma
->vm_mm
, PGMAJFAULT
);
1555 return ret
| VM_FAULT_LOCKED
;
1559 static int shmem_set_policy(struct vm_area_struct
*vma
, struct mempolicy
*new)
1561 struct inode
*i
= vma
->vm_file
->f_path
.dentry
->d_inode
;
1562 return mpol_set_shared_policy(&SHMEM_I(i
)->policy
, vma
, new);
1565 static struct mempolicy
*shmem_get_policy(struct vm_area_struct
*vma
,
1568 struct inode
*i
= vma
->vm_file
->f_path
.dentry
->d_inode
;
1571 idx
= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
) + vma
->vm_pgoff
;
1572 return mpol_shared_policy_lookup(&SHMEM_I(i
)->policy
, idx
);
1576 int shmem_lock(struct file
*file
, int lock
, struct user_struct
*user
)
1578 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
1579 struct shmem_inode_info
*info
= SHMEM_I(inode
);
1580 int retval
= -ENOMEM
;
1582 spin_lock(&info
->lock
);
1583 if (lock
&& !(info
->flags
& VM_LOCKED
)) {
1584 if (!user_shm_lock(inode
->i_size
, user
))
1586 info
->flags
|= VM_LOCKED
;
1587 mapping_set_unevictable(file
->f_mapping
);
1589 if (!lock
&& (info
->flags
& VM_LOCKED
) && user
) {
1590 user_shm_unlock(inode
->i_size
, user
);
1591 info
->flags
&= ~VM_LOCKED
;
1592 mapping_clear_unevictable(file
->f_mapping
);
1593 scan_mapping_unevictable_pages(file
->f_mapping
);
1598 spin_unlock(&info
->lock
);
1602 static int shmem_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1604 file_accessed(file
);
1605 vma
->vm_ops
= &shmem_vm_ops
;
1606 vma
->vm_flags
|= VM_CAN_NONLINEAR
;
1610 static struct inode
*shmem_get_inode(struct super_block
*sb
, const struct inode
*dir
,
1611 int mode
, dev_t dev
, unsigned long flags
)
1613 struct inode
*inode
;
1614 struct shmem_inode_info
*info
;
1615 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
1617 if (shmem_reserve_inode(sb
))
1620 inode
= new_inode(sb
);
1622 inode
->i_ino
= get_next_ino();
1623 inode_init_owner(inode
, dir
, mode
);
1624 inode
->i_blocks
= 0;
1625 inode
->i_mapping
->backing_dev_info
= &shmem_backing_dev_info
;
1626 inode
->i_atime
= inode
->i_mtime
= inode
->i_ctime
= CURRENT_TIME
;
1627 inode
->i_generation
= get_seconds();
1628 info
= SHMEM_I(inode
);
1629 memset(info
, 0, (char *)inode
- (char *)info
);
1630 spin_lock_init(&info
->lock
);
1631 info
->flags
= flags
& VM_NORESERVE
;
1632 INIT_LIST_HEAD(&info
->swaplist
);
1633 INIT_LIST_HEAD(&info
->xattr_list
);
1634 cache_no_acl(inode
);
1636 switch (mode
& S_IFMT
) {
1638 inode
->i_op
= &shmem_special_inode_operations
;
1639 init_special_inode(inode
, mode
, dev
);
1642 inode
->i_mapping
->a_ops
= &shmem_aops
;
1643 inode
->i_op
= &shmem_inode_operations
;
1644 inode
->i_fop
= &shmem_file_operations
;
1645 mpol_shared_policy_init(&info
->policy
,
1646 shmem_get_sbmpol(sbinfo
));
1650 /* Some things misbehave if size == 0 on a directory */
1651 inode
->i_size
= 2 * BOGO_DIRENT_SIZE
;
1652 inode
->i_op
= &shmem_dir_inode_operations
;
1653 inode
->i_fop
= &simple_dir_operations
;
1657 * Must not load anything in the rbtree,
1658 * mpol_free_shared_policy will not be called.
1660 mpol_shared_policy_init(&info
->policy
, NULL
);
1664 shmem_free_inode(sb
);
1669 static const struct inode_operations shmem_symlink_inode_operations
;
1670 static const struct inode_operations shmem_symlink_inline_operations
;
1673 * Normally tmpfs avoids the use of shmem_readpage and shmem_write_begin;
1674 * but providing them allows a tmpfs file to be used for splice, sendfile, and
1675 * below the loop driver, in the generic fashion that many filesystems support.
1677 static int shmem_readpage(struct file
*file
, struct page
*page
)
1679 struct inode
*inode
= page
->mapping
->host
;
1680 int error
= shmem_getpage(inode
, page
->index
, &page
, SGP_CACHE
, NULL
);
1686 shmem_write_begin(struct file
*file
, struct address_space
*mapping
,
1687 loff_t pos
, unsigned len
, unsigned flags
,
1688 struct page
**pagep
, void **fsdata
)
1690 struct inode
*inode
= mapping
->host
;
1691 pgoff_t index
= pos
>> PAGE_CACHE_SHIFT
;
1693 return shmem_getpage(inode
, index
, pagep
, SGP_WRITE
, NULL
);
1697 shmem_write_end(struct file
*file
, struct address_space
*mapping
,
1698 loff_t pos
, unsigned len
, unsigned copied
,
1699 struct page
*page
, void *fsdata
)
1701 struct inode
*inode
= mapping
->host
;
1703 if (pos
+ copied
> inode
->i_size
)
1704 i_size_write(inode
, pos
+ copied
);
1706 set_page_dirty(page
);
1708 page_cache_release(page
);
1713 static void do_shmem_file_read(struct file
*filp
, loff_t
*ppos
, read_descriptor_t
*desc
, read_actor_t actor
)
1715 struct inode
*inode
= filp
->f_path
.dentry
->d_inode
;
1716 struct address_space
*mapping
= inode
->i_mapping
;
1717 unsigned long index
, offset
;
1718 enum sgp_type sgp
= SGP_READ
;
1721 * Might this read be for a stacking filesystem? Then when reading
1722 * holes of a sparse file, we actually need to allocate those pages,
1723 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1725 if (segment_eq(get_fs(), KERNEL_DS
))
1728 index
= *ppos
>> PAGE_CACHE_SHIFT
;
1729 offset
= *ppos
& ~PAGE_CACHE_MASK
;
1732 struct page
*page
= NULL
;
1733 unsigned long end_index
, nr
, ret
;
1734 loff_t i_size
= i_size_read(inode
);
1736 end_index
= i_size
>> PAGE_CACHE_SHIFT
;
1737 if (index
> end_index
)
1739 if (index
== end_index
) {
1740 nr
= i_size
& ~PAGE_CACHE_MASK
;
1745 desc
->error
= shmem_getpage(inode
, index
, &page
, sgp
, NULL
);
1747 if (desc
->error
== -EINVAL
)
1755 * We must evaluate after, since reads (unlike writes)
1756 * are called without i_mutex protection against truncate
1758 nr
= PAGE_CACHE_SIZE
;
1759 i_size
= i_size_read(inode
);
1760 end_index
= i_size
>> PAGE_CACHE_SHIFT
;
1761 if (index
== end_index
) {
1762 nr
= i_size
& ~PAGE_CACHE_MASK
;
1765 page_cache_release(page
);
1773 * If users can be writing to this page using arbitrary
1774 * virtual addresses, take care about potential aliasing
1775 * before reading the page on the kernel side.
1777 if (mapping_writably_mapped(mapping
))
1778 flush_dcache_page(page
);
1780 * Mark the page accessed if we read the beginning.
1783 mark_page_accessed(page
);
1785 page
= ZERO_PAGE(0);
1786 page_cache_get(page
);
1790 * Ok, we have the page, and it's up-to-date, so
1791 * now we can copy it to user space...
1793 * The actor routine returns how many bytes were actually used..
1794 * NOTE! This may not be the same as how much of a user buffer
1795 * we filled up (we may be padding etc), so we can only update
1796 * "pos" here (the actor routine has to update the user buffer
1797 * pointers and the remaining count).
1799 ret
= actor(desc
, page
, offset
, nr
);
1801 index
+= offset
>> PAGE_CACHE_SHIFT
;
1802 offset
&= ~PAGE_CACHE_MASK
;
1804 page_cache_release(page
);
1805 if (ret
!= nr
|| !desc
->count
)
1811 *ppos
= ((loff_t
) index
<< PAGE_CACHE_SHIFT
) + offset
;
1812 file_accessed(filp
);
1815 static ssize_t
shmem_file_aio_read(struct kiocb
*iocb
,
1816 const struct iovec
*iov
, unsigned long nr_segs
, loff_t pos
)
1818 struct file
*filp
= iocb
->ki_filp
;
1822 loff_t
*ppos
= &iocb
->ki_pos
;
1824 retval
= generic_segment_checks(iov
, &nr_segs
, &count
, VERIFY_WRITE
);
1828 for (seg
= 0; seg
< nr_segs
; seg
++) {
1829 read_descriptor_t desc
;
1832 desc
.arg
.buf
= iov
[seg
].iov_base
;
1833 desc
.count
= iov
[seg
].iov_len
;
1834 if (desc
.count
== 0)
1837 do_shmem_file_read(filp
, ppos
, &desc
, file_read_actor
);
1838 retval
+= desc
.written
;
1840 retval
= retval
?: desc
.error
;
1849 static int shmem_statfs(struct dentry
*dentry
, struct kstatfs
*buf
)
1851 struct shmem_sb_info
*sbinfo
= SHMEM_SB(dentry
->d_sb
);
1853 buf
->f_type
= TMPFS_MAGIC
;
1854 buf
->f_bsize
= PAGE_CACHE_SIZE
;
1855 buf
->f_namelen
= NAME_MAX
;
1856 if (sbinfo
->max_blocks
) {
1857 buf
->f_blocks
= sbinfo
->max_blocks
;
1858 buf
->f_bavail
= buf
->f_bfree
=
1859 sbinfo
->max_blocks
- percpu_counter_sum(&sbinfo
->used_blocks
);
1861 if (sbinfo
->max_inodes
) {
1862 buf
->f_files
= sbinfo
->max_inodes
;
1863 buf
->f_ffree
= sbinfo
->free_inodes
;
1865 /* else leave those fields 0 like simple_statfs */
1870 * File creation. Allocate an inode, and we're done..
1873 shmem_mknod(struct inode
*dir
, struct dentry
*dentry
, int mode
, dev_t dev
)
1875 struct inode
*inode
;
1876 int error
= -ENOSPC
;
1878 inode
= shmem_get_inode(dir
->i_sb
, dir
, mode
, dev
, VM_NORESERVE
);
1880 error
= security_inode_init_security(inode
, dir
,
1881 &dentry
->d_name
, NULL
,
1884 if (error
!= -EOPNOTSUPP
) {
1889 #ifdef CONFIG_TMPFS_POSIX_ACL
1890 error
= generic_acl_init(inode
, dir
);
1898 dir
->i_size
+= BOGO_DIRENT_SIZE
;
1899 dir
->i_ctime
= dir
->i_mtime
= CURRENT_TIME
;
1900 d_instantiate(dentry
, inode
);
1901 dget(dentry
); /* Extra count - pin the dentry in core */
1906 static int shmem_mkdir(struct inode
*dir
, struct dentry
*dentry
, int mode
)
1910 if ((error
= shmem_mknod(dir
, dentry
, mode
| S_IFDIR
, 0)))
1916 static int shmem_create(struct inode
*dir
, struct dentry
*dentry
, int mode
,
1917 struct nameidata
*nd
)
1919 return shmem_mknod(dir
, dentry
, mode
| S_IFREG
, 0);
1925 static int shmem_link(struct dentry
*old_dentry
, struct inode
*dir
, struct dentry
*dentry
)
1927 struct inode
*inode
= old_dentry
->d_inode
;
1931 * No ordinary (disk based) filesystem counts links as inodes;
1932 * but each new link needs a new dentry, pinning lowmem, and
1933 * tmpfs dentries cannot be pruned until they are unlinked.
1935 ret
= shmem_reserve_inode(inode
->i_sb
);
1939 dir
->i_size
+= BOGO_DIRENT_SIZE
;
1940 inode
->i_ctime
= dir
->i_ctime
= dir
->i_mtime
= CURRENT_TIME
;
1942 ihold(inode
); /* New dentry reference */
1943 dget(dentry
); /* Extra pinning count for the created dentry */
1944 d_instantiate(dentry
, inode
);
1949 static int shmem_unlink(struct inode
*dir
, struct dentry
*dentry
)
1951 struct inode
*inode
= dentry
->d_inode
;
1953 if (inode
->i_nlink
> 1 && !S_ISDIR(inode
->i_mode
))
1954 shmem_free_inode(inode
->i_sb
);
1956 dir
->i_size
-= BOGO_DIRENT_SIZE
;
1957 inode
->i_ctime
= dir
->i_ctime
= dir
->i_mtime
= CURRENT_TIME
;
1959 dput(dentry
); /* Undo the count from "create" - this does all the work */
1963 static int shmem_rmdir(struct inode
*dir
, struct dentry
*dentry
)
1965 if (!simple_empty(dentry
))
1968 drop_nlink(dentry
->d_inode
);
1970 return shmem_unlink(dir
, dentry
);
1974 * The VFS layer already does all the dentry stuff for rename,
1975 * we just have to decrement the usage count for the target if
1976 * it exists so that the VFS layer correctly free's it when it
1979 static int shmem_rename(struct inode
*old_dir
, struct dentry
*old_dentry
, struct inode
*new_dir
, struct dentry
*new_dentry
)
1981 struct inode
*inode
= old_dentry
->d_inode
;
1982 int they_are_dirs
= S_ISDIR(inode
->i_mode
);
1984 if (!simple_empty(new_dentry
))
1987 if (new_dentry
->d_inode
) {
1988 (void) shmem_unlink(new_dir
, new_dentry
);
1990 drop_nlink(old_dir
);
1991 } else if (they_are_dirs
) {
1992 drop_nlink(old_dir
);
1996 old_dir
->i_size
-= BOGO_DIRENT_SIZE
;
1997 new_dir
->i_size
+= BOGO_DIRENT_SIZE
;
1998 old_dir
->i_ctime
= old_dir
->i_mtime
=
1999 new_dir
->i_ctime
= new_dir
->i_mtime
=
2000 inode
->i_ctime
= CURRENT_TIME
;
2004 static int shmem_symlink(struct inode
*dir
, struct dentry
*dentry
, const char *symname
)
2008 struct inode
*inode
;
2009 struct page
*page
= NULL
;
2011 struct shmem_inode_info
*info
;
2013 len
= strlen(symname
) + 1;
2014 if (len
> PAGE_CACHE_SIZE
)
2015 return -ENAMETOOLONG
;
2017 inode
= shmem_get_inode(dir
->i_sb
, dir
, S_IFLNK
|S_IRWXUGO
, 0, VM_NORESERVE
);
2021 error
= security_inode_init_security(inode
, dir
, &dentry
->d_name
, NULL
,
2024 if (error
!= -EOPNOTSUPP
) {
2031 info
= SHMEM_I(inode
);
2032 inode
->i_size
= len
-1;
2033 if (len
<= SHMEM_SYMLINK_INLINE_LEN
) {
2035 memcpy(info
->inline_symlink
, symname
, len
);
2036 inode
->i_op
= &shmem_symlink_inline_operations
;
2038 error
= shmem_getpage(inode
, 0, &page
, SGP_WRITE
, NULL
);
2043 inode
->i_mapping
->a_ops
= &shmem_aops
;
2044 inode
->i_op
= &shmem_symlink_inode_operations
;
2045 kaddr
= kmap_atomic(page
, KM_USER0
);
2046 memcpy(kaddr
, symname
, len
);
2047 kunmap_atomic(kaddr
, KM_USER0
);
2048 set_page_dirty(page
);
2050 page_cache_release(page
);
2052 dir
->i_size
+= BOGO_DIRENT_SIZE
;
2053 dir
->i_ctime
= dir
->i_mtime
= CURRENT_TIME
;
2054 d_instantiate(dentry
, inode
);
2059 static void *shmem_follow_link_inline(struct dentry
*dentry
, struct nameidata
*nd
)
2061 nd_set_link(nd
, SHMEM_I(dentry
->d_inode
)->inline_symlink
);
2065 static void *shmem_follow_link(struct dentry
*dentry
, struct nameidata
*nd
)
2067 struct page
*page
= NULL
;
2068 int res
= shmem_getpage(dentry
->d_inode
, 0, &page
, SGP_READ
, NULL
);
2069 nd_set_link(nd
, res
? ERR_PTR(res
) : kmap(page
));
2075 static void shmem_put_link(struct dentry
*dentry
, struct nameidata
*nd
, void *cookie
)
2077 if (!IS_ERR(nd_get_link(nd
))) {
2078 struct page
*page
= cookie
;
2080 mark_page_accessed(page
);
2081 page_cache_release(page
);
2085 #ifdef CONFIG_TMPFS_XATTR
2087 * Superblocks without xattr inode operations may get some security.* xattr
2088 * support from the LSM "for free". As soon as we have any other xattrs
2089 * like ACLs, we also need to implement the security.* handlers at
2090 * filesystem level, though.
2093 static int shmem_xattr_get(struct dentry
*dentry
, const char *name
,
2094 void *buffer
, size_t size
)
2096 struct shmem_inode_info
*info
;
2097 struct shmem_xattr
*xattr
;
2100 info
= SHMEM_I(dentry
->d_inode
);
2102 spin_lock(&info
->lock
);
2103 list_for_each_entry(xattr
, &info
->xattr_list
, list
) {
2104 if (strcmp(name
, xattr
->name
))
2109 if (size
< xattr
->size
)
2112 memcpy(buffer
, xattr
->value
, xattr
->size
);
2116 spin_unlock(&info
->lock
);
2120 static int shmem_xattr_set(struct dentry
*dentry
, const char *name
,
2121 const void *value
, size_t size
, int flags
)
2123 struct inode
*inode
= dentry
->d_inode
;
2124 struct shmem_inode_info
*info
= SHMEM_I(inode
);
2125 struct shmem_xattr
*xattr
;
2126 struct shmem_xattr
*new_xattr
= NULL
;
2130 /* value == NULL means remove */
2133 len
= sizeof(*new_xattr
) + size
;
2134 if (len
<= sizeof(*new_xattr
))
2137 new_xattr
= kmalloc(len
, GFP_KERNEL
);
2141 new_xattr
->name
= kstrdup(name
, GFP_KERNEL
);
2142 if (!new_xattr
->name
) {
2147 new_xattr
->size
= size
;
2148 memcpy(new_xattr
->value
, value
, size
);
2151 spin_lock(&info
->lock
);
2152 list_for_each_entry(xattr
, &info
->xattr_list
, list
) {
2153 if (!strcmp(name
, xattr
->name
)) {
2154 if (flags
& XATTR_CREATE
) {
2157 } else if (new_xattr
) {
2158 list_replace(&xattr
->list
, &new_xattr
->list
);
2160 list_del(&xattr
->list
);
2165 if (flags
& XATTR_REPLACE
) {
2169 list_add(&new_xattr
->list
, &info
->xattr_list
);
2173 spin_unlock(&info
->lock
);
2181 static const struct xattr_handler
*shmem_xattr_handlers
[] = {
2182 #ifdef CONFIG_TMPFS_POSIX_ACL
2183 &generic_acl_access_handler
,
2184 &generic_acl_default_handler
,
2189 static int shmem_xattr_validate(const char *name
)
2191 struct { const char *prefix
; size_t len
; } arr
[] = {
2192 { XATTR_SECURITY_PREFIX
, XATTR_SECURITY_PREFIX_LEN
},
2193 { XATTR_TRUSTED_PREFIX
, XATTR_TRUSTED_PREFIX_LEN
}
2197 for (i
= 0; i
< ARRAY_SIZE(arr
); i
++) {
2198 size_t preflen
= arr
[i
].len
;
2199 if (strncmp(name
, arr
[i
].prefix
, preflen
) == 0) {
2208 static ssize_t
shmem_getxattr(struct dentry
*dentry
, const char *name
,
2209 void *buffer
, size_t size
)
2214 * If this is a request for a synthetic attribute in the system.*
2215 * namespace use the generic infrastructure to resolve a handler
2216 * for it via sb->s_xattr.
2218 if (!strncmp(name
, XATTR_SYSTEM_PREFIX
, XATTR_SYSTEM_PREFIX_LEN
))
2219 return generic_getxattr(dentry
, name
, buffer
, size
);
2221 err
= shmem_xattr_validate(name
);
2225 return shmem_xattr_get(dentry
, name
, buffer
, size
);
2228 static int shmem_setxattr(struct dentry
*dentry
, const char *name
,
2229 const void *value
, size_t size
, int flags
)
2234 * If this is a request for a synthetic attribute in the system.*
2235 * namespace use the generic infrastructure to resolve a handler
2236 * for it via sb->s_xattr.
2238 if (!strncmp(name
, XATTR_SYSTEM_PREFIX
, XATTR_SYSTEM_PREFIX_LEN
))
2239 return generic_setxattr(dentry
, name
, value
, size
, flags
);
2241 err
= shmem_xattr_validate(name
);
2246 value
= ""; /* empty EA, do not remove */
2248 return shmem_xattr_set(dentry
, name
, value
, size
, flags
);
2252 static int shmem_removexattr(struct dentry
*dentry
, const char *name
)
2257 * If this is a request for a synthetic attribute in the system.*
2258 * namespace use the generic infrastructure to resolve a handler
2259 * for it via sb->s_xattr.
2261 if (!strncmp(name
, XATTR_SYSTEM_PREFIX
, XATTR_SYSTEM_PREFIX_LEN
))
2262 return generic_removexattr(dentry
, name
);
2264 err
= shmem_xattr_validate(name
);
2268 return shmem_xattr_set(dentry
, name
, NULL
, 0, XATTR_REPLACE
);
2271 static bool xattr_is_trusted(const char *name
)
2273 return !strncmp(name
, XATTR_TRUSTED_PREFIX
, XATTR_TRUSTED_PREFIX_LEN
);
2276 static ssize_t
shmem_listxattr(struct dentry
*dentry
, char *buffer
, size_t size
)
2278 bool trusted
= capable(CAP_SYS_ADMIN
);
2279 struct shmem_xattr
*xattr
;
2280 struct shmem_inode_info
*info
;
2283 info
= SHMEM_I(dentry
->d_inode
);
2285 spin_lock(&info
->lock
);
2286 list_for_each_entry(xattr
, &info
->xattr_list
, list
) {
2289 /* skip "trusted." attributes for unprivileged callers */
2290 if (!trusted
&& xattr_is_trusted(xattr
->name
))
2293 len
= strlen(xattr
->name
) + 1;
2300 memcpy(buffer
, xattr
->name
, len
);
2304 spin_unlock(&info
->lock
);
2308 #endif /* CONFIG_TMPFS_XATTR */
2310 static const struct inode_operations shmem_symlink_inline_operations
= {
2311 .readlink
= generic_readlink
,
2312 .follow_link
= shmem_follow_link_inline
,
2313 #ifdef CONFIG_TMPFS_XATTR
2314 .setxattr
= shmem_setxattr
,
2315 .getxattr
= shmem_getxattr
,
2316 .listxattr
= shmem_listxattr
,
2317 .removexattr
= shmem_removexattr
,
2321 static const struct inode_operations shmem_symlink_inode_operations
= {
2322 .readlink
= generic_readlink
,
2323 .follow_link
= shmem_follow_link
,
2324 .put_link
= shmem_put_link
,
2325 #ifdef CONFIG_TMPFS_XATTR
2326 .setxattr
= shmem_setxattr
,
2327 .getxattr
= shmem_getxattr
,
2328 .listxattr
= shmem_listxattr
,
2329 .removexattr
= shmem_removexattr
,
2333 static struct dentry
*shmem_get_parent(struct dentry
*child
)
2335 return ERR_PTR(-ESTALE
);
2338 static int shmem_match(struct inode
*ino
, void *vfh
)
2342 inum
= (inum
<< 32) | fh
[1];
2343 return ino
->i_ino
== inum
&& fh
[0] == ino
->i_generation
;
2346 static struct dentry
*shmem_fh_to_dentry(struct super_block
*sb
,
2347 struct fid
*fid
, int fh_len
, int fh_type
)
2349 struct inode
*inode
;
2350 struct dentry
*dentry
= NULL
;
2351 u64 inum
= fid
->raw
[2];
2352 inum
= (inum
<< 32) | fid
->raw
[1];
2357 inode
= ilookup5(sb
, (unsigned long)(inum
+ fid
->raw
[0]),
2358 shmem_match
, fid
->raw
);
2360 dentry
= d_find_alias(inode
);
2367 static int shmem_encode_fh(struct dentry
*dentry
, __u32
*fh
, int *len
,
2370 struct inode
*inode
= dentry
->d_inode
;
2377 if (inode_unhashed(inode
)) {
2378 /* Unfortunately insert_inode_hash is not idempotent,
2379 * so as we hash inodes here rather than at creation
2380 * time, we need a lock to ensure we only try
2383 static DEFINE_SPINLOCK(lock
);
2385 if (inode_unhashed(inode
))
2386 __insert_inode_hash(inode
,
2387 inode
->i_ino
+ inode
->i_generation
);
2391 fh
[0] = inode
->i_generation
;
2392 fh
[1] = inode
->i_ino
;
2393 fh
[2] = ((__u64
)inode
->i_ino
) >> 32;
2399 static const struct export_operations shmem_export_ops
= {
2400 .get_parent
= shmem_get_parent
,
2401 .encode_fh
= shmem_encode_fh
,
2402 .fh_to_dentry
= shmem_fh_to_dentry
,
2405 static int shmem_parse_options(char *options
, struct shmem_sb_info
*sbinfo
,
2408 char *this_char
, *value
, *rest
;
2410 while (options
!= NULL
) {
2411 this_char
= options
;
2414 * NUL-terminate this option: unfortunately,
2415 * mount options form a comma-separated list,
2416 * but mpol's nodelist may also contain commas.
2418 options
= strchr(options
, ',');
2419 if (options
== NULL
)
2422 if (!isdigit(*options
)) {
2429 if ((value
= strchr(this_char
,'=')) != NULL
) {
2433 "tmpfs: No value for mount option '%s'\n",
2438 if (!strcmp(this_char
,"size")) {
2439 unsigned long long size
;
2440 size
= memparse(value
,&rest
);
2442 size
<<= PAGE_SHIFT
;
2443 size
*= totalram_pages
;
2449 sbinfo
->max_blocks
=
2450 DIV_ROUND_UP(size
, PAGE_CACHE_SIZE
);
2451 } else if (!strcmp(this_char
,"nr_blocks")) {
2452 sbinfo
->max_blocks
= memparse(value
, &rest
);
2455 } else if (!strcmp(this_char
,"nr_inodes")) {
2456 sbinfo
->max_inodes
= memparse(value
, &rest
);
2459 } else if (!strcmp(this_char
,"mode")) {
2462 sbinfo
->mode
= simple_strtoul(value
, &rest
, 8) & 07777;
2465 } else if (!strcmp(this_char
,"uid")) {
2468 sbinfo
->uid
= simple_strtoul(value
, &rest
, 0);
2471 } else if (!strcmp(this_char
,"gid")) {
2474 sbinfo
->gid
= simple_strtoul(value
, &rest
, 0);
2477 } else if (!strcmp(this_char
,"mpol")) {
2478 if (mpol_parse_str(value
, &sbinfo
->mpol
, 1))
2481 printk(KERN_ERR
"tmpfs: Bad mount option %s\n",
2489 printk(KERN_ERR
"tmpfs: Bad value '%s' for mount option '%s'\n",
2495 static int shmem_remount_fs(struct super_block
*sb
, int *flags
, char *data
)
2497 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
2498 struct shmem_sb_info config
= *sbinfo
;
2499 unsigned long inodes
;
2500 int error
= -EINVAL
;
2502 if (shmem_parse_options(data
, &config
, true))
2505 spin_lock(&sbinfo
->stat_lock
);
2506 inodes
= sbinfo
->max_inodes
- sbinfo
->free_inodes
;
2507 if (percpu_counter_compare(&sbinfo
->used_blocks
, config
.max_blocks
) > 0)
2509 if (config
.max_inodes
< inodes
)
2512 * Those tests also disallow limited->unlimited while any are in
2513 * use, so i_blocks will always be zero when max_blocks is zero;
2514 * but we must separately disallow unlimited->limited, because
2515 * in that case we have no record of how much is already in use.
2517 if (config
.max_blocks
&& !sbinfo
->max_blocks
)
2519 if (config
.max_inodes
&& !sbinfo
->max_inodes
)
2523 sbinfo
->max_blocks
= config
.max_blocks
;
2524 sbinfo
->max_inodes
= config
.max_inodes
;
2525 sbinfo
->free_inodes
= config
.max_inodes
- inodes
;
2527 mpol_put(sbinfo
->mpol
);
2528 sbinfo
->mpol
= config
.mpol
; /* transfers initial ref */
2530 spin_unlock(&sbinfo
->stat_lock
);
2534 static int shmem_show_options(struct seq_file
*seq
, struct vfsmount
*vfs
)
2536 struct shmem_sb_info
*sbinfo
= SHMEM_SB(vfs
->mnt_sb
);
2538 if (sbinfo
->max_blocks
!= shmem_default_max_blocks())
2539 seq_printf(seq
, ",size=%luk",
2540 sbinfo
->max_blocks
<< (PAGE_CACHE_SHIFT
- 10));
2541 if (sbinfo
->max_inodes
!= shmem_default_max_inodes())
2542 seq_printf(seq
, ",nr_inodes=%lu", sbinfo
->max_inodes
);
2543 if (sbinfo
->mode
!= (S_IRWXUGO
| S_ISVTX
))
2544 seq_printf(seq
, ",mode=%03o", sbinfo
->mode
);
2545 if (sbinfo
->uid
!= 0)
2546 seq_printf(seq
, ",uid=%u", sbinfo
->uid
);
2547 if (sbinfo
->gid
!= 0)
2548 seq_printf(seq
, ",gid=%u", sbinfo
->gid
);
2549 shmem_show_mpol(seq
, sbinfo
->mpol
);
2552 #endif /* CONFIG_TMPFS */
2554 static void shmem_put_super(struct super_block
*sb
)
2556 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
2558 percpu_counter_destroy(&sbinfo
->used_blocks
);
2560 sb
->s_fs_info
= NULL
;
2563 int shmem_fill_super(struct super_block
*sb
, void *data
, int silent
)
2565 struct inode
*inode
;
2566 struct dentry
*root
;
2567 struct shmem_sb_info
*sbinfo
;
2570 /* Round up to L1_CACHE_BYTES to resist false sharing */
2571 sbinfo
= kzalloc(max((int)sizeof(struct shmem_sb_info
),
2572 L1_CACHE_BYTES
), GFP_KERNEL
);
2576 sbinfo
->mode
= S_IRWXUGO
| S_ISVTX
;
2577 sbinfo
->uid
= current_fsuid();
2578 sbinfo
->gid
= current_fsgid();
2579 sb
->s_fs_info
= sbinfo
;
2583 * Per default we only allow half of the physical ram per
2584 * tmpfs instance, limiting inodes to one per page of lowmem;
2585 * but the internal instance is left unlimited.
2587 if (!(sb
->s_flags
& MS_NOUSER
)) {
2588 sbinfo
->max_blocks
= shmem_default_max_blocks();
2589 sbinfo
->max_inodes
= shmem_default_max_inodes();
2590 if (shmem_parse_options(data
, sbinfo
, false)) {
2595 sb
->s_export_op
= &shmem_export_ops
;
2597 sb
->s_flags
|= MS_NOUSER
;
2600 spin_lock_init(&sbinfo
->stat_lock
);
2601 if (percpu_counter_init(&sbinfo
->used_blocks
, 0))
2603 sbinfo
->free_inodes
= sbinfo
->max_inodes
;
2605 sb
->s_maxbytes
= SHMEM_MAX_BYTES
;
2606 sb
->s_blocksize
= PAGE_CACHE_SIZE
;
2607 sb
->s_blocksize_bits
= PAGE_CACHE_SHIFT
;
2608 sb
->s_magic
= TMPFS_MAGIC
;
2609 sb
->s_op
= &shmem_ops
;
2610 sb
->s_time_gran
= 1;
2611 #ifdef CONFIG_TMPFS_XATTR
2612 sb
->s_xattr
= shmem_xattr_handlers
;
2614 #ifdef CONFIG_TMPFS_POSIX_ACL
2615 sb
->s_flags
|= MS_POSIXACL
;
2618 inode
= shmem_get_inode(sb
, NULL
, S_IFDIR
| sbinfo
->mode
, 0, VM_NORESERVE
);
2621 inode
->i_uid
= sbinfo
->uid
;
2622 inode
->i_gid
= sbinfo
->gid
;
2623 root
= d_alloc_root(inode
);
2632 shmem_put_super(sb
);
2636 static struct kmem_cache
*shmem_inode_cachep
;
2638 static struct inode
*shmem_alloc_inode(struct super_block
*sb
)
2640 struct shmem_inode_info
*p
;
2641 p
= (struct shmem_inode_info
*)kmem_cache_alloc(shmem_inode_cachep
, GFP_KERNEL
);
2644 return &p
->vfs_inode
;
2647 static void shmem_i_callback(struct rcu_head
*head
)
2649 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
2650 INIT_LIST_HEAD(&inode
->i_dentry
);
2651 kmem_cache_free(shmem_inode_cachep
, SHMEM_I(inode
));
2654 static void shmem_destroy_inode(struct inode
*inode
)
2656 if ((inode
->i_mode
& S_IFMT
) == S_IFREG
) {
2657 /* only struct inode is valid if it's an inline symlink */
2658 mpol_free_shared_policy(&SHMEM_I(inode
)->policy
);
2660 call_rcu(&inode
->i_rcu
, shmem_i_callback
);
2663 static void init_once(void *foo
)
2665 struct shmem_inode_info
*p
= (struct shmem_inode_info
*) foo
;
2667 inode_init_once(&p
->vfs_inode
);
2670 static int init_inodecache(void)
2672 shmem_inode_cachep
= kmem_cache_create("shmem_inode_cache",
2673 sizeof(struct shmem_inode_info
),
2674 0, SLAB_PANIC
, init_once
);
2678 static void destroy_inodecache(void)
2680 kmem_cache_destroy(shmem_inode_cachep
);
2683 static const struct address_space_operations shmem_aops
= {
2684 .writepage
= shmem_writepage
,
2685 .set_page_dirty
= __set_page_dirty_no_writeback
,
2687 .readpage
= shmem_readpage
,
2688 .write_begin
= shmem_write_begin
,
2689 .write_end
= shmem_write_end
,
2691 .migratepage
= migrate_page
,
2692 .error_remove_page
= generic_error_remove_page
,
2695 static const struct file_operations shmem_file_operations
= {
2698 .llseek
= generic_file_llseek
,
2699 .read
= do_sync_read
,
2700 .write
= do_sync_write
,
2701 .aio_read
= shmem_file_aio_read
,
2702 .aio_write
= generic_file_aio_write
,
2703 .fsync
= noop_fsync
,
2704 .splice_read
= generic_file_splice_read
,
2705 .splice_write
= generic_file_splice_write
,
2709 static const struct inode_operations shmem_inode_operations
= {
2710 .setattr
= shmem_setattr
,
2711 .truncate_range
= shmem_truncate_range
,
2712 #ifdef CONFIG_TMPFS_XATTR
2713 .setxattr
= shmem_setxattr
,
2714 .getxattr
= shmem_getxattr
,
2715 .listxattr
= shmem_listxattr
,
2716 .removexattr
= shmem_removexattr
,
2718 #ifdef CONFIG_TMPFS_POSIX_ACL
2719 .check_acl
= generic_check_acl
,
2724 static const struct inode_operations shmem_dir_inode_operations
= {
2726 .create
= shmem_create
,
2727 .lookup
= simple_lookup
,
2729 .unlink
= shmem_unlink
,
2730 .symlink
= shmem_symlink
,
2731 .mkdir
= shmem_mkdir
,
2732 .rmdir
= shmem_rmdir
,
2733 .mknod
= shmem_mknod
,
2734 .rename
= shmem_rename
,
2736 #ifdef CONFIG_TMPFS_XATTR
2737 .setxattr
= shmem_setxattr
,
2738 .getxattr
= shmem_getxattr
,
2739 .listxattr
= shmem_listxattr
,
2740 .removexattr
= shmem_removexattr
,
2742 #ifdef CONFIG_TMPFS_POSIX_ACL
2743 .setattr
= shmem_setattr
,
2744 .check_acl
= generic_check_acl
,
2748 static const struct inode_operations shmem_special_inode_operations
= {
2749 #ifdef CONFIG_TMPFS_XATTR
2750 .setxattr
= shmem_setxattr
,
2751 .getxattr
= shmem_getxattr
,
2752 .listxattr
= shmem_listxattr
,
2753 .removexattr
= shmem_removexattr
,
2755 #ifdef CONFIG_TMPFS_POSIX_ACL
2756 .setattr
= shmem_setattr
,
2757 .check_acl
= generic_check_acl
,
2761 static const struct super_operations shmem_ops
= {
2762 .alloc_inode
= shmem_alloc_inode
,
2763 .destroy_inode
= shmem_destroy_inode
,
2765 .statfs
= shmem_statfs
,
2766 .remount_fs
= shmem_remount_fs
,
2767 .show_options
= shmem_show_options
,
2769 .evict_inode
= shmem_evict_inode
,
2770 .drop_inode
= generic_delete_inode
,
2771 .put_super
= shmem_put_super
,
2774 static const struct vm_operations_struct shmem_vm_ops
= {
2775 .fault
= shmem_fault
,
2777 .set_policy
= shmem_set_policy
,
2778 .get_policy
= shmem_get_policy
,
2783 static struct dentry
*shmem_mount(struct file_system_type
*fs_type
,
2784 int flags
, const char *dev_name
, void *data
)
2786 return mount_nodev(fs_type
, flags
, data
, shmem_fill_super
);
2789 static struct file_system_type tmpfs_fs_type
= {
2790 .owner
= THIS_MODULE
,
2792 .mount
= shmem_mount
,
2793 .kill_sb
= kill_litter_super
,
2796 int __init
init_tmpfs(void)
2800 error
= bdi_init(&shmem_backing_dev_info
);
2804 error
= init_inodecache();
2808 error
= register_filesystem(&tmpfs_fs_type
);
2810 printk(KERN_ERR
"Could not register tmpfs\n");
2814 shm_mnt
= vfs_kern_mount(&tmpfs_fs_type
, MS_NOUSER
,
2815 tmpfs_fs_type
.name
, NULL
);
2816 if (IS_ERR(shm_mnt
)) {
2817 error
= PTR_ERR(shm_mnt
);
2818 printk(KERN_ERR
"Could not kern_mount tmpfs\n");
2824 unregister_filesystem(&tmpfs_fs_type
);
2826 destroy_inodecache();
2828 bdi_destroy(&shmem_backing_dev_info
);
2830 shm_mnt
= ERR_PTR(error
);
2834 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2836 * mem_cgroup_get_shmem_target - find a page or entry assigned to the shmem file
2837 * @inode: the inode to be searched
2838 * @pgoff: the offset to be searched
2839 * @pagep: the pointer for the found page to be stored
2840 * @ent: the pointer for the found swap entry to be stored
2842 * If a page is found, refcount of it is incremented. Callers should handle
2845 void mem_cgroup_get_shmem_target(struct inode
*inode
, pgoff_t pgoff
,
2846 struct page
**pagep
, swp_entry_t
*ent
)
2848 swp_entry_t entry
= { .val
= 0 }, *ptr
;
2849 struct page
*page
= NULL
;
2850 struct shmem_inode_info
*info
= SHMEM_I(inode
);
2852 if ((pgoff
<< PAGE_CACHE_SHIFT
) >= i_size_read(inode
))
2855 spin_lock(&info
->lock
);
2856 ptr
= shmem_swp_entry(info
, pgoff
, NULL
);
2858 if (ptr
&& ptr
->val
) {
2859 entry
.val
= ptr
->val
;
2860 page
= find_get_page(&swapper_space
, entry
.val
);
2863 page
= find_get_page(inode
->i_mapping
, pgoff
);
2865 shmem_swp_unmap(ptr
);
2866 spin_unlock(&info
->lock
);
2873 #else /* !CONFIG_SHMEM */
2876 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2878 * This is intended for small system where the benefits of the full
2879 * shmem code (swap-backed and resource-limited) are outweighed by
2880 * their complexity. On systems without swap this code should be
2881 * effectively equivalent, but much lighter weight.
2884 #include <linux/ramfs.h>
2886 static struct file_system_type tmpfs_fs_type
= {
2888 .mount
= ramfs_mount
,
2889 .kill_sb
= kill_litter_super
,
2892 int __init
init_tmpfs(void)
2894 BUG_ON(register_filesystem(&tmpfs_fs_type
) != 0);
2896 shm_mnt
= kern_mount(&tmpfs_fs_type
);
2897 BUG_ON(IS_ERR(shm_mnt
));
2902 int shmem_unuse(swp_entry_t entry
, struct page
*page
)
2907 int shmem_lock(struct file
*file
, int lock
, struct user_struct
*user
)
2912 void shmem_truncate_range(struct inode
*inode
, loff_t start
, loff_t end
)
2914 truncate_inode_pages_range(inode
->i_mapping
, start
, end
);
2916 EXPORT_SYMBOL_GPL(shmem_truncate_range
);
2918 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2920 * mem_cgroup_get_shmem_target - find a page or entry assigned to the shmem file
2921 * @inode: the inode to be searched
2922 * @pgoff: the offset to be searched
2923 * @pagep: the pointer for the found page to be stored
2924 * @ent: the pointer for the found swap entry to be stored
2926 * If a page is found, refcount of it is incremented. Callers should handle
2929 void mem_cgroup_get_shmem_target(struct inode
*inode
, pgoff_t pgoff
,
2930 struct page
**pagep
, swp_entry_t
*ent
)
2932 struct page
*page
= NULL
;
2934 if ((pgoff
<< PAGE_CACHE_SHIFT
) >= i_size_read(inode
))
2936 page
= find_get_page(inode
->i_mapping
, pgoff
);
2939 *ent
= (swp_entry_t
){ .val
= 0 };
2943 #define shmem_vm_ops generic_file_vm_ops
2944 #define shmem_file_operations ramfs_file_operations
2945 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
2946 #define shmem_acct_size(flags, size) 0
2947 #define shmem_unacct_size(flags, size) do {} while (0)
2948 #define SHMEM_MAX_BYTES MAX_LFS_FILESIZE
2950 #endif /* CONFIG_SHMEM */
2955 * shmem_file_setup - get an unlinked file living in tmpfs
2956 * @name: name for dentry (to be seen in /proc/<pid>/maps
2957 * @size: size to be set for the file
2958 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2960 struct file
*shmem_file_setup(const char *name
, loff_t size
, unsigned long flags
)
2964 struct inode
*inode
;
2966 struct dentry
*root
;
2969 if (IS_ERR(shm_mnt
))
2970 return (void *)shm_mnt
;
2972 if (size
< 0 || size
> SHMEM_MAX_BYTES
)
2973 return ERR_PTR(-EINVAL
);
2975 if (shmem_acct_size(flags
, size
))
2976 return ERR_PTR(-ENOMEM
);
2980 this.len
= strlen(name
);
2981 this.hash
= 0; /* will go */
2982 root
= shm_mnt
->mnt_root
;
2983 path
.dentry
= d_alloc(root
, &this);
2986 path
.mnt
= mntget(shm_mnt
);
2989 inode
= shmem_get_inode(root
->d_sb
, NULL
, S_IFREG
| S_IRWXUGO
, 0, flags
);
2993 d_instantiate(path
.dentry
, inode
);
2994 inode
->i_size
= size
;
2995 inode
->i_nlink
= 0; /* It is unlinked */
2997 error
= ramfs_nommu_expand_for_mapping(inode
, size
);
3003 file
= alloc_file(&path
, FMODE_WRITE
| FMODE_READ
,
3004 &shmem_file_operations
);
3013 shmem_unacct_size(flags
, size
);
3014 return ERR_PTR(error
);
3016 EXPORT_SYMBOL_GPL(shmem_file_setup
);
3018 void shmem_set_file(struct vm_area_struct
*vma
, struct file
*file
)
3022 vma
->vm_file
= file
;
3023 vma
->vm_ops
= &shmem_vm_ops
;
3024 vma
->vm_flags
|= VM_CAN_NONLINEAR
;
3028 * shmem_zero_setup - setup a shared anonymous mapping
3029 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3031 int shmem_zero_setup(struct vm_area_struct
*vma
)
3034 loff_t size
= vma
->vm_end
- vma
->vm_start
;
3036 file
= shmem_file_setup("dev/zero", size
, vma
->vm_flags
);
3038 return PTR_ERR(file
);
3040 shmem_set_file(vma
, file
);
3045 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3046 * @mapping: the page's address_space
3047 * @index: the page index
3048 * @gfp: the page allocator flags to use if allocating
3050 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3051 * with any new page allocations done using the specified allocation flags.
3052 * But read_cache_page_gfp() uses the ->readpage() method: which does not
3053 * suit tmpfs, since it may have pages in swapcache, and needs to find those
3054 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3056 * Provide a stub for those callers to start using now, then later
3057 * flesh it out to call shmem_getpage() with additional gfp mask, when
3058 * shmem_file_splice_read() is added and shmem_readpage() is removed.
3060 struct page
*shmem_read_mapping_page_gfp(struct address_space
*mapping
,
3061 pgoff_t index
, gfp_t gfp
)
3063 return read_cache_page_gfp(mapping
, index
, gfp
);
3065 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp
);