1 // SPDX-License-Identifier: GPL-2.0-only
3 * Generic hugetlb support.
4 * (C) Nadia Yvette Chambers, April 2004
6 #include <linux/list.h>
7 #include <linux/init.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/mmdebug.h>
23 #include <linux/sched/signal.h>
24 #include <linux/rmap.h>
25 #include <linux/string_helpers.h>
26 #include <linux/swap.h>
27 #include <linux/swapops.h>
28 #include <linux/jhash.h>
29 #include <linux/numa.h>
32 #include <asm/pgtable.h>
36 #include <linux/hugetlb.h>
37 #include <linux/hugetlb_cgroup.h>
38 #include <linux/node.h>
39 #include <linux/userfaultfd_k.h>
40 #include <linux/page_owner.h>
43 int hugetlb_max_hstate __read_mostly
;
44 unsigned int default_hstate_idx
;
45 struct hstate hstates
[HUGE_MAX_HSTATE
];
47 * Minimum page order among possible hugepage sizes, set to a proper value
50 static unsigned int minimum_order __read_mostly
= UINT_MAX
;
52 __initdata
LIST_HEAD(huge_boot_pages
);
54 /* for command line parsing */
55 static struct hstate
* __initdata parsed_hstate
;
56 static unsigned long __initdata default_hstate_max_huge_pages
;
57 static unsigned long __initdata default_hstate_size
;
58 static bool __initdata parsed_valid_hugepagesz
= true;
61 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
62 * free_huge_pages, and surplus_huge_pages.
64 DEFINE_SPINLOCK(hugetlb_lock
);
67 * Serializes faults on the same logical page. This is used to
68 * prevent spurious OOMs when the hugepage pool is fully utilized.
70 static int num_fault_mutexes
;
71 struct mutex
*hugetlb_fault_mutex_table ____cacheline_aligned_in_smp
;
73 /* Forward declaration */
74 static int hugetlb_acct_memory(struct hstate
*h
, long delta
);
76 static inline void unlock_or_release_subpool(struct hugepage_subpool
*spool
)
78 bool free
= (spool
->count
== 0) && (spool
->used_hpages
== 0);
80 spin_unlock(&spool
->lock
);
82 /* If no pages are used, and no other handles to the subpool
83 * remain, give up any reservations mased on minimum size and
86 if (spool
->min_hpages
!= -1)
87 hugetlb_acct_memory(spool
->hstate
,
93 struct hugepage_subpool
*hugepage_new_subpool(struct hstate
*h
, long max_hpages
,
96 struct hugepage_subpool
*spool
;
98 spool
= kzalloc(sizeof(*spool
), GFP_KERNEL
);
102 spin_lock_init(&spool
->lock
);
104 spool
->max_hpages
= max_hpages
;
106 spool
->min_hpages
= min_hpages
;
108 if (min_hpages
!= -1 && hugetlb_acct_memory(h
, min_hpages
)) {
112 spool
->rsv_hpages
= min_hpages
;
117 void hugepage_put_subpool(struct hugepage_subpool
*spool
)
119 spin_lock(&spool
->lock
);
120 BUG_ON(!spool
->count
);
122 unlock_or_release_subpool(spool
);
126 * Subpool accounting for allocating and reserving pages.
127 * Return -ENOMEM if there are not enough resources to satisfy the
128 * the request. Otherwise, return the number of pages by which the
129 * global pools must be adjusted (upward). The returned value may
130 * only be different than the passed value (delta) in the case where
131 * a subpool minimum size must be manitained.
133 static long hugepage_subpool_get_pages(struct hugepage_subpool
*spool
,
141 spin_lock(&spool
->lock
);
143 if (spool
->max_hpages
!= -1) { /* maximum size accounting */
144 if ((spool
->used_hpages
+ delta
) <= spool
->max_hpages
)
145 spool
->used_hpages
+= delta
;
152 /* minimum size accounting */
153 if (spool
->min_hpages
!= -1 && spool
->rsv_hpages
) {
154 if (delta
> spool
->rsv_hpages
) {
156 * Asking for more reserves than those already taken on
157 * behalf of subpool. Return difference.
159 ret
= delta
- spool
->rsv_hpages
;
160 spool
->rsv_hpages
= 0;
162 ret
= 0; /* reserves already accounted for */
163 spool
->rsv_hpages
-= delta
;
168 spin_unlock(&spool
->lock
);
173 * Subpool accounting for freeing and unreserving pages.
174 * Return the number of global page reservations that must be dropped.
175 * The return value may only be different than the passed value (delta)
176 * in the case where a subpool minimum size must be maintained.
178 static long hugepage_subpool_put_pages(struct hugepage_subpool
*spool
,
186 spin_lock(&spool
->lock
);
188 if (spool
->max_hpages
!= -1) /* maximum size accounting */
189 spool
->used_hpages
-= delta
;
191 /* minimum size accounting */
192 if (spool
->min_hpages
!= -1 && spool
->used_hpages
< spool
->min_hpages
) {
193 if (spool
->rsv_hpages
+ delta
<= spool
->min_hpages
)
196 ret
= spool
->rsv_hpages
+ delta
- spool
->min_hpages
;
198 spool
->rsv_hpages
+= delta
;
199 if (spool
->rsv_hpages
> spool
->min_hpages
)
200 spool
->rsv_hpages
= spool
->min_hpages
;
204 * If hugetlbfs_put_super couldn't free spool due to an outstanding
205 * quota reference, free it now.
207 unlock_or_release_subpool(spool
);
212 static inline struct hugepage_subpool
*subpool_inode(struct inode
*inode
)
214 return HUGETLBFS_SB(inode
->i_sb
)->spool
;
217 static inline struct hugepage_subpool
*subpool_vma(struct vm_area_struct
*vma
)
219 return subpool_inode(file_inode(vma
->vm_file
));
223 * Region tracking -- allows tracking of reservations and instantiated pages
224 * across the pages in a mapping.
226 * The region data structures are embedded into a resv_map and protected
227 * by a resv_map's lock. The set of regions within the resv_map represent
228 * reservations for huge pages, or huge pages that have already been
229 * instantiated within the map. The from and to elements are huge page
230 * indicies into the associated mapping. from indicates the starting index
231 * of the region. to represents the first index past the end of the region.
233 * For example, a file region structure with from == 0 and to == 4 represents
234 * four huge pages in a mapping. It is important to note that the to element
235 * represents the first element past the end of the region. This is used in
236 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
238 * Interval notation of the form [from, to) will be used to indicate that
239 * the endpoint from is inclusive and to is exclusive.
242 struct list_head link
;
247 /* Must be called with resv->lock held. Calling this with count_only == true
248 * will count the number of pages to be added but will not modify the linked
251 static long add_reservation_in_range(struct resv_map
*resv
, long f
, long t
,
255 struct list_head
*head
= &resv
->regions
;
256 struct file_region
*rg
= NULL
, *trg
= NULL
, *nrg
= NULL
;
258 /* Locate the region we are before or in. */
259 list_for_each_entry(rg
, head
, link
)
263 /* Round our left edge to the current segment if it encloses us. */
269 /* Check for and consume any regions we now overlap with. */
271 list_for_each_entry_safe(rg
, trg
, rg
->link
.prev
, link
) {
272 if (&rg
->link
== head
)
277 /* We overlap with this area, if it extends further than
278 * us then we must extend ourselves. Account for its
279 * existing reservation.
285 chg
-= rg
->to
- rg
->from
;
287 if (!count_only
&& rg
!= nrg
) {
302 * Add the huge page range represented by [f, t) to the reserve
303 * map. Existing regions will be expanded to accommodate the specified
304 * range, or a region will be taken from the cache. Sufficient regions
305 * must exist in the cache due to the previous call to region_chg with
308 * Return the number of new huge pages added to the map. This
309 * number is greater than or equal to zero.
311 static long region_add(struct resv_map
*resv
, long f
, long t
)
313 struct list_head
*head
= &resv
->regions
;
314 struct file_region
*rg
, *nrg
;
317 spin_lock(&resv
->lock
);
318 /* Locate the region we are either in or before. */
319 list_for_each_entry(rg
, head
, link
)
324 * If no region exists which can be expanded to include the
325 * specified range, pull a region descriptor from the cache
326 * and use it for this range.
328 if (&rg
->link
== head
|| t
< rg
->from
) {
329 VM_BUG_ON(resv
->region_cache_count
<= 0);
331 resv
->region_cache_count
--;
332 nrg
= list_first_entry(&resv
->region_cache
, struct file_region
,
334 list_del(&nrg
->link
);
338 list_add(&nrg
->link
, rg
->link
.prev
);
344 add
= add_reservation_in_range(resv
, f
, t
, false);
347 resv
->adds_in_progress
--;
348 spin_unlock(&resv
->lock
);
354 * Examine the existing reserve map and determine how many
355 * huge pages in the specified range [f, t) are NOT currently
356 * represented. This routine is called before a subsequent
357 * call to region_add that will actually modify the reserve
358 * map to add the specified range [f, t). region_chg does
359 * not change the number of huge pages represented by the
360 * map. A new file_region structure is added to the cache
361 * as a placeholder, so that the subsequent region_add
362 * call will have all the regions it needs and will not fail.
364 * Returns the number of huge pages that need to be added to the existing
365 * reservation map for the range [f, t). This number is greater or equal to
366 * zero. -ENOMEM is returned if a new file_region structure or cache entry
367 * is needed and can not be allocated.
369 static long region_chg(struct resv_map
*resv
, long f
, long t
)
373 spin_lock(&resv
->lock
);
375 resv
->adds_in_progress
++;
378 * Check for sufficient descriptors in the cache to accommodate
379 * the number of in progress add operations.
381 if (resv
->adds_in_progress
> resv
->region_cache_count
) {
382 struct file_region
*trg
;
384 VM_BUG_ON(resv
->adds_in_progress
- resv
->region_cache_count
> 1);
385 /* Must drop lock to allocate a new descriptor. */
386 resv
->adds_in_progress
--;
387 spin_unlock(&resv
->lock
);
389 trg
= kmalloc(sizeof(*trg
), GFP_KERNEL
);
393 spin_lock(&resv
->lock
);
394 list_add(&trg
->link
, &resv
->region_cache
);
395 resv
->region_cache_count
++;
399 chg
= add_reservation_in_range(resv
, f
, t
, true);
401 spin_unlock(&resv
->lock
);
406 * Abort the in progress add operation. The adds_in_progress field
407 * of the resv_map keeps track of the operations in progress between
408 * calls to region_chg and region_add. Operations are sometimes
409 * aborted after the call to region_chg. In such cases, region_abort
410 * is called to decrement the adds_in_progress counter.
412 * NOTE: The range arguments [f, t) are not needed or used in this
413 * routine. They are kept to make reading the calling code easier as
414 * arguments will match the associated region_chg call.
416 static void region_abort(struct resv_map
*resv
, long f
, long t
)
418 spin_lock(&resv
->lock
);
419 VM_BUG_ON(!resv
->region_cache_count
);
420 resv
->adds_in_progress
--;
421 spin_unlock(&resv
->lock
);
425 * Delete the specified range [f, t) from the reserve map. If the
426 * t parameter is LONG_MAX, this indicates that ALL regions after f
427 * should be deleted. Locate the regions which intersect [f, t)
428 * and either trim, delete or split the existing regions.
430 * Returns the number of huge pages deleted from the reserve map.
431 * In the normal case, the return value is zero or more. In the
432 * case where a region must be split, a new region descriptor must
433 * be allocated. If the allocation fails, -ENOMEM will be returned.
434 * NOTE: If the parameter t == LONG_MAX, then we will never split
435 * a region and possibly return -ENOMEM. Callers specifying
436 * t == LONG_MAX do not need to check for -ENOMEM error.
438 static long region_del(struct resv_map
*resv
, long f
, long t
)
440 struct list_head
*head
= &resv
->regions
;
441 struct file_region
*rg
, *trg
;
442 struct file_region
*nrg
= NULL
;
446 spin_lock(&resv
->lock
);
447 list_for_each_entry_safe(rg
, trg
, head
, link
) {
449 * Skip regions before the range to be deleted. file_region
450 * ranges are normally of the form [from, to). However, there
451 * may be a "placeholder" entry in the map which is of the form
452 * (from, to) with from == to. Check for placeholder entries
453 * at the beginning of the range to be deleted.
455 if (rg
->to
<= f
&& (rg
->to
!= rg
->from
|| rg
->to
!= f
))
461 if (f
> rg
->from
&& t
< rg
->to
) { /* Must split region */
463 * Check for an entry in the cache before dropping
464 * lock and attempting allocation.
467 resv
->region_cache_count
> resv
->adds_in_progress
) {
468 nrg
= list_first_entry(&resv
->region_cache
,
471 list_del(&nrg
->link
);
472 resv
->region_cache_count
--;
476 spin_unlock(&resv
->lock
);
477 nrg
= kmalloc(sizeof(*nrg
), GFP_KERNEL
);
485 /* New entry for end of split region */
488 INIT_LIST_HEAD(&nrg
->link
);
490 /* Original entry is trimmed */
493 list_add(&nrg
->link
, &rg
->link
);
498 if (f
<= rg
->from
&& t
>= rg
->to
) { /* Remove entire region */
499 del
+= rg
->to
- rg
->from
;
505 if (f
<= rg
->from
) { /* Trim beginning of region */
508 } else { /* Trim end of region */
514 spin_unlock(&resv
->lock
);
520 * A rare out of memory error was encountered which prevented removal of
521 * the reserve map region for a page. The huge page itself was free'ed
522 * and removed from the page cache. This routine will adjust the subpool
523 * usage count, and the global reserve count if needed. By incrementing
524 * these counts, the reserve map entry which could not be deleted will
525 * appear as a "reserved" entry instead of simply dangling with incorrect
528 void hugetlb_fix_reserve_counts(struct inode
*inode
)
530 struct hugepage_subpool
*spool
= subpool_inode(inode
);
533 rsv_adjust
= hugepage_subpool_get_pages(spool
, 1);
535 struct hstate
*h
= hstate_inode(inode
);
537 hugetlb_acct_memory(h
, 1);
542 * Count and return the number of huge pages in the reserve map
543 * that intersect with the range [f, t).
545 static long region_count(struct resv_map
*resv
, long f
, long t
)
547 struct list_head
*head
= &resv
->regions
;
548 struct file_region
*rg
;
551 spin_lock(&resv
->lock
);
552 /* Locate each segment we overlap with, and count that overlap. */
553 list_for_each_entry(rg
, head
, link
) {
562 seg_from
= max(rg
->from
, f
);
563 seg_to
= min(rg
->to
, t
);
565 chg
+= seg_to
- seg_from
;
567 spin_unlock(&resv
->lock
);
573 * Convert the address within this vma to the page offset within
574 * the mapping, in pagecache page units; huge pages here.
576 static pgoff_t
vma_hugecache_offset(struct hstate
*h
,
577 struct vm_area_struct
*vma
, unsigned long address
)
579 return ((address
- vma
->vm_start
) >> huge_page_shift(h
)) +
580 (vma
->vm_pgoff
>> huge_page_order(h
));
583 pgoff_t
linear_hugepage_index(struct vm_area_struct
*vma
,
584 unsigned long address
)
586 return vma_hugecache_offset(hstate_vma(vma
), vma
, address
);
588 EXPORT_SYMBOL_GPL(linear_hugepage_index
);
591 * Return the size of the pages allocated when backing a VMA. In the majority
592 * cases this will be same size as used by the page table entries.
594 unsigned long vma_kernel_pagesize(struct vm_area_struct
*vma
)
596 if (vma
->vm_ops
&& vma
->vm_ops
->pagesize
)
597 return vma
->vm_ops
->pagesize(vma
);
600 EXPORT_SYMBOL_GPL(vma_kernel_pagesize
);
603 * Return the page size being used by the MMU to back a VMA. In the majority
604 * of cases, the page size used by the kernel matches the MMU size. On
605 * architectures where it differs, an architecture-specific 'strong'
606 * version of this symbol is required.
608 __weak
unsigned long vma_mmu_pagesize(struct vm_area_struct
*vma
)
610 return vma_kernel_pagesize(vma
);
614 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
615 * bits of the reservation map pointer, which are always clear due to
618 #define HPAGE_RESV_OWNER (1UL << 0)
619 #define HPAGE_RESV_UNMAPPED (1UL << 1)
620 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
623 * These helpers are used to track how many pages are reserved for
624 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
625 * is guaranteed to have their future faults succeed.
627 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
628 * the reserve counters are updated with the hugetlb_lock held. It is safe
629 * to reset the VMA at fork() time as it is not in use yet and there is no
630 * chance of the global counters getting corrupted as a result of the values.
632 * The private mapping reservation is represented in a subtly different
633 * manner to a shared mapping. A shared mapping has a region map associated
634 * with the underlying file, this region map represents the backing file
635 * pages which have ever had a reservation assigned which this persists even
636 * after the page is instantiated. A private mapping has a region map
637 * associated with the original mmap which is attached to all VMAs which
638 * reference it, this region map represents those offsets which have consumed
639 * reservation ie. where pages have been instantiated.
641 static unsigned long get_vma_private_data(struct vm_area_struct
*vma
)
643 return (unsigned long)vma
->vm_private_data
;
646 static void set_vma_private_data(struct vm_area_struct
*vma
,
649 vma
->vm_private_data
= (void *)value
;
652 struct resv_map
*resv_map_alloc(void)
654 struct resv_map
*resv_map
= kmalloc(sizeof(*resv_map
), GFP_KERNEL
);
655 struct file_region
*rg
= kmalloc(sizeof(*rg
), GFP_KERNEL
);
657 if (!resv_map
|| !rg
) {
663 kref_init(&resv_map
->refs
);
664 spin_lock_init(&resv_map
->lock
);
665 INIT_LIST_HEAD(&resv_map
->regions
);
667 resv_map
->adds_in_progress
= 0;
669 INIT_LIST_HEAD(&resv_map
->region_cache
);
670 list_add(&rg
->link
, &resv_map
->region_cache
);
671 resv_map
->region_cache_count
= 1;
676 void resv_map_release(struct kref
*ref
)
678 struct resv_map
*resv_map
= container_of(ref
, struct resv_map
, refs
);
679 struct list_head
*head
= &resv_map
->region_cache
;
680 struct file_region
*rg
, *trg
;
682 /* Clear out any active regions before we release the map. */
683 region_del(resv_map
, 0, LONG_MAX
);
685 /* ... and any entries left in the cache */
686 list_for_each_entry_safe(rg
, trg
, head
, link
) {
691 VM_BUG_ON(resv_map
->adds_in_progress
);
696 static inline struct resv_map
*inode_resv_map(struct inode
*inode
)
699 * At inode evict time, i_mapping may not point to the original
700 * address space within the inode. This original address space
701 * contains the pointer to the resv_map. So, always use the
702 * address space embedded within the inode.
703 * The VERY common case is inode->mapping == &inode->i_data but,
704 * this may not be true for device special inodes.
706 return (struct resv_map
*)(&inode
->i_data
)->private_data
;
709 static struct resv_map
*vma_resv_map(struct vm_area_struct
*vma
)
711 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma
), vma
);
712 if (vma
->vm_flags
& VM_MAYSHARE
) {
713 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
714 struct inode
*inode
= mapping
->host
;
716 return inode_resv_map(inode
);
719 return (struct resv_map
*)(get_vma_private_data(vma
) &
724 static void set_vma_resv_map(struct vm_area_struct
*vma
, struct resv_map
*map
)
726 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma
), vma
);
727 VM_BUG_ON_VMA(vma
->vm_flags
& VM_MAYSHARE
, vma
);
729 set_vma_private_data(vma
, (get_vma_private_data(vma
) &
730 HPAGE_RESV_MASK
) | (unsigned long)map
);
733 static void set_vma_resv_flags(struct vm_area_struct
*vma
, unsigned long flags
)
735 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma
), vma
);
736 VM_BUG_ON_VMA(vma
->vm_flags
& VM_MAYSHARE
, vma
);
738 set_vma_private_data(vma
, get_vma_private_data(vma
) | flags
);
741 static int is_vma_resv_set(struct vm_area_struct
*vma
, unsigned long flag
)
743 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma
), vma
);
745 return (get_vma_private_data(vma
) & flag
) != 0;
748 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
749 void reset_vma_resv_huge_pages(struct vm_area_struct
*vma
)
751 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma
), vma
);
752 if (!(vma
->vm_flags
& VM_MAYSHARE
))
753 vma
->vm_private_data
= (void *)0;
756 /* Returns true if the VMA has associated reserve pages */
757 static bool vma_has_reserves(struct vm_area_struct
*vma
, long chg
)
759 if (vma
->vm_flags
& VM_NORESERVE
) {
761 * This address is already reserved by other process(chg == 0),
762 * so, we should decrement reserved count. Without decrementing,
763 * reserve count remains after releasing inode, because this
764 * allocated page will go into page cache and is regarded as
765 * coming from reserved pool in releasing step. Currently, we
766 * don't have any other solution to deal with this situation
767 * properly, so add work-around here.
769 if (vma
->vm_flags
& VM_MAYSHARE
&& chg
== 0)
775 /* Shared mappings always use reserves */
776 if (vma
->vm_flags
& VM_MAYSHARE
) {
778 * We know VM_NORESERVE is not set. Therefore, there SHOULD
779 * be a region map for all pages. The only situation where
780 * there is no region map is if a hole was punched via
781 * fallocate. In this case, there really are no reverves to
782 * use. This situation is indicated if chg != 0.
791 * Only the process that called mmap() has reserves for
794 if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
)) {
796 * Like the shared case above, a hole punch or truncate
797 * could have been performed on the private mapping.
798 * Examine the value of chg to determine if reserves
799 * actually exist or were previously consumed.
800 * Very Subtle - The value of chg comes from a previous
801 * call to vma_needs_reserves(). The reserve map for
802 * private mappings has different (opposite) semantics
803 * than that of shared mappings. vma_needs_reserves()
804 * has already taken this difference in semantics into
805 * account. Therefore, the meaning of chg is the same
806 * as in the shared case above. Code could easily be
807 * combined, but keeping it separate draws attention to
808 * subtle differences.
819 static void enqueue_huge_page(struct hstate
*h
, struct page
*page
)
821 int nid
= page_to_nid(page
);
822 list_move(&page
->lru
, &h
->hugepage_freelists
[nid
]);
823 h
->free_huge_pages
++;
824 h
->free_huge_pages_node
[nid
]++;
827 static struct page
*dequeue_huge_page_node_exact(struct hstate
*h
, int nid
)
831 list_for_each_entry(page
, &h
->hugepage_freelists
[nid
], lru
)
832 if (!PageHWPoison(page
))
835 * if 'non-isolated free hugepage' not found on the list,
836 * the allocation fails.
838 if (&h
->hugepage_freelists
[nid
] == &page
->lru
)
840 list_move(&page
->lru
, &h
->hugepage_activelist
);
841 set_page_refcounted(page
);
842 h
->free_huge_pages
--;
843 h
->free_huge_pages_node
[nid
]--;
847 static struct page
*dequeue_huge_page_nodemask(struct hstate
*h
, gfp_t gfp_mask
, int nid
,
850 unsigned int cpuset_mems_cookie
;
851 struct zonelist
*zonelist
;
854 int node
= NUMA_NO_NODE
;
856 zonelist
= node_zonelist(nid
, gfp_mask
);
859 cpuset_mems_cookie
= read_mems_allowed_begin();
860 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
, gfp_zone(gfp_mask
), nmask
) {
863 if (!cpuset_zone_allowed(zone
, gfp_mask
))
866 * no need to ask again on the same node. Pool is node rather than
869 if (zone_to_nid(zone
) == node
)
871 node
= zone_to_nid(zone
);
873 page
= dequeue_huge_page_node_exact(h
, node
);
877 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie
)))
883 /* Movability of hugepages depends on migration support. */
884 static inline gfp_t
htlb_alloc_mask(struct hstate
*h
)
886 if (hugepage_movable_supported(h
))
887 return GFP_HIGHUSER_MOVABLE
;
892 static struct page
*dequeue_huge_page_vma(struct hstate
*h
,
893 struct vm_area_struct
*vma
,
894 unsigned long address
, int avoid_reserve
,
898 struct mempolicy
*mpol
;
900 nodemask_t
*nodemask
;
904 * A child process with MAP_PRIVATE mappings created by their parent
905 * have no page reserves. This check ensures that reservations are
906 * not "stolen". The child may still get SIGKILLed
908 if (!vma_has_reserves(vma
, chg
) &&
909 h
->free_huge_pages
- h
->resv_huge_pages
== 0)
912 /* If reserves cannot be used, ensure enough pages are in the pool */
913 if (avoid_reserve
&& h
->free_huge_pages
- h
->resv_huge_pages
== 0)
916 gfp_mask
= htlb_alloc_mask(h
);
917 nid
= huge_node(vma
, address
, gfp_mask
, &mpol
, &nodemask
);
918 page
= dequeue_huge_page_nodemask(h
, gfp_mask
, nid
, nodemask
);
919 if (page
&& !avoid_reserve
&& vma_has_reserves(vma
, chg
)) {
920 SetPagePrivate(page
);
921 h
->resv_huge_pages
--;
932 * common helper functions for hstate_next_node_to_{alloc|free}.
933 * We may have allocated or freed a huge page based on a different
934 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
935 * be outside of *nodes_allowed. Ensure that we use an allowed
936 * node for alloc or free.
938 static int next_node_allowed(int nid
, nodemask_t
*nodes_allowed
)
940 nid
= next_node_in(nid
, *nodes_allowed
);
941 VM_BUG_ON(nid
>= MAX_NUMNODES
);
946 static int get_valid_node_allowed(int nid
, nodemask_t
*nodes_allowed
)
948 if (!node_isset(nid
, *nodes_allowed
))
949 nid
= next_node_allowed(nid
, nodes_allowed
);
954 * returns the previously saved node ["this node"] from which to
955 * allocate a persistent huge page for the pool and advance the
956 * next node from which to allocate, handling wrap at end of node
959 static int hstate_next_node_to_alloc(struct hstate
*h
,
960 nodemask_t
*nodes_allowed
)
964 VM_BUG_ON(!nodes_allowed
);
966 nid
= get_valid_node_allowed(h
->next_nid_to_alloc
, nodes_allowed
);
967 h
->next_nid_to_alloc
= next_node_allowed(nid
, nodes_allowed
);
973 * helper for free_pool_huge_page() - return the previously saved
974 * node ["this node"] from which to free a huge page. Advance the
975 * next node id whether or not we find a free huge page to free so
976 * that the next attempt to free addresses the next node.
978 static int hstate_next_node_to_free(struct hstate
*h
, nodemask_t
*nodes_allowed
)
982 VM_BUG_ON(!nodes_allowed
);
984 nid
= get_valid_node_allowed(h
->next_nid_to_free
, nodes_allowed
);
985 h
->next_nid_to_free
= next_node_allowed(nid
, nodes_allowed
);
990 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
991 for (nr_nodes = nodes_weight(*mask); \
993 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
996 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
997 for (nr_nodes = nodes_weight(*mask); \
999 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1002 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1003 static void destroy_compound_gigantic_page(struct page
*page
,
1007 int nr_pages
= 1 << order
;
1008 struct page
*p
= page
+ 1;
1010 atomic_set(compound_mapcount_ptr(page
), 0);
1011 for (i
= 1; i
< nr_pages
; i
++, p
= mem_map_next(p
, page
, i
)) {
1012 clear_compound_head(p
);
1013 set_page_refcounted(p
);
1016 set_compound_order(page
, 0);
1017 __ClearPageHead(page
);
1020 static void free_gigantic_page(struct page
*page
, unsigned int order
)
1022 free_contig_range(page_to_pfn(page
), 1 << order
);
1025 #ifdef CONFIG_CONTIG_ALLOC
1026 static struct page
*alloc_gigantic_page(struct hstate
*h
, gfp_t gfp_mask
,
1027 int nid
, nodemask_t
*nodemask
)
1029 unsigned long nr_pages
= 1UL << huge_page_order(h
);
1031 return alloc_contig_pages(nr_pages
, gfp_mask
, nid
, nodemask
);
1034 static void prep_new_huge_page(struct hstate
*h
, struct page
*page
, int nid
);
1035 static void prep_compound_gigantic_page(struct page
*page
, unsigned int order
);
1036 #else /* !CONFIG_CONTIG_ALLOC */
1037 static struct page
*alloc_gigantic_page(struct hstate
*h
, gfp_t gfp_mask
,
1038 int nid
, nodemask_t
*nodemask
)
1042 #endif /* CONFIG_CONTIG_ALLOC */
1044 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1045 static struct page
*alloc_gigantic_page(struct hstate
*h
, gfp_t gfp_mask
,
1046 int nid
, nodemask_t
*nodemask
)
1050 static inline void free_gigantic_page(struct page
*page
, unsigned int order
) { }
1051 static inline void destroy_compound_gigantic_page(struct page
*page
,
1052 unsigned int order
) { }
1055 static void update_and_free_page(struct hstate
*h
, struct page
*page
)
1059 if (hstate_is_gigantic(h
) && !gigantic_page_runtime_supported())
1063 h
->nr_huge_pages_node
[page_to_nid(page
)]--;
1064 for (i
= 0; i
< pages_per_huge_page(h
); i
++) {
1065 page
[i
].flags
&= ~(1 << PG_locked
| 1 << PG_error
|
1066 1 << PG_referenced
| 1 << PG_dirty
|
1067 1 << PG_active
| 1 << PG_private
|
1070 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page
), page
);
1071 set_compound_page_dtor(page
, NULL_COMPOUND_DTOR
);
1072 set_page_refcounted(page
);
1073 if (hstate_is_gigantic(h
)) {
1074 destroy_compound_gigantic_page(page
, huge_page_order(h
));
1075 free_gigantic_page(page
, huge_page_order(h
));
1077 __free_pages(page
, huge_page_order(h
));
1081 struct hstate
*size_to_hstate(unsigned long size
)
1085 for_each_hstate(h
) {
1086 if (huge_page_size(h
) == size
)
1093 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1094 * to hstate->hugepage_activelist.)
1096 * This function can be called for tail pages, but never returns true for them.
1098 bool page_huge_active(struct page
*page
)
1100 VM_BUG_ON_PAGE(!PageHuge(page
), page
);
1101 return PageHead(page
) && PagePrivate(&page
[1]);
1104 /* never called for tail page */
1105 static void set_page_huge_active(struct page
*page
)
1107 VM_BUG_ON_PAGE(!PageHeadHuge(page
), page
);
1108 SetPagePrivate(&page
[1]);
1111 static void clear_page_huge_active(struct page
*page
)
1113 VM_BUG_ON_PAGE(!PageHeadHuge(page
), page
);
1114 ClearPagePrivate(&page
[1]);
1118 * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1121 static inline bool PageHugeTemporary(struct page
*page
)
1123 if (!PageHuge(page
))
1126 return (unsigned long)page
[2].mapping
== -1U;
1129 static inline void SetPageHugeTemporary(struct page
*page
)
1131 page
[2].mapping
= (void *)-1U;
1134 static inline void ClearPageHugeTemporary(struct page
*page
)
1136 page
[2].mapping
= NULL
;
1139 void free_huge_page(struct page
*page
)
1142 * Can't pass hstate in here because it is called from the
1143 * compound page destructor.
1145 struct hstate
*h
= page_hstate(page
);
1146 int nid
= page_to_nid(page
);
1147 struct hugepage_subpool
*spool
=
1148 (struct hugepage_subpool
*)page_private(page
);
1149 bool restore_reserve
;
1151 VM_BUG_ON_PAGE(page_count(page
), page
);
1152 VM_BUG_ON_PAGE(page_mapcount(page
), page
);
1154 set_page_private(page
, 0);
1155 page
->mapping
= NULL
;
1156 restore_reserve
= PagePrivate(page
);
1157 ClearPagePrivate(page
);
1160 * If PagePrivate() was set on page, page allocation consumed a
1161 * reservation. If the page was associated with a subpool, there
1162 * would have been a page reserved in the subpool before allocation
1163 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
1164 * reservtion, do not call hugepage_subpool_put_pages() as this will
1165 * remove the reserved page from the subpool.
1167 if (!restore_reserve
) {
1169 * A return code of zero implies that the subpool will be
1170 * under its minimum size if the reservation is not restored
1171 * after page is free. Therefore, force restore_reserve
1174 if (hugepage_subpool_put_pages(spool
, 1) == 0)
1175 restore_reserve
= true;
1178 spin_lock(&hugetlb_lock
);
1179 clear_page_huge_active(page
);
1180 hugetlb_cgroup_uncharge_page(hstate_index(h
),
1181 pages_per_huge_page(h
), page
);
1182 if (restore_reserve
)
1183 h
->resv_huge_pages
++;
1185 if (PageHugeTemporary(page
)) {
1186 list_del(&page
->lru
);
1187 ClearPageHugeTemporary(page
);
1188 update_and_free_page(h
, page
);
1189 } else if (h
->surplus_huge_pages_node
[nid
]) {
1190 /* remove the page from active list */
1191 list_del(&page
->lru
);
1192 update_and_free_page(h
, page
);
1193 h
->surplus_huge_pages
--;
1194 h
->surplus_huge_pages_node
[nid
]--;
1196 arch_clear_hugepage_flags(page
);
1197 enqueue_huge_page(h
, page
);
1199 spin_unlock(&hugetlb_lock
);
1202 static void prep_new_huge_page(struct hstate
*h
, struct page
*page
, int nid
)
1204 INIT_LIST_HEAD(&page
->lru
);
1205 set_compound_page_dtor(page
, HUGETLB_PAGE_DTOR
);
1206 spin_lock(&hugetlb_lock
);
1207 set_hugetlb_cgroup(page
, NULL
);
1209 h
->nr_huge_pages_node
[nid
]++;
1210 spin_unlock(&hugetlb_lock
);
1213 static void prep_compound_gigantic_page(struct page
*page
, unsigned int order
)
1216 int nr_pages
= 1 << order
;
1217 struct page
*p
= page
+ 1;
1219 /* we rely on prep_new_huge_page to set the destructor */
1220 set_compound_order(page
, order
);
1221 __ClearPageReserved(page
);
1222 __SetPageHead(page
);
1223 for (i
= 1; i
< nr_pages
; i
++, p
= mem_map_next(p
, page
, i
)) {
1225 * For gigantic hugepages allocated through bootmem at
1226 * boot, it's safer to be consistent with the not-gigantic
1227 * hugepages and clear the PG_reserved bit from all tail pages
1228 * too. Otherwse drivers using get_user_pages() to access tail
1229 * pages may get the reference counting wrong if they see
1230 * PG_reserved set on a tail page (despite the head page not
1231 * having PG_reserved set). Enforcing this consistency between
1232 * head and tail pages allows drivers to optimize away a check
1233 * on the head page when they need know if put_page() is needed
1234 * after get_user_pages().
1236 __ClearPageReserved(p
);
1237 set_page_count(p
, 0);
1238 set_compound_head(p
, page
);
1240 atomic_set(compound_mapcount_ptr(page
), -1);
1244 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1245 * transparent huge pages. See the PageTransHuge() documentation for more
1248 int PageHuge(struct page
*page
)
1250 if (!PageCompound(page
))
1253 page
= compound_head(page
);
1254 return page
[1].compound_dtor
== HUGETLB_PAGE_DTOR
;
1256 EXPORT_SYMBOL_GPL(PageHuge
);
1259 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1260 * normal or transparent huge pages.
1262 int PageHeadHuge(struct page
*page_head
)
1264 if (!PageHead(page_head
))
1267 return get_compound_page_dtor(page_head
) == free_huge_page
;
1270 pgoff_t
__basepage_index(struct page
*page
)
1272 struct page
*page_head
= compound_head(page
);
1273 pgoff_t index
= page_index(page_head
);
1274 unsigned long compound_idx
;
1276 if (!PageHuge(page_head
))
1277 return page_index(page
);
1279 if (compound_order(page_head
) >= MAX_ORDER
)
1280 compound_idx
= page_to_pfn(page
) - page_to_pfn(page_head
);
1282 compound_idx
= page
- page_head
;
1284 return (index
<< compound_order(page_head
)) + compound_idx
;
1287 static struct page
*alloc_buddy_huge_page(struct hstate
*h
,
1288 gfp_t gfp_mask
, int nid
, nodemask_t
*nmask
,
1289 nodemask_t
*node_alloc_noretry
)
1291 int order
= huge_page_order(h
);
1293 bool alloc_try_hard
= true;
1296 * By default we always try hard to allocate the page with
1297 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in
1298 * a loop (to adjust global huge page counts) and previous allocation
1299 * failed, do not continue to try hard on the same node. Use the
1300 * node_alloc_noretry bitmap to manage this state information.
1302 if (node_alloc_noretry
&& node_isset(nid
, *node_alloc_noretry
))
1303 alloc_try_hard
= false;
1304 gfp_mask
|= __GFP_COMP
|__GFP_NOWARN
;
1306 gfp_mask
|= __GFP_RETRY_MAYFAIL
;
1307 if (nid
== NUMA_NO_NODE
)
1308 nid
= numa_mem_id();
1309 page
= __alloc_pages_nodemask(gfp_mask
, order
, nid
, nmask
);
1311 __count_vm_event(HTLB_BUDDY_PGALLOC
);
1313 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL
);
1316 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1317 * indicates an overall state change. Clear bit so that we resume
1318 * normal 'try hard' allocations.
1320 if (node_alloc_noretry
&& page
&& !alloc_try_hard
)
1321 node_clear(nid
, *node_alloc_noretry
);
1324 * If we tried hard to get a page but failed, set bit so that
1325 * subsequent attempts will not try as hard until there is an
1326 * overall state change.
1328 if (node_alloc_noretry
&& !page
&& alloc_try_hard
)
1329 node_set(nid
, *node_alloc_noretry
);
1335 * Common helper to allocate a fresh hugetlb page. All specific allocators
1336 * should use this function to get new hugetlb pages
1338 static struct page
*alloc_fresh_huge_page(struct hstate
*h
,
1339 gfp_t gfp_mask
, int nid
, nodemask_t
*nmask
,
1340 nodemask_t
*node_alloc_noretry
)
1344 if (hstate_is_gigantic(h
))
1345 page
= alloc_gigantic_page(h
, gfp_mask
, nid
, nmask
);
1347 page
= alloc_buddy_huge_page(h
, gfp_mask
,
1348 nid
, nmask
, node_alloc_noretry
);
1352 if (hstate_is_gigantic(h
))
1353 prep_compound_gigantic_page(page
, huge_page_order(h
));
1354 prep_new_huge_page(h
, page
, page_to_nid(page
));
1360 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1363 static int alloc_pool_huge_page(struct hstate
*h
, nodemask_t
*nodes_allowed
,
1364 nodemask_t
*node_alloc_noretry
)
1368 gfp_t gfp_mask
= htlb_alloc_mask(h
) | __GFP_THISNODE
;
1370 for_each_node_mask_to_alloc(h
, nr_nodes
, node
, nodes_allowed
) {
1371 page
= alloc_fresh_huge_page(h
, gfp_mask
, node
, nodes_allowed
,
1372 node_alloc_noretry
);
1380 put_page(page
); /* free it into the hugepage allocator */
1386 * Free huge page from pool from next node to free.
1387 * Attempt to keep persistent huge pages more or less
1388 * balanced over allowed nodes.
1389 * Called with hugetlb_lock locked.
1391 static int free_pool_huge_page(struct hstate
*h
, nodemask_t
*nodes_allowed
,
1397 for_each_node_mask_to_free(h
, nr_nodes
, node
, nodes_allowed
) {
1399 * If we're returning unused surplus pages, only examine
1400 * nodes with surplus pages.
1402 if ((!acct_surplus
|| h
->surplus_huge_pages_node
[node
]) &&
1403 !list_empty(&h
->hugepage_freelists
[node
])) {
1405 list_entry(h
->hugepage_freelists
[node
].next
,
1407 list_del(&page
->lru
);
1408 h
->free_huge_pages
--;
1409 h
->free_huge_pages_node
[node
]--;
1411 h
->surplus_huge_pages
--;
1412 h
->surplus_huge_pages_node
[node
]--;
1414 update_and_free_page(h
, page
);
1424 * Dissolve a given free hugepage into free buddy pages. This function does
1425 * nothing for in-use hugepages and non-hugepages.
1426 * This function returns values like below:
1428 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1429 * (allocated or reserved.)
1430 * 0: successfully dissolved free hugepages or the page is not a
1431 * hugepage (considered as already dissolved)
1433 int dissolve_free_huge_page(struct page
*page
)
1437 /* Not to disrupt normal path by vainly holding hugetlb_lock */
1438 if (!PageHuge(page
))
1441 spin_lock(&hugetlb_lock
);
1442 if (!PageHuge(page
)) {
1447 if (!page_count(page
)) {
1448 struct page
*head
= compound_head(page
);
1449 struct hstate
*h
= page_hstate(head
);
1450 int nid
= page_to_nid(head
);
1451 if (h
->free_huge_pages
- h
->resv_huge_pages
== 0)
1454 * Move PageHWPoison flag from head page to the raw error page,
1455 * which makes any subpages rather than the error page reusable.
1457 if (PageHWPoison(head
) && page
!= head
) {
1458 SetPageHWPoison(page
);
1459 ClearPageHWPoison(head
);
1461 list_del(&head
->lru
);
1462 h
->free_huge_pages
--;
1463 h
->free_huge_pages_node
[nid
]--;
1464 h
->max_huge_pages
--;
1465 update_and_free_page(h
, head
);
1469 spin_unlock(&hugetlb_lock
);
1474 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1475 * make specified memory blocks removable from the system.
1476 * Note that this will dissolve a free gigantic hugepage completely, if any
1477 * part of it lies within the given range.
1478 * Also note that if dissolve_free_huge_page() returns with an error, all
1479 * free hugepages that were dissolved before that error are lost.
1481 int dissolve_free_huge_pages(unsigned long start_pfn
, unsigned long end_pfn
)
1487 if (!hugepages_supported())
1490 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= 1 << minimum_order
) {
1491 page
= pfn_to_page(pfn
);
1492 rc
= dissolve_free_huge_page(page
);
1501 * Allocates a fresh surplus page from the page allocator.
1503 static struct page
*alloc_surplus_huge_page(struct hstate
*h
, gfp_t gfp_mask
,
1504 int nid
, nodemask_t
*nmask
)
1506 struct page
*page
= NULL
;
1508 if (hstate_is_gigantic(h
))
1511 spin_lock(&hugetlb_lock
);
1512 if (h
->surplus_huge_pages
>= h
->nr_overcommit_huge_pages
)
1514 spin_unlock(&hugetlb_lock
);
1516 page
= alloc_fresh_huge_page(h
, gfp_mask
, nid
, nmask
, NULL
);
1520 spin_lock(&hugetlb_lock
);
1522 * We could have raced with the pool size change.
1523 * Double check that and simply deallocate the new page
1524 * if we would end up overcommiting the surpluses. Abuse
1525 * temporary page to workaround the nasty free_huge_page
1528 if (h
->surplus_huge_pages
>= h
->nr_overcommit_huge_pages
) {
1529 SetPageHugeTemporary(page
);
1530 spin_unlock(&hugetlb_lock
);
1534 h
->surplus_huge_pages
++;
1535 h
->surplus_huge_pages_node
[page_to_nid(page
)]++;
1539 spin_unlock(&hugetlb_lock
);
1544 struct page
*alloc_migrate_huge_page(struct hstate
*h
, gfp_t gfp_mask
,
1545 int nid
, nodemask_t
*nmask
)
1549 if (hstate_is_gigantic(h
))
1552 page
= alloc_fresh_huge_page(h
, gfp_mask
, nid
, nmask
, NULL
);
1557 * We do not account these pages as surplus because they are only
1558 * temporary and will be released properly on the last reference
1560 SetPageHugeTemporary(page
);
1566 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1569 struct page
*alloc_buddy_huge_page_with_mpol(struct hstate
*h
,
1570 struct vm_area_struct
*vma
, unsigned long addr
)
1573 struct mempolicy
*mpol
;
1574 gfp_t gfp_mask
= htlb_alloc_mask(h
);
1576 nodemask_t
*nodemask
;
1578 nid
= huge_node(vma
, addr
, gfp_mask
, &mpol
, &nodemask
);
1579 page
= alloc_surplus_huge_page(h
, gfp_mask
, nid
, nodemask
);
1580 mpol_cond_put(mpol
);
1585 /* page migration callback function */
1586 struct page
*alloc_huge_page_node(struct hstate
*h
, int nid
)
1588 gfp_t gfp_mask
= htlb_alloc_mask(h
);
1589 struct page
*page
= NULL
;
1591 if (nid
!= NUMA_NO_NODE
)
1592 gfp_mask
|= __GFP_THISNODE
;
1594 spin_lock(&hugetlb_lock
);
1595 if (h
->free_huge_pages
- h
->resv_huge_pages
> 0)
1596 page
= dequeue_huge_page_nodemask(h
, gfp_mask
, nid
, NULL
);
1597 spin_unlock(&hugetlb_lock
);
1600 page
= alloc_migrate_huge_page(h
, gfp_mask
, nid
, NULL
);
1605 /* page migration callback function */
1606 struct page
*alloc_huge_page_nodemask(struct hstate
*h
, int preferred_nid
,
1609 gfp_t gfp_mask
= htlb_alloc_mask(h
);
1611 spin_lock(&hugetlb_lock
);
1612 if (h
->free_huge_pages
- h
->resv_huge_pages
> 0) {
1615 page
= dequeue_huge_page_nodemask(h
, gfp_mask
, preferred_nid
, nmask
);
1617 spin_unlock(&hugetlb_lock
);
1621 spin_unlock(&hugetlb_lock
);
1623 return alloc_migrate_huge_page(h
, gfp_mask
, preferred_nid
, nmask
);
1626 /* mempolicy aware migration callback */
1627 struct page
*alloc_huge_page_vma(struct hstate
*h
, struct vm_area_struct
*vma
,
1628 unsigned long address
)
1630 struct mempolicy
*mpol
;
1631 nodemask_t
*nodemask
;
1636 gfp_mask
= htlb_alloc_mask(h
);
1637 node
= huge_node(vma
, address
, gfp_mask
, &mpol
, &nodemask
);
1638 page
= alloc_huge_page_nodemask(h
, node
, nodemask
);
1639 mpol_cond_put(mpol
);
1645 * Increase the hugetlb pool such that it can accommodate a reservation
1648 static int gather_surplus_pages(struct hstate
*h
, int delta
)
1650 struct list_head surplus_list
;
1651 struct page
*page
, *tmp
;
1653 int needed
, allocated
;
1654 bool alloc_ok
= true;
1656 needed
= (h
->resv_huge_pages
+ delta
) - h
->free_huge_pages
;
1658 h
->resv_huge_pages
+= delta
;
1663 INIT_LIST_HEAD(&surplus_list
);
1667 spin_unlock(&hugetlb_lock
);
1668 for (i
= 0; i
< needed
; i
++) {
1669 page
= alloc_surplus_huge_page(h
, htlb_alloc_mask(h
),
1670 NUMA_NO_NODE
, NULL
);
1675 list_add(&page
->lru
, &surplus_list
);
1681 * After retaking hugetlb_lock, we need to recalculate 'needed'
1682 * because either resv_huge_pages or free_huge_pages may have changed.
1684 spin_lock(&hugetlb_lock
);
1685 needed
= (h
->resv_huge_pages
+ delta
) -
1686 (h
->free_huge_pages
+ allocated
);
1691 * We were not able to allocate enough pages to
1692 * satisfy the entire reservation so we free what
1693 * we've allocated so far.
1698 * The surplus_list now contains _at_least_ the number of extra pages
1699 * needed to accommodate the reservation. Add the appropriate number
1700 * of pages to the hugetlb pool and free the extras back to the buddy
1701 * allocator. Commit the entire reservation here to prevent another
1702 * process from stealing the pages as they are added to the pool but
1703 * before they are reserved.
1705 needed
+= allocated
;
1706 h
->resv_huge_pages
+= delta
;
1709 /* Free the needed pages to the hugetlb pool */
1710 list_for_each_entry_safe(page
, tmp
, &surplus_list
, lru
) {
1714 * This page is now managed by the hugetlb allocator and has
1715 * no users -- drop the buddy allocator's reference.
1717 put_page_testzero(page
);
1718 VM_BUG_ON_PAGE(page_count(page
), page
);
1719 enqueue_huge_page(h
, page
);
1722 spin_unlock(&hugetlb_lock
);
1724 /* Free unnecessary surplus pages to the buddy allocator */
1725 list_for_each_entry_safe(page
, tmp
, &surplus_list
, lru
)
1727 spin_lock(&hugetlb_lock
);
1733 * This routine has two main purposes:
1734 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1735 * in unused_resv_pages. This corresponds to the prior adjustments made
1736 * to the associated reservation map.
1737 * 2) Free any unused surplus pages that may have been allocated to satisfy
1738 * the reservation. As many as unused_resv_pages may be freed.
1740 * Called with hugetlb_lock held. However, the lock could be dropped (and
1741 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock,
1742 * we must make sure nobody else can claim pages we are in the process of
1743 * freeing. Do this by ensuring resv_huge_page always is greater than the
1744 * number of huge pages we plan to free when dropping the lock.
1746 static void return_unused_surplus_pages(struct hstate
*h
,
1747 unsigned long unused_resv_pages
)
1749 unsigned long nr_pages
;
1751 /* Cannot return gigantic pages currently */
1752 if (hstate_is_gigantic(h
))
1756 * Part (or even all) of the reservation could have been backed
1757 * by pre-allocated pages. Only free surplus pages.
1759 nr_pages
= min(unused_resv_pages
, h
->surplus_huge_pages
);
1762 * We want to release as many surplus pages as possible, spread
1763 * evenly across all nodes with memory. Iterate across these nodes
1764 * until we can no longer free unreserved surplus pages. This occurs
1765 * when the nodes with surplus pages have no free pages.
1766 * free_pool_huge_page() will balance the the freed pages across the
1767 * on-line nodes with memory and will handle the hstate accounting.
1769 * Note that we decrement resv_huge_pages as we free the pages. If
1770 * we drop the lock, resv_huge_pages will still be sufficiently large
1771 * to cover subsequent pages we may free.
1773 while (nr_pages
--) {
1774 h
->resv_huge_pages
--;
1775 unused_resv_pages
--;
1776 if (!free_pool_huge_page(h
, &node_states
[N_MEMORY
], 1))
1778 cond_resched_lock(&hugetlb_lock
);
1782 /* Fully uncommit the reservation */
1783 h
->resv_huge_pages
-= unused_resv_pages
;
1788 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1789 * are used by the huge page allocation routines to manage reservations.
1791 * vma_needs_reservation is called to determine if the huge page at addr
1792 * within the vma has an associated reservation. If a reservation is
1793 * needed, the value 1 is returned. The caller is then responsible for
1794 * managing the global reservation and subpool usage counts. After
1795 * the huge page has been allocated, vma_commit_reservation is called
1796 * to add the page to the reservation map. If the page allocation fails,
1797 * the reservation must be ended instead of committed. vma_end_reservation
1798 * is called in such cases.
1800 * In the normal case, vma_commit_reservation returns the same value
1801 * as the preceding vma_needs_reservation call. The only time this
1802 * is not the case is if a reserve map was changed between calls. It
1803 * is the responsibility of the caller to notice the difference and
1804 * take appropriate action.
1806 * vma_add_reservation is used in error paths where a reservation must
1807 * be restored when a newly allocated huge page must be freed. It is
1808 * to be called after calling vma_needs_reservation to determine if a
1809 * reservation exists.
1811 enum vma_resv_mode
{
1817 static long __vma_reservation_common(struct hstate
*h
,
1818 struct vm_area_struct
*vma
, unsigned long addr
,
1819 enum vma_resv_mode mode
)
1821 struct resv_map
*resv
;
1825 resv
= vma_resv_map(vma
);
1829 idx
= vma_hugecache_offset(h
, vma
, addr
);
1831 case VMA_NEEDS_RESV
:
1832 ret
= region_chg(resv
, idx
, idx
+ 1);
1834 case VMA_COMMIT_RESV
:
1835 ret
= region_add(resv
, idx
, idx
+ 1);
1838 region_abort(resv
, idx
, idx
+ 1);
1842 if (vma
->vm_flags
& VM_MAYSHARE
)
1843 ret
= region_add(resv
, idx
, idx
+ 1);
1845 region_abort(resv
, idx
, idx
+ 1);
1846 ret
= region_del(resv
, idx
, idx
+ 1);
1853 if (vma
->vm_flags
& VM_MAYSHARE
)
1855 else if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
) && ret
>= 0) {
1857 * In most cases, reserves always exist for private mappings.
1858 * However, a file associated with mapping could have been
1859 * hole punched or truncated after reserves were consumed.
1860 * As subsequent fault on such a range will not use reserves.
1861 * Subtle - The reserve map for private mappings has the
1862 * opposite meaning than that of shared mappings. If NO
1863 * entry is in the reserve map, it means a reservation exists.
1864 * If an entry exists in the reserve map, it means the
1865 * reservation has already been consumed. As a result, the
1866 * return value of this routine is the opposite of the
1867 * value returned from reserve map manipulation routines above.
1875 return ret
< 0 ? ret
: 0;
1878 static long vma_needs_reservation(struct hstate
*h
,
1879 struct vm_area_struct
*vma
, unsigned long addr
)
1881 return __vma_reservation_common(h
, vma
, addr
, VMA_NEEDS_RESV
);
1884 static long vma_commit_reservation(struct hstate
*h
,
1885 struct vm_area_struct
*vma
, unsigned long addr
)
1887 return __vma_reservation_common(h
, vma
, addr
, VMA_COMMIT_RESV
);
1890 static void vma_end_reservation(struct hstate
*h
,
1891 struct vm_area_struct
*vma
, unsigned long addr
)
1893 (void)__vma_reservation_common(h
, vma
, addr
, VMA_END_RESV
);
1896 static long vma_add_reservation(struct hstate
*h
,
1897 struct vm_area_struct
*vma
, unsigned long addr
)
1899 return __vma_reservation_common(h
, vma
, addr
, VMA_ADD_RESV
);
1903 * This routine is called to restore a reservation on error paths. In the
1904 * specific error paths, a huge page was allocated (via alloc_huge_page)
1905 * and is about to be freed. If a reservation for the page existed,
1906 * alloc_huge_page would have consumed the reservation and set PagePrivate
1907 * in the newly allocated page. When the page is freed via free_huge_page,
1908 * the global reservation count will be incremented if PagePrivate is set.
1909 * However, free_huge_page can not adjust the reserve map. Adjust the
1910 * reserve map here to be consistent with global reserve count adjustments
1911 * to be made by free_huge_page.
1913 static void restore_reserve_on_error(struct hstate
*h
,
1914 struct vm_area_struct
*vma
, unsigned long address
,
1917 if (unlikely(PagePrivate(page
))) {
1918 long rc
= vma_needs_reservation(h
, vma
, address
);
1920 if (unlikely(rc
< 0)) {
1922 * Rare out of memory condition in reserve map
1923 * manipulation. Clear PagePrivate so that
1924 * global reserve count will not be incremented
1925 * by free_huge_page. This will make it appear
1926 * as though the reservation for this page was
1927 * consumed. This may prevent the task from
1928 * faulting in the page at a later time. This
1929 * is better than inconsistent global huge page
1930 * accounting of reserve counts.
1932 ClearPagePrivate(page
);
1934 rc
= vma_add_reservation(h
, vma
, address
);
1935 if (unlikely(rc
< 0))
1937 * See above comment about rare out of
1940 ClearPagePrivate(page
);
1942 vma_end_reservation(h
, vma
, address
);
1946 struct page
*alloc_huge_page(struct vm_area_struct
*vma
,
1947 unsigned long addr
, int avoid_reserve
)
1949 struct hugepage_subpool
*spool
= subpool_vma(vma
);
1950 struct hstate
*h
= hstate_vma(vma
);
1952 long map_chg
, map_commit
;
1955 struct hugetlb_cgroup
*h_cg
;
1957 idx
= hstate_index(h
);
1959 * Examine the region/reserve map to determine if the process
1960 * has a reservation for the page to be allocated. A return
1961 * code of zero indicates a reservation exists (no change).
1963 map_chg
= gbl_chg
= vma_needs_reservation(h
, vma
, addr
);
1965 return ERR_PTR(-ENOMEM
);
1968 * Processes that did not create the mapping will have no
1969 * reserves as indicated by the region/reserve map. Check
1970 * that the allocation will not exceed the subpool limit.
1971 * Allocations for MAP_NORESERVE mappings also need to be
1972 * checked against any subpool limit.
1974 if (map_chg
|| avoid_reserve
) {
1975 gbl_chg
= hugepage_subpool_get_pages(spool
, 1);
1977 vma_end_reservation(h
, vma
, addr
);
1978 return ERR_PTR(-ENOSPC
);
1982 * Even though there was no reservation in the region/reserve
1983 * map, there could be reservations associated with the
1984 * subpool that can be used. This would be indicated if the
1985 * return value of hugepage_subpool_get_pages() is zero.
1986 * However, if avoid_reserve is specified we still avoid even
1987 * the subpool reservations.
1993 ret
= hugetlb_cgroup_charge_cgroup(idx
, pages_per_huge_page(h
), &h_cg
);
1995 goto out_subpool_put
;
1997 spin_lock(&hugetlb_lock
);
1999 * glb_chg is passed to indicate whether or not a page must be taken
2000 * from the global free pool (global change). gbl_chg == 0 indicates
2001 * a reservation exists for the allocation.
2003 page
= dequeue_huge_page_vma(h
, vma
, addr
, avoid_reserve
, gbl_chg
);
2005 spin_unlock(&hugetlb_lock
);
2006 page
= alloc_buddy_huge_page_with_mpol(h
, vma
, addr
);
2008 goto out_uncharge_cgroup
;
2009 if (!avoid_reserve
&& vma_has_reserves(vma
, gbl_chg
)) {
2010 SetPagePrivate(page
);
2011 h
->resv_huge_pages
--;
2013 spin_lock(&hugetlb_lock
);
2014 list_move(&page
->lru
, &h
->hugepage_activelist
);
2017 hugetlb_cgroup_commit_charge(idx
, pages_per_huge_page(h
), h_cg
, page
);
2018 spin_unlock(&hugetlb_lock
);
2020 set_page_private(page
, (unsigned long)spool
);
2022 map_commit
= vma_commit_reservation(h
, vma
, addr
);
2023 if (unlikely(map_chg
> map_commit
)) {
2025 * The page was added to the reservation map between
2026 * vma_needs_reservation and vma_commit_reservation.
2027 * This indicates a race with hugetlb_reserve_pages.
2028 * Adjust for the subpool count incremented above AND
2029 * in hugetlb_reserve_pages for the same page. Also,
2030 * the reservation count added in hugetlb_reserve_pages
2031 * no longer applies.
2035 rsv_adjust
= hugepage_subpool_put_pages(spool
, 1);
2036 hugetlb_acct_memory(h
, -rsv_adjust
);
2040 out_uncharge_cgroup
:
2041 hugetlb_cgroup_uncharge_cgroup(idx
, pages_per_huge_page(h
), h_cg
);
2043 if (map_chg
|| avoid_reserve
)
2044 hugepage_subpool_put_pages(spool
, 1);
2045 vma_end_reservation(h
, vma
, addr
);
2046 return ERR_PTR(-ENOSPC
);
2049 int alloc_bootmem_huge_page(struct hstate
*h
)
2050 __attribute__ ((weak
, alias("__alloc_bootmem_huge_page")));
2051 int __alloc_bootmem_huge_page(struct hstate
*h
)
2053 struct huge_bootmem_page
*m
;
2056 for_each_node_mask_to_alloc(h
, nr_nodes
, node
, &node_states
[N_MEMORY
]) {
2059 addr
= memblock_alloc_try_nid_raw(
2060 huge_page_size(h
), huge_page_size(h
),
2061 0, MEMBLOCK_ALLOC_ACCESSIBLE
, node
);
2064 * Use the beginning of the huge page to store the
2065 * huge_bootmem_page struct (until gather_bootmem
2066 * puts them into the mem_map).
2075 BUG_ON(!IS_ALIGNED(virt_to_phys(m
), huge_page_size(h
)));
2076 /* Put them into a private list first because mem_map is not up yet */
2077 INIT_LIST_HEAD(&m
->list
);
2078 list_add(&m
->list
, &huge_boot_pages
);
2083 static void __init
prep_compound_huge_page(struct page
*page
,
2086 if (unlikely(order
> (MAX_ORDER
- 1)))
2087 prep_compound_gigantic_page(page
, order
);
2089 prep_compound_page(page
, order
);
2092 /* Put bootmem huge pages into the standard lists after mem_map is up */
2093 static void __init
gather_bootmem_prealloc(void)
2095 struct huge_bootmem_page
*m
;
2097 list_for_each_entry(m
, &huge_boot_pages
, list
) {
2098 struct page
*page
= virt_to_page(m
);
2099 struct hstate
*h
= m
->hstate
;
2101 WARN_ON(page_count(page
) != 1);
2102 prep_compound_huge_page(page
, h
->order
);
2103 WARN_ON(PageReserved(page
));
2104 prep_new_huge_page(h
, page
, page_to_nid(page
));
2105 put_page(page
); /* free it into the hugepage allocator */
2108 * If we had gigantic hugepages allocated at boot time, we need
2109 * to restore the 'stolen' pages to totalram_pages in order to
2110 * fix confusing memory reports from free(1) and another
2111 * side-effects, like CommitLimit going negative.
2113 if (hstate_is_gigantic(h
))
2114 adjust_managed_page_count(page
, 1 << h
->order
);
2119 static void __init
hugetlb_hstate_alloc_pages(struct hstate
*h
)
2122 nodemask_t
*node_alloc_noretry
;
2124 if (!hstate_is_gigantic(h
)) {
2126 * Bit mask controlling how hard we retry per-node allocations.
2127 * Ignore errors as lower level routines can deal with
2128 * node_alloc_noretry == NULL. If this kmalloc fails at boot
2129 * time, we are likely in bigger trouble.
2131 node_alloc_noretry
= kmalloc(sizeof(*node_alloc_noretry
),
2134 /* allocations done at boot time */
2135 node_alloc_noretry
= NULL
;
2138 /* bit mask controlling how hard we retry per-node allocations */
2139 if (node_alloc_noretry
)
2140 nodes_clear(*node_alloc_noretry
);
2142 for (i
= 0; i
< h
->max_huge_pages
; ++i
) {
2143 if (hstate_is_gigantic(h
)) {
2144 if (!alloc_bootmem_huge_page(h
))
2146 } else if (!alloc_pool_huge_page(h
,
2147 &node_states
[N_MEMORY
],
2148 node_alloc_noretry
))
2152 if (i
< h
->max_huge_pages
) {
2155 string_get_size(huge_page_size(h
), 1, STRING_UNITS_2
, buf
, 32);
2156 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
2157 h
->max_huge_pages
, buf
, i
);
2158 h
->max_huge_pages
= i
;
2161 kfree(node_alloc_noretry
);
2164 static void __init
hugetlb_init_hstates(void)
2168 for_each_hstate(h
) {
2169 if (minimum_order
> huge_page_order(h
))
2170 minimum_order
= huge_page_order(h
);
2172 /* oversize hugepages were init'ed in early boot */
2173 if (!hstate_is_gigantic(h
))
2174 hugetlb_hstate_alloc_pages(h
);
2176 VM_BUG_ON(minimum_order
== UINT_MAX
);
2179 static void __init
report_hugepages(void)
2183 for_each_hstate(h
) {
2186 string_get_size(huge_page_size(h
), 1, STRING_UNITS_2
, buf
, 32);
2187 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2188 buf
, h
->free_huge_pages
);
2192 #ifdef CONFIG_HIGHMEM
2193 static void try_to_free_low(struct hstate
*h
, unsigned long count
,
2194 nodemask_t
*nodes_allowed
)
2198 if (hstate_is_gigantic(h
))
2201 for_each_node_mask(i
, *nodes_allowed
) {
2202 struct page
*page
, *next
;
2203 struct list_head
*freel
= &h
->hugepage_freelists
[i
];
2204 list_for_each_entry_safe(page
, next
, freel
, lru
) {
2205 if (count
>= h
->nr_huge_pages
)
2207 if (PageHighMem(page
))
2209 list_del(&page
->lru
);
2210 update_and_free_page(h
, page
);
2211 h
->free_huge_pages
--;
2212 h
->free_huge_pages_node
[page_to_nid(page
)]--;
2217 static inline void try_to_free_low(struct hstate
*h
, unsigned long count
,
2218 nodemask_t
*nodes_allowed
)
2224 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2225 * balanced by operating on them in a round-robin fashion.
2226 * Returns 1 if an adjustment was made.
2228 static int adjust_pool_surplus(struct hstate
*h
, nodemask_t
*nodes_allowed
,
2233 VM_BUG_ON(delta
!= -1 && delta
!= 1);
2236 for_each_node_mask_to_alloc(h
, nr_nodes
, node
, nodes_allowed
) {
2237 if (h
->surplus_huge_pages_node
[node
])
2241 for_each_node_mask_to_free(h
, nr_nodes
, node
, nodes_allowed
) {
2242 if (h
->surplus_huge_pages_node
[node
] <
2243 h
->nr_huge_pages_node
[node
])
2250 h
->surplus_huge_pages
+= delta
;
2251 h
->surplus_huge_pages_node
[node
] += delta
;
2255 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2256 static int set_max_huge_pages(struct hstate
*h
, unsigned long count
, int nid
,
2257 nodemask_t
*nodes_allowed
)
2259 unsigned long min_count
, ret
;
2260 NODEMASK_ALLOC(nodemask_t
, node_alloc_noretry
, GFP_KERNEL
);
2263 * Bit mask controlling how hard we retry per-node allocations.
2264 * If we can not allocate the bit mask, do not attempt to allocate
2265 * the requested huge pages.
2267 if (node_alloc_noretry
)
2268 nodes_clear(*node_alloc_noretry
);
2272 spin_lock(&hugetlb_lock
);
2275 * Check for a node specific request.
2276 * Changing node specific huge page count may require a corresponding
2277 * change to the global count. In any case, the passed node mask
2278 * (nodes_allowed) will restrict alloc/free to the specified node.
2280 if (nid
!= NUMA_NO_NODE
) {
2281 unsigned long old_count
= count
;
2283 count
+= h
->nr_huge_pages
- h
->nr_huge_pages_node
[nid
];
2285 * User may have specified a large count value which caused the
2286 * above calculation to overflow. In this case, they wanted
2287 * to allocate as many huge pages as possible. Set count to
2288 * largest possible value to align with their intention.
2290 if (count
< old_count
)
2295 * Gigantic pages runtime allocation depend on the capability for large
2296 * page range allocation.
2297 * If the system does not provide this feature, return an error when
2298 * the user tries to allocate gigantic pages but let the user free the
2299 * boottime allocated gigantic pages.
2301 if (hstate_is_gigantic(h
) && !IS_ENABLED(CONFIG_CONTIG_ALLOC
)) {
2302 if (count
> persistent_huge_pages(h
)) {
2303 spin_unlock(&hugetlb_lock
);
2304 NODEMASK_FREE(node_alloc_noretry
);
2307 /* Fall through to decrease pool */
2311 * Increase the pool size
2312 * First take pages out of surplus state. Then make up the
2313 * remaining difference by allocating fresh huge pages.
2315 * We might race with alloc_surplus_huge_page() here and be unable
2316 * to convert a surplus huge page to a normal huge page. That is
2317 * not critical, though, it just means the overall size of the
2318 * pool might be one hugepage larger than it needs to be, but
2319 * within all the constraints specified by the sysctls.
2321 while (h
->surplus_huge_pages
&& count
> persistent_huge_pages(h
)) {
2322 if (!adjust_pool_surplus(h
, nodes_allowed
, -1))
2326 while (count
> persistent_huge_pages(h
)) {
2328 * If this allocation races such that we no longer need the
2329 * page, free_huge_page will handle it by freeing the page
2330 * and reducing the surplus.
2332 spin_unlock(&hugetlb_lock
);
2334 /* yield cpu to avoid soft lockup */
2337 ret
= alloc_pool_huge_page(h
, nodes_allowed
,
2338 node_alloc_noretry
);
2339 spin_lock(&hugetlb_lock
);
2343 /* Bail for signals. Probably ctrl-c from user */
2344 if (signal_pending(current
))
2349 * Decrease the pool size
2350 * First return free pages to the buddy allocator (being careful
2351 * to keep enough around to satisfy reservations). Then place
2352 * pages into surplus state as needed so the pool will shrink
2353 * to the desired size as pages become free.
2355 * By placing pages into the surplus state independent of the
2356 * overcommit value, we are allowing the surplus pool size to
2357 * exceed overcommit. There are few sane options here. Since
2358 * alloc_surplus_huge_page() is checking the global counter,
2359 * though, we'll note that we're not allowed to exceed surplus
2360 * and won't grow the pool anywhere else. Not until one of the
2361 * sysctls are changed, or the surplus pages go out of use.
2363 min_count
= h
->resv_huge_pages
+ h
->nr_huge_pages
- h
->free_huge_pages
;
2364 min_count
= max(count
, min_count
);
2365 try_to_free_low(h
, min_count
, nodes_allowed
);
2366 while (min_count
< persistent_huge_pages(h
)) {
2367 if (!free_pool_huge_page(h
, nodes_allowed
, 0))
2369 cond_resched_lock(&hugetlb_lock
);
2371 while (count
< persistent_huge_pages(h
)) {
2372 if (!adjust_pool_surplus(h
, nodes_allowed
, 1))
2376 h
->max_huge_pages
= persistent_huge_pages(h
);
2377 spin_unlock(&hugetlb_lock
);
2379 NODEMASK_FREE(node_alloc_noretry
);
2384 #define HSTATE_ATTR_RO(_name) \
2385 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2387 #define HSTATE_ATTR(_name) \
2388 static struct kobj_attribute _name##_attr = \
2389 __ATTR(_name, 0644, _name##_show, _name##_store)
2391 static struct kobject
*hugepages_kobj
;
2392 static struct kobject
*hstate_kobjs
[HUGE_MAX_HSTATE
];
2394 static struct hstate
*kobj_to_node_hstate(struct kobject
*kobj
, int *nidp
);
2396 static struct hstate
*kobj_to_hstate(struct kobject
*kobj
, int *nidp
)
2400 for (i
= 0; i
< HUGE_MAX_HSTATE
; i
++)
2401 if (hstate_kobjs
[i
] == kobj
) {
2403 *nidp
= NUMA_NO_NODE
;
2407 return kobj_to_node_hstate(kobj
, nidp
);
2410 static ssize_t
nr_hugepages_show_common(struct kobject
*kobj
,
2411 struct kobj_attribute
*attr
, char *buf
)
2414 unsigned long nr_huge_pages
;
2417 h
= kobj_to_hstate(kobj
, &nid
);
2418 if (nid
== NUMA_NO_NODE
)
2419 nr_huge_pages
= h
->nr_huge_pages
;
2421 nr_huge_pages
= h
->nr_huge_pages_node
[nid
];
2423 return sprintf(buf
, "%lu\n", nr_huge_pages
);
2426 static ssize_t
__nr_hugepages_store_common(bool obey_mempolicy
,
2427 struct hstate
*h
, int nid
,
2428 unsigned long count
, size_t len
)
2431 nodemask_t nodes_allowed
, *n_mask
;
2433 if (hstate_is_gigantic(h
) && !gigantic_page_runtime_supported())
2436 if (nid
== NUMA_NO_NODE
) {
2438 * global hstate attribute
2440 if (!(obey_mempolicy
&&
2441 init_nodemask_of_mempolicy(&nodes_allowed
)))
2442 n_mask
= &node_states
[N_MEMORY
];
2444 n_mask
= &nodes_allowed
;
2447 * Node specific request. count adjustment happens in
2448 * set_max_huge_pages() after acquiring hugetlb_lock.
2450 init_nodemask_of_node(&nodes_allowed
, nid
);
2451 n_mask
= &nodes_allowed
;
2454 err
= set_max_huge_pages(h
, count
, nid
, n_mask
);
2456 return err
? err
: len
;
2459 static ssize_t
nr_hugepages_store_common(bool obey_mempolicy
,
2460 struct kobject
*kobj
, const char *buf
,
2464 unsigned long count
;
2468 err
= kstrtoul(buf
, 10, &count
);
2472 h
= kobj_to_hstate(kobj
, &nid
);
2473 return __nr_hugepages_store_common(obey_mempolicy
, h
, nid
, count
, len
);
2476 static ssize_t
nr_hugepages_show(struct kobject
*kobj
,
2477 struct kobj_attribute
*attr
, char *buf
)
2479 return nr_hugepages_show_common(kobj
, attr
, buf
);
2482 static ssize_t
nr_hugepages_store(struct kobject
*kobj
,
2483 struct kobj_attribute
*attr
, const char *buf
, size_t len
)
2485 return nr_hugepages_store_common(false, kobj
, buf
, len
);
2487 HSTATE_ATTR(nr_hugepages
);
2492 * hstate attribute for optionally mempolicy-based constraint on persistent
2493 * huge page alloc/free.
2495 static ssize_t
nr_hugepages_mempolicy_show(struct kobject
*kobj
,
2496 struct kobj_attribute
*attr
, char *buf
)
2498 return nr_hugepages_show_common(kobj
, attr
, buf
);
2501 static ssize_t
nr_hugepages_mempolicy_store(struct kobject
*kobj
,
2502 struct kobj_attribute
*attr
, const char *buf
, size_t len
)
2504 return nr_hugepages_store_common(true, kobj
, buf
, len
);
2506 HSTATE_ATTR(nr_hugepages_mempolicy
);
2510 static ssize_t
nr_overcommit_hugepages_show(struct kobject
*kobj
,
2511 struct kobj_attribute
*attr
, char *buf
)
2513 struct hstate
*h
= kobj_to_hstate(kobj
, NULL
);
2514 return sprintf(buf
, "%lu\n", h
->nr_overcommit_huge_pages
);
2517 static ssize_t
nr_overcommit_hugepages_store(struct kobject
*kobj
,
2518 struct kobj_attribute
*attr
, const char *buf
, size_t count
)
2521 unsigned long input
;
2522 struct hstate
*h
= kobj_to_hstate(kobj
, NULL
);
2524 if (hstate_is_gigantic(h
))
2527 err
= kstrtoul(buf
, 10, &input
);
2531 spin_lock(&hugetlb_lock
);
2532 h
->nr_overcommit_huge_pages
= input
;
2533 spin_unlock(&hugetlb_lock
);
2537 HSTATE_ATTR(nr_overcommit_hugepages
);
2539 static ssize_t
free_hugepages_show(struct kobject
*kobj
,
2540 struct kobj_attribute
*attr
, char *buf
)
2543 unsigned long free_huge_pages
;
2546 h
= kobj_to_hstate(kobj
, &nid
);
2547 if (nid
== NUMA_NO_NODE
)
2548 free_huge_pages
= h
->free_huge_pages
;
2550 free_huge_pages
= h
->free_huge_pages_node
[nid
];
2552 return sprintf(buf
, "%lu\n", free_huge_pages
);
2554 HSTATE_ATTR_RO(free_hugepages
);
2556 static ssize_t
resv_hugepages_show(struct kobject
*kobj
,
2557 struct kobj_attribute
*attr
, char *buf
)
2559 struct hstate
*h
= kobj_to_hstate(kobj
, NULL
);
2560 return sprintf(buf
, "%lu\n", h
->resv_huge_pages
);
2562 HSTATE_ATTR_RO(resv_hugepages
);
2564 static ssize_t
surplus_hugepages_show(struct kobject
*kobj
,
2565 struct kobj_attribute
*attr
, char *buf
)
2568 unsigned long surplus_huge_pages
;
2571 h
= kobj_to_hstate(kobj
, &nid
);
2572 if (nid
== NUMA_NO_NODE
)
2573 surplus_huge_pages
= h
->surplus_huge_pages
;
2575 surplus_huge_pages
= h
->surplus_huge_pages_node
[nid
];
2577 return sprintf(buf
, "%lu\n", surplus_huge_pages
);
2579 HSTATE_ATTR_RO(surplus_hugepages
);
2581 static struct attribute
*hstate_attrs
[] = {
2582 &nr_hugepages_attr
.attr
,
2583 &nr_overcommit_hugepages_attr
.attr
,
2584 &free_hugepages_attr
.attr
,
2585 &resv_hugepages_attr
.attr
,
2586 &surplus_hugepages_attr
.attr
,
2588 &nr_hugepages_mempolicy_attr
.attr
,
2593 static const struct attribute_group hstate_attr_group
= {
2594 .attrs
= hstate_attrs
,
2597 static int hugetlb_sysfs_add_hstate(struct hstate
*h
, struct kobject
*parent
,
2598 struct kobject
**hstate_kobjs
,
2599 const struct attribute_group
*hstate_attr_group
)
2602 int hi
= hstate_index(h
);
2604 hstate_kobjs
[hi
] = kobject_create_and_add(h
->name
, parent
);
2605 if (!hstate_kobjs
[hi
])
2608 retval
= sysfs_create_group(hstate_kobjs
[hi
], hstate_attr_group
);
2610 kobject_put(hstate_kobjs
[hi
]);
2615 static void __init
hugetlb_sysfs_init(void)
2620 hugepages_kobj
= kobject_create_and_add("hugepages", mm_kobj
);
2621 if (!hugepages_kobj
)
2624 for_each_hstate(h
) {
2625 err
= hugetlb_sysfs_add_hstate(h
, hugepages_kobj
,
2626 hstate_kobjs
, &hstate_attr_group
);
2628 pr_err("Hugetlb: Unable to add hstate %s", h
->name
);
2635 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2636 * with node devices in node_devices[] using a parallel array. The array
2637 * index of a node device or _hstate == node id.
2638 * This is here to avoid any static dependency of the node device driver, in
2639 * the base kernel, on the hugetlb module.
2641 struct node_hstate
{
2642 struct kobject
*hugepages_kobj
;
2643 struct kobject
*hstate_kobjs
[HUGE_MAX_HSTATE
];
2645 static struct node_hstate node_hstates
[MAX_NUMNODES
];
2648 * A subset of global hstate attributes for node devices
2650 static struct attribute
*per_node_hstate_attrs
[] = {
2651 &nr_hugepages_attr
.attr
,
2652 &free_hugepages_attr
.attr
,
2653 &surplus_hugepages_attr
.attr
,
2657 static const struct attribute_group per_node_hstate_attr_group
= {
2658 .attrs
= per_node_hstate_attrs
,
2662 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2663 * Returns node id via non-NULL nidp.
2665 static struct hstate
*kobj_to_node_hstate(struct kobject
*kobj
, int *nidp
)
2669 for (nid
= 0; nid
< nr_node_ids
; nid
++) {
2670 struct node_hstate
*nhs
= &node_hstates
[nid
];
2672 for (i
= 0; i
< HUGE_MAX_HSTATE
; i
++)
2673 if (nhs
->hstate_kobjs
[i
] == kobj
) {
2685 * Unregister hstate attributes from a single node device.
2686 * No-op if no hstate attributes attached.
2688 static void hugetlb_unregister_node(struct node
*node
)
2691 struct node_hstate
*nhs
= &node_hstates
[node
->dev
.id
];
2693 if (!nhs
->hugepages_kobj
)
2694 return; /* no hstate attributes */
2696 for_each_hstate(h
) {
2697 int idx
= hstate_index(h
);
2698 if (nhs
->hstate_kobjs
[idx
]) {
2699 kobject_put(nhs
->hstate_kobjs
[idx
]);
2700 nhs
->hstate_kobjs
[idx
] = NULL
;
2704 kobject_put(nhs
->hugepages_kobj
);
2705 nhs
->hugepages_kobj
= NULL
;
2710 * Register hstate attributes for a single node device.
2711 * No-op if attributes already registered.
2713 static void hugetlb_register_node(struct node
*node
)
2716 struct node_hstate
*nhs
= &node_hstates
[node
->dev
.id
];
2719 if (nhs
->hugepages_kobj
)
2720 return; /* already allocated */
2722 nhs
->hugepages_kobj
= kobject_create_and_add("hugepages",
2724 if (!nhs
->hugepages_kobj
)
2727 for_each_hstate(h
) {
2728 err
= hugetlb_sysfs_add_hstate(h
, nhs
->hugepages_kobj
,
2730 &per_node_hstate_attr_group
);
2732 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2733 h
->name
, node
->dev
.id
);
2734 hugetlb_unregister_node(node
);
2741 * hugetlb init time: register hstate attributes for all registered node
2742 * devices of nodes that have memory. All on-line nodes should have
2743 * registered their associated device by this time.
2745 static void __init
hugetlb_register_all_nodes(void)
2749 for_each_node_state(nid
, N_MEMORY
) {
2750 struct node
*node
= node_devices
[nid
];
2751 if (node
->dev
.id
== nid
)
2752 hugetlb_register_node(node
);
2756 * Let the node device driver know we're here so it can
2757 * [un]register hstate attributes on node hotplug.
2759 register_hugetlbfs_with_node(hugetlb_register_node
,
2760 hugetlb_unregister_node
);
2762 #else /* !CONFIG_NUMA */
2764 static struct hstate
*kobj_to_node_hstate(struct kobject
*kobj
, int *nidp
)
2772 static void hugetlb_register_all_nodes(void) { }
2776 static int __init
hugetlb_init(void)
2780 if (!hugepages_supported())
2783 if (!size_to_hstate(default_hstate_size
)) {
2784 if (default_hstate_size
!= 0) {
2785 pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
2786 default_hstate_size
, HPAGE_SIZE
);
2789 default_hstate_size
= HPAGE_SIZE
;
2790 if (!size_to_hstate(default_hstate_size
))
2791 hugetlb_add_hstate(HUGETLB_PAGE_ORDER
);
2793 default_hstate_idx
= hstate_index(size_to_hstate(default_hstate_size
));
2794 if (default_hstate_max_huge_pages
) {
2795 if (!default_hstate
.max_huge_pages
)
2796 default_hstate
.max_huge_pages
= default_hstate_max_huge_pages
;
2799 hugetlb_init_hstates();
2800 gather_bootmem_prealloc();
2803 hugetlb_sysfs_init();
2804 hugetlb_register_all_nodes();
2805 hugetlb_cgroup_file_init();
2808 num_fault_mutexes
= roundup_pow_of_two(8 * num_possible_cpus());
2810 num_fault_mutexes
= 1;
2812 hugetlb_fault_mutex_table
=
2813 kmalloc_array(num_fault_mutexes
, sizeof(struct mutex
),
2815 BUG_ON(!hugetlb_fault_mutex_table
);
2817 for (i
= 0; i
< num_fault_mutexes
; i
++)
2818 mutex_init(&hugetlb_fault_mutex_table
[i
]);
2821 subsys_initcall(hugetlb_init
);
2823 /* Should be called on processing a hugepagesz=... option */
2824 void __init
hugetlb_bad_size(void)
2826 parsed_valid_hugepagesz
= false;
2829 void __init
hugetlb_add_hstate(unsigned int order
)
2834 if (size_to_hstate(PAGE_SIZE
<< order
)) {
2835 pr_warn("hugepagesz= specified twice, ignoring\n");
2838 BUG_ON(hugetlb_max_hstate
>= HUGE_MAX_HSTATE
);
2840 h
= &hstates
[hugetlb_max_hstate
++];
2842 h
->mask
= ~((1ULL << (order
+ PAGE_SHIFT
)) - 1);
2843 h
->nr_huge_pages
= 0;
2844 h
->free_huge_pages
= 0;
2845 for (i
= 0; i
< MAX_NUMNODES
; ++i
)
2846 INIT_LIST_HEAD(&h
->hugepage_freelists
[i
]);
2847 INIT_LIST_HEAD(&h
->hugepage_activelist
);
2848 h
->next_nid_to_alloc
= first_memory_node
;
2849 h
->next_nid_to_free
= first_memory_node
;
2850 snprintf(h
->name
, HSTATE_NAME_LEN
, "hugepages-%lukB",
2851 huge_page_size(h
)/1024);
2856 static int __init
hugetlb_nrpages_setup(char *s
)
2859 static unsigned long *last_mhp
;
2861 if (!parsed_valid_hugepagesz
) {
2862 pr_warn("hugepages = %s preceded by "
2863 "an unsupported hugepagesz, ignoring\n", s
);
2864 parsed_valid_hugepagesz
= true;
2868 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2869 * so this hugepages= parameter goes to the "default hstate".
2871 else if (!hugetlb_max_hstate
)
2872 mhp
= &default_hstate_max_huge_pages
;
2874 mhp
= &parsed_hstate
->max_huge_pages
;
2876 if (mhp
== last_mhp
) {
2877 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2881 if (sscanf(s
, "%lu", mhp
) <= 0)
2885 * Global state is always initialized later in hugetlb_init.
2886 * But we need to allocate >= MAX_ORDER hstates here early to still
2887 * use the bootmem allocator.
2889 if (hugetlb_max_hstate
&& parsed_hstate
->order
>= MAX_ORDER
)
2890 hugetlb_hstate_alloc_pages(parsed_hstate
);
2896 __setup("hugepages=", hugetlb_nrpages_setup
);
2898 static int __init
hugetlb_default_setup(char *s
)
2900 default_hstate_size
= memparse(s
, &s
);
2903 __setup("default_hugepagesz=", hugetlb_default_setup
);
2905 static unsigned int cpuset_mems_nr(unsigned int *array
)
2908 unsigned int nr
= 0;
2910 for_each_node_mask(node
, cpuset_current_mems_allowed
)
2916 #ifdef CONFIG_SYSCTL
2917 static int hugetlb_sysctl_handler_common(bool obey_mempolicy
,
2918 struct ctl_table
*table
, int write
,
2919 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
2921 struct hstate
*h
= &default_hstate
;
2922 unsigned long tmp
= h
->max_huge_pages
;
2925 if (!hugepages_supported())
2929 table
->maxlen
= sizeof(unsigned long);
2930 ret
= proc_doulongvec_minmax(table
, write
, buffer
, length
, ppos
);
2935 ret
= __nr_hugepages_store_common(obey_mempolicy
, h
,
2936 NUMA_NO_NODE
, tmp
, *length
);
2941 int hugetlb_sysctl_handler(struct ctl_table
*table
, int write
,
2942 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
2945 return hugetlb_sysctl_handler_common(false, table
, write
,
2946 buffer
, length
, ppos
);
2950 int hugetlb_mempolicy_sysctl_handler(struct ctl_table
*table
, int write
,
2951 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
2953 return hugetlb_sysctl_handler_common(true, table
, write
,
2954 buffer
, length
, ppos
);
2956 #endif /* CONFIG_NUMA */
2958 int hugetlb_overcommit_handler(struct ctl_table
*table
, int write
,
2959 void __user
*buffer
,
2960 size_t *length
, loff_t
*ppos
)
2962 struct hstate
*h
= &default_hstate
;
2966 if (!hugepages_supported())
2969 tmp
= h
->nr_overcommit_huge_pages
;
2971 if (write
&& hstate_is_gigantic(h
))
2975 table
->maxlen
= sizeof(unsigned long);
2976 ret
= proc_doulongvec_minmax(table
, write
, buffer
, length
, ppos
);
2981 spin_lock(&hugetlb_lock
);
2982 h
->nr_overcommit_huge_pages
= tmp
;
2983 spin_unlock(&hugetlb_lock
);
2989 #endif /* CONFIG_SYSCTL */
2991 void hugetlb_report_meminfo(struct seq_file
*m
)
2994 unsigned long total
= 0;
2996 if (!hugepages_supported())
2999 for_each_hstate(h
) {
3000 unsigned long count
= h
->nr_huge_pages
;
3002 total
+= (PAGE_SIZE
<< huge_page_order(h
)) * count
;
3004 if (h
== &default_hstate
)
3006 "HugePages_Total: %5lu\n"
3007 "HugePages_Free: %5lu\n"
3008 "HugePages_Rsvd: %5lu\n"
3009 "HugePages_Surp: %5lu\n"
3010 "Hugepagesize: %8lu kB\n",
3014 h
->surplus_huge_pages
,
3015 (PAGE_SIZE
<< huge_page_order(h
)) / 1024);
3018 seq_printf(m
, "Hugetlb: %8lu kB\n", total
/ 1024);
3021 int hugetlb_report_node_meminfo(int nid
, char *buf
)
3023 struct hstate
*h
= &default_hstate
;
3024 if (!hugepages_supported())
3027 "Node %d HugePages_Total: %5u\n"
3028 "Node %d HugePages_Free: %5u\n"
3029 "Node %d HugePages_Surp: %5u\n",
3030 nid
, h
->nr_huge_pages_node
[nid
],
3031 nid
, h
->free_huge_pages_node
[nid
],
3032 nid
, h
->surplus_huge_pages_node
[nid
]);
3035 void hugetlb_show_meminfo(void)
3040 if (!hugepages_supported())
3043 for_each_node_state(nid
, N_MEMORY
)
3045 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3047 h
->nr_huge_pages_node
[nid
],
3048 h
->free_huge_pages_node
[nid
],
3049 h
->surplus_huge_pages_node
[nid
],
3050 1UL << (huge_page_order(h
) + PAGE_SHIFT
- 10));
3053 void hugetlb_report_usage(struct seq_file
*m
, struct mm_struct
*mm
)
3055 seq_printf(m
, "HugetlbPages:\t%8lu kB\n",
3056 atomic_long_read(&mm
->hugetlb_usage
) << (PAGE_SHIFT
- 10));
3059 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3060 unsigned long hugetlb_total_pages(void)
3063 unsigned long nr_total_pages
= 0;
3066 nr_total_pages
+= h
->nr_huge_pages
* pages_per_huge_page(h
);
3067 return nr_total_pages
;
3070 static int hugetlb_acct_memory(struct hstate
*h
, long delta
)
3074 spin_lock(&hugetlb_lock
);
3076 * When cpuset is configured, it breaks the strict hugetlb page
3077 * reservation as the accounting is done on a global variable. Such
3078 * reservation is completely rubbish in the presence of cpuset because
3079 * the reservation is not checked against page availability for the
3080 * current cpuset. Application can still potentially OOM'ed by kernel
3081 * with lack of free htlb page in cpuset that the task is in.
3082 * Attempt to enforce strict accounting with cpuset is almost
3083 * impossible (or too ugly) because cpuset is too fluid that
3084 * task or memory node can be dynamically moved between cpusets.
3086 * The change of semantics for shared hugetlb mapping with cpuset is
3087 * undesirable. However, in order to preserve some of the semantics,
3088 * we fall back to check against current free page availability as
3089 * a best attempt and hopefully to minimize the impact of changing
3090 * semantics that cpuset has.
3093 if (gather_surplus_pages(h
, delta
) < 0)
3096 if (delta
> cpuset_mems_nr(h
->free_huge_pages_node
)) {
3097 return_unused_surplus_pages(h
, delta
);
3104 return_unused_surplus_pages(h
, (unsigned long) -delta
);
3107 spin_unlock(&hugetlb_lock
);
3111 static void hugetlb_vm_op_open(struct vm_area_struct
*vma
)
3113 struct resv_map
*resv
= vma_resv_map(vma
);
3116 * This new VMA should share its siblings reservation map if present.
3117 * The VMA will only ever have a valid reservation map pointer where
3118 * it is being copied for another still existing VMA. As that VMA
3119 * has a reference to the reservation map it cannot disappear until
3120 * after this open call completes. It is therefore safe to take a
3121 * new reference here without additional locking.
3123 if (resv
&& is_vma_resv_set(vma
, HPAGE_RESV_OWNER
))
3124 kref_get(&resv
->refs
);
3127 static void hugetlb_vm_op_close(struct vm_area_struct
*vma
)
3129 struct hstate
*h
= hstate_vma(vma
);
3130 struct resv_map
*resv
= vma_resv_map(vma
);
3131 struct hugepage_subpool
*spool
= subpool_vma(vma
);
3132 unsigned long reserve
, start
, end
;
3135 if (!resv
|| !is_vma_resv_set(vma
, HPAGE_RESV_OWNER
))
3138 start
= vma_hugecache_offset(h
, vma
, vma
->vm_start
);
3139 end
= vma_hugecache_offset(h
, vma
, vma
->vm_end
);
3141 reserve
= (end
- start
) - region_count(resv
, start
, end
);
3143 kref_put(&resv
->refs
, resv_map_release
);
3147 * Decrement reserve counts. The global reserve count may be
3148 * adjusted if the subpool has a minimum size.
3150 gbl_reserve
= hugepage_subpool_put_pages(spool
, reserve
);
3151 hugetlb_acct_memory(h
, -gbl_reserve
);
3155 static int hugetlb_vm_op_split(struct vm_area_struct
*vma
, unsigned long addr
)
3157 if (addr
& ~(huge_page_mask(hstate_vma(vma
))))
3162 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct
*vma
)
3164 struct hstate
*hstate
= hstate_vma(vma
);
3166 return 1UL << huge_page_shift(hstate
);
3170 * We cannot handle pagefaults against hugetlb pages at all. They cause
3171 * handle_mm_fault() to try to instantiate regular-sized pages in the
3172 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
3175 static vm_fault_t
hugetlb_vm_op_fault(struct vm_fault
*vmf
)
3182 * When a new function is introduced to vm_operations_struct and added
3183 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3184 * This is because under System V memory model, mappings created via
3185 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3186 * their original vm_ops are overwritten with shm_vm_ops.
3188 const struct vm_operations_struct hugetlb_vm_ops
= {
3189 .fault
= hugetlb_vm_op_fault
,
3190 .open
= hugetlb_vm_op_open
,
3191 .close
= hugetlb_vm_op_close
,
3192 .split
= hugetlb_vm_op_split
,
3193 .pagesize
= hugetlb_vm_op_pagesize
,
3196 static pte_t
make_huge_pte(struct vm_area_struct
*vma
, struct page
*page
,
3202 entry
= huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page
,
3203 vma
->vm_page_prot
)));
3205 entry
= huge_pte_wrprotect(mk_huge_pte(page
,
3206 vma
->vm_page_prot
));
3208 entry
= pte_mkyoung(entry
);
3209 entry
= pte_mkhuge(entry
);
3210 entry
= arch_make_huge_pte(entry
, vma
, page
, writable
);
3215 static void set_huge_ptep_writable(struct vm_area_struct
*vma
,
3216 unsigned long address
, pte_t
*ptep
)
3220 entry
= huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep
)));
3221 if (huge_ptep_set_access_flags(vma
, address
, ptep
, entry
, 1))
3222 update_mmu_cache(vma
, address
, ptep
);
3225 bool is_hugetlb_entry_migration(pte_t pte
)
3229 if (huge_pte_none(pte
) || pte_present(pte
))
3231 swp
= pte_to_swp_entry(pte
);
3232 if (non_swap_entry(swp
) && is_migration_entry(swp
))
3238 static int is_hugetlb_entry_hwpoisoned(pte_t pte
)
3242 if (huge_pte_none(pte
) || pte_present(pte
))
3244 swp
= pte_to_swp_entry(pte
);
3245 if (non_swap_entry(swp
) && is_hwpoison_entry(swp
))
3251 int copy_hugetlb_page_range(struct mm_struct
*dst
, struct mm_struct
*src
,
3252 struct vm_area_struct
*vma
)
3254 pte_t
*src_pte
, *dst_pte
, entry
, dst_entry
;
3255 struct page
*ptepage
;
3258 struct hstate
*h
= hstate_vma(vma
);
3259 unsigned long sz
= huge_page_size(h
);
3260 struct mmu_notifier_range range
;
3263 cow
= (vma
->vm_flags
& (VM_SHARED
| VM_MAYWRITE
)) == VM_MAYWRITE
;
3266 mmu_notifier_range_init(&range
, MMU_NOTIFY_CLEAR
, 0, vma
, src
,
3269 mmu_notifier_invalidate_range_start(&range
);
3272 for (addr
= vma
->vm_start
; addr
< vma
->vm_end
; addr
+= sz
) {
3273 spinlock_t
*src_ptl
, *dst_ptl
;
3274 src_pte
= huge_pte_offset(src
, addr
, sz
);
3277 dst_pte
= huge_pte_alloc(dst
, addr
, sz
);
3284 * If the pagetables are shared don't copy or take references.
3285 * dst_pte == src_pte is the common case of src/dest sharing.
3287 * However, src could have 'unshared' and dst shares with
3288 * another vma. If dst_pte !none, this implies sharing.
3289 * Check here before taking page table lock, and once again
3290 * after taking the lock below.
3292 dst_entry
= huge_ptep_get(dst_pte
);
3293 if ((dst_pte
== src_pte
) || !huge_pte_none(dst_entry
))
3296 dst_ptl
= huge_pte_lock(h
, dst
, dst_pte
);
3297 src_ptl
= huge_pte_lockptr(h
, src
, src_pte
);
3298 spin_lock_nested(src_ptl
, SINGLE_DEPTH_NESTING
);
3299 entry
= huge_ptep_get(src_pte
);
3300 dst_entry
= huge_ptep_get(dst_pte
);
3301 if (huge_pte_none(entry
) || !huge_pte_none(dst_entry
)) {
3303 * Skip if src entry none. Also, skip in the
3304 * unlikely case dst entry !none as this implies
3305 * sharing with another vma.
3308 } else if (unlikely(is_hugetlb_entry_migration(entry
) ||
3309 is_hugetlb_entry_hwpoisoned(entry
))) {
3310 swp_entry_t swp_entry
= pte_to_swp_entry(entry
);
3312 if (is_write_migration_entry(swp_entry
) && cow
) {
3314 * COW mappings require pages in both
3315 * parent and child to be set to read.
3317 make_migration_entry_read(&swp_entry
);
3318 entry
= swp_entry_to_pte(swp_entry
);
3319 set_huge_swap_pte_at(src
, addr
, src_pte
,
3322 set_huge_swap_pte_at(dst
, addr
, dst_pte
, entry
, sz
);
3326 * No need to notify as we are downgrading page
3327 * table protection not changing it to point
3330 * See Documentation/vm/mmu_notifier.rst
3332 huge_ptep_set_wrprotect(src
, addr
, src_pte
);
3334 entry
= huge_ptep_get(src_pte
);
3335 ptepage
= pte_page(entry
);
3337 page_dup_rmap(ptepage
, true);
3338 set_huge_pte_at(dst
, addr
, dst_pte
, entry
);
3339 hugetlb_count_add(pages_per_huge_page(h
), dst
);
3341 spin_unlock(src_ptl
);
3342 spin_unlock(dst_ptl
);
3346 mmu_notifier_invalidate_range_end(&range
);
3351 void __unmap_hugepage_range(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
3352 unsigned long start
, unsigned long end
,
3353 struct page
*ref_page
)
3355 struct mm_struct
*mm
= vma
->vm_mm
;
3356 unsigned long address
;
3361 struct hstate
*h
= hstate_vma(vma
);
3362 unsigned long sz
= huge_page_size(h
);
3363 struct mmu_notifier_range range
;
3365 WARN_ON(!is_vm_hugetlb_page(vma
));
3366 BUG_ON(start
& ~huge_page_mask(h
));
3367 BUG_ON(end
& ~huge_page_mask(h
));
3370 * This is a hugetlb vma, all the pte entries should point
3373 tlb_change_page_size(tlb
, sz
);
3374 tlb_start_vma(tlb
, vma
);
3377 * If sharing possible, alert mmu notifiers of worst case.
3379 mmu_notifier_range_init(&range
, MMU_NOTIFY_UNMAP
, 0, vma
, mm
, start
,
3381 adjust_range_if_pmd_sharing_possible(vma
, &range
.start
, &range
.end
);
3382 mmu_notifier_invalidate_range_start(&range
);
3384 for (; address
< end
; address
+= sz
) {
3385 ptep
= huge_pte_offset(mm
, address
, sz
);
3389 ptl
= huge_pte_lock(h
, mm
, ptep
);
3390 if (huge_pmd_unshare(mm
, &address
, ptep
)) {
3393 * We just unmapped a page of PMDs by clearing a PUD.
3394 * The caller's TLB flush range should cover this area.
3399 pte
= huge_ptep_get(ptep
);
3400 if (huge_pte_none(pte
)) {
3406 * Migrating hugepage or HWPoisoned hugepage is already
3407 * unmapped and its refcount is dropped, so just clear pte here.
3409 if (unlikely(!pte_present(pte
))) {
3410 huge_pte_clear(mm
, address
, ptep
, sz
);
3415 page
= pte_page(pte
);
3417 * If a reference page is supplied, it is because a specific
3418 * page is being unmapped, not a range. Ensure the page we
3419 * are about to unmap is the actual page of interest.
3422 if (page
!= ref_page
) {
3427 * Mark the VMA as having unmapped its page so that
3428 * future faults in this VMA will fail rather than
3429 * looking like data was lost
3431 set_vma_resv_flags(vma
, HPAGE_RESV_UNMAPPED
);
3434 pte
= huge_ptep_get_and_clear(mm
, address
, ptep
);
3435 tlb_remove_huge_tlb_entry(h
, tlb
, ptep
, address
);
3436 if (huge_pte_dirty(pte
))
3437 set_page_dirty(page
);
3439 hugetlb_count_sub(pages_per_huge_page(h
), mm
);
3440 page_remove_rmap(page
, true);
3443 tlb_remove_page_size(tlb
, page
, huge_page_size(h
));
3445 * Bail out after unmapping reference page if supplied
3450 mmu_notifier_invalidate_range_end(&range
);
3451 tlb_end_vma(tlb
, vma
);
3454 void __unmap_hugepage_range_final(struct mmu_gather
*tlb
,
3455 struct vm_area_struct
*vma
, unsigned long start
,
3456 unsigned long end
, struct page
*ref_page
)
3458 __unmap_hugepage_range(tlb
, vma
, start
, end
, ref_page
);
3461 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3462 * test will fail on a vma being torn down, and not grab a page table
3463 * on its way out. We're lucky that the flag has such an appropriate
3464 * name, and can in fact be safely cleared here. We could clear it
3465 * before the __unmap_hugepage_range above, but all that's necessary
3466 * is to clear it before releasing the i_mmap_rwsem. This works
3467 * because in the context this is called, the VMA is about to be
3468 * destroyed and the i_mmap_rwsem is held.
3470 vma
->vm_flags
&= ~VM_MAYSHARE
;
3473 void unmap_hugepage_range(struct vm_area_struct
*vma
, unsigned long start
,
3474 unsigned long end
, struct page
*ref_page
)
3476 struct mm_struct
*mm
;
3477 struct mmu_gather tlb
;
3478 unsigned long tlb_start
= start
;
3479 unsigned long tlb_end
= end
;
3482 * If shared PMDs were possibly used within this vma range, adjust
3483 * start/end for worst case tlb flushing.
3484 * Note that we can not be sure if PMDs are shared until we try to
3485 * unmap pages. However, we want to make sure TLB flushing covers
3486 * the largest possible range.
3488 adjust_range_if_pmd_sharing_possible(vma
, &tlb_start
, &tlb_end
);
3492 tlb_gather_mmu(&tlb
, mm
, tlb_start
, tlb_end
);
3493 __unmap_hugepage_range(&tlb
, vma
, start
, end
, ref_page
);
3494 tlb_finish_mmu(&tlb
, tlb_start
, tlb_end
);
3498 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3499 * mappping it owns the reserve page for. The intention is to unmap the page
3500 * from other VMAs and let the children be SIGKILLed if they are faulting the
3503 static void unmap_ref_private(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3504 struct page
*page
, unsigned long address
)
3506 struct hstate
*h
= hstate_vma(vma
);
3507 struct vm_area_struct
*iter_vma
;
3508 struct address_space
*mapping
;
3512 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3513 * from page cache lookup which is in HPAGE_SIZE units.
3515 address
= address
& huge_page_mask(h
);
3516 pgoff
= ((address
- vma
->vm_start
) >> PAGE_SHIFT
) +
3518 mapping
= vma
->vm_file
->f_mapping
;
3521 * Take the mapping lock for the duration of the table walk. As
3522 * this mapping should be shared between all the VMAs,
3523 * __unmap_hugepage_range() is called as the lock is already held
3525 i_mmap_lock_write(mapping
);
3526 vma_interval_tree_foreach(iter_vma
, &mapping
->i_mmap
, pgoff
, pgoff
) {
3527 /* Do not unmap the current VMA */
3528 if (iter_vma
== vma
)
3532 * Shared VMAs have their own reserves and do not affect
3533 * MAP_PRIVATE accounting but it is possible that a shared
3534 * VMA is using the same page so check and skip such VMAs.
3536 if (iter_vma
->vm_flags
& VM_MAYSHARE
)
3540 * Unmap the page from other VMAs without their own reserves.
3541 * They get marked to be SIGKILLed if they fault in these
3542 * areas. This is because a future no-page fault on this VMA
3543 * could insert a zeroed page instead of the data existing
3544 * from the time of fork. This would look like data corruption
3546 if (!is_vma_resv_set(iter_vma
, HPAGE_RESV_OWNER
))
3547 unmap_hugepage_range(iter_vma
, address
,
3548 address
+ huge_page_size(h
), page
);
3550 i_mmap_unlock_write(mapping
);
3554 * Hugetlb_cow() should be called with page lock of the original hugepage held.
3555 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3556 * cannot race with other handlers or page migration.
3557 * Keep the pte_same checks anyway to make transition from the mutex easier.
3559 static vm_fault_t
hugetlb_cow(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3560 unsigned long address
, pte_t
*ptep
,
3561 struct page
*pagecache_page
, spinlock_t
*ptl
)
3564 struct hstate
*h
= hstate_vma(vma
);
3565 struct page
*old_page
, *new_page
;
3566 int outside_reserve
= 0;
3568 unsigned long haddr
= address
& huge_page_mask(h
);
3569 struct mmu_notifier_range range
;
3571 pte
= huge_ptep_get(ptep
);
3572 old_page
= pte_page(pte
);
3575 /* If no-one else is actually using this page, avoid the copy
3576 * and just make the page writable */
3577 if (page_mapcount(old_page
) == 1 && PageAnon(old_page
)) {
3578 page_move_anon_rmap(old_page
, vma
);
3579 set_huge_ptep_writable(vma
, haddr
, ptep
);
3584 * If the process that created a MAP_PRIVATE mapping is about to
3585 * perform a COW due to a shared page count, attempt to satisfy
3586 * the allocation without using the existing reserves. The pagecache
3587 * page is used to determine if the reserve at this address was
3588 * consumed or not. If reserves were used, a partial faulted mapping
3589 * at the time of fork() could consume its reserves on COW instead
3590 * of the full address range.
3592 if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
) &&
3593 old_page
!= pagecache_page
)
3594 outside_reserve
= 1;
3599 * Drop page table lock as buddy allocator may be called. It will
3600 * be acquired again before returning to the caller, as expected.
3603 new_page
= alloc_huge_page(vma
, haddr
, outside_reserve
);
3605 if (IS_ERR(new_page
)) {
3607 * If a process owning a MAP_PRIVATE mapping fails to COW,
3608 * it is due to references held by a child and an insufficient
3609 * huge page pool. To guarantee the original mappers
3610 * reliability, unmap the page from child processes. The child
3611 * may get SIGKILLed if it later faults.
3613 if (outside_reserve
) {
3615 BUG_ON(huge_pte_none(pte
));
3616 unmap_ref_private(mm
, vma
, old_page
, haddr
);
3617 BUG_ON(huge_pte_none(pte
));
3619 ptep
= huge_pte_offset(mm
, haddr
, huge_page_size(h
));
3621 pte_same(huge_ptep_get(ptep
), pte
)))
3622 goto retry_avoidcopy
;
3624 * race occurs while re-acquiring page table
3625 * lock, and our job is done.
3630 ret
= vmf_error(PTR_ERR(new_page
));
3631 goto out_release_old
;
3635 * When the original hugepage is shared one, it does not have
3636 * anon_vma prepared.
3638 if (unlikely(anon_vma_prepare(vma
))) {
3640 goto out_release_all
;
3643 copy_user_huge_page(new_page
, old_page
, address
, vma
,
3644 pages_per_huge_page(h
));
3645 __SetPageUptodate(new_page
);
3647 mmu_notifier_range_init(&range
, MMU_NOTIFY_CLEAR
, 0, vma
, mm
, haddr
,
3648 haddr
+ huge_page_size(h
));
3649 mmu_notifier_invalidate_range_start(&range
);
3652 * Retake the page table lock to check for racing updates
3653 * before the page tables are altered
3656 ptep
= huge_pte_offset(mm
, haddr
, huge_page_size(h
));
3657 if (likely(ptep
&& pte_same(huge_ptep_get(ptep
), pte
))) {
3658 ClearPagePrivate(new_page
);
3661 huge_ptep_clear_flush(vma
, haddr
, ptep
);
3662 mmu_notifier_invalidate_range(mm
, range
.start
, range
.end
);
3663 set_huge_pte_at(mm
, haddr
, ptep
,
3664 make_huge_pte(vma
, new_page
, 1));
3665 page_remove_rmap(old_page
, true);
3666 hugepage_add_new_anon_rmap(new_page
, vma
, haddr
);
3667 set_page_huge_active(new_page
);
3668 /* Make the old page be freed below */
3669 new_page
= old_page
;
3672 mmu_notifier_invalidate_range_end(&range
);
3674 restore_reserve_on_error(h
, vma
, haddr
, new_page
);
3679 spin_lock(ptl
); /* Caller expects lock to be held */
3683 /* Return the pagecache page at a given address within a VMA */
3684 static struct page
*hugetlbfs_pagecache_page(struct hstate
*h
,
3685 struct vm_area_struct
*vma
, unsigned long address
)
3687 struct address_space
*mapping
;
3690 mapping
= vma
->vm_file
->f_mapping
;
3691 idx
= vma_hugecache_offset(h
, vma
, address
);
3693 return find_lock_page(mapping
, idx
);
3697 * Return whether there is a pagecache page to back given address within VMA.
3698 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3700 static bool hugetlbfs_pagecache_present(struct hstate
*h
,
3701 struct vm_area_struct
*vma
, unsigned long address
)
3703 struct address_space
*mapping
;
3707 mapping
= vma
->vm_file
->f_mapping
;
3708 idx
= vma_hugecache_offset(h
, vma
, address
);
3710 page
= find_get_page(mapping
, idx
);
3713 return page
!= NULL
;
3716 int huge_add_to_page_cache(struct page
*page
, struct address_space
*mapping
,
3719 struct inode
*inode
= mapping
->host
;
3720 struct hstate
*h
= hstate_inode(inode
);
3721 int err
= add_to_page_cache(page
, mapping
, idx
, GFP_KERNEL
);
3725 ClearPagePrivate(page
);
3728 * set page dirty so that it will not be removed from cache/file
3729 * by non-hugetlbfs specific code paths.
3731 set_page_dirty(page
);
3733 spin_lock(&inode
->i_lock
);
3734 inode
->i_blocks
+= blocks_per_huge_page(h
);
3735 spin_unlock(&inode
->i_lock
);
3739 static vm_fault_t
hugetlb_no_page(struct mm_struct
*mm
,
3740 struct vm_area_struct
*vma
,
3741 struct address_space
*mapping
, pgoff_t idx
,
3742 unsigned long address
, pte_t
*ptep
, unsigned int flags
)
3744 struct hstate
*h
= hstate_vma(vma
);
3745 vm_fault_t ret
= VM_FAULT_SIGBUS
;
3751 unsigned long haddr
= address
& huge_page_mask(h
);
3752 bool new_page
= false;
3755 * Currently, we are forced to kill the process in the event the
3756 * original mapper has unmapped pages from the child due to a failed
3757 * COW. Warn that such a situation has occurred as it may not be obvious
3759 if (is_vma_resv_set(vma
, HPAGE_RESV_UNMAPPED
)) {
3760 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3766 * Use page lock to guard against racing truncation
3767 * before we get page_table_lock.
3770 page
= find_lock_page(mapping
, idx
);
3772 size
= i_size_read(mapping
->host
) >> huge_page_shift(h
);
3777 * Check for page in userfault range
3779 if (userfaultfd_missing(vma
)) {
3781 struct vm_fault vmf
= {
3786 * Hard to debug if it ends up being
3787 * used by a callee that assumes
3788 * something about the other
3789 * uninitialized fields... same as in
3795 * hugetlb_fault_mutex must be dropped before
3796 * handling userfault. Reacquire after handling
3797 * fault to make calling code simpler.
3799 hash
= hugetlb_fault_mutex_hash(mapping
, idx
);
3800 mutex_unlock(&hugetlb_fault_mutex_table
[hash
]);
3801 ret
= handle_userfault(&vmf
, VM_UFFD_MISSING
);
3802 mutex_lock(&hugetlb_fault_mutex_table
[hash
]);
3806 page
= alloc_huge_page(vma
, haddr
, 0);
3809 * Returning error will result in faulting task being
3810 * sent SIGBUS. The hugetlb fault mutex prevents two
3811 * tasks from racing to fault in the same page which
3812 * could result in false unable to allocate errors.
3813 * Page migration does not take the fault mutex, but
3814 * does a clear then write of pte's under page table
3815 * lock. Page fault code could race with migration,
3816 * notice the clear pte and try to allocate a page
3817 * here. Before returning error, get ptl and make
3818 * sure there really is no pte entry.
3820 ptl
= huge_pte_lock(h
, mm
, ptep
);
3821 if (!huge_pte_none(huge_ptep_get(ptep
))) {
3827 ret
= vmf_error(PTR_ERR(page
));
3830 clear_huge_page(page
, address
, pages_per_huge_page(h
));
3831 __SetPageUptodate(page
);
3834 if (vma
->vm_flags
& VM_MAYSHARE
) {
3835 int err
= huge_add_to_page_cache(page
, mapping
, idx
);
3844 if (unlikely(anon_vma_prepare(vma
))) {
3846 goto backout_unlocked
;
3852 * If memory error occurs between mmap() and fault, some process
3853 * don't have hwpoisoned swap entry for errored virtual address.
3854 * So we need to block hugepage fault by PG_hwpoison bit check.
3856 if (unlikely(PageHWPoison(page
))) {
3857 ret
= VM_FAULT_HWPOISON
|
3858 VM_FAULT_SET_HINDEX(hstate_index(h
));
3859 goto backout_unlocked
;
3864 * If we are going to COW a private mapping later, we examine the
3865 * pending reservations for this page now. This will ensure that
3866 * any allocations necessary to record that reservation occur outside
3869 if ((flags
& FAULT_FLAG_WRITE
) && !(vma
->vm_flags
& VM_SHARED
)) {
3870 if (vma_needs_reservation(h
, vma
, haddr
) < 0) {
3872 goto backout_unlocked
;
3874 /* Just decrements count, does not deallocate */
3875 vma_end_reservation(h
, vma
, haddr
);
3878 ptl
= huge_pte_lock(h
, mm
, ptep
);
3879 size
= i_size_read(mapping
->host
) >> huge_page_shift(h
);
3884 if (!huge_pte_none(huge_ptep_get(ptep
)))
3888 ClearPagePrivate(page
);
3889 hugepage_add_new_anon_rmap(page
, vma
, haddr
);
3891 page_dup_rmap(page
, true);
3892 new_pte
= make_huge_pte(vma
, page
, ((vma
->vm_flags
& VM_WRITE
)
3893 && (vma
->vm_flags
& VM_SHARED
)));
3894 set_huge_pte_at(mm
, haddr
, ptep
, new_pte
);
3896 hugetlb_count_add(pages_per_huge_page(h
), mm
);
3897 if ((flags
& FAULT_FLAG_WRITE
) && !(vma
->vm_flags
& VM_SHARED
)) {
3898 /* Optimization, do the COW without a second fault */
3899 ret
= hugetlb_cow(mm
, vma
, address
, ptep
, page
, ptl
);
3905 * Only make newly allocated pages active. Existing pages found
3906 * in the pagecache could be !page_huge_active() if they have been
3907 * isolated for migration.
3910 set_page_huge_active(page
);
3920 restore_reserve_on_error(h
, vma
, haddr
, page
);
3926 u32
hugetlb_fault_mutex_hash(struct address_space
*mapping
, pgoff_t idx
)
3928 unsigned long key
[2];
3931 key
[0] = (unsigned long) mapping
;
3934 hash
= jhash2((u32
*)&key
, sizeof(key
)/(sizeof(u32
)), 0);
3936 return hash
& (num_fault_mutexes
- 1);
3940 * For uniprocesor systems we always use a single mutex, so just
3941 * return 0 and avoid the hashing overhead.
3943 u32
hugetlb_fault_mutex_hash(struct address_space
*mapping
, pgoff_t idx
)
3949 vm_fault_t
hugetlb_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3950 unsigned long address
, unsigned int flags
)
3957 struct page
*page
= NULL
;
3958 struct page
*pagecache_page
= NULL
;
3959 struct hstate
*h
= hstate_vma(vma
);
3960 struct address_space
*mapping
;
3961 int need_wait_lock
= 0;
3962 unsigned long haddr
= address
& huge_page_mask(h
);
3964 ptep
= huge_pte_offset(mm
, haddr
, huge_page_size(h
));
3966 entry
= huge_ptep_get(ptep
);
3967 if (unlikely(is_hugetlb_entry_migration(entry
))) {
3968 migration_entry_wait_huge(vma
, mm
, ptep
);
3970 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry
)))
3971 return VM_FAULT_HWPOISON_LARGE
|
3972 VM_FAULT_SET_HINDEX(hstate_index(h
));
3974 ptep
= huge_pte_alloc(mm
, haddr
, huge_page_size(h
));
3976 return VM_FAULT_OOM
;
3979 mapping
= vma
->vm_file
->f_mapping
;
3980 idx
= vma_hugecache_offset(h
, vma
, haddr
);
3983 * Serialize hugepage allocation and instantiation, so that we don't
3984 * get spurious allocation failures if two CPUs race to instantiate
3985 * the same page in the page cache.
3987 hash
= hugetlb_fault_mutex_hash(mapping
, idx
);
3988 mutex_lock(&hugetlb_fault_mutex_table
[hash
]);
3990 entry
= huge_ptep_get(ptep
);
3991 if (huge_pte_none(entry
)) {
3992 ret
= hugetlb_no_page(mm
, vma
, mapping
, idx
, address
, ptep
, flags
);
3999 * entry could be a migration/hwpoison entry at this point, so this
4000 * check prevents the kernel from going below assuming that we have
4001 * a active hugepage in pagecache. This goto expects the 2nd page fault,
4002 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
4005 if (!pte_present(entry
))
4009 * If we are going to COW the mapping later, we examine the pending
4010 * reservations for this page now. This will ensure that any
4011 * allocations necessary to record that reservation occur outside the
4012 * spinlock. For private mappings, we also lookup the pagecache
4013 * page now as it is used to determine if a reservation has been
4016 if ((flags
& FAULT_FLAG_WRITE
) && !huge_pte_write(entry
)) {
4017 if (vma_needs_reservation(h
, vma
, haddr
) < 0) {
4021 /* Just decrements count, does not deallocate */
4022 vma_end_reservation(h
, vma
, haddr
);
4024 if (!(vma
->vm_flags
& VM_MAYSHARE
))
4025 pagecache_page
= hugetlbfs_pagecache_page(h
,
4029 ptl
= huge_pte_lock(h
, mm
, ptep
);
4031 /* Check for a racing update before calling hugetlb_cow */
4032 if (unlikely(!pte_same(entry
, huge_ptep_get(ptep
))))
4036 * hugetlb_cow() requires page locks of pte_page(entry) and
4037 * pagecache_page, so here we need take the former one
4038 * when page != pagecache_page or !pagecache_page.
4040 page
= pte_page(entry
);
4041 if (page
!= pagecache_page
)
4042 if (!trylock_page(page
)) {
4049 if (flags
& FAULT_FLAG_WRITE
) {
4050 if (!huge_pte_write(entry
)) {
4051 ret
= hugetlb_cow(mm
, vma
, address
, ptep
,
4052 pagecache_page
, ptl
);
4055 entry
= huge_pte_mkdirty(entry
);
4057 entry
= pte_mkyoung(entry
);
4058 if (huge_ptep_set_access_flags(vma
, haddr
, ptep
, entry
,
4059 flags
& FAULT_FLAG_WRITE
))
4060 update_mmu_cache(vma
, haddr
, ptep
);
4062 if (page
!= pagecache_page
)
4068 if (pagecache_page
) {
4069 unlock_page(pagecache_page
);
4070 put_page(pagecache_page
);
4073 mutex_unlock(&hugetlb_fault_mutex_table
[hash
]);
4075 * Generally it's safe to hold refcount during waiting page lock. But
4076 * here we just wait to defer the next page fault to avoid busy loop and
4077 * the page is not used after unlocked before returning from the current
4078 * page fault. So we are safe from accessing freed page, even if we wait
4079 * here without taking refcount.
4082 wait_on_page_locked(page
);
4087 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
4088 * modifications for huge pages.
4090 int hugetlb_mcopy_atomic_pte(struct mm_struct
*dst_mm
,
4092 struct vm_area_struct
*dst_vma
,
4093 unsigned long dst_addr
,
4094 unsigned long src_addr
,
4095 struct page
**pagep
)
4097 struct address_space
*mapping
;
4100 int vm_shared
= dst_vma
->vm_flags
& VM_SHARED
;
4101 struct hstate
*h
= hstate_vma(dst_vma
);
4109 page
= alloc_huge_page(dst_vma
, dst_addr
, 0);
4113 ret
= copy_huge_page_from_user(page
,
4114 (const void __user
*) src_addr
,
4115 pages_per_huge_page(h
), false);
4117 /* fallback to copy_from_user outside mmap_sem */
4118 if (unlikely(ret
)) {
4121 /* don't free the page */
4130 * The memory barrier inside __SetPageUptodate makes sure that
4131 * preceding stores to the page contents become visible before
4132 * the set_pte_at() write.
4134 __SetPageUptodate(page
);
4136 mapping
= dst_vma
->vm_file
->f_mapping
;
4137 idx
= vma_hugecache_offset(h
, dst_vma
, dst_addr
);
4140 * If shared, add to page cache
4143 size
= i_size_read(mapping
->host
) >> huge_page_shift(h
);
4146 goto out_release_nounlock
;
4149 * Serialization between remove_inode_hugepages() and
4150 * huge_add_to_page_cache() below happens through the
4151 * hugetlb_fault_mutex_table that here must be hold by
4154 ret
= huge_add_to_page_cache(page
, mapping
, idx
);
4156 goto out_release_nounlock
;
4159 ptl
= huge_pte_lockptr(h
, dst_mm
, dst_pte
);
4163 * Recheck the i_size after holding PT lock to make sure not
4164 * to leave any page mapped (as page_mapped()) beyond the end
4165 * of the i_size (remove_inode_hugepages() is strict about
4166 * enforcing that). If we bail out here, we'll also leave a
4167 * page in the radix tree in the vm_shared case beyond the end
4168 * of the i_size, but remove_inode_hugepages() will take care
4169 * of it as soon as we drop the hugetlb_fault_mutex_table.
4171 size
= i_size_read(mapping
->host
) >> huge_page_shift(h
);
4174 goto out_release_unlock
;
4177 if (!huge_pte_none(huge_ptep_get(dst_pte
)))
4178 goto out_release_unlock
;
4181 page_dup_rmap(page
, true);
4183 ClearPagePrivate(page
);
4184 hugepage_add_new_anon_rmap(page
, dst_vma
, dst_addr
);
4187 _dst_pte
= make_huge_pte(dst_vma
, page
, dst_vma
->vm_flags
& VM_WRITE
);
4188 if (dst_vma
->vm_flags
& VM_WRITE
)
4189 _dst_pte
= huge_pte_mkdirty(_dst_pte
);
4190 _dst_pte
= pte_mkyoung(_dst_pte
);
4192 set_huge_pte_at(dst_mm
, dst_addr
, dst_pte
, _dst_pte
);
4194 (void)huge_ptep_set_access_flags(dst_vma
, dst_addr
, dst_pte
, _dst_pte
,
4195 dst_vma
->vm_flags
& VM_WRITE
);
4196 hugetlb_count_add(pages_per_huge_page(h
), dst_mm
);
4198 /* No need to invalidate - it was non-present before */
4199 update_mmu_cache(dst_vma
, dst_addr
, dst_pte
);
4202 set_page_huge_active(page
);
4212 out_release_nounlock
:
4217 long follow_hugetlb_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
4218 struct page
**pages
, struct vm_area_struct
**vmas
,
4219 unsigned long *position
, unsigned long *nr_pages
,
4220 long i
, unsigned int flags
, int *nonblocking
)
4222 unsigned long pfn_offset
;
4223 unsigned long vaddr
= *position
;
4224 unsigned long remainder
= *nr_pages
;
4225 struct hstate
*h
= hstate_vma(vma
);
4228 while (vaddr
< vma
->vm_end
&& remainder
) {
4230 spinlock_t
*ptl
= NULL
;
4235 * If we have a pending SIGKILL, don't keep faulting pages and
4236 * potentially allocating memory.
4238 if (fatal_signal_pending(current
)) {
4244 * Some archs (sparc64, sh*) have multiple pte_ts to
4245 * each hugepage. We have to make sure we get the
4246 * first, for the page indexing below to work.
4248 * Note that page table lock is not held when pte is null.
4250 pte
= huge_pte_offset(mm
, vaddr
& huge_page_mask(h
),
4253 ptl
= huge_pte_lock(h
, mm
, pte
);
4254 absent
= !pte
|| huge_pte_none(huge_ptep_get(pte
));
4257 * When coredumping, it suits get_dump_page if we just return
4258 * an error where there's an empty slot with no huge pagecache
4259 * to back it. This way, we avoid allocating a hugepage, and
4260 * the sparse dumpfile avoids allocating disk blocks, but its
4261 * huge holes still show up with zeroes where they need to be.
4263 if (absent
&& (flags
& FOLL_DUMP
) &&
4264 !hugetlbfs_pagecache_present(h
, vma
, vaddr
)) {
4272 * We need call hugetlb_fault for both hugepages under migration
4273 * (in which case hugetlb_fault waits for the migration,) and
4274 * hwpoisoned hugepages (in which case we need to prevent the
4275 * caller from accessing to them.) In order to do this, we use
4276 * here is_swap_pte instead of is_hugetlb_entry_migration and
4277 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4278 * both cases, and because we can't follow correct pages
4279 * directly from any kind of swap entries.
4281 if (absent
|| is_swap_pte(huge_ptep_get(pte
)) ||
4282 ((flags
& FOLL_WRITE
) &&
4283 !huge_pte_write(huge_ptep_get(pte
)))) {
4285 unsigned int fault_flags
= 0;
4289 if (flags
& FOLL_WRITE
)
4290 fault_flags
|= FAULT_FLAG_WRITE
;
4292 fault_flags
|= FAULT_FLAG_ALLOW_RETRY
;
4293 if (flags
& FOLL_NOWAIT
)
4294 fault_flags
|= FAULT_FLAG_ALLOW_RETRY
|
4295 FAULT_FLAG_RETRY_NOWAIT
;
4296 if (flags
& FOLL_TRIED
) {
4297 VM_WARN_ON_ONCE(fault_flags
&
4298 FAULT_FLAG_ALLOW_RETRY
);
4299 fault_flags
|= FAULT_FLAG_TRIED
;
4301 ret
= hugetlb_fault(mm
, vma
, vaddr
, fault_flags
);
4302 if (ret
& VM_FAULT_ERROR
) {
4303 err
= vm_fault_to_errno(ret
, flags
);
4307 if (ret
& VM_FAULT_RETRY
) {
4309 !(fault_flags
& FAULT_FLAG_RETRY_NOWAIT
))
4313 * VM_FAULT_RETRY must not return an
4314 * error, it will return zero
4317 * No need to update "position" as the
4318 * caller will not check it after
4319 * *nr_pages is set to 0.
4326 pfn_offset
= (vaddr
& ~huge_page_mask(h
)) >> PAGE_SHIFT
;
4327 page
= pte_page(huge_ptep_get(pte
));
4330 * Instead of doing 'try_get_page()' below in the same_page
4331 * loop, just check the count once here.
4333 if (unlikely(page_count(page
) <= 0)) {
4343 * If subpage information not requested, update counters
4344 * and skip the same_page loop below.
4346 if (!pages
&& !vmas
&& !pfn_offset
&&
4347 (vaddr
+ huge_page_size(h
) < vma
->vm_end
) &&
4348 (remainder
>= pages_per_huge_page(h
))) {
4349 vaddr
+= huge_page_size(h
);
4350 remainder
-= pages_per_huge_page(h
);
4351 i
+= pages_per_huge_page(h
);
4358 pages
[i
] = mem_map_offset(page
, pfn_offset
);
4369 if (vaddr
< vma
->vm_end
&& remainder
&&
4370 pfn_offset
< pages_per_huge_page(h
)) {
4372 * We use pfn_offset to avoid touching the pageframes
4373 * of this compound page.
4379 *nr_pages
= remainder
;
4381 * setting position is actually required only if remainder is
4382 * not zero but it's faster not to add a "if (remainder)"
4390 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4392 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4395 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4398 unsigned long hugetlb_change_protection(struct vm_area_struct
*vma
,
4399 unsigned long address
, unsigned long end
, pgprot_t newprot
)
4401 struct mm_struct
*mm
= vma
->vm_mm
;
4402 unsigned long start
= address
;
4405 struct hstate
*h
= hstate_vma(vma
);
4406 unsigned long pages
= 0;
4407 bool shared_pmd
= false;
4408 struct mmu_notifier_range range
;
4411 * In the case of shared PMDs, the area to flush could be beyond
4412 * start/end. Set range.start/range.end to cover the maximum possible
4413 * range if PMD sharing is possible.
4415 mmu_notifier_range_init(&range
, MMU_NOTIFY_PROTECTION_VMA
,
4416 0, vma
, mm
, start
, end
);
4417 adjust_range_if_pmd_sharing_possible(vma
, &range
.start
, &range
.end
);
4419 BUG_ON(address
>= end
);
4420 flush_cache_range(vma
, range
.start
, range
.end
);
4422 mmu_notifier_invalidate_range_start(&range
);
4423 i_mmap_lock_write(vma
->vm_file
->f_mapping
);
4424 for (; address
< end
; address
+= huge_page_size(h
)) {
4426 ptep
= huge_pte_offset(mm
, address
, huge_page_size(h
));
4429 ptl
= huge_pte_lock(h
, mm
, ptep
);
4430 if (huge_pmd_unshare(mm
, &address
, ptep
)) {
4436 pte
= huge_ptep_get(ptep
);
4437 if (unlikely(is_hugetlb_entry_hwpoisoned(pte
))) {
4441 if (unlikely(is_hugetlb_entry_migration(pte
))) {
4442 swp_entry_t entry
= pte_to_swp_entry(pte
);
4444 if (is_write_migration_entry(entry
)) {
4447 make_migration_entry_read(&entry
);
4448 newpte
= swp_entry_to_pte(entry
);
4449 set_huge_swap_pte_at(mm
, address
, ptep
,
4450 newpte
, huge_page_size(h
));
4456 if (!huge_pte_none(pte
)) {
4459 old_pte
= huge_ptep_modify_prot_start(vma
, address
, ptep
);
4460 pte
= pte_mkhuge(huge_pte_modify(old_pte
, newprot
));
4461 pte
= arch_make_huge_pte(pte
, vma
, NULL
, 0);
4462 huge_ptep_modify_prot_commit(vma
, address
, ptep
, old_pte
, pte
);
4468 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4469 * may have cleared our pud entry and done put_page on the page table:
4470 * once we release i_mmap_rwsem, another task can do the final put_page
4471 * and that page table be reused and filled with junk. If we actually
4472 * did unshare a page of pmds, flush the range corresponding to the pud.
4475 flush_hugetlb_tlb_range(vma
, range
.start
, range
.end
);
4477 flush_hugetlb_tlb_range(vma
, start
, end
);
4479 * No need to call mmu_notifier_invalidate_range() we are downgrading
4480 * page table protection not changing it to point to a new page.
4482 * See Documentation/vm/mmu_notifier.rst
4484 i_mmap_unlock_write(vma
->vm_file
->f_mapping
);
4485 mmu_notifier_invalidate_range_end(&range
);
4487 return pages
<< h
->order
;
4490 int hugetlb_reserve_pages(struct inode
*inode
,
4492 struct vm_area_struct
*vma
,
4493 vm_flags_t vm_flags
)
4496 struct hstate
*h
= hstate_inode(inode
);
4497 struct hugepage_subpool
*spool
= subpool_inode(inode
);
4498 struct resv_map
*resv_map
;
4501 /* This should never happen */
4503 VM_WARN(1, "%s called with a negative range\n", __func__
);
4508 * Only apply hugepage reservation if asked. At fault time, an
4509 * attempt will be made for VM_NORESERVE to allocate a page
4510 * without using reserves
4512 if (vm_flags
& VM_NORESERVE
)
4516 * Shared mappings base their reservation on the number of pages that
4517 * are already allocated on behalf of the file. Private mappings need
4518 * to reserve the full area even if read-only as mprotect() may be
4519 * called to make the mapping read-write. Assume !vma is a shm mapping
4521 if (!vma
|| vma
->vm_flags
& VM_MAYSHARE
) {
4523 * resv_map can not be NULL as hugetlb_reserve_pages is only
4524 * called for inodes for which resv_maps were created (see
4525 * hugetlbfs_get_inode).
4527 resv_map
= inode_resv_map(inode
);
4529 chg
= region_chg(resv_map
, from
, to
);
4532 resv_map
= resv_map_alloc();
4538 set_vma_resv_map(vma
, resv_map
);
4539 set_vma_resv_flags(vma
, HPAGE_RESV_OWNER
);
4548 * There must be enough pages in the subpool for the mapping. If
4549 * the subpool has a minimum size, there may be some global
4550 * reservations already in place (gbl_reserve).
4552 gbl_reserve
= hugepage_subpool_get_pages(spool
, chg
);
4553 if (gbl_reserve
< 0) {
4559 * Check enough hugepages are available for the reservation.
4560 * Hand the pages back to the subpool if there are not
4562 ret
= hugetlb_acct_memory(h
, gbl_reserve
);
4564 /* put back original number of pages, chg */
4565 (void)hugepage_subpool_put_pages(spool
, chg
);
4570 * Account for the reservations made. Shared mappings record regions
4571 * that have reservations as they are shared by multiple VMAs.
4572 * When the last VMA disappears, the region map says how much
4573 * the reservation was and the page cache tells how much of
4574 * the reservation was consumed. Private mappings are per-VMA and
4575 * only the consumed reservations are tracked. When the VMA
4576 * disappears, the original reservation is the VMA size and the
4577 * consumed reservations are stored in the map. Hence, nothing
4578 * else has to be done for private mappings here
4580 if (!vma
|| vma
->vm_flags
& VM_MAYSHARE
) {
4581 long add
= region_add(resv_map
, from
, to
);
4583 if (unlikely(chg
> add
)) {
4585 * pages in this range were added to the reserve
4586 * map between region_chg and region_add. This
4587 * indicates a race with alloc_huge_page. Adjust
4588 * the subpool and reserve counts modified above
4589 * based on the difference.
4593 rsv_adjust
= hugepage_subpool_put_pages(spool
,
4595 hugetlb_acct_memory(h
, -rsv_adjust
);
4600 if (!vma
|| vma
->vm_flags
& VM_MAYSHARE
)
4601 /* Don't call region_abort if region_chg failed */
4603 region_abort(resv_map
, from
, to
);
4604 if (vma
&& is_vma_resv_set(vma
, HPAGE_RESV_OWNER
))
4605 kref_put(&resv_map
->refs
, resv_map_release
);
4609 long hugetlb_unreserve_pages(struct inode
*inode
, long start
, long end
,
4612 struct hstate
*h
= hstate_inode(inode
);
4613 struct resv_map
*resv_map
= inode_resv_map(inode
);
4615 struct hugepage_subpool
*spool
= subpool_inode(inode
);
4619 * Since this routine can be called in the evict inode path for all
4620 * hugetlbfs inodes, resv_map could be NULL.
4623 chg
= region_del(resv_map
, start
, end
);
4625 * region_del() can fail in the rare case where a region
4626 * must be split and another region descriptor can not be
4627 * allocated. If end == LONG_MAX, it will not fail.
4633 spin_lock(&inode
->i_lock
);
4634 inode
->i_blocks
-= (blocks_per_huge_page(h
) * freed
);
4635 spin_unlock(&inode
->i_lock
);
4638 * If the subpool has a minimum size, the number of global
4639 * reservations to be released may be adjusted.
4641 gbl_reserve
= hugepage_subpool_put_pages(spool
, (chg
- freed
));
4642 hugetlb_acct_memory(h
, -gbl_reserve
);
4647 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4648 static unsigned long page_table_shareable(struct vm_area_struct
*svma
,
4649 struct vm_area_struct
*vma
,
4650 unsigned long addr
, pgoff_t idx
)
4652 unsigned long saddr
= ((idx
- svma
->vm_pgoff
) << PAGE_SHIFT
) +
4654 unsigned long sbase
= saddr
& PUD_MASK
;
4655 unsigned long s_end
= sbase
+ PUD_SIZE
;
4657 /* Allow segments to share if only one is marked locked */
4658 unsigned long vm_flags
= vma
->vm_flags
& VM_LOCKED_CLEAR_MASK
;
4659 unsigned long svm_flags
= svma
->vm_flags
& VM_LOCKED_CLEAR_MASK
;
4662 * match the virtual addresses, permission and the alignment of the
4665 if (pmd_index(addr
) != pmd_index(saddr
) ||
4666 vm_flags
!= svm_flags
||
4667 sbase
< svma
->vm_start
|| svma
->vm_end
< s_end
)
4673 static bool vma_shareable(struct vm_area_struct
*vma
, unsigned long addr
)
4675 unsigned long base
= addr
& PUD_MASK
;
4676 unsigned long end
= base
+ PUD_SIZE
;
4679 * check on proper vm_flags and page table alignment
4681 if (vma
->vm_flags
& VM_MAYSHARE
&& range_in_vma(vma
, base
, end
))
4687 * Determine if start,end range within vma could be mapped by shared pmd.
4688 * If yes, adjust start and end to cover range associated with possible
4689 * shared pmd mappings.
4691 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct
*vma
,
4692 unsigned long *start
, unsigned long *end
)
4694 unsigned long check_addr
= *start
;
4696 if (!(vma
->vm_flags
& VM_MAYSHARE
))
4699 for (check_addr
= *start
; check_addr
< *end
; check_addr
+= PUD_SIZE
) {
4700 unsigned long a_start
= check_addr
& PUD_MASK
;
4701 unsigned long a_end
= a_start
+ PUD_SIZE
;
4704 * If sharing is possible, adjust start/end if necessary.
4706 if (range_in_vma(vma
, a_start
, a_end
)) {
4707 if (a_start
< *start
)
4716 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4717 * and returns the corresponding pte. While this is not necessary for the
4718 * !shared pmd case because we can allocate the pmd later as well, it makes the
4719 * code much cleaner. pmd allocation is essential for the shared case because
4720 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4721 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4722 * bad pmd for sharing.
4724 pte_t
*huge_pmd_share(struct mm_struct
*mm
, unsigned long addr
, pud_t
*pud
)
4726 struct vm_area_struct
*vma
= find_vma(mm
, addr
);
4727 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
4728 pgoff_t idx
= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
) +
4730 struct vm_area_struct
*svma
;
4731 unsigned long saddr
;
4736 if (!vma_shareable(vma
, addr
))
4737 return (pte_t
*)pmd_alloc(mm
, pud
, addr
);
4739 i_mmap_lock_read(mapping
);
4740 vma_interval_tree_foreach(svma
, &mapping
->i_mmap
, idx
, idx
) {
4744 saddr
= page_table_shareable(svma
, vma
, addr
, idx
);
4746 spte
= huge_pte_offset(svma
->vm_mm
, saddr
,
4747 vma_mmu_pagesize(svma
));
4749 get_page(virt_to_page(spte
));
4758 ptl
= huge_pte_lock(hstate_vma(vma
), mm
, spte
);
4759 if (pud_none(*pud
)) {
4760 pud_populate(mm
, pud
,
4761 (pmd_t
*)((unsigned long)spte
& PAGE_MASK
));
4764 put_page(virt_to_page(spte
));
4768 pte
= (pte_t
*)pmd_alloc(mm
, pud
, addr
);
4769 i_mmap_unlock_read(mapping
);
4774 * unmap huge page backed by shared pte.
4776 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
4777 * indicated by page_count > 1, unmap is achieved by clearing pud and
4778 * decrementing the ref count. If count == 1, the pte page is not shared.
4780 * called with page table lock held.
4782 * returns: 1 successfully unmapped a shared pte page
4783 * 0 the underlying pte page is not shared, or it is the last user
4785 int huge_pmd_unshare(struct mm_struct
*mm
, unsigned long *addr
, pte_t
*ptep
)
4787 pgd_t
*pgd
= pgd_offset(mm
, *addr
);
4788 p4d_t
*p4d
= p4d_offset(pgd
, *addr
);
4789 pud_t
*pud
= pud_offset(p4d
, *addr
);
4791 BUG_ON(page_count(virt_to_page(ptep
)) == 0);
4792 if (page_count(virt_to_page(ptep
)) == 1)
4796 put_page(virt_to_page(ptep
));
4798 *addr
= ALIGN(*addr
, HPAGE_SIZE
* PTRS_PER_PTE
) - HPAGE_SIZE
;
4801 #define want_pmd_share() (1)
4802 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4803 pte_t
*huge_pmd_share(struct mm_struct
*mm
, unsigned long addr
, pud_t
*pud
)
4808 int huge_pmd_unshare(struct mm_struct
*mm
, unsigned long *addr
, pte_t
*ptep
)
4813 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct
*vma
,
4814 unsigned long *start
, unsigned long *end
)
4817 #define want_pmd_share() (0)
4818 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4820 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4821 pte_t
*huge_pte_alloc(struct mm_struct
*mm
,
4822 unsigned long addr
, unsigned long sz
)
4829 pgd
= pgd_offset(mm
, addr
);
4830 p4d
= p4d_alloc(mm
, pgd
, addr
);
4833 pud
= pud_alloc(mm
, p4d
, addr
);
4835 if (sz
== PUD_SIZE
) {
4838 BUG_ON(sz
!= PMD_SIZE
);
4839 if (want_pmd_share() && pud_none(*pud
))
4840 pte
= huge_pmd_share(mm
, addr
, pud
);
4842 pte
= (pte_t
*)pmd_alloc(mm
, pud
, addr
);
4845 BUG_ON(pte
&& pte_present(*pte
) && !pte_huge(*pte
));
4851 * huge_pte_offset() - Walk the page table to resolve the hugepage
4852 * entry at address @addr
4854 * Return: Pointer to page table or swap entry (PUD or PMD) for
4855 * address @addr, or NULL if a p*d_none() entry is encountered and the
4856 * size @sz doesn't match the hugepage size at this level of the page
4859 pte_t
*huge_pte_offset(struct mm_struct
*mm
,
4860 unsigned long addr
, unsigned long sz
)
4867 pgd
= pgd_offset(mm
, addr
);
4868 if (!pgd_present(*pgd
))
4870 p4d
= p4d_offset(pgd
, addr
);
4871 if (!p4d_present(*p4d
))
4874 pud
= pud_offset(p4d
, addr
);
4875 if (sz
!= PUD_SIZE
&& pud_none(*pud
))
4877 /* hugepage or swap? */
4878 if (pud_huge(*pud
) || !pud_present(*pud
))
4879 return (pte_t
*)pud
;
4881 pmd
= pmd_offset(pud
, addr
);
4882 if (sz
!= PMD_SIZE
&& pmd_none(*pmd
))
4884 /* hugepage or swap? */
4885 if (pmd_huge(*pmd
) || !pmd_present(*pmd
))
4886 return (pte_t
*)pmd
;
4891 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4894 * These functions are overwritable if your architecture needs its own
4897 struct page
* __weak
4898 follow_huge_addr(struct mm_struct
*mm
, unsigned long address
,
4901 return ERR_PTR(-EINVAL
);
4904 struct page
* __weak
4905 follow_huge_pd(struct vm_area_struct
*vma
,
4906 unsigned long address
, hugepd_t hpd
, int flags
, int pdshift
)
4908 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
4912 struct page
* __weak
4913 follow_huge_pmd(struct mm_struct
*mm
, unsigned long address
,
4914 pmd_t
*pmd
, int flags
)
4916 struct page
*page
= NULL
;
4920 ptl
= pmd_lockptr(mm
, pmd
);
4923 * make sure that the address range covered by this pmd is not
4924 * unmapped from other threads.
4926 if (!pmd_huge(*pmd
))
4928 pte
= huge_ptep_get((pte_t
*)pmd
);
4929 if (pte_present(pte
)) {
4930 page
= pmd_page(*pmd
) + ((address
& ~PMD_MASK
) >> PAGE_SHIFT
);
4931 if (flags
& FOLL_GET
)
4934 if (is_hugetlb_entry_migration(pte
)) {
4936 __migration_entry_wait(mm
, (pte_t
*)pmd
, ptl
);
4940 * hwpoisoned entry is treated as no_page_table in
4941 * follow_page_mask().
4949 struct page
* __weak
4950 follow_huge_pud(struct mm_struct
*mm
, unsigned long address
,
4951 pud_t
*pud
, int flags
)
4953 if (flags
& FOLL_GET
)
4956 return pte_page(*(pte_t
*)pud
) + ((address
& ~PUD_MASK
) >> PAGE_SHIFT
);
4959 struct page
* __weak
4960 follow_huge_pgd(struct mm_struct
*mm
, unsigned long address
, pgd_t
*pgd
, int flags
)
4962 if (flags
& FOLL_GET
)
4965 return pte_page(*(pte_t
*)pgd
) + ((address
& ~PGDIR_MASK
) >> PAGE_SHIFT
);
4968 bool isolate_huge_page(struct page
*page
, struct list_head
*list
)
4972 VM_BUG_ON_PAGE(!PageHead(page
), page
);
4973 spin_lock(&hugetlb_lock
);
4974 if (!page_huge_active(page
) || !get_page_unless_zero(page
)) {
4978 clear_page_huge_active(page
);
4979 list_move_tail(&page
->lru
, list
);
4981 spin_unlock(&hugetlb_lock
);
4985 void putback_active_hugepage(struct page
*page
)
4987 VM_BUG_ON_PAGE(!PageHead(page
), page
);
4988 spin_lock(&hugetlb_lock
);
4989 set_page_huge_active(page
);
4990 list_move_tail(&page
->lru
, &(page_hstate(page
))->hugepage_activelist
);
4991 spin_unlock(&hugetlb_lock
);
4995 void move_hugetlb_state(struct page
*oldpage
, struct page
*newpage
, int reason
)
4997 struct hstate
*h
= page_hstate(oldpage
);
4999 hugetlb_cgroup_migrate(oldpage
, newpage
);
5000 set_page_owner_migrate_reason(newpage
, reason
);
5003 * transfer temporary state of the new huge page. This is
5004 * reverse to other transitions because the newpage is going to
5005 * be final while the old one will be freed so it takes over
5006 * the temporary status.
5008 * Also note that we have to transfer the per-node surplus state
5009 * here as well otherwise the global surplus count will not match
5012 if (PageHugeTemporary(newpage
)) {
5013 int old_nid
= page_to_nid(oldpage
);
5014 int new_nid
= page_to_nid(newpage
);
5016 SetPageHugeTemporary(oldpage
);
5017 ClearPageHugeTemporary(newpage
);
5019 spin_lock(&hugetlb_lock
);
5020 if (h
->surplus_huge_pages_node
[old_nid
]) {
5021 h
->surplus_huge_pages_node
[old_nid
]--;
5022 h
->surplus_huge_pages_node
[new_nid
]++;
5024 spin_unlock(&hugetlb_lock
);