1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Maintain an RxRPC server socket to do AFS communications through
4 * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
5 * Written by David Howells (dhowells@redhat.com)
8 #include <linux/slab.h>
9 #include <linux/sched/signal.h>
12 #include <net/af_rxrpc.h>
15 #include "protocol_yfs.h"
17 struct workqueue_struct
*afs_async_calls
;
19 static void afs_wake_up_call_waiter(struct sock
*, struct rxrpc_call
*, unsigned long);
20 static void afs_wake_up_async_call(struct sock
*, struct rxrpc_call
*, unsigned long);
21 static void afs_delete_async_call(struct work_struct
*);
22 static void afs_process_async_call(struct work_struct
*);
23 static void afs_rx_new_call(struct sock
*, struct rxrpc_call
*, unsigned long);
24 static void afs_rx_discard_new_call(struct rxrpc_call
*, unsigned long);
25 static int afs_deliver_cm_op_id(struct afs_call
*);
27 /* asynchronous incoming call initial processing */
28 static const struct afs_call_type afs_RXCMxxxx
= {
30 .deliver
= afs_deliver_cm_op_id
,
34 * open an RxRPC socket and bind it to be a server for callback notifications
35 * - the socket is left in blocking mode and non-blocking ops use MSG_DONTWAIT
37 int afs_open_socket(struct afs_net
*net
)
39 struct sockaddr_rxrpc srx
;
40 struct socket
*socket
;
41 unsigned int min_level
;
46 ret
= sock_create_kern(net
->net
, AF_RXRPC
, SOCK_DGRAM
, PF_INET6
, &socket
);
50 socket
->sk
->sk_allocation
= GFP_NOFS
;
52 /* bind the callback manager's address to make this a server socket */
53 memset(&srx
, 0, sizeof(srx
));
54 srx
.srx_family
= AF_RXRPC
;
55 srx
.srx_service
= CM_SERVICE
;
56 srx
.transport_type
= SOCK_DGRAM
;
57 srx
.transport_len
= sizeof(srx
.transport
.sin6
);
58 srx
.transport
.sin6
.sin6_family
= AF_INET6
;
59 srx
.transport
.sin6
.sin6_port
= htons(AFS_CM_PORT
);
61 min_level
= RXRPC_SECURITY_ENCRYPT
;
62 ret
= kernel_setsockopt(socket
, SOL_RXRPC
, RXRPC_MIN_SECURITY_LEVEL
,
63 (void *)&min_level
, sizeof(min_level
));
67 ret
= kernel_bind(socket
, (struct sockaddr
*) &srx
, sizeof(srx
));
68 if (ret
== -EADDRINUSE
) {
69 srx
.transport
.sin6
.sin6_port
= 0;
70 ret
= kernel_bind(socket
, (struct sockaddr
*) &srx
, sizeof(srx
));
75 srx
.srx_service
= YFS_CM_SERVICE
;
76 ret
= kernel_bind(socket
, (struct sockaddr
*) &srx
, sizeof(srx
));
80 /* Ideally, we'd turn on service upgrade here, but we can't because
81 * OpenAFS is buggy and leaks the userStatus field from packet to
82 * packet and between FS packets and CB packets - so if we try to do an
83 * upgrade on an FS packet, OpenAFS will leak that into the CB packet
84 * it sends back to us.
87 rxrpc_kernel_new_call_notification(socket
, afs_rx_new_call
,
88 afs_rx_discard_new_call
);
90 ret
= kernel_listen(socket
, INT_MAX
);
95 afs_charge_preallocation(&net
->charge_preallocation_work
);
100 sock_release(socket
);
102 _leave(" = %d", ret
);
107 * close the RxRPC socket AFS was using
109 void afs_close_socket(struct afs_net
*net
)
113 kernel_listen(net
->socket
, 0);
114 flush_workqueue(afs_async_calls
);
116 if (net
->spare_incoming_call
) {
117 afs_put_call(net
->spare_incoming_call
);
118 net
->spare_incoming_call
= NULL
;
121 _debug("outstanding %u", atomic_read(&net
->nr_outstanding_calls
));
122 wait_var_event(&net
->nr_outstanding_calls
,
123 !atomic_read(&net
->nr_outstanding_calls
));
124 _debug("no outstanding calls");
126 kernel_sock_shutdown(net
->socket
, SHUT_RDWR
);
127 flush_workqueue(afs_async_calls
);
128 sock_release(net
->socket
);
137 static struct afs_call
*afs_alloc_call(struct afs_net
*net
,
138 const struct afs_call_type
*type
,
141 struct afs_call
*call
;
144 call
= kzalloc(sizeof(*call
), gfp
);
150 call
->debug_id
= atomic_inc_return(&rxrpc_debug_id
);
151 atomic_set(&call
->usage
, 1);
152 INIT_WORK(&call
->async_work
, afs_process_async_call
);
153 init_waitqueue_head(&call
->waitq
);
154 spin_lock_init(&call
->state_lock
);
155 call
->iter
= &call
->def_iter
;
157 o
= atomic_inc_return(&net
->nr_outstanding_calls
);
158 trace_afs_call(call
, afs_call_trace_alloc
, 1, o
,
159 __builtin_return_address(0));
164 * Dispose of a reference on a call.
166 void afs_put_call(struct afs_call
*call
)
168 struct afs_net
*net
= call
->net
;
169 int n
= atomic_dec_return(&call
->usage
);
170 int o
= atomic_read(&net
->nr_outstanding_calls
);
172 trace_afs_call(call
, afs_call_trace_put
, n
+ 1, o
,
173 __builtin_return_address(0));
177 ASSERT(!work_pending(&call
->async_work
));
178 ASSERT(call
->type
->name
!= NULL
);
181 rxrpc_kernel_end_call(net
->socket
, call
->rxcall
);
184 if (call
->type
->destructor
)
185 call
->type
->destructor(call
);
187 afs_put_server(call
->net
, call
->server
, afs_server_trace_put_call
);
188 afs_put_cb_interest(call
->net
, call
->cbi
);
189 afs_put_addrlist(call
->alist
);
190 kfree(call
->request
);
192 trace_afs_call(call
, afs_call_trace_free
, 0, o
,
193 __builtin_return_address(0));
196 o
= atomic_dec_return(&net
->nr_outstanding_calls
);
198 wake_up_var(&net
->nr_outstanding_calls
);
202 static struct afs_call
*afs_get_call(struct afs_call
*call
,
203 enum afs_call_trace why
)
205 int u
= atomic_inc_return(&call
->usage
);
207 trace_afs_call(call
, why
, u
,
208 atomic_read(&call
->net
->nr_outstanding_calls
),
209 __builtin_return_address(0));
214 * Queue the call for actual work.
216 static void afs_queue_call_work(struct afs_call
*call
)
218 if (call
->type
->work
) {
219 INIT_WORK(&call
->work
, call
->type
->work
);
221 afs_get_call(call
, afs_call_trace_work
);
222 if (!queue_work(afs_wq
, &call
->work
))
228 * allocate a call with flat request and reply buffers
230 struct afs_call
*afs_alloc_flat_call(struct afs_net
*net
,
231 const struct afs_call_type
*type
,
232 size_t request_size
, size_t reply_max
)
234 struct afs_call
*call
;
236 call
= afs_alloc_call(net
, type
, GFP_NOFS
);
241 call
->request_size
= request_size
;
242 call
->request
= kmalloc(request_size
, GFP_NOFS
);
248 call
->reply_max
= reply_max
;
249 call
->buffer
= kmalloc(reply_max
, GFP_NOFS
);
254 afs_extract_to_buf(call
, call
->reply_max
);
255 call
->operation_ID
= type
->op
;
256 init_waitqueue_head(&call
->waitq
);
266 * clean up a call with flat buffer
268 void afs_flat_call_destructor(struct afs_call
*call
)
272 kfree(call
->request
);
273 call
->request
= NULL
;
278 #define AFS_BVEC_MAX 8
281 * Load the given bvec with the next few pages.
283 static void afs_load_bvec(struct afs_call
*call
, struct msghdr
*msg
,
284 struct bio_vec
*bv
, pgoff_t first
, pgoff_t last
,
287 struct page
*pages
[AFS_BVEC_MAX
];
288 unsigned int nr
, n
, i
, to
, bytes
= 0;
290 nr
= min_t(pgoff_t
, last
- first
+ 1, AFS_BVEC_MAX
);
291 n
= find_get_pages_contig(call
->mapping
, first
, nr
, pages
);
292 ASSERTCMP(n
, ==, nr
);
294 msg
->msg_flags
|= MSG_MORE
;
295 for (i
= 0; i
< nr
; i
++) {
297 if (first
+ i
>= last
) {
299 msg
->msg_flags
&= ~MSG_MORE
;
301 bv
[i
].bv_page
= pages
[i
];
302 bv
[i
].bv_len
= to
- offset
;
303 bv
[i
].bv_offset
= offset
;
304 bytes
+= to
- offset
;
308 iov_iter_bvec(&msg
->msg_iter
, WRITE
, bv
, nr
, bytes
);
312 * Advance the AFS call state when the RxRPC call ends the transmit phase.
314 static void afs_notify_end_request_tx(struct sock
*sock
,
315 struct rxrpc_call
*rxcall
,
316 unsigned long call_user_ID
)
318 struct afs_call
*call
= (struct afs_call
*)call_user_ID
;
320 afs_set_call_state(call
, AFS_CALL_CL_REQUESTING
, AFS_CALL_CL_AWAIT_REPLY
);
324 * attach the data from a bunch of pages on an inode to a call
326 static int afs_send_pages(struct afs_call
*call
, struct msghdr
*msg
)
328 struct bio_vec bv
[AFS_BVEC_MAX
];
329 unsigned int bytes
, nr
, loop
, offset
;
330 pgoff_t first
= call
->first
, last
= call
->last
;
333 offset
= call
->first_offset
;
334 call
->first_offset
= 0;
337 afs_load_bvec(call
, msg
, bv
, first
, last
, offset
);
338 trace_afs_send_pages(call
, msg
, first
, last
, offset
);
341 bytes
= msg
->msg_iter
.count
;
342 nr
= msg
->msg_iter
.nr_segs
;
344 ret
= rxrpc_kernel_send_data(call
->net
->socket
, call
->rxcall
, msg
,
345 bytes
, afs_notify_end_request_tx
);
346 for (loop
= 0; loop
< nr
; loop
++)
347 put_page(bv
[loop
].bv_page
);
352 } while (first
<= last
);
354 trace_afs_sent_pages(call
, call
->first
, last
, first
, ret
);
359 * Initiate a call and synchronously queue up the parameters for dispatch. Any
360 * error is stored into the call struct, which the caller must check for.
362 void afs_make_call(struct afs_addr_cursor
*ac
, struct afs_call
*call
, gfp_t gfp
)
364 struct sockaddr_rxrpc
*srx
= &ac
->alist
->addrs
[ac
->index
];
365 struct rxrpc_call
*rxcall
;
371 _enter(",{%pISp},", &srx
->transport
);
373 ASSERT(call
->type
!= NULL
);
374 ASSERT(call
->type
->name
!= NULL
);
376 _debug("____MAKE %p{%s,%x} [%d]____",
377 call
, call
->type
->name
, key_serial(call
->key
),
378 atomic_read(&call
->net
->nr_outstanding_calls
));
380 call
->addr_ix
= ac
->index
;
381 call
->alist
= afs_get_addrlist(ac
->alist
);
383 /* Work out the length we're going to transmit. This is awkward for
384 * calls such as FS.StoreData where there's an extra injection of data
385 * after the initial fixed part.
387 tx_total_len
= call
->request_size
;
388 if (call
->send_pages
) {
389 if (call
->last
== call
->first
) {
390 tx_total_len
+= call
->last_to
- call
->first_offset
;
392 /* It looks mathematically like you should be able to
393 * combine the following lines with the ones above, but
394 * unsigned arithmetic is fun when it wraps...
396 tx_total_len
+= PAGE_SIZE
- call
->first_offset
;
397 tx_total_len
+= call
->last_to
;
398 tx_total_len
+= (call
->last
- call
->first
- 1) * PAGE_SIZE
;
402 /* If the call is going to be asynchronous, we need an extra ref for
403 * the call to hold itself so the caller need not hang on to its ref.
406 afs_get_call(call
, afs_call_trace_get
);
409 rxcall
= rxrpc_kernel_begin_call(call
->net
->socket
, srx
, call
->key
,
413 afs_wake_up_async_call
:
414 afs_wake_up_call_waiter
),
418 if (IS_ERR(rxcall
)) {
419 ret
= PTR_ERR(rxcall
);
421 goto error_kill_call
;
424 call
->rxcall
= rxcall
;
426 if (call
->max_lifespan
)
427 rxrpc_kernel_set_max_life(call
->net
->socket
, rxcall
,
430 /* send the request */
431 iov
[0].iov_base
= call
->request
;
432 iov
[0].iov_len
= call
->request_size
;
436 iov_iter_kvec(&msg
.msg_iter
, WRITE
, iov
, 1, call
->request_size
);
437 msg
.msg_control
= NULL
;
438 msg
.msg_controllen
= 0;
439 msg
.msg_flags
= MSG_WAITALL
| (call
->send_pages
? MSG_MORE
: 0);
441 ret
= rxrpc_kernel_send_data(call
->net
->socket
, rxcall
,
442 &msg
, call
->request_size
,
443 afs_notify_end_request_tx
);
447 if (call
->send_pages
) {
448 ret
= afs_send_pages(call
, &msg
);
453 /* Note that at this point, we may have received the reply or an abort
454 * - and an asynchronous call may already have completed.
456 * afs_wait_for_call_to_complete(call, ac)
457 * must be called to synchronously clean up.
462 if (ret
!= -ECONNABORTED
) {
463 rxrpc_kernel_abort_call(call
->net
->socket
, rxcall
,
464 RX_USER_ABORT
, ret
, "KSD");
466 iov_iter_kvec(&msg
.msg_iter
, READ
, NULL
, 0, 0);
467 rxrpc_kernel_recv_data(call
->net
->socket
, rxcall
,
468 &msg
.msg_iter
, false,
469 &call
->abort_code
, &call
->service_id
);
470 ac
->abort_code
= call
->abort_code
;
471 ac
->responded
= true;
474 trace_afs_call_done(call
);
476 if (call
->type
->done
)
477 call
->type
->done(call
);
479 /* We need to dispose of the extra ref we grabbed for an async call.
480 * The call, however, might be queued on afs_async_calls and we need to
481 * make sure we don't get any more notifications that might requeue it.
484 rxrpc_kernel_end_call(call
->net
->socket
, call
->rxcall
);
488 if (cancel_work_sync(&call
->async_work
))
494 call
->state
= AFS_CALL_COMPLETE
;
495 _leave(" = %d", ret
);
499 * deliver messages to a call
501 static void afs_deliver_to_call(struct afs_call
*call
)
503 enum afs_call_state state
;
504 u32 abort_code
, remote_abort
= 0;
507 _enter("%s", call
->type
->name
);
509 while (state
= READ_ONCE(call
->state
),
510 state
== AFS_CALL_CL_AWAIT_REPLY
||
511 state
== AFS_CALL_SV_AWAIT_OP_ID
||
512 state
== AFS_CALL_SV_AWAIT_REQUEST
||
513 state
== AFS_CALL_SV_AWAIT_ACK
515 if (state
== AFS_CALL_SV_AWAIT_ACK
) {
516 iov_iter_kvec(&call
->def_iter
, READ
, NULL
, 0, 0);
517 ret
= rxrpc_kernel_recv_data(call
->net
->socket
,
518 call
->rxcall
, &call
->def_iter
,
519 false, &remote_abort
,
521 trace_afs_receive_data(call
, &call
->def_iter
, false, ret
);
523 if (ret
== -EINPROGRESS
|| ret
== -EAGAIN
)
525 if (ret
< 0 || ret
== 1) {
533 if (!call
->have_reply_time
&&
534 rxrpc_kernel_get_reply_time(call
->net
->socket
,
537 call
->have_reply_time
= true;
539 ret
= call
->type
->deliver(call
);
540 state
= READ_ONCE(call
->state
);
543 afs_queue_call_work(call
);
544 if (state
== AFS_CALL_CL_PROC_REPLY
) {
546 set_bit(AFS_SERVER_FL_MAY_HAVE_CB
,
547 &call
->cbi
->server
->flags
);
550 ASSERTCMP(state
, >, AFS_CALL_CL_PROC_REPLY
);
556 ASSERTCMP(state
, ==, AFS_CALL_COMPLETE
);
559 abort_code
= RXGEN_OPCODE
;
560 rxrpc_kernel_abort_call(call
->net
->socket
, call
->rxcall
,
561 abort_code
, ret
, "KIV");
564 pr_err("kAFS: Call %u in bad state %u\n",
565 call
->debug_id
, state
);
570 abort_code
= RXGEN_CC_UNMARSHAL
;
571 if (state
!= AFS_CALL_CL_AWAIT_REPLY
)
572 abort_code
= RXGEN_SS_UNMARSHAL
;
573 rxrpc_kernel_abort_call(call
->net
->socket
, call
->rxcall
,
574 abort_code
, ret
, "KUM");
577 abort_code
= RX_USER_ABORT
;
578 rxrpc_kernel_abort_call(call
->net
->socket
, call
->rxcall
,
579 abort_code
, ret
, "KER");
585 if (call
->type
->done
)
586 call
->type
->done(call
);
587 if (state
== AFS_CALL_COMPLETE
&& call
->incoming
)
596 afs_set_call_complete(call
, ret
, remote_abort
);
597 state
= AFS_CALL_COMPLETE
;
602 * Wait synchronously for a call to complete and clean up the call struct.
604 long afs_wait_for_call_to_complete(struct afs_call
*call
,
605 struct afs_addr_cursor
*ac
)
607 signed long rtt2
, timeout
;
609 bool stalled
= false;
612 bool rxrpc_complete
= false;
614 DECLARE_WAITQUEUE(myself
, current
);
622 rtt
= rxrpc_kernel_get_rtt(call
->net
->socket
, call
->rxcall
);
623 rtt2
= nsecs_to_jiffies64(rtt
) * 2;
628 rxrpc_kernel_check_life(call
->net
->socket
, call
->rxcall
, &last_life
);
630 add_wait_queue(&call
->waitq
, &myself
);
632 set_current_state(TASK_UNINTERRUPTIBLE
);
634 /* deliver any messages that are in the queue */
635 if (!afs_check_call_state(call
, AFS_CALL_COMPLETE
) &&
636 call
->need_attention
) {
637 call
->need_attention
= false;
638 __set_current_state(TASK_RUNNING
);
639 afs_deliver_to_call(call
);
644 if (afs_check_call_state(call
, AFS_CALL_COMPLETE
))
647 if (!rxrpc_kernel_check_life(call
->net
->socket
, call
->rxcall
, &life
)) {
648 /* rxrpc terminated the call. */
649 rxrpc_complete
= true;
653 if (call
->intr
&& timeout
== 0 &&
654 life
== last_life
&& signal_pending(current
)) {
657 __set_current_state(TASK_RUNNING
);
658 rxrpc_kernel_probe_life(call
->net
->socket
, call
->rxcall
);
664 if (life
!= last_life
) {
670 timeout
= schedule_timeout(timeout
);
673 remove_wait_queue(&call
->waitq
, &myself
);
674 __set_current_state(TASK_RUNNING
);
676 if (!afs_check_call_state(call
, AFS_CALL_COMPLETE
)) {
677 if (rxrpc_complete
) {
678 afs_set_call_complete(call
, call
->error
, call
->abort_code
);
680 /* Kill off the call if it's still live. */
681 _debug("call interrupted");
682 if (rxrpc_kernel_abort_call(call
->net
->socket
, call
->rxcall
,
683 RX_USER_ABORT
, -EINTR
, "KWI"))
684 afs_set_call_complete(call
, -EINTR
, 0);
688 spin_lock_bh(&call
->state_lock
);
689 ac
->abort_code
= call
->abort_code
;
690 ac
->error
= call
->error
;
691 spin_unlock_bh(&call
->state_lock
);
701 ac
->responded
= true;
706 _debug("call complete");
708 _leave(" = %p", (void *)ret
);
713 * wake up a waiting call
715 static void afs_wake_up_call_waiter(struct sock
*sk
, struct rxrpc_call
*rxcall
,
716 unsigned long call_user_ID
)
718 struct afs_call
*call
= (struct afs_call
*)call_user_ID
;
720 call
->need_attention
= true;
721 wake_up(&call
->waitq
);
725 * wake up an asynchronous call
727 static void afs_wake_up_async_call(struct sock
*sk
, struct rxrpc_call
*rxcall
,
728 unsigned long call_user_ID
)
730 struct afs_call
*call
= (struct afs_call
*)call_user_ID
;
733 trace_afs_notify_call(rxcall
, call
);
734 call
->need_attention
= true;
736 u
= atomic_fetch_add_unless(&call
->usage
, 1, 0);
738 trace_afs_call(call
, afs_call_trace_wake
, u
,
739 atomic_read(&call
->net
->nr_outstanding_calls
),
740 __builtin_return_address(0));
742 if (!queue_work(afs_async_calls
, &call
->async_work
))
748 * Delete an asynchronous call. The work item carries a ref to the call struct
749 * that we need to release.
751 static void afs_delete_async_call(struct work_struct
*work
)
753 struct afs_call
*call
= container_of(work
, struct afs_call
, async_work
);
763 * Perform I/O processing on an asynchronous call. The work item carries a ref
764 * to the call struct that we either need to release or to pass on.
766 static void afs_process_async_call(struct work_struct
*work
)
768 struct afs_call
*call
= container_of(work
, struct afs_call
, async_work
);
772 if (call
->state
< AFS_CALL_COMPLETE
&& call
->need_attention
) {
773 call
->need_attention
= false;
774 afs_deliver_to_call(call
);
777 if (call
->state
== AFS_CALL_COMPLETE
) {
778 /* We have two refs to release - one from the alloc and one
779 * queued with the work item - and we can't just deallocate the
780 * call because the work item may be queued again.
782 call
->async_work
.func
= afs_delete_async_call
;
783 if (!queue_work(afs_async_calls
, &call
->async_work
))
791 static void afs_rx_attach(struct rxrpc_call
*rxcall
, unsigned long user_call_ID
)
793 struct afs_call
*call
= (struct afs_call
*)user_call_ID
;
795 call
->rxcall
= rxcall
;
799 * Charge the incoming call preallocation.
801 void afs_charge_preallocation(struct work_struct
*work
)
803 struct afs_net
*net
=
804 container_of(work
, struct afs_net
, charge_preallocation_work
);
805 struct afs_call
*call
= net
->spare_incoming_call
;
809 call
= afs_alloc_call(net
, &afs_RXCMxxxx
, GFP_KERNEL
);
814 call
->state
= AFS_CALL_SV_AWAIT_OP_ID
;
815 init_waitqueue_head(&call
->waitq
);
816 afs_extract_to_tmp(call
);
819 if (rxrpc_kernel_charge_accept(net
->socket
,
820 afs_wake_up_async_call
,
828 net
->spare_incoming_call
= call
;
832 * Discard a preallocated call when a socket is shut down.
834 static void afs_rx_discard_new_call(struct rxrpc_call
*rxcall
,
835 unsigned long user_call_ID
)
837 struct afs_call
*call
= (struct afs_call
*)user_call_ID
;
844 * Notification of an incoming call.
846 static void afs_rx_new_call(struct sock
*sk
, struct rxrpc_call
*rxcall
,
847 unsigned long user_call_ID
)
849 struct afs_net
*net
= afs_sock2net(sk
);
851 queue_work(afs_wq
, &net
->charge_preallocation_work
);
855 * Grab the operation ID from an incoming cache manager call. The socket
856 * buffer is discarded on error or if we don't yet have sufficient data.
858 static int afs_deliver_cm_op_id(struct afs_call
*call
)
862 _enter("{%zu}", iov_iter_count(call
->iter
));
864 /* the operation ID forms the first four bytes of the request data */
865 ret
= afs_extract_data(call
, true);
869 call
->operation_ID
= ntohl(call
->tmp
);
870 afs_set_call_state(call
, AFS_CALL_SV_AWAIT_OP_ID
, AFS_CALL_SV_AWAIT_REQUEST
);
872 /* ask the cache manager to route the call (it'll change the call type
874 if (!afs_cm_incoming_call(call
))
877 trace_afs_cb_call(call
);
879 /* pass responsibility for the remainer of this message off to the
880 * cache manager op */
881 return call
->type
->deliver(call
);
885 * Advance the AFS call state when an RxRPC service call ends the transmit
888 static void afs_notify_end_reply_tx(struct sock
*sock
,
889 struct rxrpc_call
*rxcall
,
890 unsigned long call_user_ID
)
892 struct afs_call
*call
= (struct afs_call
*)call_user_ID
;
894 afs_set_call_state(call
, AFS_CALL_SV_REPLYING
, AFS_CALL_SV_AWAIT_ACK
);
898 * send an empty reply
900 void afs_send_empty_reply(struct afs_call
*call
)
902 struct afs_net
*net
= call
->net
;
907 rxrpc_kernel_set_tx_length(net
->socket
, call
->rxcall
, 0);
911 iov_iter_kvec(&msg
.msg_iter
, WRITE
, NULL
, 0, 0);
912 msg
.msg_control
= NULL
;
913 msg
.msg_controllen
= 0;
916 switch (rxrpc_kernel_send_data(net
->socket
, call
->rxcall
, &msg
, 0,
917 afs_notify_end_reply_tx
)) {
919 _leave(" [replied]");
924 rxrpc_kernel_abort_call(net
->socket
, call
->rxcall
,
925 RX_USER_ABORT
, -ENOMEM
, "KOO");
934 * send a simple reply
936 void afs_send_simple_reply(struct afs_call
*call
, const void *buf
, size_t len
)
938 struct afs_net
*net
= call
->net
;
945 rxrpc_kernel_set_tx_length(net
->socket
, call
->rxcall
, len
);
947 iov
[0].iov_base
= (void *) buf
;
948 iov
[0].iov_len
= len
;
951 iov_iter_kvec(&msg
.msg_iter
, WRITE
, iov
, 1, len
);
952 msg
.msg_control
= NULL
;
953 msg
.msg_controllen
= 0;
956 n
= rxrpc_kernel_send_data(net
->socket
, call
->rxcall
, &msg
, len
,
957 afs_notify_end_reply_tx
);
960 _leave(" [replied]");
966 rxrpc_kernel_abort_call(net
->socket
, call
->rxcall
,
967 RX_USER_ABORT
, -ENOMEM
, "KOO");
973 * Extract a piece of data from the received data socket buffers.
975 int afs_extract_data(struct afs_call
*call
, bool want_more
)
977 struct afs_net
*net
= call
->net
;
978 struct iov_iter
*iter
= call
->iter
;
979 enum afs_call_state state
;
980 u32 remote_abort
= 0;
983 _enter("{%s,%zu},%d", call
->type
->name
, iov_iter_count(iter
), want_more
);
985 ret
= rxrpc_kernel_recv_data(net
->socket
, call
->rxcall
, iter
,
986 want_more
, &remote_abort
,
988 if (ret
== 0 || ret
== -EAGAIN
)
991 state
= READ_ONCE(call
->state
);
994 case AFS_CALL_CL_AWAIT_REPLY
:
995 afs_set_call_state(call
, state
, AFS_CALL_CL_PROC_REPLY
);
997 case AFS_CALL_SV_AWAIT_REQUEST
:
998 afs_set_call_state(call
, state
, AFS_CALL_SV_REPLYING
);
1000 case AFS_CALL_COMPLETE
:
1001 kdebug("prem complete %d", call
->error
);
1002 return afs_io_error(call
, afs_io_error_extract
);
1009 afs_set_call_complete(call
, ret
, remote_abort
);
1014 * Log protocol error production.
1016 noinline
int afs_protocol_error(struct afs_call
*call
, int error
,
1017 enum afs_eproto_cause cause
)
1019 trace_afs_protocol_error(call
, error
, cause
);