1 // SPDX-License-Identifier: GPL-2.0-only
4 * Copyright (c) 2017 Jesper Dangaard Brouer, Red Hat Inc.
7 /* The 'cpumap' is primarily used as a backend map for XDP BPF helper
8 * call bpf_redirect_map() and XDP_REDIRECT action, like 'devmap'.
10 * Unlike devmap which redirects XDP frames out another NIC device,
11 * this map type redirects raw XDP frames to another CPU. The remote
12 * CPU will do SKB-allocation and call the normal network stack.
14 * This is a scalability and isolation mechanism, that allow
15 * separating the early driver network XDP layer, from the rest of the
16 * netstack, and assigning dedicated CPUs for this stage. This
17 * basically allows for 10G wirespeed pre-filtering via bpf.
19 #include <linux/bpf.h>
20 #include <linux/filter.h>
21 #include <linux/ptr_ring.h>
24 #include <linux/sched.h>
25 #include <linux/workqueue.h>
26 #include <linux/kthread.h>
27 #include <linux/capability.h>
28 #include <trace/events/xdp.h>
30 #include <linux/netdevice.h> /* netif_receive_skb_core */
31 #include <linux/etherdevice.h> /* eth_type_trans */
33 /* General idea: XDP packets getting XDP redirected to another CPU,
34 * will maximum be stored/queued for one driver ->poll() call. It is
35 * guaranteed that queueing the frame and the flush operation happen on
36 * same CPU. Thus, cpu_map_flush operation can deduct via this_cpu_ptr()
37 * which queue in bpf_cpu_map_entry contains packets.
40 #define CPU_MAP_BULK_SIZE 8 /* 8 == one cacheline on 64-bit archs */
41 struct bpf_cpu_map_entry
;
44 struct xdp_bulk_queue
{
45 void *q
[CPU_MAP_BULK_SIZE
];
46 struct list_head flush_node
;
47 struct bpf_cpu_map_entry
*obj
;
51 /* Struct for every remote "destination" CPU in map */
52 struct bpf_cpu_map_entry
{
53 u32 cpu
; /* kthread CPU and map index */
54 int map_id
; /* Back reference to map */
55 u32 qsize
; /* Queue size placeholder for map lookup */
57 /* XDP can run multiple RX-ring queues, need __percpu enqueue store */
58 struct xdp_bulk_queue __percpu
*bulkq
;
60 struct bpf_cpu_map
*cmap
;
62 /* Queue with potential multi-producers, and single-consumer kthread */
63 struct ptr_ring
*queue
;
64 struct task_struct
*kthread
;
65 struct work_struct kthread_stop_wq
;
67 atomic_t refcnt
; /* Control when this struct can be free'ed */
73 /* Below members specific for map type */
74 struct bpf_cpu_map_entry
**cpu_map
;
75 struct list_head __percpu
*flush_list
;
78 static int bq_flush_to_queue(struct xdp_bulk_queue
*bq
, bool in_napi_ctx
);
80 static struct bpf_map
*cpu_map_alloc(union bpf_attr
*attr
)
82 struct bpf_cpu_map
*cmap
;
87 if (!capable(CAP_SYS_ADMIN
))
88 return ERR_PTR(-EPERM
);
90 /* check sanity of attributes */
91 if (attr
->max_entries
== 0 || attr
->key_size
!= 4 ||
92 attr
->value_size
!= 4 || attr
->map_flags
& ~BPF_F_NUMA_NODE
)
93 return ERR_PTR(-EINVAL
);
95 cmap
= kzalloc(sizeof(*cmap
), GFP_USER
);
97 return ERR_PTR(-ENOMEM
);
99 bpf_map_init_from_attr(&cmap
->map
, attr
);
101 /* Pre-limit array size based on NR_CPUS, not final CPU check */
102 if (cmap
->map
.max_entries
> NR_CPUS
) {
107 /* make sure page count doesn't overflow */
108 cost
= (u64
) cmap
->map
.max_entries
* sizeof(struct bpf_cpu_map_entry
*);
109 cost
+= sizeof(struct list_head
) * num_possible_cpus();
111 /* Notice returns -EPERM on if map size is larger than memlock limit */
112 ret
= bpf_map_charge_init(&cmap
->map
.memory
, cost
);
118 cmap
->flush_list
= alloc_percpu(struct list_head
);
119 if (!cmap
->flush_list
)
122 for_each_possible_cpu(cpu
)
123 INIT_LIST_HEAD(per_cpu_ptr(cmap
->flush_list
, cpu
));
125 /* Alloc array for possible remote "destination" CPUs */
126 cmap
->cpu_map
= bpf_map_area_alloc(cmap
->map
.max_entries
*
127 sizeof(struct bpf_cpu_map_entry
*),
128 cmap
->map
.numa_node
);
134 free_percpu(cmap
->flush_list
);
136 bpf_map_charge_finish(&cmap
->map
.memory
);
142 static void get_cpu_map_entry(struct bpf_cpu_map_entry
*rcpu
)
144 atomic_inc(&rcpu
->refcnt
);
147 /* called from workqueue, to workaround syscall using preempt_disable */
148 static void cpu_map_kthread_stop(struct work_struct
*work
)
150 struct bpf_cpu_map_entry
*rcpu
;
152 rcpu
= container_of(work
, struct bpf_cpu_map_entry
, kthread_stop_wq
);
154 /* Wait for flush in __cpu_map_entry_free(), via full RCU barrier,
155 * as it waits until all in-flight call_rcu() callbacks complete.
159 /* kthread_stop will wake_up_process and wait for it to complete */
160 kthread_stop(rcpu
->kthread
);
163 static struct sk_buff
*cpu_map_build_skb(struct bpf_cpu_map_entry
*rcpu
,
164 struct xdp_frame
*xdpf
,
167 unsigned int hard_start_headroom
;
168 unsigned int frame_size
;
169 void *pkt_data_start
;
171 /* Part of headroom was reserved to xdpf */
172 hard_start_headroom
= sizeof(struct xdp_frame
) + xdpf
->headroom
;
174 /* build_skb need to place skb_shared_info after SKB end, and
175 * also want to know the memory "truesize". Thus, need to
176 * know the memory frame size backing xdp_buff.
178 * XDP was designed to have PAGE_SIZE frames, but this
179 * assumption is not longer true with ixgbe and i40e. It
180 * would be preferred to set frame_size to 2048 or 4096
181 * depending on the driver.
183 * frame_len = frame_size - sizeof(*xdp_frame);
185 * Instead, with info avail, skb_shared_info in placed after
186 * packet len. This, unfortunately fakes the truesize.
187 * Another disadvantage of this approach, the skb_shared_info
188 * is not at a fixed memory location, with mixed length
189 * packets, which is bad for cache-line hotness.
191 frame_size
= SKB_DATA_ALIGN(xdpf
->len
+ hard_start_headroom
) +
192 SKB_DATA_ALIGN(sizeof(struct skb_shared_info
));
194 pkt_data_start
= xdpf
->data
- hard_start_headroom
;
195 skb
= build_skb_around(skb
, pkt_data_start
, frame_size
);
199 skb_reserve(skb
, hard_start_headroom
);
200 __skb_put(skb
, xdpf
->len
);
202 skb_metadata_set(skb
, xdpf
->metasize
);
204 /* Essential SKB info: protocol and skb->dev */
205 skb
->protocol
= eth_type_trans(skb
, xdpf
->dev_rx
);
207 /* Optional SKB info, currently missing:
208 * - HW checksum info (skb->ip_summed)
209 * - HW RX hash (skb_set_hash)
210 * - RX ring dev queue index (skb_record_rx_queue)
213 /* Until page_pool get SKB return path, release DMA here */
214 xdp_release_frame(xdpf
);
216 /* Allow SKB to reuse area used by xdp_frame */
217 xdp_scrub_frame(xdpf
);
222 static void __cpu_map_ring_cleanup(struct ptr_ring
*ring
)
224 /* The tear-down procedure should have made sure that queue is
225 * empty. See __cpu_map_entry_replace() and work-queue
226 * invoked cpu_map_kthread_stop(). Catch any broken behaviour
227 * gracefully and warn once.
229 struct xdp_frame
*xdpf
;
231 while ((xdpf
= ptr_ring_consume(ring
)))
232 if (WARN_ON_ONCE(xdpf
))
233 xdp_return_frame(xdpf
);
236 static void put_cpu_map_entry(struct bpf_cpu_map_entry
*rcpu
)
238 if (atomic_dec_and_test(&rcpu
->refcnt
)) {
239 /* The queue should be empty at this point */
240 __cpu_map_ring_cleanup(rcpu
->queue
);
241 ptr_ring_cleanup(rcpu
->queue
, NULL
);
247 #define CPUMAP_BATCH 8
249 static int cpu_map_kthread_run(void *data
)
251 struct bpf_cpu_map_entry
*rcpu
= data
;
253 set_current_state(TASK_INTERRUPTIBLE
);
255 /* When kthread gives stop order, then rcpu have been disconnected
256 * from map, thus no new packets can enter. Remaining in-flight
257 * per CPU stored packets are flushed to this queue. Wait honoring
258 * kthread_stop signal until queue is empty.
260 while (!kthread_should_stop() || !__ptr_ring_empty(rcpu
->queue
)) {
261 unsigned int drops
= 0, sched
= 0;
262 void *frames
[CPUMAP_BATCH
];
263 void *skbs
[CPUMAP_BATCH
];
264 gfp_t gfp
= __GFP_ZERO
| GFP_ATOMIC
;
267 /* Release CPU reschedule checks */
268 if (__ptr_ring_empty(rcpu
->queue
)) {
269 set_current_state(TASK_INTERRUPTIBLE
);
270 /* Recheck to avoid lost wake-up */
271 if (__ptr_ring_empty(rcpu
->queue
)) {
275 __set_current_state(TASK_RUNNING
);
278 sched
= cond_resched();
282 * The bpf_cpu_map_entry is single consumer, with this
283 * kthread CPU pinned. Lockless access to ptr_ring
284 * consume side valid as no-resize allowed of queue.
286 n
= ptr_ring_consume_batched(rcpu
->queue
, frames
, CPUMAP_BATCH
);
288 for (i
= 0; i
< n
; i
++) {
290 struct page
*page
= virt_to_page(f
);
292 /* Bring struct page memory area to curr CPU. Read by
293 * build_skb_around via page_is_pfmemalloc(), and when
294 * freed written by page_frag_free call.
299 m
= kmem_cache_alloc_bulk(skbuff_head_cache
, gfp
, n
, skbs
);
300 if (unlikely(m
== 0)) {
301 for (i
= 0; i
< n
; i
++)
302 skbs
[i
] = NULL
; /* effect: xdp_return_frame */
307 for (i
= 0; i
< n
; i
++) {
308 struct xdp_frame
*xdpf
= frames
[i
];
309 struct sk_buff
*skb
= skbs
[i
];
312 skb
= cpu_map_build_skb(rcpu
, xdpf
, skb
);
314 xdp_return_frame(xdpf
);
318 /* Inject into network stack */
319 ret
= netif_receive_skb_core(skb
);
320 if (ret
== NET_RX_DROP
)
323 /* Feedback loop via tracepoint */
324 trace_xdp_cpumap_kthread(rcpu
->map_id
, n
, drops
, sched
);
326 local_bh_enable(); /* resched point, may call do_softirq() */
328 __set_current_state(TASK_RUNNING
);
330 put_cpu_map_entry(rcpu
);
334 static struct bpf_cpu_map_entry
*__cpu_map_entry_alloc(u32 qsize
, u32 cpu
,
337 gfp_t gfp
= GFP_KERNEL
| __GFP_NOWARN
;
338 struct bpf_cpu_map_entry
*rcpu
;
339 struct xdp_bulk_queue
*bq
;
342 /* Have map->numa_node, but choose node of redirect target CPU */
343 numa
= cpu_to_node(cpu
);
345 rcpu
= kzalloc_node(sizeof(*rcpu
), gfp
, numa
);
349 /* Alloc percpu bulkq */
350 rcpu
->bulkq
= __alloc_percpu_gfp(sizeof(*rcpu
->bulkq
),
351 sizeof(void *), gfp
);
355 for_each_possible_cpu(i
) {
356 bq
= per_cpu_ptr(rcpu
->bulkq
, i
);
361 rcpu
->queue
= kzalloc_node(sizeof(*rcpu
->queue
), gfp
, numa
);
365 err
= ptr_ring_init(rcpu
->queue
, qsize
, gfp
);
370 rcpu
->map_id
= map_id
;
374 rcpu
->kthread
= kthread_create_on_node(cpu_map_kthread_run
, rcpu
, numa
,
375 "cpumap/%d/map:%d", cpu
, map_id
);
376 if (IS_ERR(rcpu
->kthread
))
379 get_cpu_map_entry(rcpu
); /* 1-refcnt for being in cmap->cpu_map[] */
380 get_cpu_map_entry(rcpu
); /* 1-refcnt for kthread */
382 /* Make sure kthread runs on a single CPU */
383 kthread_bind(rcpu
->kthread
, cpu
);
384 wake_up_process(rcpu
->kthread
);
389 ptr_ring_cleanup(rcpu
->queue
, NULL
);
393 free_percpu(rcpu
->bulkq
);
399 static void __cpu_map_entry_free(struct rcu_head
*rcu
)
401 struct bpf_cpu_map_entry
*rcpu
;
404 /* This cpu_map_entry have been disconnected from map and one
405 * RCU graze-period have elapsed. Thus, XDP cannot queue any
406 * new packets and cannot change/set flush_needed that can
409 rcpu
= container_of(rcu
, struct bpf_cpu_map_entry
, rcu
);
411 /* Flush remaining packets in percpu bulkq */
412 for_each_online_cpu(cpu
) {
413 struct xdp_bulk_queue
*bq
= per_cpu_ptr(rcpu
->bulkq
, cpu
);
415 /* No concurrent bq_enqueue can run at this point */
416 bq_flush_to_queue(bq
, false);
418 free_percpu(rcpu
->bulkq
);
419 /* Cannot kthread_stop() here, last put free rcpu resources */
420 put_cpu_map_entry(rcpu
);
423 /* After xchg pointer to bpf_cpu_map_entry, use the call_rcu() to
424 * ensure any driver rcu critical sections have completed, but this
425 * does not guarantee a flush has happened yet. Because driver side
426 * rcu_read_lock/unlock only protects the running XDP program. The
427 * atomic xchg and NULL-ptr check in __cpu_map_flush() makes sure a
428 * pending flush op doesn't fail.
430 * The bpf_cpu_map_entry is still used by the kthread, and there can
431 * still be pending packets (in queue and percpu bulkq). A refcnt
432 * makes sure to last user (kthread_stop vs. call_rcu) free memory
435 * The rcu callback __cpu_map_entry_free flush remaining packets in
436 * percpu bulkq to queue. Due to caller map_delete_elem() disable
437 * preemption, cannot call kthread_stop() to make sure queue is empty.
438 * Instead a work_queue is started for stopping kthread,
439 * cpu_map_kthread_stop, which waits for an RCU graze period before
440 * stopping kthread, emptying the queue.
442 static void __cpu_map_entry_replace(struct bpf_cpu_map
*cmap
,
443 u32 key_cpu
, struct bpf_cpu_map_entry
*rcpu
)
445 struct bpf_cpu_map_entry
*old_rcpu
;
447 old_rcpu
= xchg(&cmap
->cpu_map
[key_cpu
], rcpu
);
449 call_rcu(&old_rcpu
->rcu
, __cpu_map_entry_free
);
450 INIT_WORK(&old_rcpu
->kthread_stop_wq
, cpu_map_kthread_stop
);
451 schedule_work(&old_rcpu
->kthread_stop_wq
);
455 static int cpu_map_delete_elem(struct bpf_map
*map
, void *key
)
457 struct bpf_cpu_map
*cmap
= container_of(map
, struct bpf_cpu_map
, map
);
458 u32 key_cpu
= *(u32
*)key
;
460 if (key_cpu
>= map
->max_entries
)
463 /* notice caller map_delete_elem() use preempt_disable() */
464 __cpu_map_entry_replace(cmap
, key_cpu
, NULL
);
468 static int cpu_map_update_elem(struct bpf_map
*map
, void *key
, void *value
,
471 struct bpf_cpu_map
*cmap
= container_of(map
, struct bpf_cpu_map
, map
);
472 struct bpf_cpu_map_entry
*rcpu
;
474 /* Array index key correspond to CPU number */
475 u32 key_cpu
= *(u32
*)key
;
476 /* Value is the queue size */
477 u32 qsize
= *(u32
*)value
;
479 if (unlikely(map_flags
> BPF_EXIST
))
481 if (unlikely(key_cpu
>= cmap
->map
.max_entries
))
483 if (unlikely(map_flags
== BPF_NOEXIST
))
485 if (unlikely(qsize
> 16384)) /* sanity limit on qsize */
488 /* Make sure CPU is a valid possible cpu */
489 if (!cpu_possible(key_cpu
))
493 rcpu
= NULL
; /* Same as deleting */
495 /* Updating qsize cause re-allocation of bpf_cpu_map_entry */
496 rcpu
= __cpu_map_entry_alloc(qsize
, key_cpu
, map
->id
);
502 __cpu_map_entry_replace(cmap
, key_cpu
, rcpu
);
507 static void cpu_map_free(struct bpf_map
*map
)
509 struct bpf_cpu_map
*cmap
= container_of(map
, struct bpf_cpu_map
, map
);
513 /* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
514 * so the bpf programs (can be more than one that used this map) were
515 * disconnected from events. Wait for outstanding critical sections in
516 * these programs to complete. The rcu critical section only guarantees
517 * no further "XDP/bpf-side" reads against bpf_cpu_map->cpu_map.
518 * It does __not__ ensure pending flush operations (if any) are
522 bpf_clear_redirect_map(map
);
525 /* To ensure all pending flush operations have completed wait for flush
526 * list be empty on _all_ cpus. Because the above synchronize_rcu()
527 * ensures the map is disconnected from the program we can assume no new
528 * items will be added to the list.
530 for_each_online_cpu(cpu
) {
531 struct list_head
*flush_list
= per_cpu_ptr(cmap
->flush_list
, cpu
);
533 while (!list_empty(flush_list
))
537 /* For cpu_map the remote CPUs can still be using the entries
538 * (struct bpf_cpu_map_entry).
540 for (i
= 0; i
< cmap
->map
.max_entries
; i
++) {
541 struct bpf_cpu_map_entry
*rcpu
;
543 rcpu
= READ_ONCE(cmap
->cpu_map
[i
]);
547 /* bq flush and cleanup happens after RCU graze-period */
548 __cpu_map_entry_replace(cmap
, i
, NULL
); /* call_rcu */
550 free_percpu(cmap
->flush_list
);
551 bpf_map_area_free(cmap
->cpu_map
);
555 struct bpf_cpu_map_entry
*__cpu_map_lookup_elem(struct bpf_map
*map
, u32 key
)
557 struct bpf_cpu_map
*cmap
= container_of(map
, struct bpf_cpu_map
, map
);
558 struct bpf_cpu_map_entry
*rcpu
;
560 if (key
>= map
->max_entries
)
563 rcpu
= READ_ONCE(cmap
->cpu_map
[key
]);
567 static void *cpu_map_lookup_elem(struct bpf_map
*map
, void *key
)
569 struct bpf_cpu_map_entry
*rcpu
=
570 __cpu_map_lookup_elem(map
, *(u32
*)key
);
572 return rcpu
? &rcpu
->qsize
: NULL
;
575 static int cpu_map_get_next_key(struct bpf_map
*map
, void *key
, void *next_key
)
577 struct bpf_cpu_map
*cmap
= container_of(map
, struct bpf_cpu_map
, map
);
578 u32 index
= key
? *(u32
*)key
: U32_MAX
;
579 u32
*next
= next_key
;
581 if (index
>= cmap
->map
.max_entries
) {
586 if (index
== cmap
->map
.max_entries
- 1)
592 const struct bpf_map_ops cpu_map_ops
= {
593 .map_alloc
= cpu_map_alloc
,
594 .map_free
= cpu_map_free
,
595 .map_delete_elem
= cpu_map_delete_elem
,
596 .map_update_elem
= cpu_map_update_elem
,
597 .map_lookup_elem
= cpu_map_lookup_elem
,
598 .map_get_next_key
= cpu_map_get_next_key
,
599 .map_check_btf
= map_check_no_btf
,
602 static int bq_flush_to_queue(struct xdp_bulk_queue
*bq
, bool in_napi_ctx
)
604 struct bpf_cpu_map_entry
*rcpu
= bq
->obj
;
605 unsigned int processed
= 0, drops
= 0;
606 const int to_cpu
= rcpu
->cpu
;
610 if (unlikely(!bq
->count
))
614 spin_lock(&q
->producer_lock
);
616 for (i
= 0; i
< bq
->count
; i
++) {
617 struct xdp_frame
*xdpf
= bq
->q
[i
];
620 err
= __ptr_ring_produce(q
, xdpf
);
623 if (likely(in_napi_ctx
))
624 xdp_return_frame_rx_napi(xdpf
);
626 xdp_return_frame(xdpf
);
631 spin_unlock(&q
->producer_lock
);
633 __list_del_clearprev(&bq
->flush_node
);
635 /* Feedback loop via tracepoints */
636 trace_xdp_cpumap_enqueue(rcpu
->map_id
, processed
, drops
, to_cpu
);
640 /* Runs under RCU-read-side, plus in softirq under NAPI protection.
641 * Thus, safe percpu variable access.
643 static int bq_enqueue(struct bpf_cpu_map_entry
*rcpu
, struct xdp_frame
*xdpf
)
645 struct list_head
*flush_list
= this_cpu_ptr(rcpu
->cmap
->flush_list
);
646 struct xdp_bulk_queue
*bq
= this_cpu_ptr(rcpu
->bulkq
);
648 if (unlikely(bq
->count
== CPU_MAP_BULK_SIZE
))
649 bq_flush_to_queue(bq
, true);
651 /* Notice, xdp_buff/page MUST be queued here, long enough for
652 * driver to code invoking us to finished, due to driver
653 * (e.g. ixgbe) recycle tricks based on page-refcnt.
655 * Thus, incoming xdp_frame is always queued here (else we race
656 * with another CPU on page-refcnt and remaining driver code).
657 * Queue time is very short, as driver will invoke flush
658 * operation, when completing napi->poll call.
660 bq
->q
[bq
->count
++] = xdpf
;
662 if (!bq
->flush_node
.prev
)
663 list_add(&bq
->flush_node
, flush_list
);
668 int cpu_map_enqueue(struct bpf_cpu_map_entry
*rcpu
, struct xdp_buff
*xdp
,
669 struct net_device
*dev_rx
)
671 struct xdp_frame
*xdpf
;
673 xdpf
= convert_to_xdp_frame(xdp
);
677 /* Info needed when constructing SKB on remote CPU */
678 xdpf
->dev_rx
= dev_rx
;
680 bq_enqueue(rcpu
, xdpf
);
684 void __cpu_map_flush(struct bpf_map
*map
)
686 struct bpf_cpu_map
*cmap
= container_of(map
, struct bpf_cpu_map
, map
);
687 struct list_head
*flush_list
= this_cpu_ptr(cmap
->flush_list
);
688 struct xdp_bulk_queue
*bq
, *tmp
;
690 list_for_each_entry_safe(bq
, tmp
, flush_list
, flush_node
) {
691 bq_flush_to_queue(bq
, true);
693 /* If already running, costs spin_lock_irqsave + smb_mb */
694 wake_up_process(bq
->obj
->kthread
);