1 // SPDX-License-Identifier: GPL-2.0-only
7 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
16 #include <linux/vmacache.h>
17 #include <linux/shm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/syscalls.h>
22 #include <linux/capability.h>
23 #include <linux/init.h>
24 #include <linux/file.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/hugetlb.h>
29 #include <linux/shmem_fs.h>
30 #include <linux/profile.h>
31 #include <linux/export.h>
32 #include <linux/mount.h>
33 #include <linux/mempolicy.h>
34 #include <linux/rmap.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/mmdebug.h>
37 #include <linux/perf_event.h>
38 #include <linux/audit.h>
39 #include <linux/khugepaged.h>
40 #include <linux/uprobes.h>
41 #include <linux/rbtree_augmented.h>
42 #include <linux/notifier.h>
43 #include <linux/memory.h>
44 #include <linux/printk.h>
45 #include <linux/userfaultfd_k.h>
46 #include <linux/moduleparam.h>
47 #include <linux/pkeys.h>
48 #include <linux/oom.h>
49 #include <linux/sched/mm.h>
51 #include <linux/uaccess.h>
52 #include <asm/cacheflush.h>
54 #include <asm/mmu_context.h>
58 #ifndef arch_mmap_check
59 #define arch_mmap_check(addr, len, flags) (0)
62 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
63 const int mmap_rnd_bits_min
= CONFIG_ARCH_MMAP_RND_BITS_MIN
;
64 const int mmap_rnd_bits_max
= CONFIG_ARCH_MMAP_RND_BITS_MAX
;
65 int mmap_rnd_bits __read_mostly
= CONFIG_ARCH_MMAP_RND_BITS
;
67 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
68 const int mmap_rnd_compat_bits_min
= CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN
;
69 const int mmap_rnd_compat_bits_max
= CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX
;
70 int mmap_rnd_compat_bits __read_mostly
= CONFIG_ARCH_MMAP_RND_COMPAT_BITS
;
73 static bool ignore_rlimit_data
;
74 core_param(ignore_rlimit_data
, ignore_rlimit_data
, bool, 0644);
76 static void unmap_region(struct mm_struct
*mm
,
77 struct vm_area_struct
*vma
, struct vm_area_struct
*prev
,
78 unsigned long start
, unsigned long end
);
80 /* description of effects of mapping type and prot in current implementation.
81 * this is due to the limited x86 page protection hardware. The expected
82 * behavior is in parens:
85 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
86 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
87 * w: (no) no w: (no) no w: (yes) yes w: (no) no
88 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
90 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
91 * w: (no) no w: (no) no w: (copy) copy w: (no) no
92 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
94 * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
100 pgprot_t protection_map
[16] __ro_after_init
= {
101 __P000
, __P001
, __P010
, __P011
, __P100
, __P101
, __P110
, __P111
,
102 __S000
, __S001
, __S010
, __S011
, __S100
, __S101
, __S110
, __S111
105 #ifndef CONFIG_ARCH_HAS_FILTER_PGPROT
106 static inline pgprot_t
arch_filter_pgprot(pgprot_t prot
)
112 pgprot_t
vm_get_page_prot(unsigned long vm_flags
)
114 pgprot_t ret
= __pgprot(pgprot_val(protection_map
[vm_flags
&
115 (VM_READ
|VM_WRITE
|VM_EXEC
|VM_SHARED
)]) |
116 pgprot_val(arch_vm_get_page_prot(vm_flags
)));
118 return arch_filter_pgprot(ret
);
120 EXPORT_SYMBOL(vm_get_page_prot
);
122 static pgprot_t
vm_pgprot_modify(pgprot_t oldprot
, unsigned long vm_flags
)
124 return pgprot_modify(oldprot
, vm_get_page_prot(vm_flags
));
127 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
128 void vma_set_page_prot(struct vm_area_struct
*vma
)
130 unsigned long vm_flags
= vma
->vm_flags
;
131 pgprot_t vm_page_prot
;
133 vm_page_prot
= vm_pgprot_modify(vma
->vm_page_prot
, vm_flags
);
134 if (vma_wants_writenotify(vma
, vm_page_prot
)) {
135 vm_flags
&= ~VM_SHARED
;
136 vm_page_prot
= vm_pgprot_modify(vm_page_prot
, vm_flags
);
138 /* remove_protection_ptes reads vma->vm_page_prot without mmap_sem */
139 WRITE_ONCE(vma
->vm_page_prot
, vm_page_prot
);
143 * Requires inode->i_mapping->i_mmap_rwsem
145 static void __remove_shared_vm_struct(struct vm_area_struct
*vma
,
146 struct file
*file
, struct address_space
*mapping
)
148 if (vma
->vm_flags
& VM_DENYWRITE
)
149 atomic_inc(&file_inode(file
)->i_writecount
);
150 if (vma
->vm_flags
& VM_SHARED
)
151 mapping_unmap_writable(mapping
);
153 flush_dcache_mmap_lock(mapping
);
154 vma_interval_tree_remove(vma
, &mapping
->i_mmap
);
155 flush_dcache_mmap_unlock(mapping
);
159 * Unlink a file-based vm structure from its interval tree, to hide
160 * vma from rmap and vmtruncate before freeing its page tables.
162 void unlink_file_vma(struct vm_area_struct
*vma
)
164 struct file
*file
= vma
->vm_file
;
167 struct address_space
*mapping
= file
->f_mapping
;
168 i_mmap_lock_write(mapping
);
169 __remove_shared_vm_struct(vma
, file
, mapping
);
170 i_mmap_unlock_write(mapping
);
175 * Close a vm structure and free it, returning the next.
177 static struct vm_area_struct
*remove_vma(struct vm_area_struct
*vma
)
179 struct vm_area_struct
*next
= vma
->vm_next
;
182 if (vma
->vm_ops
&& vma
->vm_ops
->close
)
183 vma
->vm_ops
->close(vma
);
186 mpol_put(vma_policy(vma
));
191 static int do_brk_flags(unsigned long addr
, unsigned long request
, unsigned long flags
,
192 struct list_head
*uf
);
193 SYSCALL_DEFINE1(brk
, unsigned long, brk
)
195 unsigned long retval
;
196 unsigned long newbrk
, oldbrk
, origbrk
;
197 struct mm_struct
*mm
= current
->mm
;
198 struct vm_area_struct
*next
;
199 unsigned long min_brk
;
201 bool downgraded
= false;
204 brk
= untagged_addr(brk
);
206 if (down_write_killable(&mm
->mmap_sem
))
211 #ifdef CONFIG_COMPAT_BRK
213 * CONFIG_COMPAT_BRK can still be overridden by setting
214 * randomize_va_space to 2, which will still cause mm->start_brk
215 * to be arbitrarily shifted
217 if (current
->brk_randomized
)
218 min_brk
= mm
->start_brk
;
220 min_brk
= mm
->end_data
;
222 min_brk
= mm
->start_brk
;
228 * Check against rlimit here. If this check is done later after the test
229 * of oldbrk with newbrk then it can escape the test and let the data
230 * segment grow beyond its set limit the in case where the limit is
231 * not page aligned -Ram Gupta
233 if (check_data_rlimit(rlimit(RLIMIT_DATA
), brk
, mm
->start_brk
,
234 mm
->end_data
, mm
->start_data
))
237 newbrk
= PAGE_ALIGN(brk
);
238 oldbrk
= PAGE_ALIGN(mm
->brk
);
239 if (oldbrk
== newbrk
) {
245 * Always allow shrinking brk.
246 * __do_munmap() may downgrade mmap_sem to read.
248 if (brk
<= mm
->brk
) {
252 * mm->brk must to be protected by write mmap_sem so update it
253 * before downgrading mmap_sem. When __do_munmap() fails,
254 * mm->brk will be restored from origbrk.
257 ret
= __do_munmap(mm
, newbrk
, oldbrk
-newbrk
, &uf
, true);
261 } else if (ret
== 1) {
267 /* Check against existing mmap mappings. */
268 next
= find_vma(mm
, oldbrk
);
269 if (next
&& newbrk
+ PAGE_SIZE
> vm_start_gap(next
))
272 /* Ok, looks good - let it rip. */
273 if (do_brk_flags(oldbrk
, newbrk
-oldbrk
, 0, &uf
) < 0)
278 populate
= newbrk
> oldbrk
&& (mm
->def_flags
& VM_LOCKED
) != 0;
280 up_read(&mm
->mmap_sem
);
282 up_write(&mm
->mmap_sem
);
283 userfaultfd_unmap_complete(mm
, &uf
);
285 mm_populate(oldbrk
, newbrk
- oldbrk
);
290 up_write(&mm
->mmap_sem
);
294 static inline unsigned long vma_compute_gap(struct vm_area_struct
*vma
)
296 unsigned long gap
, prev_end
;
299 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
300 * allow two stack_guard_gaps between them here, and when choosing
301 * an unmapped area; whereas when expanding we only require one.
302 * That's a little inconsistent, but keeps the code here simpler.
304 gap
= vm_start_gap(vma
);
306 prev_end
= vm_end_gap(vma
->vm_prev
);
315 #ifdef CONFIG_DEBUG_VM_RB
316 static unsigned long vma_compute_subtree_gap(struct vm_area_struct
*vma
)
318 unsigned long max
= vma_compute_gap(vma
), subtree_gap
;
319 if (vma
->vm_rb
.rb_left
) {
320 subtree_gap
= rb_entry(vma
->vm_rb
.rb_left
,
321 struct vm_area_struct
, vm_rb
)->rb_subtree_gap
;
322 if (subtree_gap
> max
)
325 if (vma
->vm_rb
.rb_right
) {
326 subtree_gap
= rb_entry(vma
->vm_rb
.rb_right
,
327 struct vm_area_struct
, vm_rb
)->rb_subtree_gap
;
328 if (subtree_gap
> max
)
334 static int browse_rb(struct mm_struct
*mm
)
336 struct rb_root
*root
= &mm
->mm_rb
;
337 int i
= 0, j
, bug
= 0;
338 struct rb_node
*nd
, *pn
= NULL
;
339 unsigned long prev
= 0, pend
= 0;
341 for (nd
= rb_first(root
); nd
; nd
= rb_next(nd
)) {
342 struct vm_area_struct
*vma
;
343 vma
= rb_entry(nd
, struct vm_area_struct
, vm_rb
);
344 if (vma
->vm_start
< prev
) {
345 pr_emerg("vm_start %lx < prev %lx\n",
346 vma
->vm_start
, prev
);
349 if (vma
->vm_start
< pend
) {
350 pr_emerg("vm_start %lx < pend %lx\n",
351 vma
->vm_start
, pend
);
354 if (vma
->vm_start
> vma
->vm_end
) {
355 pr_emerg("vm_start %lx > vm_end %lx\n",
356 vma
->vm_start
, vma
->vm_end
);
359 spin_lock(&mm
->page_table_lock
);
360 if (vma
->rb_subtree_gap
!= vma_compute_subtree_gap(vma
)) {
361 pr_emerg("free gap %lx, correct %lx\n",
363 vma_compute_subtree_gap(vma
));
366 spin_unlock(&mm
->page_table_lock
);
369 prev
= vma
->vm_start
;
373 for (nd
= pn
; nd
; nd
= rb_prev(nd
))
376 pr_emerg("backwards %d, forwards %d\n", j
, i
);
382 static void validate_mm_rb(struct rb_root
*root
, struct vm_area_struct
*ignore
)
386 for (nd
= rb_first(root
); nd
; nd
= rb_next(nd
)) {
387 struct vm_area_struct
*vma
;
388 vma
= rb_entry(nd
, struct vm_area_struct
, vm_rb
);
389 VM_BUG_ON_VMA(vma
!= ignore
&&
390 vma
->rb_subtree_gap
!= vma_compute_subtree_gap(vma
),
395 static void validate_mm(struct mm_struct
*mm
)
399 unsigned long highest_address
= 0;
400 struct vm_area_struct
*vma
= mm
->mmap
;
403 struct anon_vma
*anon_vma
= vma
->anon_vma
;
404 struct anon_vma_chain
*avc
;
407 anon_vma_lock_read(anon_vma
);
408 list_for_each_entry(avc
, &vma
->anon_vma_chain
, same_vma
)
409 anon_vma_interval_tree_verify(avc
);
410 anon_vma_unlock_read(anon_vma
);
413 highest_address
= vm_end_gap(vma
);
417 if (i
!= mm
->map_count
) {
418 pr_emerg("map_count %d vm_next %d\n", mm
->map_count
, i
);
421 if (highest_address
!= mm
->highest_vm_end
) {
422 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
423 mm
->highest_vm_end
, highest_address
);
427 if (i
!= mm
->map_count
) {
429 pr_emerg("map_count %d rb %d\n", mm
->map_count
, i
);
432 VM_BUG_ON_MM(bug
, mm
);
435 #define validate_mm_rb(root, ignore) do { } while (0)
436 #define validate_mm(mm) do { } while (0)
439 RB_DECLARE_CALLBACKS_MAX(static, vma_gap_callbacks
,
440 struct vm_area_struct
, vm_rb
,
441 unsigned long, rb_subtree_gap
, vma_compute_gap
)
444 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
445 * vma->vm_prev->vm_end values changed, without modifying the vma's position
448 static void vma_gap_update(struct vm_area_struct
*vma
)
451 * As it turns out, RB_DECLARE_CALLBACKS_MAX() already created
452 * a callback function that does exactly what we want.
454 vma_gap_callbacks_propagate(&vma
->vm_rb
, NULL
);
457 static inline void vma_rb_insert(struct vm_area_struct
*vma
,
458 struct rb_root
*root
)
460 /* All rb_subtree_gap values must be consistent prior to insertion */
461 validate_mm_rb(root
, NULL
);
463 rb_insert_augmented(&vma
->vm_rb
, root
, &vma_gap_callbacks
);
466 static void __vma_rb_erase(struct vm_area_struct
*vma
, struct rb_root
*root
)
469 * Note rb_erase_augmented is a fairly large inline function,
470 * so make sure we instantiate it only once with our desired
471 * augmented rbtree callbacks.
473 rb_erase_augmented(&vma
->vm_rb
, root
, &vma_gap_callbacks
);
476 static __always_inline
void vma_rb_erase_ignore(struct vm_area_struct
*vma
,
477 struct rb_root
*root
,
478 struct vm_area_struct
*ignore
)
481 * All rb_subtree_gap values must be consistent prior to erase,
482 * with the possible exception of the "next" vma being erased if
483 * next->vm_start was reduced.
485 validate_mm_rb(root
, ignore
);
487 __vma_rb_erase(vma
, root
);
490 static __always_inline
void vma_rb_erase(struct vm_area_struct
*vma
,
491 struct rb_root
*root
)
494 * All rb_subtree_gap values must be consistent prior to erase,
495 * with the possible exception of the vma being erased.
497 validate_mm_rb(root
, vma
);
499 __vma_rb_erase(vma
, root
);
503 * vma has some anon_vma assigned, and is already inserted on that
504 * anon_vma's interval trees.
506 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
507 * vma must be removed from the anon_vma's interval trees using
508 * anon_vma_interval_tree_pre_update_vma().
510 * After the update, the vma will be reinserted using
511 * anon_vma_interval_tree_post_update_vma().
513 * The entire update must be protected by exclusive mmap_sem and by
514 * the root anon_vma's mutex.
517 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct
*vma
)
519 struct anon_vma_chain
*avc
;
521 list_for_each_entry(avc
, &vma
->anon_vma_chain
, same_vma
)
522 anon_vma_interval_tree_remove(avc
, &avc
->anon_vma
->rb_root
);
526 anon_vma_interval_tree_post_update_vma(struct vm_area_struct
*vma
)
528 struct anon_vma_chain
*avc
;
530 list_for_each_entry(avc
, &vma
->anon_vma_chain
, same_vma
)
531 anon_vma_interval_tree_insert(avc
, &avc
->anon_vma
->rb_root
);
534 static int find_vma_links(struct mm_struct
*mm
, unsigned long addr
,
535 unsigned long end
, struct vm_area_struct
**pprev
,
536 struct rb_node
***rb_link
, struct rb_node
**rb_parent
)
538 struct rb_node
**__rb_link
, *__rb_parent
, *rb_prev
;
540 __rb_link
= &mm
->mm_rb
.rb_node
;
541 rb_prev
= __rb_parent
= NULL
;
544 struct vm_area_struct
*vma_tmp
;
546 __rb_parent
= *__rb_link
;
547 vma_tmp
= rb_entry(__rb_parent
, struct vm_area_struct
, vm_rb
);
549 if (vma_tmp
->vm_end
> addr
) {
550 /* Fail if an existing vma overlaps the area */
551 if (vma_tmp
->vm_start
< end
)
553 __rb_link
= &__rb_parent
->rb_left
;
555 rb_prev
= __rb_parent
;
556 __rb_link
= &__rb_parent
->rb_right
;
562 *pprev
= rb_entry(rb_prev
, struct vm_area_struct
, vm_rb
);
563 *rb_link
= __rb_link
;
564 *rb_parent
= __rb_parent
;
568 static unsigned long count_vma_pages_range(struct mm_struct
*mm
,
569 unsigned long addr
, unsigned long end
)
571 unsigned long nr_pages
= 0;
572 struct vm_area_struct
*vma
;
574 /* Find first overlaping mapping */
575 vma
= find_vma_intersection(mm
, addr
, end
);
579 nr_pages
= (min(end
, vma
->vm_end
) -
580 max(addr
, vma
->vm_start
)) >> PAGE_SHIFT
;
582 /* Iterate over the rest of the overlaps */
583 for (vma
= vma
->vm_next
; vma
; vma
= vma
->vm_next
) {
584 unsigned long overlap_len
;
586 if (vma
->vm_start
> end
)
589 overlap_len
= min(end
, vma
->vm_end
) - vma
->vm_start
;
590 nr_pages
+= overlap_len
>> PAGE_SHIFT
;
596 void __vma_link_rb(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
597 struct rb_node
**rb_link
, struct rb_node
*rb_parent
)
599 /* Update tracking information for the gap following the new vma. */
601 vma_gap_update(vma
->vm_next
);
603 mm
->highest_vm_end
= vm_end_gap(vma
);
606 * vma->vm_prev wasn't known when we followed the rbtree to find the
607 * correct insertion point for that vma. As a result, we could not
608 * update the vma vm_rb parents rb_subtree_gap values on the way down.
609 * So, we first insert the vma with a zero rb_subtree_gap value
610 * (to be consistent with what we did on the way down), and then
611 * immediately update the gap to the correct value. Finally we
612 * rebalance the rbtree after all augmented values have been set.
614 rb_link_node(&vma
->vm_rb
, rb_parent
, rb_link
);
615 vma
->rb_subtree_gap
= 0;
617 vma_rb_insert(vma
, &mm
->mm_rb
);
620 static void __vma_link_file(struct vm_area_struct
*vma
)
626 struct address_space
*mapping
= file
->f_mapping
;
628 if (vma
->vm_flags
& VM_DENYWRITE
)
629 atomic_dec(&file_inode(file
)->i_writecount
);
630 if (vma
->vm_flags
& VM_SHARED
)
631 atomic_inc(&mapping
->i_mmap_writable
);
633 flush_dcache_mmap_lock(mapping
);
634 vma_interval_tree_insert(vma
, &mapping
->i_mmap
);
635 flush_dcache_mmap_unlock(mapping
);
640 __vma_link(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
641 struct vm_area_struct
*prev
, struct rb_node
**rb_link
,
642 struct rb_node
*rb_parent
)
644 __vma_link_list(mm
, vma
, prev
);
645 __vma_link_rb(mm
, vma
, rb_link
, rb_parent
);
648 static void vma_link(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
649 struct vm_area_struct
*prev
, struct rb_node
**rb_link
,
650 struct rb_node
*rb_parent
)
652 struct address_space
*mapping
= NULL
;
655 mapping
= vma
->vm_file
->f_mapping
;
656 i_mmap_lock_write(mapping
);
659 __vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
660 __vma_link_file(vma
);
663 i_mmap_unlock_write(mapping
);
670 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
671 * mm's list and rbtree. It has already been inserted into the interval tree.
673 static void __insert_vm_struct(struct mm_struct
*mm
, struct vm_area_struct
*vma
)
675 struct vm_area_struct
*prev
;
676 struct rb_node
**rb_link
, *rb_parent
;
678 if (find_vma_links(mm
, vma
->vm_start
, vma
->vm_end
,
679 &prev
, &rb_link
, &rb_parent
))
681 __vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
685 static __always_inline
void __vma_unlink_common(struct mm_struct
*mm
,
686 struct vm_area_struct
*vma
,
687 struct vm_area_struct
*ignore
)
689 vma_rb_erase_ignore(vma
, &mm
->mm_rb
, ignore
);
690 __vma_unlink_list(mm
, vma
);
692 vmacache_invalidate(mm
);
696 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
697 * is already present in an i_mmap tree without adjusting the tree.
698 * The following helper function should be used when such adjustments
699 * are necessary. The "insert" vma (if any) is to be inserted
700 * before we drop the necessary locks.
702 int __vma_adjust(struct vm_area_struct
*vma
, unsigned long start
,
703 unsigned long end
, pgoff_t pgoff
, struct vm_area_struct
*insert
,
704 struct vm_area_struct
*expand
)
706 struct mm_struct
*mm
= vma
->vm_mm
;
707 struct vm_area_struct
*next
= vma
->vm_next
, *orig_vma
= vma
;
708 struct address_space
*mapping
= NULL
;
709 struct rb_root_cached
*root
= NULL
;
710 struct anon_vma
*anon_vma
= NULL
;
711 struct file
*file
= vma
->vm_file
;
712 bool start_changed
= false, end_changed
= false;
713 long adjust_next
= 0;
716 if (next
&& !insert
) {
717 struct vm_area_struct
*exporter
= NULL
, *importer
= NULL
;
719 if (end
>= next
->vm_end
) {
721 * vma expands, overlapping all the next, and
722 * perhaps the one after too (mprotect case 6).
723 * The only other cases that gets here are
724 * case 1, case 7 and case 8.
726 if (next
== expand
) {
728 * The only case where we don't expand "vma"
729 * and we expand "next" instead is case 8.
731 VM_WARN_ON(end
!= next
->vm_end
);
733 * remove_next == 3 means we're
734 * removing "vma" and that to do so we
735 * swapped "vma" and "next".
738 VM_WARN_ON(file
!= next
->vm_file
);
741 VM_WARN_ON(expand
!= vma
);
743 * case 1, 6, 7, remove_next == 2 is case 6,
744 * remove_next == 1 is case 1 or 7.
746 remove_next
= 1 + (end
> next
->vm_end
);
747 VM_WARN_ON(remove_next
== 2 &&
748 end
!= next
->vm_next
->vm_end
);
749 /* trim end to next, for case 6 first pass */
757 * If next doesn't have anon_vma, import from vma after
758 * next, if the vma overlaps with it.
760 if (remove_next
== 2 && !next
->anon_vma
)
761 exporter
= next
->vm_next
;
763 } else if (end
> next
->vm_start
) {
765 * vma expands, overlapping part of the next:
766 * mprotect case 5 shifting the boundary up.
768 adjust_next
= (end
- next
->vm_start
) >> PAGE_SHIFT
;
771 VM_WARN_ON(expand
!= importer
);
772 } else if (end
< vma
->vm_end
) {
774 * vma shrinks, and !insert tells it's not
775 * split_vma inserting another: so it must be
776 * mprotect case 4 shifting the boundary down.
778 adjust_next
= -((vma
->vm_end
- end
) >> PAGE_SHIFT
);
781 VM_WARN_ON(expand
!= importer
);
785 * Easily overlooked: when mprotect shifts the boundary,
786 * make sure the expanding vma has anon_vma set if the
787 * shrinking vma had, to cover any anon pages imported.
789 if (exporter
&& exporter
->anon_vma
&& !importer
->anon_vma
) {
792 importer
->anon_vma
= exporter
->anon_vma
;
793 error
= anon_vma_clone(importer
, exporter
);
799 vma_adjust_trans_huge(orig_vma
, start
, end
, adjust_next
);
802 mapping
= file
->f_mapping
;
803 root
= &mapping
->i_mmap
;
804 uprobe_munmap(vma
, vma
->vm_start
, vma
->vm_end
);
807 uprobe_munmap(next
, next
->vm_start
, next
->vm_end
);
809 i_mmap_lock_write(mapping
);
812 * Put into interval tree now, so instantiated pages
813 * are visible to arm/parisc __flush_dcache_page
814 * throughout; but we cannot insert into address
815 * space until vma start or end is updated.
817 __vma_link_file(insert
);
821 anon_vma
= vma
->anon_vma
;
822 if (!anon_vma
&& adjust_next
)
823 anon_vma
= next
->anon_vma
;
825 VM_WARN_ON(adjust_next
&& next
->anon_vma
&&
826 anon_vma
!= next
->anon_vma
);
827 anon_vma_lock_write(anon_vma
);
828 anon_vma_interval_tree_pre_update_vma(vma
);
830 anon_vma_interval_tree_pre_update_vma(next
);
834 flush_dcache_mmap_lock(mapping
);
835 vma_interval_tree_remove(vma
, root
);
837 vma_interval_tree_remove(next
, root
);
840 if (start
!= vma
->vm_start
) {
841 vma
->vm_start
= start
;
842 start_changed
= true;
844 if (end
!= vma
->vm_end
) {
848 vma
->vm_pgoff
= pgoff
;
850 next
->vm_start
+= adjust_next
<< PAGE_SHIFT
;
851 next
->vm_pgoff
+= adjust_next
;
856 vma_interval_tree_insert(next
, root
);
857 vma_interval_tree_insert(vma
, root
);
858 flush_dcache_mmap_unlock(mapping
);
863 * vma_merge has merged next into vma, and needs
864 * us to remove next before dropping the locks.
866 if (remove_next
!= 3)
867 __vma_unlink_common(mm
, next
, next
);
870 * vma is not before next if they've been
873 * pre-swap() next->vm_start was reduced so
874 * tell validate_mm_rb to ignore pre-swap()
875 * "next" (which is stored in post-swap()
878 __vma_unlink_common(mm
, next
, vma
);
880 __remove_shared_vm_struct(next
, file
, mapping
);
883 * split_vma has split insert from vma, and needs
884 * us to insert it before dropping the locks
885 * (it may either follow vma or precede it).
887 __insert_vm_struct(mm
, insert
);
893 mm
->highest_vm_end
= vm_end_gap(vma
);
894 else if (!adjust_next
)
895 vma_gap_update(next
);
900 anon_vma_interval_tree_post_update_vma(vma
);
902 anon_vma_interval_tree_post_update_vma(next
);
903 anon_vma_unlock_write(anon_vma
);
906 i_mmap_unlock_write(mapping
);
917 uprobe_munmap(next
, next
->vm_start
, next
->vm_end
);
921 anon_vma_merge(vma
, next
);
923 mpol_put(vma_policy(next
));
926 * In mprotect's case 6 (see comments on vma_merge),
927 * we must remove another next too. It would clutter
928 * up the code too much to do both in one go.
930 if (remove_next
!= 3) {
932 * If "next" was removed and vma->vm_end was
933 * expanded (up) over it, in turn
934 * "next->vm_prev->vm_end" changed and the
935 * "vma->vm_next" gap must be updated.
940 * For the scope of the comment "next" and
941 * "vma" considered pre-swap(): if "vma" was
942 * removed, next->vm_start was expanded (down)
943 * over it and the "next" gap must be updated.
944 * Because of the swap() the post-swap() "vma"
945 * actually points to pre-swap() "next"
946 * (post-swap() "next" as opposed is now a
951 if (remove_next
== 2) {
957 vma_gap_update(next
);
960 * If remove_next == 2 we obviously can't
963 * If remove_next == 3 we can't reach this
964 * path because pre-swap() next is always not
965 * NULL. pre-swap() "next" is not being
966 * removed and its next->vm_end is not altered
967 * (and furthermore "end" already matches
968 * next->vm_end in remove_next == 3).
970 * We reach this only in the remove_next == 1
971 * case if the "next" vma that was removed was
972 * the highest vma of the mm. However in such
973 * case next->vm_end == "end" and the extended
974 * "vma" has vma->vm_end == next->vm_end so
975 * mm->highest_vm_end doesn't need any update
976 * in remove_next == 1 case.
978 VM_WARN_ON(mm
->highest_vm_end
!= vm_end_gap(vma
));
990 * If the vma has a ->close operation then the driver probably needs to release
991 * per-vma resources, so we don't attempt to merge those.
993 static inline int is_mergeable_vma(struct vm_area_struct
*vma
,
994 struct file
*file
, unsigned long vm_flags
,
995 struct vm_userfaultfd_ctx vm_userfaultfd_ctx
)
998 * VM_SOFTDIRTY should not prevent from VMA merging, if we
999 * match the flags but dirty bit -- the caller should mark
1000 * merged VMA as dirty. If dirty bit won't be excluded from
1001 * comparison, we increase pressure on the memory system forcing
1002 * the kernel to generate new VMAs when old one could be
1005 if ((vma
->vm_flags
^ vm_flags
) & ~VM_SOFTDIRTY
)
1007 if (vma
->vm_file
!= file
)
1009 if (vma
->vm_ops
&& vma
->vm_ops
->close
)
1011 if (!is_mergeable_vm_userfaultfd_ctx(vma
, vm_userfaultfd_ctx
))
1016 static inline int is_mergeable_anon_vma(struct anon_vma
*anon_vma1
,
1017 struct anon_vma
*anon_vma2
,
1018 struct vm_area_struct
*vma
)
1021 * The list_is_singular() test is to avoid merging VMA cloned from
1022 * parents. This can improve scalability caused by anon_vma lock.
1024 if ((!anon_vma1
|| !anon_vma2
) && (!vma
||
1025 list_is_singular(&vma
->anon_vma_chain
)))
1027 return anon_vma1
== anon_vma2
;
1031 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1032 * in front of (at a lower virtual address and file offset than) the vma.
1034 * We cannot merge two vmas if they have differently assigned (non-NULL)
1035 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1037 * We don't check here for the merged mmap wrapping around the end of pagecache
1038 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
1039 * wrap, nor mmaps which cover the final page at index -1UL.
1042 can_vma_merge_before(struct vm_area_struct
*vma
, unsigned long vm_flags
,
1043 struct anon_vma
*anon_vma
, struct file
*file
,
1045 struct vm_userfaultfd_ctx vm_userfaultfd_ctx
)
1047 if (is_mergeable_vma(vma
, file
, vm_flags
, vm_userfaultfd_ctx
) &&
1048 is_mergeable_anon_vma(anon_vma
, vma
->anon_vma
, vma
)) {
1049 if (vma
->vm_pgoff
== vm_pgoff
)
1056 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1057 * beyond (at a higher virtual address and file offset than) the vma.
1059 * We cannot merge two vmas if they have differently assigned (non-NULL)
1060 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1063 can_vma_merge_after(struct vm_area_struct
*vma
, unsigned long vm_flags
,
1064 struct anon_vma
*anon_vma
, struct file
*file
,
1066 struct vm_userfaultfd_ctx vm_userfaultfd_ctx
)
1068 if (is_mergeable_vma(vma
, file
, vm_flags
, vm_userfaultfd_ctx
) &&
1069 is_mergeable_anon_vma(anon_vma
, vma
->anon_vma
, vma
)) {
1071 vm_pglen
= vma_pages(vma
);
1072 if (vma
->vm_pgoff
+ vm_pglen
== vm_pgoff
)
1079 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1080 * whether that can be merged with its predecessor or its successor.
1081 * Or both (it neatly fills a hole).
1083 * In most cases - when called for mmap, brk or mremap - [addr,end) is
1084 * certain not to be mapped by the time vma_merge is called; but when
1085 * called for mprotect, it is certain to be already mapped (either at
1086 * an offset within prev, or at the start of next), and the flags of
1087 * this area are about to be changed to vm_flags - and the no-change
1088 * case has already been eliminated.
1090 * The following mprotect cases have to be considered, where AAAA is
1091 * the area passed down from mprotect_fixup, never extending beyond one
1092 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1095 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN
1096 * cannot merge might become might become
1097 * PPNNNNNNNNNN PPPPPPPPPPNN
1098 * mmap, brk or case 4 below case 5 below
1101 * PPPP NNNN PPPPNNNNXXXX
1102 * might become might become
1103 * PPPPPPPPPPPP 1 or PPPPPPPPPPPP 6 or
1104 * PPPPPPPPNNNN 2 or PPPPPPPPXXXX 7 or
1105 * PPPPNNNNNNNN 3 PPPPXXXXXXXX 8
1107 * It is important for case 8 that the vma NNNN overlapping the
1108 * region AAAA is never going to extended over XXXX. Instead XXXX must
1109 * be extended in region AAAA and NNNN must be removed. This way in
1110 * all cases where vma_merge succeeds, the moment vma_adjust drops the
1111 * rmap_locks, the properties of the merged vma will be already
1112 * correct for the whole merged range. Some of those properties like
1113 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1114 * be correct for the whole merged range immediately after the
1115 * rmap_locks are released. Otherwise if XXXX would be removed and
1116 * NNNN would be extended over the XXXX range, remove_migration_ptes
1117 * or other rmap walkers (if working on addresses beyond the "end"
1118 * parameter) may establish ptes with the wrong permissions of NNNN
1119 * instead of the right permissions of XXXX.
1121 struct vm_area_struct
*vma_merge(struct mm_struct
*mm
,
1122 struct vm_area_struct
*prev
, unsigned long addr
,
1123 unsigned long end
, unsigned long vm_flags
,
1124 struct anon_vma
*anon_vma
, struct file
*file
,
1125 pgoff_t pgoff
, struct mempolicy
*policy
,
1126 struct vm_userfaultfd_ctx vm_userfaultfd_ctx
)
1128 pgoff_t pglen
= (end
- addr
) >> PAGE_SHIFT
;
1129 struct vm_area_struct
*area
, *next
;
1133 * We later require that vma->vm_flags == vm_flags,
1134 * so this tests vma->vm_flags & VM_SPECIAL, too.
1136 if (vm_flags
& VM_SPECIAL
)
1140 next
= prev
->vm_next
;
1144 if (area
&& area
->vm_end
== end
) /* cases 6, 7, 8 */
1145 next
= next
->vm_next
;
1147 /* verify some invariant that must be enforced by the caller */
1148 VM_WARN_ON(prev
&& addr
<= prev
->vm_start
);
1149 VM_WARN_ON(area
&& end
> area
->vm_end
);
1150 VM_WARN_ON(addr
>= end
);
1153 * Can it merge with the predecessor?
1155 if (prev
&& prev
->vm_end
== addr
&&
1156 mpol_equal(vma_policy(prev
), policy
) &&
1157 can_vma_merge_after(prev
, vm_flags
,
1158 anon_vma
, file
, pgoff
,
1159 vm_userfaultfd_ctx
)) {
1161 * OK, it can. Can we now merge in the successor as well?
1163 if (next
&& end
== next
->vm_start
&&
1164 mpol_equal(policy
, vma_policy(next
)) &&
1165 can_vma_merge_before(next
, vm_flags
,
1168 vm_userfaultfd_ctx
) &&
1169 is_mergeable_anon_vma(prev
->anon_vma
,
1170 next
->anon_vma
, NULL
)) {
1172 err
= __vma_adjust(prev
, prev
->vm_start
,
1173 next
->vm_end
, prev
->vm_pgoff
, NULL
,
1175 } else /* cases 2, 5, 7 */
1176 err
= __vma_adjust(prev
, prev
->vm_start
,
1177 end
, prev
->vm_pgoff
, NULL
, prev
);
1180 khugepaged_enter_vma_merge(prev
, vm_flags
);
1185 * Can this new request be merged in front of next?
1187 if (next
&& end
== next
->vm_start
&&
1188 mpol_equal(policy
, vma_policy(next
)) &&
1189 can_vma_merge_before(next
, vm_flags
,
1190 anon_vma
, file
, pgoff
+pglen
,
1191 vm_userfaultfd_ctx
)) {
1192 if (prev
&& addr
< prev
->vm_end
) /* case 4 */
1193 err
= __vma_adjust(prev
, prev
->vm_start
,
1194 addr
, prev
->vm_pgoff
, NULL
, next
);
1195 else { /* cases 3, 8 */
1196 err
= __vma_adjust(area
, addr
, next
->vm_end
,
1197 next
->vm_pgoff
- pglen
, NULL
, next
);
1199 * In case 3 area is already equal to next and
1200 * this is a noop, but in case 8 "area" has
1201 * been removed and next was expanded over it.
1207 khugepaged_enter_vma_merge(area
, vm_flags
);
1215 * Rough compatbility check to quickly see if it's even worth looking
1216 * at sharing an anon_vma.
1218 * They need to have the same vm_file, and the flags can only differ
1219 * in things that mprotect may change.
1221 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1222 * we can merge the two vma's. For example, we refuse to merge a vma if
1223 * there is a vm_ops->close() function, because that indicates that the
1224 * driver is doing some kind of reference counting. But that doesn't
1225 * really matter for the anon_vma sharing case.
1227 static int anon_vma_compatible(struct vm_area_struct
*a
, struct vm_area_struct
*b
)
1229 return a
->vm_end
== b
->vm_start
&&
1230 mpol_equal(vma_policy(a
), vma_policy(b
)) &&
1231 a
->vm_file
== b
->vm_file
&&
1232 !((a
->vm_flags
^ b
->vm_flags
) & ~(VM_READ
|VM_WRITE
|VM_EXEC
|VM_SOFTDIRTY
)) &&
1233 b
->vm_pgoff
== a
->vm_pgoff
+ ((b
->vm_start
- a
->vm_start
) >> PAGE_SHIFT
);
1237 * Do some basic sanity checking to see if we can re-use the anon_vma
1238 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1239 * the same as 'old', the other will be the new one that is trying
1240 * to share the anon_vma.
1242 * NOTE! This runs with mm_sem held for reading, so it is possible that
1243 * the anon_vma of 'old' is concurrently in the process of being set up
1244 * by another page fault trying to merge _that_. But that's ok: if it
1245 * is being set up, that automatically means that it will be a singleton
1246 * acceptable for merging, so we can do all of this optimistically. But
1247 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1249 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1250 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1251 * is to return an anon_vma that is "complex" due to having gone through
1254 * We also make sure that the two vma's are compatible (adjacent,
1255 * and with the same memory policies). That's all stable, even with just
1256 * a read lock on the mm_sem.
1258 static struct anon_vma
*reusable_anon_vma(struct vm_area_struct
*old
, struct vm_area_struct
*a
, struct vm_area_struct
*b
)
1260 if (anon_vma_compatible(a
, b
)) {
1261 struct anon_vma
*anon_vma
= READ_ONCE(old
->anon_vma
);
1263 if (anon_vma
&& list_is_singular(&old
->anon_vma_chain
))
1270 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1271 * neighbouring vmas for a suitable anon_vma, before it goes off
1272 * to allocate a new anon_vma. It checks because a repetitive
1273 * sequence of mprotects and faults may otherwise lead to distinct
1274 * anon_vmas being allocated, preventing vma merge in subsequent
1277 struct anon_vma
*find_mergeable_anon_vma(struct vm_area_struct
*vma
)
1279 struct anon_vma
*anon_vma
;
1280 struct vm_area_struct
*near
;
1282 near
= vma
->vm_next
;
1286 anon_vma
= reusable_anon_vma(near
, vma
, near
);
1290 near
= vma
->vm_prev
;
1294 anon_vma
= reusable_anon_vma(near
, near
, vma
);
1299 * There's no absolute need to look only at touching neighbours:
1300 * we could search further afield for "compatible" anon_vmas.
1301 * But it would probably just be a waste of time searching,
1302 * or lead to too many vmas hanging off the same anon_vma.
1303 * We're trying to allow mprotect remerging later on,
1304 * not trying to minimize memory used for anon_vmas.
1310 * If a hint addr is less than mmap_min_addr change hint to be as
1311 * low as possible but still greater than mmap_min_addr
1313 static inline unsigned long round_hint_to_min(unsigned long hint
)
1316 if (((void *)hint
!= NULL
) &&
1317 (hint
< mmap_min_addr
))
1318 return PAGE_ALIGN(mmap_min_addr
);
1322 static inline int mlock_future_check(struct mm_struct
*mm
,
1323 unsigned long flags
,
1326 unsigned long locked
, lock_limit
;
1328 /* mlock MCL_FUTURE? */
1329 if (flags
& VM_LOCKED
) {
1330 locked
= len
>> PAGE_SHIFT
;
1331 locked
+= mm
->locked_vm
;
1332 lock_limit
= rlimit(RLIMIT_MEMLOCK
);
1333 lock_limit
>>= PAGE_SHIFT
;
1334 if (locked
> lock_limit
&& !capable(CAP_IPC_LOCK
))
1340 static inline u64
file_mmap_size_max(struct file
*file
, struct inode
*inode
)
1342 if (S_ISREG(inode
->i_mode
))
1343 return MAX_LFS_FILESIZE
;
1345 if (S_ISBLK(inode
->i_mode
))
1346 return MAX_LFS_FILESIZE
;
1348 if (S_ISSOCK(inode
->i_mode
))
1349 return MAX_LFS_FILESIZE
;
1351 /* Special "we do even unsigned file positions" case */
1352 if (file
->f_mode
& FMODE_UNSIGNED_OFFSET
)
1355 /* Yes, random drivers might want more. But I'm tired of buggy drivers */
1359 static inline bool file_mmap_ok(struct file
*file
, struct inode
*inode
,
1360 unsigned long pgoff
, unsigned long len
)
1362 u64 maxsize
= file_mmap_size_max(file
, inode
);
1364 if (maxsize
&& len
> maxsize
)
1367 if (pgoff
> maxsize
>> PAGE_SHIFT
)
1373 * The caller must hold down_write(¤t->mm->mmap_sem).
1375 unsigned long do_mmap(struct file
*file
, unsigned long addr
,
1376 unsigned long len
, unsigned long prot
,
1377 unsigned long flags
, vm_flags_t vm_flags
,
1378 unsigned long pgoff
, unsigned long *populate
,
1379 struct list_head
*uf
)
1381 struct mm_struct
*mm
= current
->mm
;
1390 * Does the application expect PROT_READ to imply PROT_EXEC?
1392 * (the exception is when the underlying filesystem is noexec
1393 * mounted, in which case we dont add PROT_EXEC.)
1395 if ((prot
& PROT_READ
) && (current
->personality
& READ_IMPLIES_EXEC
))
1396 if (!(file
&& path_noexec(&file
->f_path
)))
1399 /* force arch specific MAP_FIXED handling in get_unmapped_area */
1400 if (flags
& MAP_FIXED_NOREPLACE
)
1403 if (!(flags
& MAP_FIXED
))
1404 addr
= round_hint_to_min(addr
);
1406 /* Careful about overflows.. */
1407 len
= PAGE_ALIGN(len
);
1411 /* offset overflow? */
1412 if ((pgoff
+ (len
>> PAGE_SHIFT
)) < pgoff
)
1415 /* Too many mappings? */
1416 if (mm
->map_count
> sysctl_max_map_count
)
1419 /* Obtain the address to map to. we verify (or select) it and ensure
1420 * that it represents a valid section of the address space.
1422 addr
= get_unmapped_area(file
, addr
, len
, pgoff
, flags
);
1423 if (IS_ERR_VALUE(addr
))
1426 if (flags
& MAP_FIXED_NOREPLACE
) {
1427 struct vm_area_struct
*vma
= find_vma(mm
, addr
);
1429 if (vma
&& vma
->vm_start
< addr
+ len
)
1433 if (prot
== PROT_EXEC
) {
1434 pkey
= execute_only_pkey(mm
);
1439 /* Do simple checking here so the lower-level routines won't have
1440 * to. we assume access permissions have been handled by the open
1441 * of the memory object, so we don't do any here.
1443 vm_flags
|= calc_vm_prot_bits(prot
, pkey
) | calc_vm_flag_bits(flags
) |
1444 mm
->def_flags
| VM_MAYREAD
| VM_MAYWRITE
| VM_MAYEXEC
;
1446 if (flags
& MAP_LOCKED
)
1447 if (!can_do_mlock())
1450 if (mlock_future_check(mm
, vm_flags
, len
))
1454 struct inode
*inode
= file_inode(file
);
1455 unsigned long flags_mask
;
1457 if (!file_mmap_ok(file
, inode
, pgoff
, len
))
1460 flags_mask
= LEGACY_MAP_MASK
| file
->f_op
->mmap_supported_flags
;
1462 switch (flags
& MAP_TYPE
) {
1465 * Force use of MAP_SHARED_VALIDATE with non-legacy
1466 * flags. E.g. MAP_SYNC is dangerous to use with
1467 * MAP_SHARED as you don't know which consistency model
1468 * you will get. We silently ignore unsupported flags
1469 * with MAP_SHARED to preserve backward compatibility.
1471 flags
&= LEGACY_MAP_MASK
;
1473 case MAP_SHARED_VALIDATE
:
1474 if (flags
& ~flags_mask
)
1476 if (prot
& PROT_WRITE
) {
1477 if (!(file
->f_mode
& FMODE_WRITE
))
1479 if (IS_SWAPFILE(file
->f_mapping
->host
))
1484 * Make sure we don't allow writing to an append-only
1487 if (IS_APPEND(inode
) && (file
->f_mode
& FMODE_WRITE
))
1491 * Make sure there are no mandatory locks on the file.
1493 if (locks_verify_locked(file
))
1496 vm_flags
|= VM_SHARED
| VM_MAYSHARE
;
1497 if (!(file
->f_mode
& FMODE_WRITE
))
1498 vm_flags
&= ~(VM_MAYWRITE
| VM_SHARED
);
1502 if (!(file
->f_mode
& FMODE_READ
))
1504 if (path_noexec(&file
->f_path
)) {
1505 if (vm_flags
& VM_EXEC
)
1507 vm_flags
&= ~VM_MAYEXEC
;
1510 if (!file
->f_op
->mmap
)
1512 if (vm_flags
& (VM_GROWSDOWN
|VM_GROWSUP
))
1520 switch (flags
& MAP_TYPE
) {
1522 if (vm_flags
& (VM_GROWSDOWN
|VM_GROWSUP
))
1528 vm_flags
|= VM_SHARED
| VM_MAYSHARE
;
1532 * Set pgoff according to addr for anon_vma.
1534 pgoff
= addr
>> PAGE_SHIFT
;
1542 * Set 'VM_NORESERVE' if we should not account for the
1543 * memory use of this mapping.
1545 if (flags
& MAP_NORESERVE
) {
1546 /* We honor MAP_NORESERVE if allowed to overcommit */
1547 if (sysctl_overcommit_memory
!= OVERCOMMIT_NEVER
)
1548 vm_flags
|= VM_NORESERVE
;
1550 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1551 if (file
&& is_file_hugepages(file
))
1552 vm_flags
|= VM_NORESERVE
;
1555 addr
= mmap_region(file
, addr
, len
, vm_flags
, pgoff
, uf
);
1556 if (!IS_ERR_VALUE(addr
) &&
1557 ((vm_flags
& VM_LOCKED
) ||
1558 (flags
& (MAP_POPULATE
| MAP_NONBLOCK
)) == MAP_POPULATE
))
1563 unsigned long ksys_mmap_pgoff(unsigned long addr
, unsigned long len
,
1564 unsigned long prot
, unsigned long flags
,
1565 unsigned long fd
, unsigned long pgoff
)
1567 struct file
*file
= NULL
;
1568 unsigned long retval
;
1570 addr
= untagged_addr(addr
);
1572 if (!(flags
& MAP_ANONYMOUS
)) {
1573 audit_mmap_fd(fd
, flags
);
1577 if (is_file_hugepages(file
))
1578 len
= ALIGN(len
, huge_page_size(hstate_file(file
)));
1580 if (unlikely(flags
& MAP_HUGETLB
&& !is_file_hugepages(file
)))
1582 } else if (flags
& MAP_HUGETLB
) {
1583 struct user_struct
*user
= NULL
;
1586 hs
= hstate_sizelog((flags
>> MAP_HUGE_SHIFT
) & MAP_HUGE_MASK
);
1590 len
= ALIGN(len
, huge_page_size(hs
));
1592 * VM_NORESERVE is used because the reservations will be
1593 * taken when vm_ops->mmap() is called
1594 * A dummy user value is used because we are not locking
1595 * memory so no accounting is necessary
1597 file
= hugetlb_file_setup(HUGETLB_ANON_FILE
, len
,
1599 &user
, HUGETLB_ANONHUGE_INODE
,
1600 (flags
>> MAP_HUGE_SHIFT
) & MAP_HUGE_MASK
);
1602 return PTR_ERR(file
);
1605 flags
&= ~(MAP_EXECUTABLE
| MAP_DENYWRITE
);
1607 retval
= vm_mmap_pgoff(file
, addr
, len
, prot
, flags
, pgoff
);
1614 SYSCALL_DEFINE6(mmap_pgoff
, unsigned long, addr
, unsigned long, len
,
1615 unsigned long, prot
, unsigned long, flags
,
1616 unsigned long, fd
, unsigned long, pgoff
)
1618 return ksys_mmap_pgoff(addr
, len
, prot
, flags
, fd
, pgoff
);
1621 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1622 struct mmap_arg_struct
{
1626 unsigned long flags
;
1628 unsigned long offset
;
1631 SYSCALL_DEFINE1(old_mmap
, struct mmap_arg_struct __user
*, arg
)
1633 struct mmap_arg_struct a
;
1635 if (copy_from_user(&a
, arg
, sizeof(a
)))
1637 if (offset_in_page(a
.offset
))
1640 return ksys_mmap_pgoff(a
.addr
, a
.len
, a
.prot
, a
.flags
, a
.fd
,
1641 a
.offset
>> PAGE_SHIFT
);
1643 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1646 * Some shared mappings will want the pages marked read-only
1647 * to track write events. If so, we'll downgrade vm_page_prot
1648 * to the private version (using protection_map[] without the
1651 int vma_wants_writenotify(struct vm_area_struct
*vma
, pgprot_t vm_page_prot
)
1653 vm_flags_t vm_flags
= vma
->vm_flags
;
1654 const struct vm_operations_struct
*vm_ops
= vma
->vm_ops
;
1656 /* If it was private or non-writable, the write bit is already clear */
1657 if ((vm_flags
& (VM_WRITE
|VM_SHARED
)) != ((VM_WRITE
|VM_SHARED
)))
1660 /* The backer wishes to know when pages are first written to? */
1661 if (vm_ops
&& (vm_ops
->page_mkwrite
|| vm_ops
->pfn_mkwrite
))
1664 /* The open routine did something to the protections that pgprot_modify
1665 * won't preserve? */
1666 if (pgprot_val(vm_page_prot
) !=
1667 pgprot_val(vm_pgprot_modify(vm_page_prot
, vm_flags
)))
1670 /* Do we need to track softdirty? */
1671 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY
) && !(vm_flags
& VM_SOFTDIRTY
))
1674 /* Specialty mapping? */
1675 if (vm_flags
& VM_PFNMAP
)
1678 /* Can the mapping track the dirty pages? */
1679 return vma
->vm_file
&& vma
->vm_file
->f_mapping
&&
1680 mapping_cap_account_dirty(vma
->vm_file
->f_mapping
);
1684 * We account for memory if it's a private writeable mapping,
1685 * not hugepages and VM_NORESERVE wasn't set.
1687 static inline int accountable_mapping(struct file
*file
, vm_flags_t vm_flags
)
1690 * hugetlb has its own accounting separate from the core VM
1691 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1693 if (file
&& is_file_hugepages(file
))
1696 return (vm_flags
& (VM_NORESERVE
| VM_SHARED
| VM_WRITE
)) == VM_WRITE
;
1699 unsigned long mmap_region(struct file
*file
, unsigned long addr
,
1700 unsigned long len
, vm_flags_t vm_flags
, unsigned long pgoff
,
1701 struct list_head
*uf
)
1703 struct mm_struct
*mm
= current
->mm
;
1704 struct vm_area_struct
*vma
, *prev
;
1706 struct rb_node
**rb_link
, *rb_parent
;
1707 unsigned long charged
= 0;
1709 /* Check against address space limit. */
1710 if (!may_expand_vm(mm
, vm_flags
, len
>> PAGE_SHIFT
)) {
1711 unsigned long nr_pages
;
1714 * MAP_FIXED may remove pages of mappings that intersects with
1715 * requested mapping. Account for the pages it would unmap.
1717 nr_pages
= count_vma_pages_range(mm
, addr
, addr
+ len
);
1719 if (!may_expand_vm(mm
, vm_flags
,
1720 (len
>> PAGE_SHIFT
) - nr_pages
))
1724 /* Clear old maps */
1725 while (find_vma_links(mm
, addr
, addr
+ len
, &prev
, &rb_link
,
1727 if (do_munmap(mm
, addr
, len
, uf
))
1732 * Private writable mapping: check memory availability
1734 if (accountable_mapping(file
, vm_flags
)) {
1735 charged
= len
>> PAGE_SHIFT
;
1736 if (security_vm_enough_memory_mm(mm
, charged
))
1738 vm_flags
|= VM_ACCOUNT
;
1742 * Can we just expand an old mapping?
1744 vma
= vma_merge(mm
, prev
, addr
, addr
+ len
, vm_flags
,
1745 NULL
, file
, pgoff
, NULL
, NULL_VM_UFFD_CTX
);
1750 * Determine the object being mapped and call the appropriate
1751 * specific mapper. the address has already been validated, but
1752 * not unmapped, but the maps are removed from the list.
1754 vma
= vm_area_alloc(mm
);
1760 vma
->vm_start
= addr
;
1761 vma
->vm_end
= addr
+ len
;
1762 vma
->vm_flags
= vm_flags
;
1763 vma
->vm_page_prot
= vm_get_page_prot(vm_flags
);
1764 vma
->vm_pgoff
= pgoff
;
1767 if (vm_flags
& VM_DENYWRITE
) {
1768 error
= deny_write_access(file
);
1772 if (vm_flags
& VM_SHARED
) {
1773 error
= mapping_map_writable(file
->f_mapping
);
1775 goto allow_write_and_free_vma
;
1778 /* ->mmap() can change vma->vm_file, but must guarantee that
1779 * vma_link() below can deny write-access if VM_DENYWRITE is set
1780 * and map writably if VM_SHARED is set. This usually means the
1781 * new file must not have been exposed to user-space, yet.
1783 vma
->vm_file
= get_file(file
);
1784 error
= call_mmap(file
, vma
);
1786 goto unmap_and_free_vma
;
1788 /* Can addr have changed??
1790 * Answer: Yes, several device drivers can do it in their
1791 * f_op->mmap method. -DaveM
1792 * Bug: If addr is changed, prev, rb_link, rb_parent should
1793 * be updated for vma_link()
1795 WARN_ON_ONCE(addr
!= vma
->vm_start
);
1797 addr
= vma
->vm_start
;
1798 vm_flags
= vma
->vm_flags
;
1799 } else if (vm_flags
& VM_SHARED
) {
1800 error
= shmem_zero_setup(vma
);
1804 vma_set_anonymous(vma
);
1807 vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
1808 /* Once vma denies write, undo our temporary denial count */
1810 if (vm_flags
& VM_SHARED
)
1811 mapping_unmap_writable(file
->f_mapping
);
1812 if (vm_flags
& VM_DENYWRITE
)
1813 allow_write_access(file
);
1815 file
= vma
->vm_file
;
1817 perf_event_mmap(vma
);
1819 vm_stat_account(mm
, vm_flags
, len
>> PAGE_SHIFT
);
1820 if (vm_flags
& VM_LOCKED
) {
1821 if ((vm_flags
& VM_SPECIAL
) || vma_is_dax(vma
) ||
1822 is_vm_hugetlb_page(vma
) ||
1823 vma
== get_gate_vma(current
->mm
))
1824 vma
->vm_flags
&= VM_LOCKED_CLEAR_MASK
;
1826 mm
->locked_vm
+= (len
>> PAGE_SHIFT
);
1833 * New (or expanded) vma always get soft dirty status.
1834 * Otherwise user-space soft-dirty page tracker won't
1835 * be able to distinguish situation when vma area unmapped,
1836 * then new mapped in-place (which must be aimed as
1837 * a completely new data area).
1839 vma
->vm_flags
|= VM_SOFTDIRTY
;
1841 vma_set_page_prot(vma
);
1846 vma
->vm_file
= NULL
;
1849 /* Undo any partial mapping done by a device driver. */
1850 unmap_region(mm
, vma
, prev
, vma
->vm_start
, vma
->vm_end
);
1852 if (vm_flags
& VM_SHARED
)
1853 mapping_unmap_writable(file
->f_mapping
);
1854 allow_write_and_free_vma
:
1855 if (vm_flags
& VM_DENYWRITE
)
1856 allow_write_access(file
);
1861 vm_unacct_memory(charged
);
1865 unsigned long unmapped_area(struct vm_unmapped_area_info
*info
)
1868 * We implement the search by looking for an rbtree node that
1869 * immediately follows a suitable gap. That is,
1870 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1871 * - gap_end = vma->vm_start >= info->low_limit + length;
1872 * - gap_end - gap_start >= length
1875 struct mm_struct
*mm
= current
->mm
;
1876 struct vm_area_struct
*vma
;
1877 unsigned long length
, low_limit
, high_limit
, gap_start
, gap_end
;
1879 /* Adjust search length to account for worst case alignment overhead */
1880 length
= info
->length
+ info
->align_mask
;
1881 if (length
< info
->length
)
1884 /* Adjust search limits by the desired length */
1885 if (info
->high_limit
< length
)
1887 high_limit
= info
->high_limit
- length
;
1889 if (info
->low_limit
> high_limit
)
1891 low_limit
= info
->low_limit
+ length
;
1893 /* Check if rbtree root looks promising */
1894 if (RB_EMPTY_ROOT(&mm
->mm_rb
))
1896 vma
= rb_entry(mm
->mm_rb
.rb_node
, struct vm_area_struct
, vm_rb
);
1897 if (vma
->rb_subtree_gap
< length
)
1901 /* Visit left subtree if it looks promising */
1902 gap_end
= vm_start_gap(vma
);
1903 if (gap_end
>= low_limit
&& vma
->vm_rb
.rb_left
) {
1904 struct vm_area_struct
*left
=
1905 rb_entry(vma
->vm_rb
.rb_left
,
1906 struct vm_area_struct
, vm_rb
);
1907 if (left
->rb_subtree_gap
>= length
) {
1913 gap_start
= vma
->vm_prev
? vm_end_gap(vma
->vm_prev
) : 0;
1915 /* Check if current node has a suitable gap */
1916 if (gap_start
> high_limit
)
1918 if (gap_end
>= low_limit
&&
1919 gap_end
> gap_start
&& gap_end
- gap_start
>= length
)
1922 /* Visit right subtree if it looks promising */
1923 if (vma
->vm_rb
.rb_right
) {
1924 struct vm_area_struct
*right
=
1925 rb_entry(vma
->vm_rb
.rb_right
,
1926 struct vm_area_struct
, vm_rb
);
1927 if (right
->rb_subtree_gap
>= length
) {
1933 /* Go back up the rbtree to find next candidate node */
1935 struct rb_node
*prev
= &vma
->vm_rb
;
1936 if (!rb_parent(prev
))
1938 vma
= rb_entry(rb_parent(prev
),
1939 struct vm_area_struct
, vm_rb
);
1940 if (prev
== vma
->vm_rb
.rb_left
) {
1941 gap_start
= vm_end_gap(vma
->vm_prev
);
1942 gap_end
= vm_start_gap(vma
);
1949 /* Check highest gap, which does not precede any rbtree node */
1950 gap_start
= mm
->highest_vm_end
;
1951 gap_end
= ULONG_MAX
; /* Only for VM_BUG_ON below */
1952 if (gap_start
> high_limit
)
1956 /* We found a suitable gap. Clip it with the original low_limit. */
1957 if (gap_start
< info
->low_limit
)
1958 gap_start
= info
->low_limit
;
1960 /* Adjust gap address to the desired alignment */
1961 gap_start
+= (info
->align_offset
- gap_start
) & info
->align_mask
;
1963 VM_BUG_ON(gap_start
+ info
->length
> info
->high_limit
);
1964 VM_BUG_ON(gap_start
+ info
->length
> gap_end
);
1968 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info
*info
)
1970 struct mm_struct
*mm
= current
->mm
;
1971 struct vm_area_struct
*vma
;
1972 unsigned long length
, low_limit
, high_limit
, gap_start
, gap_end
;
1974 /* Adjust search length to account for worst case alignment overhead */
1975 length
= info
->length
+ info
->align_mask
;
1976 if (length
< info
->length
)
1980 * Adjust search limits by the desired length.
1981 * See implementation comment at top of unmapped_area().
1983 gap_end
= info
->high_limit
;
1984 if (gap_end
< length
)
1986 high_limit
= gap_end
- length
;
1988 if (info
->low_limit
> high_limit
)
1990 low_limit
= info
->low_limit
+ length
;
1992 /* Check highest gap, which does not precede any rbtree node */
1993 gap_start
= mm
->highest_vm_end
;
1994 if (gap_start
<= high_limit
)
1997 /* Check if rbtree root looks promising */
1998 if (RB_EMPTY_ROOT(&mm
->mm_rb
))
2000 vma
= rb_entry(mm
->mm_rb
.rb_node
, struct vm_area_struct
, vm_rb
);
2001 if (vma
->rb_subtree_gap
< length
)
2005 /* Visit right subtree if it looks promising */
2006 gap_start
= vma
->vm_prev
? vm_end_gap(vma
->vm_prev
) : 0;
2007 if (gap_start
<= high_limit
&& vma
->vm_rb
.rb_right
) {
2008 struct vm_area_struct
*right
=
2009 rb_entry(vma
->vm_rb
.rb_right
,
2010 struct vm_area_struct
, vm_rb
);
2011 if (right
->rb_subtree_gap
>= length
) {
2018 /* Check if current node has a suitable gap */
2019 gap_end
= vm_start_gap(vma
);
2020 if (gap_end
< low_limit
)
2022 if (gap_start
<= high_limit
&&
2023 gap_end
> gap_start
&& gap_end
- gap_start
>= length
)
2026 /* Visit left subtree if it looks promising */
2027 if (vma
->vm_rb
.rb_left
) {
2028 struct vm_area_struct
*left
=
2029 rb_entry(vma
->vm_rb
.rb_left
,
2030 struct vm_area_struct
, vm_rb
);
2031 if (left
->rb_subtree_gap
>= length
) {
2037 /* Go back up the rbtree to find next candidate node */
2039 struct rb_node
*prev
= &vma
->vm_rb
;
2040 if (!rb_parent(prev
))
2042 vma
= rb_entry(rb_parent(prev
),
2043 struct vm_area_struct
, vm_rb
);
2044 if (prev
== vma
->vm_rb
.rb_right
) {
2045 gap_start
= vma
->vm_prev
?
2046 vm_end_gap(vma
->vm_prev
) : 0;
2053 /* We found a suitable gap. Clip it with the original high_limit. */
2054 if (gap_end
> info
->high_limit
)
2055 gap_end
= info
->high_limit
;
2058 /* Compute highest gap address at the desired alignment */
2059 gap_end
-= info
->length
;
2060 gap_end
-= (gap_end
- info
->align_offset
) & info
->align_mask
;
2062 VM_BUG_ON(gap_end
< info
->low_limit
);
2063 VM_BUG_ON(gap_end
< gap_start
);
2068 #ifndef arch_get_mmap_end
2069 #define arch_get_mmap_end(addr) (TASK_SIZE)
2072 #ifndef arch_get_mmap_base
2073 #define arch_get_mmap_base(addr, base) (base)
2076 /* Get an address range which is currently unmapped.
2077 * For shmat() with addr=0.
2079 * Ugly calling convention alert:
2080 * Return value with the low bits set means error value,
2082 * if (ret & ~PAGE_MASK)
2085 * This function "knows" that -ENOMEM has the bits set.
2087 #ifndef HAVE_ARCH_UNMAPPED_AREA
2089 arch_get_unmapped_area(struct file
*filp
, unsigned long addr
,
2090 unsigned long len
, unsigned long pgoff
, unsigned long flags
)
2092 struct mm_struct
*mm
= current
->mm
;
2093 struct vm_area_struct
*vma
, *prev
;
2094 struct vm_unmapped_area_info info
;
2095 const unsigned long mmap_end
= arch_get_mmap_end(addr
);
2097 if (len
> mmap_end
- mmap_min_addr
)
2100 if (flags
& MAP_FIXED
)
2104 addr
= PAGE_ALIGN(addr
);
2105 vma
= find_vma_prev(mm
, addr
, &prev
);
2106 if (mmap_end
- len
>= addr
&& addr
>= mmap_min_addr
&&
2107 (!vma
|| addr
+ len
<= vm_start_gap(vma
)) &&
2108 (!prev
|| addr
>= vm_end_gap(prev
)))
2114 info
.low_limit
= mm
->mmap_base
;
2115 info
.high_limit
= mmap_end
;
2116 info
.align_mask
= 0;
2117 return vm_unmapped_area(&info
);
2122 * This mmap-allocator allocates new areas top-down from below the
2123 * stack's low limit (the base):
2125 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2127 arch_get_unmapped_area_topdown(struct file
*filp
, unsigned long addr
,
2128 unsigned long len
, unsigned long pgoff
,
2129 unsigned long flags
)
2131 struct vm_area_struct
*vma
, *prev
;
2132 struct mm_struct
*mm
= current
->mm
;
2133 struct vm_unmapped_area_info info
;
2134 const unsigned long mmap_end
= arch_get_mmap_end(addr
);
2136 /* requested length too big for entire address space */
2137 if (len
> mmap_end
- mmap_min_addr
)
2140 if (flags
& MAP_FIXED
)
2143 /* requesting a specific address */
2145 addr
= PAGE_ALIGN(addr
);
2146 vma
= find_vma_prev(mm
, addr
, &prev
);
2147 if (mmap_end
- len
>= addr
&& addr
>= mmap_min_addr
&&
2148 (!vma
|| addr
+ len
<= vm_start_gap(vma
)) &&
2149 (!prev
|| addr
>= vm_end_gap(prev
)))
2153 info
.flags
= VM_UNMAPPED_AREA_TOPDOWN
;
2155 info
.low_limit
= max(PAGE_SIZE
, mmap_min_addr
);
2156 info
.high_limit
= arch_get_mmap_base(addr
, mm
->mmap_base
);
2157 info
.align_mask
= 0;
2158 addr
= vm_unmapped_area(&info
);
2161 * A failed mmap() very likely causes application failure,
2162 * so fall back to the bottom-up function here. This scenario
2163 * can happen with large stack limits and large mmap()
2166 if (offset_in_page(addr
)) {
2167 VM_BUG_ON(addr
!= -ENOMEM
);
2169 info
.low_limit
= TASK_UNMAPPED_BASE
;
2170 info
.high_limit
= mmap_end
;
2171 addr
= vm_unmapped_area(&info
);
2179 get_unmapped_area(struct file
*file
, unsigned long addr
, unsigned long len
,
2180 unsigned long pgoff
, unsigned long flags
)
2182 unsigned long (*get_area
)(struct file
*, unsigned long,
2183 unsigned long, unsigned long, unsigned long);
2185 unsigned long error
= arch_mmap_check(addr
, len
, flags
);
2189 /* Careful about overflows.. */
2190 if (len
> TASK_SIZE
)
2193 get_area
= current
->mm
->get_unmapped_area
;
2195 if (file
->f_op
->get_unmapped_area
)
2196 get_area
= file
->f_op
->get_unmapped_area
;
2197 } else if (flags
& MAP_SHARED
) {
2199 * mmap_region() will call shmem_zero_setup() to create a file,
2200 * so use shmem's get_unmapped_area in case it can be huge.
2201 * do_mmap_pgoff() will clear pgoff, so match alignment.
2204 get_area
= shmem_get_unmapped_area
;
2207 addr
= get_area(file
, addr
, len
, pgoff
, flags
);
2208 if (IS_ERR_VALUE(addr
))
2211 if (addr
> TASK_SIZE
- len
)
2213 if (offset_in_page(addr
))
2216 error
= security_mmap_addr(addr
);
2217 return error
? error
: addr
;
2220 EXPORT_SYMBOL(get_unmapped_area
);
2222 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2223 struct vm_area_struct
*find_vma(struct mm_struct
*mm
, unsigned long addr
)
2225 struct rb_node
*rb_node
;
2226 struct vm_area_struct
*vma
;
2228 /* Check the cache first. */
2229 vma
= vmacache_find(mm
, addr
);
2233 rb_node
= mm
->mm_rb
.rb_node
;
2236 struct vm_area_struct
*tmp
;
2238 tmp
= rb_entry(rb_node
, struct vm_area_struct
, vm_rb
);
2240 if (tmp
->vm_end
> addr
) {
2242 if (tmp
->vm_start
<= addr
)
2244 rb_node
= rb_node
->rb_left
;
2246 rb_node
= rb_node
->rb_right
;
2250 vmacache_update(addr
, vma
);
2254 EXPORT_SYMBOL(find_vma
);
2257 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2259 struct vm_area_struct
*
2260 find_vma_prev(struct mm_struct
*mm
, unsigned long addr
,
2261 struct vm_area_struct
**pprev
)
2263 struct vm_area_struct
*vma
;
2265 vma
= find_vma(mm
, addr
);
2267 *pprev
= vma
->vm_prev
;
2269 struct rb_node
*rb_node
= rb_last(&mm
->mm_rb
);
2271 *pprev
= rb_node
? rb_entry(rb_node
, struct vm_area_struct
, vm_rb
) : NULL
;
2277 * Verify that the stack growth is acceptable and
2278 * update accounting. This is shared with both the
2279 * grow-up and grow-down cases.
2281 static int acct_stack_growth(struct vm_area_struct
*vma
,
2282 unsigned long size
, unsigned long grow
)
2284 struct mm_struct
*mm
= vma
->vm_mm
;
2285 unsigned long new_start
;
2287 /* address space limit tests */
2288 if (!may_expand_vm(mm
, vma
->vm_flags
, grow
))
2291 /* Stack limit test */
2292 if (size
> rlimit(RLIMIT_STACK
))
2295 /* mlock limit tests */
2296 if (vma
->vm_flags
& VM_LOCKED
) {
2297 unsigned long locked
;
2298 unsigned long limit
;
2299 locked
= mm
->locked_vm
+ grow
;
2300 limit
= rlimit(RLIMIT_MEMLOCK
);
2301 limit
>>= PAGE_SHIFT
;
2302 if (locked
> limit
&& !capable(CAP_IPC_LOCK
))
2306 /* Check to ensure the stack will not grow into a hugetlb-only region */
2307 new_start
= (vma
->vm_flags
& VM_GROWSUP
) ? vma
->vm_start
:
2309 if (is_hugepage_only_range(vma
->vm_mm
, new_start
, size
))
2313 * Overcommit.. This must be the final test, as it will
2314 * update security statistics.
2316 if (security_vm_enough_memory_mm(mm
, grow
))
2322 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2324 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2325 * vma is the last one with address > vma->vm_end. Have to extend vma.
2327 int expand_upwards(struct vm_area_struct
*vma
, unsigned long address
)
2329 struct mm_struct
*mm
= vma
->vm_mm
;
2330 struct vm_area_struct
*next
;
2331 unsigned long gap_addr
;
2334 if (!(vma
->vm_flags
& VM_GROWSUP
))
2337 /* Guard against exceeding limits of the address space. */
2338 address
&= PAGE_MASK
;
2339 if (address
>= (TASK_SIZE
& PAGE_MASK
))
2341 address
+= PAGE_SIZE
;
2343 /* Enforce stack_guard_gap */
2344 gap_addr
= address
+ stack_guard_gap
;
2346 /* Guard against overflow */
2347 if (gap_addr
< address
|| gap_addr
> TASK_SIZE
)
2348 gap_addr
= TASK_SIZE
;
2350 next
= vma
->vm_next
;
2351 if (next
&& next
->vm_start
< gap_addr
&&
2352 (next
->vm_flags
& (VM_WRITE
|VM_READ
|VM_EXEC
))) {
2353 if (!(next
->vm_flags
& VM_GROWSUP
))
2355 /* Check that both stack segments have the same anon_vma? */
2358 /* We must make sure the anon_vma is allocated. */
2359 if (unlikely(anon_vma_prepare(vma
)))
2363 * vma->vm_start/vm_end cannot change under us because the caller
2364 * is required to hold the mmap_sem in read mode. We need the
2365 * anon_vma lock to serialize against concurrent expand_stacks.
2367 anon_vma_lock_write(vma
->anon_vma
);
2369 /* Somebody else might have raced and expanded it already */
2370 if (address
> vma
->vm_end
) {
2371 unsigned long size
, grow
;
2373 size
= address
- vma
->vm_start
;
2374 grow
= (address
- vma
->vm_end
) >> PAGE_SHIFT
;
2377 if (vma
->vm_pgoff
+ (size
>> PAGE_SHIFT
) >= vma
->vm_pgoff
) {
2378 error
= acct_stack_growth(vma
, size
, grow
);
2381 * vma_gap_update() doesn't support concurrent
2382 * updates, but we only hold a shared mmap_sem
2383 * lock here, so we need to protect against
2384 * concurrent vma expansions.
2385 * anon_vma_lock_write() doesn't help here, as
2386 * we don't guarantee that all growable vmas
2387 * in a mm share the same root anon vma.
2388 * So, we reuse mm->page_table_lock to guard
2389 * against concurrent vma expansions.
2391 spin_lock(&mm
->page_table_lock
);
2392 if (vma
->vm_flags
& VM_LOCKED
)
2393 mm
->locked_vm
+= grow
;
2394 vm_stat_account(mm
, vma
->vm_flags
, grow
);
2395 anon_vma_interval_tree_pre_update_vma(vma
);
2396 vma
->vm_end
= address
;
2397 anon_vma_interval_tree_post_update_vma(vma
);
2399 vma_gap_update(vma
->vm_next
);
2401 mm
->highest_vm_end
= vm_end_gap(vma
);
2402 spin_unlock(&mm
->page_table_lock
);
2404 perf_event_mmap(vma
);
2408 anon_vma_unlock_write(vma
->anon_vma
);
2409 khugepaged_enter_vma_merge(vma
, vma
->vm_flags
);
2413 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2416 * vma is the first one with address < vma->vm_start. Have to extend vma.
2418 int expand_downwards(struct vm_area_struct
*vma
,
2419 unsigned long address
)
2421 struct mm_struct
*mm
= vma
->vm_mm
;
2422 struct vm_area_struct
*prev
;
2425 address
&= PAGE_MASK
;
2426 if (address
< mmap_min_addr
)
2429 /* Enforce stack_guard_gap */
2430 prev
= vma
->vm_prev
;
2431 /* Check that both stack segments have the same anon_vma? */
2432 if (prev
&& !(prev
->vm_flags
& VM_GROWSDOWN
) &&
2433 (prev
->vm_flags
& (VM_WRITE
|VM_READ
|VM_EXEC
))) {
2434 if (address
- prev
->vm_end
< stack_guard_gap
)
2438 /* We must make sure the anon_vma is allocated. */
2439 if (unlikely(anon_vma_prepare(vma
)))
2443 * vma->vm_start/vm_end cannot change under us because the caller
2444 * is required to hold the mmap_sem in read mode. We need the
2445 * anon_vma lock to serialize against concurrent expand_stacks.
2447 anon_vma_lock_write(vma
->anon_vma
);
2449 /* Somebody else might have raced and expanded it already */
2450 if (address
< vma
->vm_start
) {
2451 unsigned long size
, grow
;
2453 size
= vma
->vm_end
- address
;
2454 grow
= (vma
->vm_start
- address
) >> PAGE_SHIFT
;
2457 if (grow
<= vma
->vm_pgoff
) {
2458 error
= acct_stack_growth(vma
, size
, grow
);
2461 * vma_gap_update() doesn't support concurrent
2462 * updates, but we only hold a shared mmap_sem
2463 * lock here, so we need to protect against
2464 * concurrent vma expansions.
2465 * anon_vma_lock_write() doesn't help here, as
2466 * we don't guarantee that all growable vmas
2467 * in a mm share the same root anon vma.
2468 * So, we reuse mm->page_table_lock to guard
2469 * against concurrent vma expansions.
2471 spin_lock(&mm
->page_table_lock
);
2472 if (vma
->vm_flags
& VM_LOCKED
)
2473 mm
->locked_vm
+= grow
;
2474 vm_stat_account(mm
, vma
->vm_flags
, grow
);
2475 anon_vma_interval_tree_pre_update_vma(vma
);
2476 vma
->vm_start
= address
;
2477 vma
->vm_pgoff
-= grow
;
2478 anon_vma_interval_tree_post_update_vma(vma
);
2479 vma_gap_update(vma
);
2480 spin_unlock(&mm
->page_table_lock
);
2482 perf_event_mmap(vma
);
2486 anon_vma_unlock_write(vma
->anon_vma
);
2487 khugepaged_enter_vma_merge(vma
, vma
->vm_flags
);
2492 /* enforced gap between the expanding stack and other mappings. */
2493 unsigned long stack_guard_gap
= 256UL<<PAGE_SHIFT
;
2495 static int __init
cmdline_parse_stack_guard_gap(char *p
)
2500 val
= simple_strtoul(p
, &endptr
, 10);
2502 stack_guard_gap
= val
<< PAGE_SHIFT
;
2506 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap
);
2508 #ifdef CONFIG_STACK_GROWSUP
2509 int expand_stack(struct vm_area_struct
*vma
, unsigned long address
)
2511 return expand_upwards(vma
, address
);
2514 struct vm_area_struct
*
2515 find_extend_vma(struct mm_struct
*mm
, unsigned long addr
)
2517 struct vm_area_struct
*vma
, *prev
;
2520 vma
= find_vma_prev(mm
, addr
, &prev
);
2521 if (vma
&& (vma
->vm_start
<= addr
))
2523 /* don't alter vm_end if the coredump is running */
2524 if (!prev
|| !mmget_still_valid(mm
) || expand_stack(prev
, addr
))
2526 if (prev
->vm_flags
& VM_LOCKED
)
2527 populate_vma_page_range(prev
, addr
, prev
->vm_end
, NULL
);
2531 int expand_stack(struct vm_area_struct
*vma
, unsigned long address
)
2533 return expand_downwards(vma
, address
);
2536 struct vm_area_struct
*
2537 find_extend_vma(struct mm_struct
*mm
, unsigned long addr
)
2539 struct vm_area_struct
*vma
;
2540 unsigned long start
;
2543 vma
= find_vma(mm
, addr
);
2546 if (vma
->vm_start
<= addr
)
2548 if (!(vma
->vm_flags
& VM_GROWSDOWN
))
2550 /* don't alter vm_start if the coredump is running */
2551 if (!mmget_still_valid(mm
))
2553 start
= vma
->vm_start
;
2554 if (expand_stack(vma
, addr
))
2556 if (vma
->vm_flags
& VM_LOCKED
)
2557 populate_vma_page_range(vma
, addr
, start
, NULL
);
2562 EXPORT_SYMBOL_GPL(find_extend_vma
);
2565 * Ok - we have the memory areas we should free on the vma list,
2566 * so release them, and do the vma updates.
2568 * Called with the mm semaphore held.
2570 static void remove_vma_list(struct mm_struct
*mm
, struct vm_area_struct
*vma
)
2572 unsigned long nr_accounted
= 0;
2574 /* Update high watermark before we lower total_vm */
2575 update_hiwater_vm(mm
);
2577 long nrpages
= vma_pages(vma
);
2579 if (vma
->vm_flags
& VM_ACCOUNT
)
2580 nr_accounted
+= nrpages
;
2581 vm_stat_account(mm
, vma
->vm_flags
, -nrpages
);
2582 vma
= remove_vma(vma
);
2584 vm_unacct_memory(nr_accounted
);
2589 * Get rid of page table information in the indicated region.
2591 * Called with the mm semaphore held.
2593 static void unmap_region(struct mm_struct
*mm
,
2594 struct vm_area_struct
*vma
, struct vm_area_struct
*prev
,
2595 unsigned long start
, unsigned long end
)
2597 struct vm_area_struct
*next
= prev
? prev
->vm_next
: mm
->mmap
;
2598 struct mmu_gather tlb
;
2601 tlb_gather_mmu(&tlb
, mm
, start
, end
);
2602 update_hiwater_rss(mm
);
2603 unmap_vmas(&tlb
, vma
, start
, end
);
2604 free_pgtables(&tlb
, vma
, prev
? prev
->vm_end
: FIRST_USER_ADDRESS
,
2605 next
? next
->vm_start
: USER_PGTABLES_CEILING
);
2606 tlb_finish_mmu(&tlb
, start
, end
);
2610 * Create a list of vma's touched by the unmap, removing them from the mm's
2611 * vma list as we go..
2614 detach_vmas_to_be_unmapped(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2615 struct vm_area_struct
*prev
, unsigned long end
)
2617 struct vm_area_struct
**insertion_point
;
2618 struct vm_area_struct
*tail_vma
= NULL
;
2620 insertion_point
= (prev
? &prev
->vm_next
: &mm
->mmap
);
2621 vma
->vm_prev
= NULL
;
2623 vma_rb_erase(vma
, &mm
->mm_rb
);
2627 } while (vma
&& vma
->vm_start
< end
);
2628 *insertion_point
= vma
;
2630 vma
->vm_prev
= prev
;
2631 vma_gap_update(vma
);
2633 mm
->highest_vm_end
= prev
? vm_end_gap(prev
) : 0;
2634 tail_vma
->vm_next
= NULL
;
2636 /* Kill the cache */
2637 vmacache_invalidate(mm
);
2641 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it
2642 * has already been checked or doesn't make sense to fail.
2644 int __split_vma(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2645 unsigned long addr
, int new_below
)
2647 struct vm_area_struct
*new;
2650 if (vma
->vm_ops
&& vma
->vm_ops
->split
) {
2651 err
= vma
->vm_ops
->split(vma
, addr
);
2656 new = vm_area_dup(vma
);
2663 new->vm_start
= addr
;
2664 new->vm_pgoff
+= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
);
2667 err
= vma_dup_policy(vma
, new);
2671 err
= anon_vma_clone(new, vma
);
2676 get_file(new->vm_file
);
2678 if (new->vm_ops
&& new->vm_ops
->open
)
2679 new->vm_ops
->open(new);
2682 err
= vma_adjust(vma
, addr
, vma
->vm_end
, vma
->vm_pgoff
+
2683 ((addr
- new->vm_start
) >> PAGE_SHIFT
), new);
2685 err
= vma_adjust(vma
, vma
->vm_start
, addr
, vma
->vm_pgoff
, new);
2691 /* Clean everything up if vma_adjust failed. */
2692 if (new->vm_ops
&& new->vm_ops
->close
)
2693 new->vm_ops
->close(new);
2696 unlink_anon_vmas(new);
2698 mpol_put(vma_policy(new));
2705 * Split a vma into two pieces at address 'addr', a new vma is allocated
2706 * either for the first part or the tail.
2708 int split_vma(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2709 unsigned long addr
, int new_below
)
2711 if (mm
->map_count
>= sysctl_max_map_count
)
2714 return __split_vma(mm
, vma
, addr
, new_below
);
2717 /* Munmap is split into 2 main parts -- this part which finds
2718 * what needs doing, and the areas themselves, which do the
2719 * work. This now handles partial unmappings.
2720 * Jeremy Fitzhardinge <jeremy@goop.org>
2722 int __do_munmap(struct mm_struct
*mm
, unsigned long start
, size_t len
,
2723 struct list_head
*uf
, bool downgrade
)
2726 struct vm_area_struct
*vma
, *prev
, *last
;
2728 if ((offset_in_page(start
)) || start
> TASK_SIZE
|| len
> TASK_SIZE
-start
)
2731 len
= PAGE_ALIGN(len
);
2737 * arch_unmap() might do unmaps itself. It must be called
2738 * and finish any rbtree manipulation before this code
2739 * runs and also starts to manipulate the rbtree.
2741 arch_unmap(mm
, start
, end
);
2743 /* Find the first overlapping VMA */
2744 vma
= find_vma(mm
, start
);
2747 prev
= vma
->vm_prev
;
2748 /* we have start < vma->vm_end */
2750 /* if it doesn't overlap, we have nothing.. */
2751 if (vma
->vm_start
>= end
)
2755 * If we need to split any vma, do it now to save pain later.
2757 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2758 * unmapped vm_area_struct will remain in use: so lower split_vma
2759 * places tmp vma above, and higher split_vma places tmp vma below.
2761 if (start
> vma
->vm_start
) {
2765 * Make sure that map_count on return from munmap() will
2766 * not exceed its limit; but let map_count go just above
2767 * its limit temporarily, to help free resources as expected.
2769 if (end
< vma
->vm_end
&& mm
->map_count
>= sysctl_max_map_count
)
2772 error
= __split_vma(mm
, vma
, start
, 0);
2778 /* Does it split the last one? */
2779 last
= find_vma(mm
, end
);
2780 if (last
&& end
> last
->vm_start
) {
2781 int error
= __split_vma(mm
, last
, end
, 1);
2785 vma
= prev
? prev
->vm_next
: mm
->mmap
;
2789 * If userfaultfd_unmap_prep returns an error the vmas
2790 * will remain splitted, but userland will get a
2791 * highly unexpected error anyway. This is no
2792 * different than the case where the first of the two
2793 * __split_vma fails, but we don't undo the first
2794 * split, despite we could. This is unlikely enough
2795 * failure that it's not worth optimizing it for.
2797 int error
= userfaultfd_unmap_prep(vma
, start
, end
, uf
);
2803 * unlock any mlock()ed ranges before detaching vmas
2805 if (mm
->locked_vm
) {
2806 struct vm_area_struct
*tmp
= vma
;
2807 while (tmp
&& tmp
->vm_start
< end
) {
2808 if (tmp
->vm_flags
& VM_LOCKED
) {
2809 mm
->locked_vm
-= vma_pages(tmp
);
2810 munlock_vma_pages_all(tmp
);
2817 /* Detach vmas from rbtree */
2818 detach_vmas_to_be_unmapped(mm
, vma
, prev
, end
);
2821 downgrade_write(&mm
->mmap_sem
);
2823 unmap_region(mm
, vma
, prev
, start
, end
);
2825 /* Fix up all other VM information */
2826 remove_vma_list(mm
, vma
);
2828 return downgrade
? 1 : 0;
2831 int do_munmap(struct mm_struct
*mm
, unsigned long start
, size_t len
,
2832 struct list_head
*uf
)
2834 return __do_munmap(mm
, start
, len
, uf
, false);
2837 static int __vm_munmap(unsigned long start
, size_t len
, bool downgrade
)
2840 struct mm_struct
*mm
= current
->mm
;
2843 if (down_write_killable(&mm
->mmap_sem
))
2846 ret
= __do_munmap(mm
, start
, len
, &uf
, downgrade
);
2848 * Returning 1 indicates mmap_sem is downgraded.
2849 * But 1 is not legal return value of vm_munmap() and munmap(), reset
2850 * it to 0 before return.
2853 up_read(&mm
->mmap_sem
);
2856 up_write(&mm
->mmap_sem
);
2858 userfaultfd_unmap_complete(mm
, &uf
);
2862 int vm_munmap(unsigned long start
, size_t len
)
2864 return __vm_munmap(start
, len
, false);
2866 EXPORT_SYMBOL(vm_munmap
);
2868 SYSCALL_DEFINE2(munmap
, unsigned long, addr
, size_t, len
)
2870 addr
= untagged_addr(addr
);
2871 profile_munmap(addr
);
2872 return __vm_munmap(addr
, len
, true);
2877 * Emulation of deprecated remap_file_pages() syscall.
2879 SYSCALL_DEFINE5(remap_file_pages
, unsigned long, start
, unsigned long, size
,
2880 unsigned long, prot
, unsigned long, pgoff
, unsigned long, flags
)
2883 struct mm_struct
*mm
= current
->mm
;
2884 struct vm_area_struct
*vma
;
2885 unsigned long populate
= 0;
2886 unsigned long ret
= -EINVAL
;
2889 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.rst.\n",
2890 current
->comm
, current
->pid
);
2894 start
= start
& PAGE_MASK
;
2895 size
= size
& PAGE_MASK
;
2897 if (start
+ size
<= start
)
2900 /* Does pgoff wrap? */
2901 if (pgoff
+ (size
>> PAGE_SHIFT
) < pgoff
)
2904 if (down_write_killable(&mm
->mmap_sem
))
2907 vma
= find_vma(mm
, start
);
2909 if (!vma
|| !(vma
->vm_flags
& VM_SHARED
))
2912 if (start
< vma
->vm_start
)
2915 if (start
+ size
> vma
->vm_end
) {
2916 struct vm_area_struct
*next
;
2918 for (next
= vma
->vm_next
; next
; next
= next
->vm_next
) {
2919 /* hole between vmas ? */
2920 if (next
->vm_start
!= next
->vm_prev
->vm_end
)
2923 if (next
->vm_file
!= vma
->vm_file
)
2926 if (next
->vm_flags
!= vma
->vm_flags
)
2929 if (start
+ size
<= next
->vm_end
)
2937 prot
|= vma
->vm_flags
& VM_READ
? PROT_READ
: 0;
2938 prot
|= vma
->vm_flags
& VM_WRITE
? PROT_WRITE
: 0;
2939 prot
|= vma
->vm_flags
& VM_EXEC
? PROT_EXEC
: 0;
2941 flags
&= MAP_NONBLOCK
;
2942 flags
|= MAP_SHARED
| MAP_FIXED
| MAP_POPULATE
;
2943 if (vma
->vm_flags
& VM_LOCKED
) {
2944 struct vm_area_struct
*tmp
;
2945 flags
|= MAP_LOCKED
;
2947 /* drop PG_Mlocked flag for over-mapped range */
2948 for (tmp
= vma
; tmp
->vm_start
>= start
+ size
;
2949 tmp
= tmp
->vm_next
) {
2951 * Split pmd and munlock page on the border
2954 vma_adjust_trans_huge(tmp
, start
, start
+ size
, 0);
2956 munlock_vma_pages_range(tmp
,
2957 max(tmp
->vm_start
, start
),
2958 min(tmp
->vm_end
, start
+ size
));
2962 file
= get_file(vma
->vm_file
);
2963 ret
= do_mmap_pgoff(vma
->vm_file
, start
, size
,
2964 prot
, flags
, pgoff
, &populate
, NULL
);
2967 up_write(&mm
->mmap_sem
);
2969 mm_populate(ret
, populate
);
2970 if (!IS_ERR_VALUE(ret
))
2976 * this is really a simplified "do_mmap". it only handles
2977 * anonymous maps. eventually we may be able to do some
2978 * brk-specific accounting here.
2980 static int do_brk_flags(unsigned long addr
, unsigned long len
, unsigned long flags
, struct list_head
*uf
)
2982 struct mm_struct
*mm
= current
->mm
;
2983 struct vm_area_struct
*vma
, *prev
;
2984 struct rb_node
**rb_link
, *rb_parent
;
2985 pgoff_t pgoff
= addr
>> PAGE_SHIFT
;
2987 unsigned long mapped_addr
;
2989 /* Until we need other flags, refuse anything except VM_EXEC. */
2990 if ((flags
& (~VM_EXEC
)) != 0)
2992 flags
|= VM_DATA_DEFAULT_FLAGS
| VM_ACCOUNT
| mm
->def_flags
;
2994 mapped_addr
= get_unmapped_area(NULL
, addr
, len
, 0, MAP_FIXED
);
2995 if (IS_ERR_VALUE(mapped_addr
))
2998 error
= mlock_future_check(mm
, mm
->def_flags
, len
);
3003 * Clear old maps. this also does some error checking for us
3005 while (find_vma_links(mm
, addr
, addr
+ len
, &prev
, &rb_link
,
3007 if (do_munmap(mm
, addr
, len
, uf
))
3011 /* Check against address space limits *after* clearing old maps... */
3012 if (!may_expand_vm(mm
, flags
, len
>> PAGE_SHIFT
))
3015 if (mm
->map_count
> sysctl_max_map_count
)
3018 if (security_vm_enough_memory_mm(mm
, len
>> PAGE_SHIFT
))
3021 /* Can we just expand an old private anonymous mapping? */
3022 vma
= vma_merge(mm
, prev
, addr
, addr
+ len
, flags
,
3023 NULL
, NULL
, pgoff
, NULL
, NULL_VM_UFFD_CTX
);
3028 * create a vma struct for an anonymous mapping
3030 vma
= vm_area_alloc(mm
);
3032 vm_unacct_memory(len
>> PAGE_SHIFT
);
3036 vma_set_anonymous(vma
);
3037 vma
->vm_start
= addr
;
3038 vma
->vm_end
= addr
+ len
;
3039 vma
->vm_pgoff
= pgoff
;
3040 vma
->vm_flags
= flags
;
3041 vma
->vm_page_prot
= vm_get_page_prot(flags
);
3042 vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
3044 perf_event_mmap(vma
);
3045 mm
->total_vm
+= len
>> PAGE_SHIFT
;
3046 mm
->data_vm
+= len
>> PAGE_SHIFT
;
3047 if (flags
& VM_LOCKED
)
3048 mm
->locked_vm
+= (len
>> PAGE_SHIFT
);
3049 vma
->vm_flags
|= VM_SOFTDIRTY
;
3053 int vm_brk_flags(unsigned long addr
, unsigned long request
, unsigned long flags
)
3055 struct mm_struct
*mm
= current
->mm
;
3061 len
= PAGE_ALIGN(request
);
3067 if (down_write_killable(&mm
->mmap_sem
))
3070 ret
= do_brk_flags(addr
, len
, flags
, &uf
);
3071 populate
= ((mm
->def_flags
& VM_LOCKED
) != 0);
3072 up_write(&mm
->mmap_sem
);
3073 userfaultfd_unmap_complete(mm
, &uf
);
3074 if (populate
&& !ret
)
3075 mm_populate(addr
, len
);
3078 EXPORT_SYMBOL(vm_brk_flags
);
3080 int vm_brk(unsigned long addr
, unsigned long len
)
3082 return vm_brk_flags(addr
, len
, 0);
3084 EXPORT_SYMBOL(vm_brk
);
3086 /* Release all mmaps. */
3087 void exit_mmap(struct mm_struct
*mm
)
3089 struct mmu_gather tlb
;
3090 struct vm_area_struct
*vma
;
3091 unsigned long nr_accounted
= 0;
3093 /* mm's last user has gone, and its about to be pulled down */
3094 mmu_notifier_release(mm
);
3096 if (unlikely(mm_is_oom_victim(mm
))) {
3098 * Manually reap the mm to free as much memory as possible.
3099 * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard
3100 * this mm from further consideration. Taking mm->mmap_sem for
3101 * write after setting MMF_OOM_SKIP will guarantee that the oom
3102 * reaper will not run on this mm again after mmap_sem is
3105 * Nothing can be holding mm->mmap_sem here and the above call
3106 * to mmu_notifier_release(mm) ensures mmu notifier callbacks in
3107 * __oom_reap_task_mm() will not block.
3109 * This needs to be done before calling munlock_vma_pages_all(),
3110 * which clears VM_LOCKED, otherwise the oom reaper cannot
3113 (void)__oom_reap_task_mm(mm
);
3115 set_bit(MMF_OOM_SKIP
, &mm
->flags
);
3116 down_write(&mm
->mmap_sem
);
3117 up_write(&mm
->mmap_sem
);
3120 if (mm
->locked_vm
) {
3123 if (vma
->vm_flags
& VM_LOCKED
)
3124 munlock_vma_pages_all(vma
);
3132 if (!vma
) /* Can happen if dup_mmap() received an OOM */
3137 tlb_gather_mmu(&tlb
, mm
, 0, -1);
3138 /* update_hiwater_rss(mm) here? but nobody should be looking */
3139 /* Use -1 here to ensure all VMAs in the mm are unmapped */
3140 unmap_vmas(&tlb
, vma
, 0, -1);
3141 free_pgtables(&tlb
, vma
, FIRST_USER_ADDRESS
, USER_PGTABLES_CEILING
);
3142 tlb_finish_mmu(&tlb
, 0, -1);
3145 * Walk the list again, actually closing and freeing it,
3146 * with preemption enabled, without holding any MM locks.
3149 if (vma
->vm_flags
& VM_ACCOUNT
)
3150 nr_accounted
+= vma_pages(vma
);
3151 vma
= remove_vma(vma
);
3153 vm_unacct_memory(nr_accounted
);
3156 /* Insert vm structure into process list sorted by address
3157 * and into the inode's i_mmap tree. If vm_file is non-NULL
3158 * then i_mmap_rwsem is taken here.
3160 int insert_vm_struct(struct mm_struct
*mm
, struct vm_area_struct
*vma
)
3162 struct vm_area_struct
*prev
;
3163 struct rb_node
**rb_link
, *rb_parent
;
3165 if (find_vma_links(mm
, vma
->vm_start
, vma
->vm_end
,
3166 &prev
, &rb_link
, &rb_parent
))
3168 if ((vma
->vm_flags
& VM_ACCOUNT
) &&
3169 security_vm_enough_memory_mm(mm
, vma_pages(vma
)))
3173 * The vm_pgoff of a purely anonymous vma should be irrelevant
3174 * until its first write fault, when page's anon_vma and index
3175 * are set. But now set the vm_pgoff it will almost certainly
3176 * end up with (unless mremap moves it elsewhere before that
3177 * first wfault), so /proc/pid/maps tells a consistent story.
3179 * By setting it to reflect the virtual start address of the
3180 * vma, merges and splits can happen in a seamless way, just
3181 * using the existing file pgoff checks and manipulations.
3182 * Similarly in do_mmap_pgoff and in do_brk.
3184 if (vma_is_anonymous(vma
)) {
3185 BUG_ON(vma
->anon_vma
);
3186 vma
->vm_pgoff
= vma
->vm_start
>> PAGE_SHIFT
;
3189 vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
3194 * Copy the vma structure to a new location in the same mm,
3195 * prior to moving page table entries, to effect an mremap move.
3197 struct vm_area_struct
*copy_vma(struct vm_area_struct
**vmap
,
3198 unsigned long addr
, unsigned long len
, pgoff_t pgoff
,
3199 bool *need_rmap_locks
)
3201 struct vm_area_struct
*vma
= *vmap
;
3202 unsigned long vma_start
= vma
->vm_start
;
3203 struct mm_struct
*mm
= vma
->vm_mm
;
3204 struct vm_area_struct
*new_vma
, *prev
;
3205 struct rb_node
**rb_link
, *rb_parent
;
3206 bool faulted_in_anon_vma
= true;
3209 * If anonymous vma has not yet been faulted, update new pgoff
3210 * to match new location, to increase its chance of merging.
3212 if (unlikely(vma_is_anonymous(vma
) && !vma
->anon_vma
)) {
3213 pgoff
= addr
>> PAGE_SHIFT
;
3214 faulted_in_anon_vma
= false;
3217 if (find_vma_links(mm
, addr
, addr
+ len
, &prev
, &rb_link
, &rb_parent
))
3218 return NULL
; /* should never get here */
3219 new_vma
= vma_merge(mm
, prev
, addr
, addr
+ len
, vma
->vm_flags
,
3220 vma
->anon_vma
, vma
->vm_file
, pgoff
, vma_policy(vma
),
3221 vma
->vm_userfaultfd_ctx
);
3224 * Source vma may have been merged into new_vma
3226 if (unlikely(vma_start
>= new_vma
->vm_start
&&
3227 vma_start
< new_vma
->vm_end
)) {
3229 * The only way we can get a vma_merge with
3230 * self during an mremap is if the vma hasn't
3231 * been faulted in yet and we were allowed to
3232 * reset the dst vma->vm_pgoff to the
3233 * destination address of the mremap to allow
3234 * the merge to happen. mremap must change the
3235 * vm_pgoff linearity between src and dst vmas
3236 * (in turn preventing a vma_merge) to be
3237 * safe. It is only safe to keep the vm_pgoff
3238 * linear if there are no pages mapped yet.
3240 VM_BUG_ON_VMA(faulted_in_anon_vma
, new_vma
);
3241 *vmap
= vma
= new_vma
;
3243 *need_rmap_locks
= (new_vma
->vm_pgoff
<= vma
->vm_pgoff
);
3245 new_vma
= vm_area_dup(vma
);
3248 new_vma
->vm_start
= addr
;
3249 new_vma
->vm_end
= addr
+ len
;
3250 new_vma
->vm_pgoff
= pgoff
;
3251 if (vma_dup_policy(vma
, new_vma
))
3253 if (anon_vma_clone(new_vma
, vma
))
3254 goto out_free_mempol
;
3255 if (new_vma
->vm_file
)
3256 get_file(new_vma
->vm_file
);
3257 if (new_vma
->vm_ops
&& new_vma
->vm_ops
->open
)
3258 new_vma
->vm_ops
->open(new_vma
);
3259 vma_link(mm
, new_vma
, prev
, rb_link
, rb_parent
);
3260 *need_rmap_locks
= false;
3265 mpol_put(vma_policy(new_vma
));
3267 vm_area_free(new_vma
);
3273 * Return true if the calling process may expand its vm space by the passed
3276 bool may_expand_vm(struct mm_struct
*mm
, vm_flags_t flags
, unsigned long npages
)
3278 if (mm
->total_vm
+ npages
> rlimit(RLIMIT_AS
) >> PAGE_SHIFT
)
3281 if (is_data_mapping(flags
) &&
3282 mm
->data_vm
+ npages
> rlimit(RLIMIT_DATA
) >> PAGE_SHIFT
) {
3283 /* Workaround for Valgrind */
3284 if (rlimit(RLIMIT_DATA
) == 0 &&
3285 mm
->data_vm
+ npages
<= rlimit_max(RLIMIT_DATA
) >> PAGE_SHIFT
)
3288 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3289 current
->comm
, current
->pid
,
3290 (mm
->data_vm
+ npages
) << PAGE_SHIFT
,
3291 rlimit(RLIMIT_DATA
),
3292 ignore_rlimit_data
? "" : " or use boot option ignore_rlimit_data");
3294 if (!ignore_rlimit_data
)
3301 void vm_stat_account(struct mm_struct
*mm
, vm_flags_t flags
, long npages
)
3303 mm
->total_vm
+= npages
;
3305 if (is_exec_mapping(flags
))
3306 mm
->exec_vm
+= npages
;
3307 else if (is_stack_mapping(flags
))
3308 mm
->stack_vm
+= npages
;
3309 else if (is_data_mapping(flags
))
3310 mm
->data_vm
+= npages
;
3313 static vm_fault_t
special_mapping_fault(struct vm_fault
*vmf
);
3316 * Having a close hook prevents vma merging regardless of flags.
3318 static void special_mapping_close(struct vm_area_struct
*vma
)
3322 static const char *special_mapping_name(struct vm_area_struct
*vma
)
3324 return ((struct vm_special_mapping
*)vma
->vm_private_data
)->name
;
3327 static int special_mapping_mremap(struct vm_area_struct
*new_vma
)
3329 struct vm_special_mapping
*sm
= new_vma
->vm_private_data
;
3331 if (WARN_ON_ONCE(current
->mm
!= new_vma
->vm_mm
))
3335 return sm
->mremap(sm
, new_vma
);
3340 static const struct vm_operations_struct special_mapping_vmops
= {
3341 .close
= special_mapping_close
,
3342 .fault
= special_mapping_fault
,
3343 .mremap
= special_mapping_mremap
,
3344 .name
= special_mapping_name
,
3347 static const struct vm_operations_struct legacy_special_mapping_vmops
= {
3348 .close
= special_mapping_close
,
3349 .fault
= special_mapping_fault
,
3352 static vm_fault_t
special_mapping_fault(struct vm_fault
*vmf
)
3354 struct vm_area_struct
*vma
= vmf
->vma
;
3356 struct page
**pages
;
3358 if (vma
->vm_ops
== &legacy_special_mapping_vmops
) {
3359 pages
= vma
->vm_private_data
;
3361 struct vm_special_mapping
*sm
= vma
->vm_private_data
;
3364 return sm
->fault(sm
, vmf
->vma
, vmf
);
3369 for (pgoff
= vmf
->pgoff
; pgoff
&& *pages
; ++pages
)
3373 struct page
*page
= *pages
;
3379 return VM_FAULT_SIGBUS
;
3382 static struct vm_area_struct
*__install_special_mapping(
3383 struct mm_struct
*mm
,
3384 unsigned long addr
, unsigned long len
,
3385 unsigned long vm_flags
, void *priv
,
3386 const struct vm_operations_struct
*ops
)
3389 struct vm_area_struct
*vma
;
3391 vma
= vm_area_alloc(mm
);
3392 if (unlikely(vma
== NULL
))
3393 return ERR_PTR(-ENOMEM
);
3395 vma
->vm_start
= addr
;
3396 vma
->vm_end
= addr
+ len
;
3398 vma
->vm_flags
= vm_flags
| mm
->def_flags
| VM_DONTEXPAND
| VM_SOFTDIRTY
;
3399 vma
->vm_page_prot
= vm_get_page_prot(vma
->vm_flags
);
3402 vma
->vm_private_data
= priv
;
3404 ret
= insert_vm_struct(mm
, vma
);
3408 vm_stat_account(mm
, vma
->vm_flags
, len
>> PAGE_SHIFT
);
3410 perf_event_mmap(vma
);
3416 return ERR_PTR(ret
);
3419 bool vma_is_special_mapping(const struct vm_area_struct
*vma
,
3420 const struct vm_special_mapping
*sm
)
3422 return vma
->vm_private_data
== sm
&&
3423 (vma
->vm_ops
== &special_mapping_vmops
||
3424 vma
->vm_ops
== &legacy_special_mapping_vmops
);
3428 * Called with mm->mmap_sem held for writing.
3429 * Insert a new vma covering the given region, with the given flags.
3430 * Its pages are supplied by the given array of struct page *.
3431 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3432 * The region past the last page supplied will always produce SIGBUS.
3433 * The array pointer and the pages it points to are assumed to stay alive
3434 * for as long as this mapping might exist.
3436 struct vm_area_struct
*_install_special_mapping(
3437 struct mm_struct
*mm
,
3438 unsigned long addr
, unsigned long len
,
3439 unsigned long vm_flags
, const struct vm_special_mapping
*spec
)
3441 return __install_special_mapping(mm
, addr
, len
, vm_flags
, (void *)spec
,
3442 &special_mapping_vmops
);
3445 int install_special_mapping(struct mm_struct
*mm
,
3446 unsigned long addr
, unsigned long len
,
3447 unsigned long vm_flags
, struct page
**pages
)
3449 struct vm_area_struct
*vma
= __install_special_mapping(
3450 mm
, addr
, len
, vm_flags
, (void *)pages
,
3451 &legacy_special_mapping_vmops
);
3453 return PTR_ERR_OR_ZERO(vma
);
3456 static DEFINE_MUTEX(mm_all_locks_mutex
);
3458 static void vm_lock_anon_vma(struct mm_struct
*mm
, struct anon_vma
*anon_vma
)
3460 if (!test_bit(0, (unsigned long *) &anon_vma
->root
->rb_root
.rb_root
.rb_node
)) {
3462 * The LSB of head.next can't change from under us
3463 * because we hold the mm_all_locks_mutex.
3465 down_write_nest_lock(&anon_vma
->root
->rwsem
, &mm
->mmap_sem
);
3467 * We can safely modify head.next after taking the
3468 * anon_vma->root->rwsem. If some other vma in this mm shares
3469 * the same anon_vma we won't take it again.
3471 * No need of atomic instructions here, head.next
3472 * can't change from under us thanks to the
3473 * anon_vma->root->rwsem.
3475 if (__test_and_set_bit(0, (unsigned long *)
3476 &anon_vma
->root
->rb_root
.rb_root
.rb_node
))
3481 static void vm_lock_mapping(struct mm_struct
*mm
, struct address_space
*mapping
)
3483 if (!test_bit(AS_MM_ALL_LOCKS
, &mapping
->flags
)) {
3485 * AS_MM_ALL_LOCKS can't change from under us because
3486 * we hold the mm_all_locks_mutex.
3488 * Operations on ->flags have to be atomic because
3489 * even if AS_MM_ALL_LOCKS is stable thanks to the
3490 * mm_all_locks_mutex, there may be other cpus
3491 * changing other bitflags in parallel to us.
3493 if (test_and_set_bit(AS_MM_ALL_LOCKS
, &mapping
->flags
))
3495 down_write_nest_lock(&mapping
->i_mmap_rwsem
, &mm
->mmap_sem
);
3500 * This operation locks against the VM for all pte/vma/mm related
3501 * operations that could ever happen on a certain mm. This includes
3502 * vmtruncate, try_to_unmap, and all page faults.
3504 * The caller must take the mmap_sem in write mode before calling
3505 * mm_take_all_locks(). The caller isn't allowed to release the
3506 * mmap_sem until mm_drop_all_locks() returns.
3508 * mmap_sem in write mode is required in order to block all operations
3509 * that could modify pagetables and free pages without need of
3510 * altering the vma layout. It's also needed in write mode to avoid new
3511 * anon_vmas to be associated with existing vmas.
3513 * A single task can't take more than one mm_take_all_locks() in a row
3514 * or it would deadlock.
3516 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3517 * mapping->flags avoid to take the same lock twice, if more than one
3518 * vma in this mm is backed by the same anon_vma or address_space.
3520 * We take locks in following order, accordingly to comment at beginning
3522 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3524 * - all i_mmap_rwsem locks;
3525 * - all anon_vma->rwseml
3527 * We can take all locks within these types randomly because the VM code
3528 * doesn't nest them and we protected from parallel mm_take_all_locks() by
3529 * mm_all_locks_mutex.
3531 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3532 * that may have to take thousand of locks.
3534 * mm_take_all_locks() can fail if it's interrupted by signals.
3536 int mm_take_all_locks(struct mm_struct
*mm
)
3538 struct vm_area_struct
*vma
;
3539 struct anon_vma_chain
*avc
;
3541 BUG_ON(down_read_trylock(&mm
->mmap_sem
));
3543 mutex_lock(&mm_all_locks_mutex
);
3545 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
3546 if (signal_pending(current
))
3548 if (vma
->vm_file
&& vma
->vm_file
->f_mapping
&&
3549 is_vm_hugetlb_page(vma
))
3550 vm_lock_mapping(mm
, vma
->vm_file
->f_mapping
);
3553 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
3554 if (signal_pending(current
))
3556 if (vma
->vm_file
&& vma
->vm_file
->f_mapping
&&
3557 !is_vm_hugetlb_page(vma
))
3558 vm_lock_mapping(mm
, vma
->vm_file
->f_mapping
);
3561 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
3562 if (signal_pending(current
))
3565 list_for_each_entry(avc
, &vma
->anon_vma_chain
, same_vma
)
3566 vm_lock_anon_vma(mm
, avc
->anon_vma
);
3572 mm_drop_all_locks(mm
);
3576 static void vm_unlock_anon_vma(struct anon_vma
*anon_vma
)
3578 if (test_bit(0, (unsigned long *) &anon_vma
->root
->rb_root
.rb_root
.rb_node
)) {
3580 * The LSB of head.next can't change to 0 from under
3581 * us because we hold the mm_all_locks_mutex.
3583 * We must however clear the bitflag before unlocking
3584 * the vma so the users using the anon_vma->rb_root will
3585 * never see our bitflag.
3587 * No need of atomic instructions here, head.next
3588 * can't change from under us until we release the
3589 * anon_vma->root->rwsem.
3591 if (!__test_and_clear_bit(0, (unsigned long *)
3592 &anon_vma
->root
->rb_root
.rb_root
.rb_node
))
3594 anon_vma_unlock_write(anon_vma
);
3598 static void vm_unlock_mapping(struct address_space
*mapping
)
3600 if (test_bit(AS_MM_ALL_LOCKS
, &mapping
->flags
)) {
3602 * AS_MM_ALL_LOCKS can't change to 0 from under us
3603 * because we hold the mm_all_locks_mutex.
3605 i_mmap_unlock_write(mapping
);
3606 if (!test_and_clear_bit(AS_MM_ALL_LOCKS
,
3613 * The mmap_sem cannot be released by the caller until
3614 * mm_drop_all_locks() returns.
3616 void mm_drop_all_locks(struct mm_struct
*mm
)
3618 struct vm_area_struct
*vma
;
3619 struct anon_vma_chain
*avc
;
3621 BUG_ON(down_read_trylock(&mm
->mmap_sem
));
3622 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex
));
3624 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
3626 list_for_each_entry(avc
, &vma
->anon_vma_chain
, same_vma
)
3627 vm_unlock_anon_vma(avc
->anon_vma
);
3628 if (vma
->vm_file
&& vma
->vm_file
->f_mapping
)
3629 vm_unlock_mapping(vma
->vm_file
->f_mapping
);
3632 mutex_unlock(&mm_all_locks_mutex
);
3636 * initialise the percpu counter for VM
3638 void __init
mmap_init(void)
3642 ret
= percpu_counter_init(&vm_committed_as
, 0, GFP_KERNEL
);
3647 * Initialise sysctl_user_reserve_kbytes.
3649 * This is intended to prevent a user from starting a single memory hogging
3650 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3653 * The default value is min(3% of free memory, 128MB)
3654 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3656 static int init_user_reserve(void)
3658 unsigned long free_kbytes
;
3660 free_kbytes
= global_zone_page_state(NR_FREE_PAGES
) << (PAGE_SHIFT
- 10);
3662 sysctl_user_reserve_kbytes
= min(free_kbytes
/ 32, 1UL << 17);
3665 subsys_initcall(init_user_reserve
);
3668 * Initialise sysctl_admin_reserve_kbytes.
3670 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3671 * to log in and kill a memory hogging process.
3673 * Systems with more than 256MB will reserve 8MB, enough to recover
3674 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3675 * only reserve 3% of free pages by default.
3677 static int init_admin_reserve(void)
3679 unsigned long free_kbytes
;
3681 free_kbytes
= global_zone_page_state(NR_FREE_PAGES
) << (PAGE_SHIFT
- 10);
3683 sysctl_admin_reserve_kbytes
= min(free_kbytes
/ 32, 1UL << 13);
3686 subsys_initcall(init_admin_reserve
);
3689 * Reinititalise user and admin reserves if memory is added or removed.
3691 * The default user reserve max is 128MB, and the default max for the
3692 * admin reserve is 8MB. These are usually, but not always, enough to
3693 * enable recovery from a memory hogging process using login/sshd, a shell,
3694 * and tools like top. It may make sense to increase or even disable the
3695 * reserve depending on the existence of swap or variations in the recovery
3696 * tools. So, the admin may have changed them.
3698 * If memory is added and the reserves have been eliminated or increased above
3699 * the default max, then we'll trust the admin.
3701 * If memory is removed and there isn't enough free memory, then we
3702 * need to reset the reserves.
3704 * Otherwise keep the reserve set by the admin.
3706 static int reserve_mem_notifier(struct notifier_block
*nb
,
3707 unsigned long action
, void *data
)
3709 unsigned long tmp
, free_kbytes
;
3713 /* Default max is 128MB. Leave alone if modified by operator. */
3714 tmp
= sysctl_user_reserve_kbytes
;
3715 if (0 < tmp
&& tmp
< (1UL << 17))
3716 init_user_reserve();
3718 /* Default max is 8MB. Leave alone if modified by operator. */
3719 tmp
= sysctl_admin_reserve_kbytes
;
3720 if (0 < tmp
&& tmp
< (1UL << 13))
3721 init_admin_reserve();
3725 free_kbytes
= global_zone_page_state(NR_FREE_PAGES
) << (PAGE_SHIFT
- 10);
3727 if (sysctl_user_reserve_kbytes
> free_kbytes
) {
3728 init_user_reserve();
3729 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3730 sysctl_user_reserve_kbytes
);
3733 if (sysctl_admin_reserve_kbytes
> free_kbytes
) {
3734 init_admin_reserve();
3735 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3736 sysctl_admin_reserve_kbytes
);
3745 static struct notifier_block reserve_mem_nb
= {
3746 .notifier_call
= reserve_mem_notifier
,
3749 static int __meminit
init_reserve_notifier(void)
3751 if (register_hotmemory_notifier(&reserve_mem_nb
))
3752 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3756 subsys_initcall(init_reserve_notifier
);