1 /* Common capabilities, needed by capability.o.
3 * This program is free software; you can redistribute it and/or modify
4 * it under the terms of the GNU General Public License as published by
5 * the Free Software Foundation; either version 2 of the License, or
6 * (at your option) any later version.
10 #include <linux/capability.h>
11 #include <linux/audit.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/security.h>
16 #include <linux/file.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/skbuff.h>
22 #include <linux/netlink.h>
23 #include <linux/ptrace.h>
24 #include <linux/xattr.h>
25 #include <linux/hugetlb.h>
26 #include <linux/mount.h>
27 #include <linux/sched.h>
28 #include <linux/prctl.h>
29 #include <linux/securebits.h>
30 #include <linux/user_namespace.h>
31 #include <linux/personality.h>
33 #ifdef CONFIG_ANDROID_PARANOID_NETWORK
34 #include <linux/android_aid.h>
38 * If a non-root user executes a setuid-root binary in
39 * !secure(SECURE_NOROOT) mode, then we raise capabilities.
40 * However if fE is also set, then the intent is for only
41 * the file capabilities to be applied, and the setuid-root
42 * bit is left on either to change the uid (plausible) or
43 * to get full privilege on a kernel without file capabilities
44 * support. So in that case we do not raise capabilities.
46 * Warn if that happens, once per boot.
48 static void warn_setuid_and_fcaps_mixed(const char *fname
)
52 printk(KERN_INFO
"warning: `%s' has both setuid-root and"
53 " effective capabilities. Therefore not raising all"
54 " capabilities.\n", fname
);
59 int cap_netlink_send(struct sock
*sk
, struct sk_buff
*skb
)
64 int cap_netlink_recv(struct sk_buff
*skb
, int cap
)
66 if (!cap_raised(current_cap(), cap
))
70 EXPORT_SYMBOL(cap_netlink_recv
);
73 * cap_capable - Determine whether a task has a particular effective capability
74 * @tsk: The task to query
75 * @cred: The credentials to use
76 * @ns: The user namespace in which we need the capability
77 * @cap: The capability to check for
78 * @audit: Whether to write an audit message or not
80 * Determine whether the nominated task has the specified capability amongst
81 * its effective set, returning 0 if it does, -ve if it does not.
83 * NOTE WELL: cap_has_capability() cannot be used like the kernel's capable()
84 * and has_capability() functions. That is, it has the reverse semantics:
85 * cap_has_capability() returns 0 when a task has a capability, but the
86 * kernel's capable() and has_capability() returns 1 for this case.
88 int cap_capable(struct task_struct
*tsk
, const struct cred
*cred
,
89 struct user_namespace
*targ_ns
, int cap
, int audit
)
91 if (cap
== CAP_NET_RAW
&& in_egroup_p(AID_NET_RAW
))
93 if (cap
== CAP_NET_ADMIN
&& in_egroup_p(AID_NET_ADMIN
))
97 /* The creator of the user namespace has all caps. */
98 if (targ_ns
!= &init_user_ns
&& targ_ns
->creator
== cred
->user
)
101 /* Do we have the necessary capabilities? */
102 if (targ_ns
== cred
->user
->user_ns
)
103 return cap_raised(cred
->cap_effective
, cap
) ? 0 : -EPERM
;
105 /* Have we tried all of the parent namespaces? */
106 if (targ_ns
== &init_user_ns
)
110 *If you have a capability in a parent user ns, then you have
111 * it over all children user namespaces as well.
113 targ_ns
= targ_ns
->creator
->user_ns
;
116 /* We never get here */
120 * cap_settime - Determine whether the current process may set the system clock
121 * @ts: The time to set
122 * @tz: The timezone to set
124 * Determine whether the current process may set the system clock and timezone
125 * information, returning 0 if permission granted, -ve if denied.
127 int cap_settime(const struct timespec
*ts
, const struct timezone
*tz
)
129 if (!capable(CAP_SYS_TIME
))
135 * cap_ptrace_access_check - Determine whether the current process may access
137 * @child: The process to be accessed
138 * @mode: The mode of attachment.
140 * If we are in the same or an ancestor user_ns and have all the target
141 * task's capabilities, then ptrace access is allowed.
142 * If we have the ptrace capability to the target user_ns, then ptrace
146 * Determine whether a process may access another, returning 0 if permission
147 * granted, -ve if denied.
149 int cap_ptrace_access_check(struct task_struct
*child
, unsigned int mode
)
152 const struct cred
*cred
, *child_cred
;
155 cred
= current_cred();
156 child_cred
= __task_cred(child
);
157 if (cred
->user
->user_ns
== child_cred
->user
->user_ns
&&
158 cap_issubset(child_cred
->cap_permitted
, cred
->cap_permitted
))
160 if (ns_capable(child_cred
->user
->user_ns
, CAP_SYS_PTRACE
))
169 * cap_ptrace_traceme - Determine whether another process may trace the current
170 * @parent: The task proposed to be the tracer
172 * If parent is in the same or an ancestor user_ns and has all current's
173 * capabilities, then ptrace access is allowed.
174 * If parent has the ptrace capability to current's user_ns, then ptrace
178 * Determine whether the nominated task is permitted to trace the current
179 * process, returning 0 if permission is granted, -ve if denied.
181 int cap_ptrace_traceme(struct task_struct
*parent
)
184 const struct cred
*cred
, *child_cred
;
187 cred
= __task_cred(parent
);
188 child_cred
= current_cred();
189 if (cred
->user
->user_ns
== child_cred
->user
->user_ns
&&
190 cap_issubset(child_cred
->cap_permitted
, cred
->cap_permitted
))
192 if (has_ns_capability(parent
, child_cred
->user
->user_ns
, CAP_SYS_PTRACE
))
201 * cap_capget - Retrieve a task's capability sets
202 * @target: The task from which to retrieve the capability sets
203 * @effective: The place to record the effective set
204 * @inheritable: The place to record the inheritable set
205 * @permitted: The place to record the permitted set
207 * This function retrieves the capabilities of the nominated task and returns
208 * them to the caller.
210 int cap_capget(struct task_struct
*target
, kernel_cap_t
*effective
,
211 kernel_cap_t
*inheritable
, kernel_cap_t
*permitted
)
213 const struct cred
*cred
;
215 /* Derived from kernel/capability.c:sys_capget. */
217 cred
= __task_cred(target
);
218 *effective
= cred
->cap_effective
;
219 *inheritable
= cred
->cap_inheritable
;
220 *permitted
= cred
->cap_permitted
;
226 * Determine whether the inheritable capabilities are limited to the old
227 * permitted set. Returns 1 if they are limited, 0 if they are not.
229 static inline int cap_inh_is_capped(void)
232 /* they are so limited unless the current task has the CAP_SETPCAP
235 if (cap_capable(current
, current_cred(),
236 current_cred()->user
->user_ns
, CAP_SETPCAP
,
237 SECURITY_CAP_AUDIT
) == 0)
243 * cap_capset - Validate and apply proposed changes to current's capabilities
244 * @new: The proposed new credentials; alterations should be made here
245 * @old: The current task's current credentials
246 * @effective: A pointer to the proposed new effective capabilities set
247 * @inheritable: A pointer to the proposed new inheritable capabilities set
248 * @permitted: A pointer to the proposed new permitted capabilities set
250 * This function validates and applies a proposed mass change to the current
251 * process's capability sets. The changes are made to the proposed new
252 * credentials, and assuming no error, will be committed by the caller of LSM.
254 int cap_capset(struct cred
*new,
255 const struct cred
*old
,
256 const kernel_cap_t
*effective
,
257 const kernel_cap_t
*inheritable
,
258 const kernel_cap_t
*permitted
)
260 if (cap_inh_is_capped() &&
261 !cap_issubset(*inheritable
,
262 cap_combine(old
->cap_inheritable
,
263 old
->cap_permitted
)))
264 /* incapable of using this inheritable set */
267 if (!cap_issubset(*inheritable
,
268 cap_combine(old
->cap_inheritable
,
270 /* no new pI capabilities outside bounding set */
273 /* verify restrictions on target's new Permitted set */
274 if (!cap_issubset(*permitted
, old
->cap_permitted
))
277 /* verify the _new_Effective_ is a subset of the _new_Permitted_ */
278 if (!cap_issubset(*effective
, *permitted
))
281 new->cap_effective
= *effective
;
282 new->cap_inheritable
= *inheritable
;
283 new->cap_permitted
= *permitted
;
288 * Clear proposed capability sets for execve().
290 static inline void bprm_clear_caps(struct linux_binprm
*bprm
)
292 cap_clear(bprm
->cred
->cap_permitted
);
293 bprm
->cap_effective
= false;
297 * cap_inode_need_killpriv - Determine if inode change affects privileges
298 * @dentry: The inode/dentry in being changed with change marked ATTR_KILL_PRIV
300 * Determine if an inode having a change applied that's marked ATTR_KILL_PRIV
301 * affects the security markings on that inode, and if it is, should
302 * inode_killpriv() be invoked or the change rejected?
304 * Returns 0 if granted; +ve if granted, but inode_killpriv() is required; and
305 * -ve to deny the change.
307 int cap_inode_need_killpriv(struct dentry
*dentry
)
309 struct inode
*inode
= dentry
->d_inode
;
312 if (!inode
->i_op
->getxattr
)
315 error
= inode
->i_op
->getxattr(dentry
, XATTR_NAME_CAPS
, NULL
, 0);
322 * cap_inode_killpriv - Erase the security markings on an inode
323 * @dentry: The inode/dentry to alter
325 * Erase the privilege-enhancing security markings on an inode.
327 * Returns 0 if successful, -ve on error.
329 int cap_inode_killpriv(struct dentry
*dentry
)
331 struct inode
*inode
= dentry
->d_inode
;
333 if (!inode
->i_op
->removexattr
)
336 return inode
->i_op
->removexattr(dentry
, XATTR_NAME_CAPS
);
340 * Calculate the new process capability sets from the capability sets attached
343 static inline int bprm_caps_from_vfs_caps(struct cpu_vfs_cap_data
*caps
,
344 struct linux_binprm
*bprm
,
347 struct cred
*new = bprm
->cred
;
351 if (caps
->magic_etc
& VFS_CAP_FLAGS_EFFECTIVE
)
354 CAP_FOR_EACH_U32(i
) {
355 __u32 permitted
= caps
->permitted
.cap
[i
];
356 __u32 inheritable
= caps
->inheritable
.cap
[i
];
359 * pP' = (X & fP) | (pI & fI)
361 new->cap_permitted
.cap
[i
] =
362 (new->cap_bset
.cap
[i
] & permitted
) |
363 (new->cap_inheritable
.cap
[i
] & inheritable
);
365 if (permitted
& ~new->cap_permitted
.cap
[i
])
366 /* insufficient to execute correctly */
371 * For legacy apps, with no internal support for recognizing they
372 * do not have enough capabilities, we return an error if they are
373 * missing some "forced" (aka file-permitted) capabilities.
375 return *effective
? ret
: 0;
379 * Extract the on-exec-apply capability sets for an executable file.
381 int get_vfs_caps_from_disk(const struct dentry
*dentry
, struct cpu_vfs_cap_data
*cpu_caps
)
383 struct inode
*inode
= dentry
->d_inode
;
387 struct vfs_cap_data caps
;
389 memset(cpu_caps
, 0, sizeof(struct cpu_vfs_cap_data
));
391 if (!inode
|| !inode
->i_op
->getxattr
)
394 size
= inode
->i_op
->getxattr((struct dentry
*)dentry
, XATTR_NAME_CAPS
, &caps
,
396 if (size
== -ENODATA
|| size
== -EOPNOTSUPP
)
397 /* no data, that's ok */
402 if (size
< sizeof(magic_etc
))
405 cpu_caps
->magic_etc
= magic_etc
= le32_to_cpu(caps
.magic_etc
);
407 switch (magic_etc
& VFS_CAP_REVISION_MASK
) {
408 case VFS_CAP_REVISION_1
:
409 if (size
!= XATTR_CAPS_SZ_1
)
411 tocopy
= VFS_CAP_U32_1
;
413 case VFS_CAP_REVISION_2
:
414 if (size
!= XATTR_CAPS_SZ_2
)
416 tocopy
= VFS_CAP_U32_2
;
422 CAP_FOR_EACH_U32(i
) {
425 cpu_caps
->permitted
.cap
[i
] = le32_to_cpu(caps
.data
[i
].permitted
);
426 cpu_caps
->inheritable
.cap
[i
] = le32_to_cpu(caps
.data
[i
].inheritable
);
433 * Attempt to get the on-exec apply capability sets for an executable file from
434 * its xattrs and, if present, apply them to the proposed credentials being
435 * constructed by execve().
437 static int get_file_caps(struct linux_binprm
*bprm
, bool *effective
)
439 struct dentry
*dentry
;
441 struct cpu_vfs_cap_data vcaps
;
443 bprm_clear_caps(bprm
);
445 if (!file_caps_enabled
)
448 if (bprm
->file
->f_vfsmnt
->mnt_flags
& MNT_NOSUID
)
451 dentry
= dget(bprm
->file
->f_dentry
);
453 rc
= get_vfs_caps_from_disk(dentry
, &vcaps
);
456 printk(KERN_NOTICE
"%s: get_vfs_caps_from_disk returned %d for %s\n",
457 __func__
, rc
, bprm
->filename
);
458 else if (rc
== -ENODATA
)
463 rc
= bprm_caps_from_vfs_caps(&vcaps
, bprm
, effective
);
465 printk(KERN_NOTICE
"%s: cap_from_disk returned %d for %s\n",
466 __func__
, rc
, bprm
->filename
);
471 bprm_clear_caps(bprm
);
477 * cap_bprm_set_creds - Set up the proposed credentials for execve().
478 * @bprm: The execution parameters, including the proposed creds
480 * Set up the proposed credentials for a new execution context being
481 * constructed by execve(). The proposed creds in @bprm->cred is altered,
482 * which won't take effect immediately. Returns 0 if successful, -ve on error.
484 int cap_bprm_set_creds(struct linux_binprm
*bprm
)
486 const struct cred
*old
= current_cred();
487 struct cred
*new = bprm
->cred
;
492 ret
= get_file_caps(bprm
, &effective
);
496 if (!issecure(SECURE_NOROOT
)) {
498 * If the legacy file capability is set, then don't set privs
499 * for a setuid root binary run by a non-root user. Do set it
500 * for a root user just to cause least surprise to an admin.
502 if (effective
&& new->uid
!= 0 && new->euid
== 0) {
503 warn_setuid_and_fcaps_mixed(bprm
->filename
);
507 * To support inheritance of root-permissions and suid-root
508 * executables under compatibility mode, we override the
509 * capability sets for the file.
511 * If only the real uid is 0, we do not set the effective bit.
513 if (new->euid
== 0 || new->uid
== 0) {
514 /* pP' = (cap_bset & ~0) | (pI & ~0) */
515 new->cap_permitted
= cap_combine(old
->cap_bset
,
516 old
->cap_inheritable
);
523 /* if we have fs caps, clear dangerous personality flags */
524 if (!cap_issubset(new->cap_permitted
, old
->cap_permitted
))
525 bprm
->per_clear
|= PER_CLEAR_ON_SETID
;
528 /* Don't let someone trace a set[ug]id/setpcap binary with the revised
529 * credentials unless they have the appropriate permit
531 if ((new->euid
!= old
->uid
||
532 new->egid
!= old
->gid
||
533 !cap_issubset(new->cap_permitted
, old
->cap_permitted
)) &&
534 bprm
->unsafe
& ~LSM_UNSAFE_PTRACE_CAP
) {
535 /* downgrade; they get no more than they had, and maybe less */
536 if (!capable(CAP_SETUID
)) {
537 new->euid
= new->uid
;
538 new->egid
= new->gid
;
540 new->cap_permitted
= cap_intersect(new->cap_permitted
,
544 new->suid
= new->fsuid
= new->euid
;
545 new->sgid
= new->fsgid
= new->egid
;
548 new->cap_effective
= new->cap_permitted
;
550 cap_clear(new->cap_effective
);
551 bprm
->cap_effective
= effective
;
554 * Audit candidate if current->cap_effective is set
556 * We do not bother to audit if 3 things are true:
557 * 1) cap_effective has all caps
559 * 3) root is supposed to have all caps (SECURE_NOROOT)
560 * Since this is just a normal root execing a process.
562 * Number 1 above might fail if you don't have a full bset, but I think
563 * that is interesting information to audit.
565 if (!cap_isclear(new->cap_effective
)) {
566 if (!cap_issubset(CAP_FULL_SET
, new->cap_effective
) ||
567 new->euid
!= 0 || new->uid
!= 0 ||
568 issecure(SECURE_NOROOT
)) {
569 ret
= audit_log_bprm_fcaps(bprm
, new, old
);
575 new->securebits
&= ~issecure_mask(SECURE_KEEP_CAPS
);
580 * cap_bprm_secureexec - Determine whether a secure execution is required
581 * @bprm: The execution parameters
583 * Determine whether a secure execution is required, return 1 if it is, and 0
586 * The credentials have been committed by this point, and so are no longer
587 * available through @bprm->cred.
589 int cap_bprm_secureexec(struct linux_binprm
*bprm
)
591 const struct cred
*cred
= current_cred();
593 if (cred
->uid
!= 0) {
594 if (bprm
->cap_effective
)
596 if (!cap_isclear(cred
->cap_permitted
))
600 return (cred
->euid
!= cred
->uid
||
601 cred
->egid
!= cred
->gid
);
605 * cap_inode_setxattr - Determine whether an xattr may be altered
606 * @dentry: The inode/dentry being altered
607 * @name: The name of the xattr to be changed
608 * @value: The value that the xattr will be changed to
609 * @size: The size of value
610 * @flags: The replacement flag
612 * Determine whether an xattr may be altered or set on an inode, returning 0 if
613 * permission is granted, -ve if denied.
615 * This is used to make sure security xattrs don't get updated or set by those
616 * who aren't privileged to do so.
618 int cap_inode_setxattr(struct dentry
*dentry
, const char *name
,
619 const void *value
, size_t size
, int flags
)
621 if (!strcmp(name
, XATTR_NAME_CAPS
)) {
622 if (!capable(CAP_SETFCAP
))
627 if (!strncmp(name
, XATTR_SECURITY_PREFIX
,
628 sizeof(XATTR_SECURITY_PREFIX
) - 1) &&
629 !capable(CAP_SYS_ADMIN
))
635 * cap_inode_removexattr - Determine whether an xattr may be removed
636 * @dentry: The inode/dentry being altered
637 * @name: The name of the xattr to be changed
639 * Determine whether an xattr may be removed from an inode, returning 0 if
640 * permission is granted, -ve if denied.
642 * This is used to make sure security xattrs don't get removed by those who
643 * aren't privileged to remove them.
645 int cap_inode_removexattr(struct dentry
*dentry
, const char *name
)
647 if (!strcmp(name
, XATTR_NAME_CAPS
)) {
648 if (!capable(CAP_SETFCAP
))
653 if (!strncmp(name
, XATTR_SECURITY_PREFIX
,
654 sizeof(XATTR_SECURITY_PREFIX
) - 1) &&
655 !capable(CAP_SYS_ADMIN
))
661 * cap_emulate_setxuid() fixes the effective / permitted capabilities of
662 * a process after a call to setuid, setreuid, or setresuid.
664 * 1) When set*uiding _from_ one of {r,e,s}uid == 0 _to_ all of
665 * {r,e,s}uid != 0, the permitted and effective capabilities are
668 * 2) When set*uiding _from_ euid == 0 _to_ euid != 0, the effective
669 * capabilities of the process are cleared.
671 * 3) When set*uiding _from_ euid != 0 _to_ euid == 0, the effective
672 * capabilities are set to the permitted capabilities.
674 * fsuid is handled elsewhere. fsuid == 0 and {r,e,s}uid!= 0 should
679 * cevans - New behaviour, Oct '99
680 * A process may, via prctl(), elect to keep its capabilities when it
681 * calls setuid() and switches away from uid==0. Both permitted and
682 * effective sets will be retained.
683 * Without this change, it was impossible for a daemon to drop only some
684 * of its privilege. The call to setuid(!=0) would drop all privileges!
685 * Keeping uid 0 is not an option because uid 0 owns too many vital
687 * Thanks to Olaf Kirch and Peter Benie for spotting this.
689 static inline void cap_emulate_setxuid(struct cred
*new, const struct cred
*old
)
691 if ((old
->uid
== 0 || old
->euid
== 0 || old
->suid
== 0) &&
692 (new->uid
!= 0 && new->euid
!= 0 && new->suid
!= 0) &&
693 !issecure(SECURE_KEEP_CAPS
)) {
694 cap_clear(new->cap_permitted
);
695 cap_clear(new->cap_effective
);
697 if (old
->euid
== 0 && new->euid
!= 0)
698 cap_clear(new->cap_effective
);
699 if (old
->euid
!= 0 && new->euid
== 0)
700 new->cap_effective
= new->cap_permitted
;
704 * cap_task_fix_setuid - Fix up the results of setuid() call
705 * @new: The proposed credentials
706 * @old: The current task's current credentials
707 * @flags: Indications of what has changed
709 * Fix up the results of setuid() call before the credential changes are
710 * actually applied, returning 0 to grant the changes, -ve to deny them.
712 int cap_task_fix_setuid(struct cred
*new, const struct cred
*old
, int flags
)
718 /* juggle the capabilities to follow [RES]UID changes unless
719 * otherwise suppressed */
720 if (!issecure(SECURE_NO_SETUID_FIXUP
))
721 cap_emulate_setxuid(new, old
);
725 /* juggle the capabilties to follow FSUID changes, unless
726 * otherwise suppressed
728 * FIXME - is fsuser used for all CAP_FS_MASK capabilities?
729 * if not, we might be a bit too harsh here.
731 if (!issecure(SECURE_NO_SETUID_FIXUP
)) {
732 if (old
->fsuid
== 0 && new->fsuid
!= 0)
734 cap_drop_fs_set(new->cap_effective
);
736 if (old
->fsuid
!= 0 && new->fsuid
== 0)
738 cap_raise_fs_set(new->cap_effective
,
751 * Rationale: code calling task_setscheduler, task_setioprio, and
752 * task_setnice, assumes that
753 * . if capable(cap_sys_nice), then those actions should be allowed
754 * . if not capable(cap_sys_nice), but acting on your own processes,
755 * then those actions should be allowed
756 * This is insufficient now since you can call code without suid, but
757 * yet with increased caps.
758 * So we check for increased caps on the target process.
760 static int cap_safe_nice(struct task_struct
*p
)
765 is_subset
= cap_issubset(__task_cred(p
)->cap_permitted
,
766 current_cred()->cap_permitted
);
769 if (!is_subset
&& !capable(CAP_SYS_NICE
))
775 * cap_task_setscheduler - Detemine if scheduler policy change is permitted
776 * @p: The task to affect
778 * Detemine if the requested scheduler policy change is permitted for the
779 * specified task, returning 0 if permission is granted, -ve if denied.
781 int cap_task_setscheduler(struct task_struct
*p
)
783 return cap_safe_nice(p
);
787 * cap_task_ioprio - Detemine if I/O priority change is permitted
788 * @p: The task to affect
789 * @ioprio: The I/O priority to set
791 * Detemine if the requested I/O priority change is permitted for the specified
792 * task, returning 0 if permission is granted, -ve if denied.
794 int cap_task_setioprio(struct task_struct
*p
, int ioprio
)
796 return cap_safe_nice(p
);
800 * cap_task_ioprio - Detemine if task priority change is permitted
801 * @p: The task to affect
802 * @nice: The nice value to set
804 * Detemine if the requested task priority change is permitted for the
805 * specified task, returning 0 if permission is granted, -ve if denied.
807 int cap_task_setnice(struct task_struct
*p
, int nice
)
809 return cap_safe_nice(p
);
813 * Implement PR_CAPBSET_DROP. Attempt to remove the specified capability from
814 * the current task's bounding set. Returns 0 on success, -ve on error.
816 static long cap_prctl_drop(struct cred
*new, unsigned long cap
)
818 if (!capable(CAP_SETPCAP
))
823 cap_lower(new->cap_bset
, cap
);
828 * cap_task_prctl - Implement process control functions for this security module
829 * @option: The process control function requested
830 * @arg2, @arg3, @arg4, @arg5: The argument data for this function
832 * Allow process control functions (sys_prctl()) to alter capabilities; may
833 * also deny access to other functions not otherwise implemented here.
835 * Returns 0 or +ve on success, -ENOSYS if this function is not implemented
836 * here, other -ve on error. If -ENOSYS is returned, sys_prctl() and other LSM
837 * modules will consider performing the function.
839 int cap_task_prctl(int option
, unsigned long arg2
, unsigned long arg3
,
840 unsigned long arg4
, unsigned long arg5
)
845 new = prepare_creds();
850 case PR_CAPBSET_READ
:
852 if (!cap_valid(arg2
))
854 error
= !!cap_raised(new->cap_bset
, arg2
);
857 case PR_CAPBSET_DROP
:
858 error
= cap_prctl_drop(new, arg2
);
864 * The next four prctl's remain to assist with transitioning a
865 * system from legacy UID=0 based privilege (when filesystem
866 * capabilities are not in use) to a system using filesystem
867 * capabilities only - as the POSIX.1e draft intended.
871 * PR_SET_SECUREBITS =
872 * issecure_mask(SECURE_KEEP_CAPS_LOCKED)
873 * | issecure_mask(SECURE_NOROOT)
874 * | issecure_mask(SECURE_NOROOT_LOCKED)
875 * | issecure_mask(SECURE_NO_SETUID_FIXUP)
876 * | issecure_mask(SECURE_NO_SETUID_FIXUP_LOCKED)
878 * will ensure that the current process and all of its
879 * children will be locked into a pure
880 * capability-based-privilege environment.
882 case PR_SET_SECUREBITS
:
884 if ((((new->securebits
& SECURE_ALL_LOCKS
) >> 1)
885 & (new->securebits
^ arg2
)) /*[1]*/
886 || ((new->securebits
& SECURE_ALL_LOCKS
& ~arg2
)) /*[2]*/
887 || (arg2
& ~(SECURE_ALL_LOCKS
| SECURE_ALL_BITS
)) /*[3]*/
888 || (cap_capable(current
, current_cred(),
889 current_cred()->user
->user_ns
, CAP_SETPCAP
,
890 SECURITY_CAP_AUDIT
) != 0) /*[4]*/
892 * [1] no changing of bits that are locked
893 * [2] no unlocking of locks
894 * [3] no setting of unsupported bits
895 * [4] doing anything requires privilege (go read about
896 * the "sendmail capabilities bug")
899 /* cannot change a locked bit */
901 new->securebits
= arg2
;
904 case PR_GET_SECUREBITS
:
905 error
= new->securebits
;
908 case PR_GET_KEEPCAPS
:
909 if (issecure(SECURE_KEEP_CAPS
))
913 case PR_SET_KEEPCAPS
:
915 if (arg2
> 1) /* Note, we rely on arg2 being unsigned here */
918 if (issecure(SECURE_KEEP_CAPS_LOCKED
))
921 new->securebits
|= issecure_mask(SECURE_KEEP_CAPS
);
923 new->securebits
&= ~issecure_mask(SECURE_KEEP_CAPS
);
927 /* No functionality available - continue with default */
932 /* Functionality provided */
934 return commit_creds(new);
943 * cap_vm_enough_memory - Determine whether a new virtual mapping is permitted
944 * @mm: The VM space in which the new mapping is to be made
945 * @pages: The size of the mapping
947 * Determine whether the allocation of a new virtual mapping by the current
948 * task is permitted, returning 0 if permission is granted, -ve if not.
950 int cap_vm_enough_memory(struct mm_struct
*mm
, long pages
)
952 int cap_sys_admin
= 0;
954 if (cap_capable(current
, current_cred(), &init_user_ns
, CAP_SYS_ADMIN
,
955 SECURITY_CAP_NOAUDIT
) == 0)
957 return __vm_enough_memory(mm
, pages
, cap_sys_admin
);
961 * cap_file_mmap - check if able to map given addr
966 * @addr: address attempting to be mapped
969 * If the process is attempting to map memory below dac_mmap_min_addr they need
970 * CAP_SYS_RAWIO. The other parameters to this function are unused by the
971 * capability security module. Returns 0 if this mapping should be allowed
974 int cap_file_mmap(struct file
*file
, unsigned long reqprot
,
975 unsigned long prot
, unsigned long flags
,
976 unsigned long addr
, unsigned long addr_only
)
980 if (addr
< dac_mmap_min_addr
) {
981 ret
= cap_capable(current
, current_cred(), &init_user_ns
, CAP_SYS_RAWIO
,
983 /* set PF_SUPERPRIV if it turns out we allow the low mmap */
985 current
->flags
|= PF_SUPERPRIV
;