split dev_queue
[cor.git] / kernel / kexec.c
blobbc933c0db9bf019aefa7c5bc7061bc2541fb2a00
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * kexec.c - kexec_load system call
4 * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com>
5 */
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 #include <linux/capability.h>
10 #include <linux/mm.h>
11 #include <linux/file.h>
12 #include <linux/security.h>
13 #include <linux/kexec.h>
14 #include <linux/mutex.h>
15 #include <linux/list.h>
16 #include <linux/syscalls.h>
17 #include <linux/vmalloc.h>
18 #include <linux/slab.h>
20 #include "kexec_internal.h"
22 static int copy_user_segment_list(struct kimage *image,
23 unsigned long nr_segments,
24 struct kexec_segment __user *segments)
26 int ret;
27 size_t segment_bytes;
29 /* Read in the segments */
30 image->nr_segments = nr_segments;
31 segment_bytes = nr_segments * sizeof(*segments);
32 ret = copy_from_user(image->segment, segments, segment_bytes);
33 if (ret)
34 ret = -EFAULT;
36 return ret;
39 static int kimage_alloc_init(struct kimage **rimage, unsigned long entry,
40 unsigned long nr_segments,
41 struct kexec_segment __user *segments,
42 unsigned long flags)
44 int ret;
45 struct kimage *image;
46 bool kexec_on_panic = flags & KEXEC_ON_CRASH;
48 if (kexec_on_panic) {
49 /* Verify we have a valid entry point */
50 if ((entry < phys_to_boot_phys(crashk_res.start)) ||
51 (entry > phys_to_boot_phys(crashk_res.end)))
52 return -EADDRNOTAVAIL;
55 /* Allocate and initialize a controlling structure */
56 image = do_kimage_alloc_init();
57 if (!image)
58 return -ENOMEM;
60 image->start = entry;
62 ret = copy_user_segment_list(image, nr_segments, segments);
63 if (ret)
64 goto out_free_image;
66 if (kexec_on_panic) {
67 /* Enable special crash kernel control page alloc policy. */
68 image->control_page = crashk_res.start;
69 image->type = KEXEC_TYPE_CRASH;
72 ret = sanity_check_segment_list(image);
73 if (ret)
74 goto out_free_image;
77 * Find a location for the control code buffer, and add it
78 * the vector of segments so that it's pages will also be
79 * counted as destination pages.
81 ret = -ENOMEM;
82 image->control_code_page = kimage_alloc_control_pages(image,
83 get_order(KEXEC_CONTROL_PAGE_SIZE));
84 if (!image->control_code_page) {
85 pr_err("Could not allocate control_code_buffer\n");
86 goto out_free_image;
89 if (!kexec_on_panic) {
90 image->swap_page = kimage_alloc_control_pages(image, 0);
91 if (!image->swap_page) {
92 pr_err("Could not allocate swap buffer\n");
93 goto out_free_control_pages;
97 *rimage = image;
98 return 0;
99 out_free_control_pages:
100 kimage_free_page_list(&image->control_pages);
101 out_free_image:
102 kfree(image);
103 return ret;
106 static int do_kexec_load(unsigned long entry, unsigned long nr_segments,
107 struct kexec_segment __user *segments, unsigned long flags)
109 struct kimage **dest_image, *image;
110 unsigned long i;
111 int ret;
113 if (flags & KEXEC_ON_CRASH) {
114 dest_image = &kexec_crash_image;
115 if (kexec_crash_image)
116 arch_kexec_unprotect_crashkres();
117 } else {
118 dest_image = &kexec_image;
121 if (nr_segments == 0) {
122 /* Uninstall image */
123 kimage_free(xchg(dest_image, NULL));
124 return 0;
126 if (flags & KEXEC_ON_CRASH) {
128 * Loading another kernel to switch to if this one
129 * crashes. Free any current crash dump kernel before
130 * we corrupt it.
132 kimage_free(xchg(&kexec_crash_image, NULL));
135 ret = kimage_alloc_init(&image, entry, nr_segments, segments, flags);
136 if (ret)
137 return ret;
139 if (flags & KEXEC_PRESERVE_CONTEXT)
140 image->preserve_context = 1;
142 ret = machine_kexec_prepare(image);
143 if (ret)
144 goto out;
147 * Some architecture(like S390) may touch the crash memory before
148 * machine_kexec_prepare(), we must copy vmcoreinfo data after it.
150 ret = kimage_crash_copy_vmcoreinfo(image);
151 if (ret)
152 goto out;
154 for (i = 0; i < nr_segments; i++) {
155 ret = kimage_load_segment(image, &image->segment[i]);
156 if (ret)
157 goto out;
160 kimage_terminate(image);
162 /* Install the new kernel and uninstall the old */
163 image = xchg(dest_image, image);
165 out:
166 if ((flags & KEXEC_ON_CRASH) && kexec_crash_image)
167 arch_kexec_protect_crashkres();
169 kimage_free(image);
170 return ret;
174 * Exec Kernel system call: for obvious reasons only root may call it.
176 * This call breaks up into three pieces.
177 * - A generic part which loads the new kernel from the current
178 * address space, and very carefully places the data in the
179 * allocated pages.
181 * - A generic part that interacts with the kernel and tells all of
182 * the devices to shut down. Preventing on-going dmas, and placing
183 * the devices in a consistent state so a later kernel can
184 * reinitialize them.
186 * - A machine specific part that includes the syscall number
187 * and then copies the image to it's final destination. And
188 * jumps into the image at entry.
190 * kexec does not sync, or unmount filesystems so if you need
191 * that to happen you need to do that yourself.
194 static inline int kexec_load_check(unsigned long nr_segments,
195 unsigned long flags)
197 int result;
199 /* We only trust the superuser with rebooting the system. */
200 if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
201 return -EPERM;
203 /* Permit LSMs and IMA to fail the kexec */
204 result = security_kernel_load_data(LOADING_KEXEC_IMAGE);
205 if (result < 0)
206 return result;
209 * kexec can be used to circumvent module loading restrictions, so
210 * prevent loading in that case
212 result = security_locked_down(LOCKDOWN_KEXEC);
213 if (result)
214 return result;
217 * Verify we have a legal set of flags
218 * This leaves us room for future extensions.
220 if ((flags & KEXEC_FLAGS) != (flags & ~KEXEC_ARCH_MASK))
221 return -EINVAL;
223 /* Put an artificial cap on the number
224 * of segments passed to kexec_load.
226 if (nr_segments > KEXEC_SEGMENT_MAX)
227 return -EINVAL;
229 return 0;
232 SYSCALL_DEFINE4(kexec_load, unsigned long, entry, unsigned long, nr_segments,
233 struct kexec_segment __user *, segments, unsigned long, flags)
235 int result;
237 result = kexec_load_check(nr_segments, flags);
238 if (result)
239 return result;
241 /* Verify we are on the appropriate architecture */
242 if (((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH) &&
243 ((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH_DEFAULT))
244 return -EINVAL;
246 /* Because we write directly to the reserved memory
247 * region when loading crash kernels we need a mutex here to
248 * prevent multiple crash kernels from attempting to load
249 * simultaneously, and to prevent a crash kernel from loading
250 * over the top of a in use crash kernel.
252 * KISS: always take the mutex.
254 if (!mutex_trylock(&kexec_mutex))
255 return -EBUSY;
257 result = do_kexec_load(entry, nr_segments, segments, flags);
259 mutex_unlock(&kexec_mutex);
261 return result;
264 #ifdef CONFIG_COMPAT
265 COMPAT_SYSCALL_DEFINE4(kexec_load, compat_ulong_t, entry,
266 compat_ulong_t, nr_segments,
267 struct compat_kexec_segment __user *, segments,
268 compat_ulong_t, flags)
270 struct compat_kexec_segment in;
271 struct kexec_segment out, __user *ksegments;
272 unsigned long i, result;
274 result = kexec_load_check(nr_segments, flags);
275 if (result)
276 return result;
278 /* Don't allow clients that don't understand the native
279 * architecture to do anything.
281 if ((flags & KEXEC_ARCH_MASK) == KEXEC_ARCH_DEFAULT)
282 return -EINVAL;
284 ksegments = compat_alloc_user_space(nr_segments * sizeof(out));
285 for (i = 0; i < nr_segments; i++) {
286 result = copy_from_user(&in, &segments[i], sizeof(in));
287 if (result)
288 return -EFAULT;
290 out.buf = compat_ptr(in.buf);
291 out.bufsz = in.bufsz;
292 out.mem = in.mem;
293 out.memsz = in.memsz;
295 result = copy_to_user(&ksegments[i], &out, sizeof(out));
296 if (result)
297 return -EFAULT;
300 /* Because we write directly to the reserved memory
301 * region when loading crash kernels we need a mutex here to
302 * prevent multiple crash kernels from attempting to load
303 * simultaneously, and to prevent a crash kernel from loading
304 * over the top of a in use crash kernel.
306 * KISS: always take the mutex.
308 if (!mutex_trylock(&kexec_mutex))
309 return -EBUSY;
311 result = do_kexec_load(entry, nr_segments, ksegments, flags);
313 mutex_unlock(&kexec_mutex);
315 return result;
317 #endif