split dev_queue
[cor.git] / net / core / dev.c
blob46580b290450edfd2aa8a434ae2c14245bd336bb
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * NET3 Protocol independent device support routines.
5 * Derived from the non IP parts of dev.c 1.0.19
6 * Authors: Ross Biro
7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8 * Mark Evans, <evansmp@uhura.aston.ac.uk>
10 * Additional Authors:
11 * Florian la Roche <rzsfl@rz.uni-sb.de>
12 * Alan Cox <gw4pts@gw4pts.ampr.org>
13 * David Hinds <dahinds@users.sourceforge.net>
14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15 * Adam Sulmicki <adam@cfar.umd.edu>
16 * Pekka Riikonen <priikone@poesidon.pspt.fi>
18 * Changes:
19 * D.J. Barrow : Fixed bug where dev->refcnt gets set
20 * to 2 if register_netdev gets called
21 * before net_dev_init & also removed a
22 * few lines of code in the process.
23 * Alan Cox : device private ioctl copies fields back.
24 * Alan Cox : Transmit queue code does relevant
25 * stunts to keep the queue safe.
26 * Alan Cox : Fixed double lock.
27 * Alan Cox : Fixed promisc NULL pointer trap
28 * ???????? : Support the full private ioctl range
29 * Alan Cox : Moved ioctl permission check into
30 * drivers
31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
32 * Alan Cox : 100 backlog just doesn't cut it when
33 * you start doing multicast video 8)
34 * Alan Cox : Rewrote net_bh and list manager.
35 * Alan Cox : Fix ETH_P_ALL echoback lengths.
36 * Alan Cox : Took out transmit every packet pass
37 * Saved a few bytes in the ioctl handler
38 * Alan Cox : Network driver sets packet type before
39 * calling netif_rx. Saves a function
40 * call a packet.
41 * Alan Cox : Hashed net_bh()
42 * Richard Kooijman: Timestamp fixes.
43 * Alan Cox : Wrong field in SIOCGIFDSTADDR
44 * Alan Cox : Device lock protection.
45 * Alan Cox : Fixed nasty side effect of device close
46 * changes.
47 * Rudi Cilibrasi : Pass the right thing to
48 * set_mac_address()
49 * Dave Miller : 32bit quantity for the device lock to
50 * make it work out on a Sparc.
51 * Bjorn Ekwall : Added KERNELD hack.
52 * Alan Cox : Cleaned up the backlog initialise.
53 * Craig Metz : SIOCGIFCONF fix if space for under
54 * 1 device.
55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
56 * is no device open function.
57 * Andi Kleen : Fix error reporting for SIOCGIFCONF
58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
59 * Cyrus Durgin : Cleaned for KMOD
60 * Adam Sulmicki : Bug Fix : Network Device Unload
61 * A network device unload needs to purge
62 * the backlog queue.
63 * Paul Rusty Russell : SIOCSIFNAME
64 * Pekka Riikonen : Netdev boot-time settings code
65 * Andrew Morton : Make unregister_netdevice wait
66 * indefinitely on dev->refcnt
67 * J Hadi Salim : - Backlog queue sampling
68 * - netif_rx() feedback
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/string.h>
83 #include <linux/mm.h>
84 #include <linux/socket.h>
85 #include <linux/sockios.h>
86 #include <linux/errno.h>
87 #include <linux/interrupt.h>
88 #include <linux/if_ether.h>
89 #include <linux/netdevice.h>
90 #include <linux/etherdevice.h>
91 #include <linux/ethtool.h>
92 #include <linux/skbuff.h>
93 #include <linux/bpf.h>
94 #include <linux/bpf_trace.h>
95 #include <net/net_namespace.h>
96 #include <net/sock.h>
97 #include <net/busy_poll.h>
98 #include <linux/rtnetlink.h>
99 #include <linux/stat.h>
100 #include <net/dst.h>
101 #include <net/dst_metadata.h>
102 #include <net/pkt_sched.h>
103 #include <net/pkt_cls.h>
104 #include <net/checksum.h>
105 #include <net/xfrm.h>
106 #include <linux/highmem.h>
107 #include <linux/init.h>
108 #include <linux/module.h>
109 #include <linux/netpoll.h>
110 #include <linux/rcupdate.h>
111 #include <linux/delay.h>
112 #include <net/iw_handler.h>
113 #include <asm/current.h>
114 #include <linux/audit.h>
115 #include <linux/dmaengine.h>
116 #include <linux/err.h>
117 #include <linux/ctype.h>
118 #include <linux/if_arp.h>
119 #include <linux/if_vlan.h>
120 #include <linux/ip.h>
121 #include <net/ip.h>
122 #include <net/mpls.h>
123 #include <linux/ipv6.h>
124 #include <linux/in.h>
125 #include <linux/jhash.h>
126 #include <linux/random.h>
127 #include <trace/events/napi.h>
128 #include <trace/events/net.h>
129 #include <trace/events/skb.h>
130 #include <linux/inetdevice.h>
131 #include <linux/cpu_rmap.h>
132 #include <linux/static_key.h>
133 #include <linux/hashtable.h>
134 #include <linux/vmalloc.h>
135 #include <linux/if_macvlan.h>
136 #include <linux/errqueue.h>
137 #include <linux/hrtimer.h>
138 #include <linux/netfilter_ingress.h>
139 #include <linux/crash_dump.h>
140 #include <linux/sctp.h>
141 #include <net/udp_tunnel.h>
142 #include <linux/net_namespace.h>
143 #include <linux/indirect_call_wrapper.h>
144 #include <net/devlink.h>
146 #include "net-sysfs.h"
148 #define MAX_GRO_SKBS 8
149 #define MAX_NEST_DEV 8
151 /* This should be increased if a protocol with a bigger head is added. */
152 #define GRO_MAX_HEAD (MAX_HEADER + 128)
154 static DEFINE_SPINLOCK(ptype_lock);
155 static DEFINE_SPINLOCK(offload_lock);
156 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
157 struct list_head ptype_all __read_mostly; /* Taps */
158 static struct list_head offload_base __read_mostly;
160 static int netif_rx_internal(struct sk_buff *skb);
161 static int call_netdevice_notifiers_info(unsigned long val,
162 struct netdev_notifier_info *info);
163 static int call_netdevice_notifiers_extack(unsigned long val,
164 struct net_device *dev,
165 struct netlink_ext_ack *extack);
166 static struct napi_struct *napi_by_id(unsigned int napi_id);
169 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
170 * semaphore.
172 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
174 * Writers must hold the rtnl semaphore while they loop through the
175 * dev_base_head list, and hold dev_base_lock for writing when they do the
176 * actual updates. This allows pure readers to access the list even
177 * while a writer is preparing to update it.
179 * To put it another way, dev_base_lock is held for writing only to
180 * protect against pure readers; the rtnl semaphore provides the
181 * protection against other writers.
183 * See, for example usages, register_netdevice() and
184 * unregister_netdevice(), which must be called with the rtnl
185 * semaphore held.
187 DEFINE_RWLOCK(dev_base_lock);
188 EXPORT_SYMBOL(dev_base_lock);
190 static DEFINE_MUTEX(ifalias_mutex);
192 /* protects napi_hash addition/deletion and napi_gen_id */
193 static DEFINE_SPINLOCK(napi_hash_lock);
195 static unsigned int napi_gen_id = NR_CPUS;
196 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
198 static seqcount_t devnet_rename_seq;
200 static inline void dev_base_seq_inc(struct net *net)
202 while (++net->dev_base_seq == 0)
206 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
208 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
210 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
213 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
215 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
218 static inline void rps_lock(struct softnet_data *sd)
220 #ifdef CONFIG_RPS
221 spin_lock(&sd->input_pkt_queue.lock);
222 #endif
225 static inline void rps_unlock(struct softnet_data *sd)
227 #ifdef CONFIG_RPS
228 spin_unlock(&sd->input_pkt_queue.lock);
229 #endif
232 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
233 const char *name)
235 struct netdev_name_node *name_node;
237 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
238 if (!name_node)
239 return NULL;
240 INIT_HLIST_NODE(&name_node->hlist);
241 name_node->dev = dev;
242 name_node->name = name;
243 return name_node;
246 static struct netdev_name_node *
247 netdev_name_node_head_alloc(struct net_device *dev)
249 struct netdev_name_node *name_node;
251 name_node = netdev_name_node_alloc(dev, dev->name);
252 if (!name_node)
253 return NULL;
254 INIT_LIST_HEAD(&name_node->list);
255 return name_node;
258 static void netdev_name_node_free(struct netdev_name_node *name_node)
260 kfree(name_node);
263 static void netdev_name_node_add(struct net *net,
264 struct netdev_name_node *name_node)
266 hlist_add_head_rcu(&name_node->hlist,
267 dev_name_hash(net, name_node->name));
270 static void netdev_name_node_del(struct netdev_name_node *name_node)
272 hlist_del_rcu(&name_node->hlist);
275 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
276 const char *name)
278 struct hlist_head *head = dev_name_hash(net, name);
279 struct netdev_name_node *name_node;
281 hlist_for_each_entry(name_node, head, hlist)
282 if (!strcmp(name_node->name, name))
283 return name_node;
284 return NULL;
287 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
288 const char *name)
290 struct hlist_head *head = dev_name_hash(net, name);
291 struct netdev_name_node *name_node;
293 hlist_for_each_entry_rcu(name_node, head, hlist)
294 if (!strcmp(name_node->name, name))
295 return name_node;
296 return NULL;
299 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
301 struct netdev_name_node *name_node;
302 struct net *net = dev_net(dev);
304 name_node = netdev_name_node_lookup(net, name);
305 if (name_node)
306 return -EEXIST;
307 name_node = netdev_name_node_alloc(dev, name);
308 if (!name_node)
309 return -ENOMEM;
310 netdev_name_node_add(net, name_node);
311 /* The node that holds dev->name acts as a head of per-device list. */
312 list_add_tail(&name_node->list, &dev->name_node->list);
314 return 0;
316 EXPORT_SYMBOL(netdev_name_node_alt_create);
318 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
320 list_del(&name_node->list);
321 netdev_name_node_del(name_node);
322 kfree(name_node->name);
323 netdev_name_node_free(name_node);
326 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
328 struct netdev_name_node *name_node;
329 struct net *net = dev_net(dev);
331 name_node = netdev_name_node_lookup(net, name);
332 if (!name_node)
333 return -ENOENT;
334 __netdev_name_node_alt_destroy(name_node);
336 return 0;
338 EXPORT_SYMBOL(netdev_name_node_alt_destroy);
340 static void netdev_name_node_alt_flush(struct net_device *dev)
342 struct netdev_name_node *name_node, *tmp;
344 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
345 __netdev_name_node_alt_destroy(name_node);
348 /* Device list insertion */
349 static void list_netdevice(struct net_device *dev)
351 struct net *net = dev_net(dev);
353 ASSERT_RTNL();
355 write_lock_bh(&dev_base_lock);
356 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
357 netdev_name_node_add(net, dev->name_node);
358 hlist_add_head_rcu(&dev->index_hlist,
359 dev_index_hash(net, dev->ifindex));
360 write_unlock_bh(&dev_base_lock);
362 dev_base_seq_inc(net);
365 /* Device list removal
366 * caller must respect a RCU grace period before freeing/reusing dev
368 static void unlist_netdevice(struct net_device *dev)
370 ASSERT_RTNL();
372 /* Unlink dev from the device chain */
373 write_lock_bh(&dev_base_lock);
374 list_del_rcu(&dev->dev_list);
375 netdev_name_node_del(dev->name_node);
376 hlist_del_rcu(&dev->index_hlist);
377 write_unlock_bh(&dev_base_lock);
379 dev_base_seq_inc(dev_net(dev));
383 * Our notifier list
386 static RAW_NOTIFIER_HEAD(netdev_chain);
389 * Device drivers call our routines to queue packets here. We empty the
390 * queue in the local softnet handler.
393 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
394 EXPORT_PER_CPU_SYMBOL(softnet_data);
396 /*******************************************************************************
398 * Protocol management and registration routines
400 *******************************************************************************/
404 * Add a protocol ID to the list. Now that the input handler is
405 * smarter we can dispense with all the messy stuff that used to be
406 * here.
408 * BEWARE!!! Protocol handlers, mangling input packets,
409 * MUST BE last in hash buckets and checking protocol handlers
410 * MUST start from promiscuous ptype_all chain in net_bh.
411 * It is true now, do not change it.
412 * Explanation follows: if protocol handler, mangling packet, will
413 * be the first on list, it is not able to sense, that packet
414 * is cloned and should be copied-on-write, so that it will
415 * change it and subsequent readers will get broken packet.
416 * --ANK (980803)
419 static inline struct list_head *ptype_head(const struct packet_type *pt)
421 if (pt->type == htons(ETH_P_ALL))
422 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
423 else
424 return pt->dev ? &pt->dev->ptype_specific :
425 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
429 * dev_add_pack - add packet handler
430 * @pt: packet type declaration
432 * Add a protocol handler to the networking stack. The passed &packet_type
433 * is linked into kernel lists and may not be freed until it has been
434 * removed from the kernel lists.
436 * This call does not sleep therefore it can not
437 * guarantee all CPU's that are in middle of receiving packets
438 * will see the new packet type (until the next received packet).
441 void dev_add_pack(struct packet_type *pt)
443 struct list_head *head = ptype_head(pt);
445 spin_lock(&ptype_lock);
446 list_add_rcu(&pt->list, head);
447 spin_unlock(&ptype_lock);
449 EXPORT_SYMBOL(dev_add_pack);
452 * __dev_remove_pack - remove packet handler
453 * @pt: packet type declaration
455 * Remove a protocol handler that was previously added to the kernel
456 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
457 * from the kernel lists and can be freed or reused once this function
458 * returns.
460 * The packet type might still be in use by receivers
461 * and must not be freed until after all the CPU's have gone
462 * through a quiescent state.
464 void __dev_remove_pack(struct packet_type *pt)
466 struct list_head *head = ptype_head(pt);
467 struct packet_type *pt1;
469 spin_lock(&ptype_lock);
471 list_for_each_entry(pt1, head, list) {
472 if (pt == pt1) {
473 list_del_rcu(&pt->list);
474 goto out;
478 pr_warn("dev_remove_pack: %p not found\n", pt);
479 out:
480 spin_unlock(&ptype_lock);
482 EXPORT_SYMBOL(__dev_remove_pack);
485 * dev_remove_pack - remove packet handler
486 * @pt: packet type declaration
488 * Remove a protocol handler that was previously added to the kernel
489 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
490 * from the kernel lists and can be freed or reused once this function
491 * returns.
493 * This call sleeps to guarantee that no CPU is looking at the packet
494 * type after return.
496 void dev_remove_pack(struct packet_type *pt)
498 __dev_remove_pack(pt);
500 synchronize_net();
502 EXPORT_SYMBOL(dev_remove_pack);
506 * dev_add_offload - register offload handlers
507 * @po: protocol offload declaration
509 * Add protocol offload handlers to the networking stack. The passed
510 * &proto_offload is linked into kernel lists and may not be freed until
511 * it has been removed from the kernel lists.
513 * This call does not sleep therefore it can not
514 * guarantee all CPU's that are in middle of receiving packets
515 * will see the new offload handlers (until the next received packet).
517 void dev_add_offload(struct packet_offload *po)
519 struct packet_offload *elem;
521 spin_lock(&offload_lock);
522 list_for_each_entry(elem, &offload_base, list) {
523 if (po->priority < elem->priority)
524 break;
526 list_add_rcu(&po->list, elem->list.prev);
527 spin_unlock(&offload_lock);
529 EXPORT_SYMBOL(dev_add_offload);
532 * __dev_remove_offload - remove offload handler
533 * @po: packet offload declaration
535 * Remove a protocol offload handler that was previously added to the
536 * kernel offload handlers by dev_add_offload(). The passed &offload_type
537 * is removed from the kernel lists and can be freed or reused once this
538 * function returns.
540 * The packet type might still be in use by receivers
541 * and must not be freed until after all the CPU's have gone
542 * through a quiescent state.
544 static void __dev_remove_offload(struct packet_offload *po)
546 struct list_head *head = &offload_base;
547 struct packet_offload *po1;
549 spin_lock(&offload_lock);
551 list_for_each_entry(po1, head, list) {
552 if (po == po1) {
553 list_del_rcu(&po->list);
554 goto out;
558 pr_warn("dev_remove_offload: %p not found\n", po);
559 out:
560 spin_unlock(&offload_lock);
564 * dev_remove_offload - remove packet offload handler
565 * @po: packet offload declaration
567 * Remove a packet offload handler that was previously added to the kernel
568 * offload handlers by dev_add_offload(). The passed &offload_type is
569 * removed from the kernel lists and can be freed or reused once this
570 * function returns.
572 * This call sleeps to guarantee that no CPU is looking at the packet
573 * type after return.
575 void dev_remove_offload(struct packet_offload *po)
577 __dev_remove_offload(po);
579 synchronize_net();
581 EXPORT_SYMBOL(dev_remove_offload);
583 /******************************************************************************
585 * Device Boot-time Settings Routines
587 ******************************************************************************/
589 /* Boot time configuration table */
590 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
593 * netdev_boot_setup_add - add new setup entry
594 * @name: name of the device
595 * @map: configured settings for the device
597 * Adds new setup entry to the dev_boot_setup list. The function
598 * returns 0 on error and 1 on success. This is a generic routine to
599 * all netdevices.
601 static int netdev_boot_setup_add(char *name, struct ifmap *map)
603 struct netdev_boot_setup *s;
604 int i;
606 s = dev_boot_setup;
607 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
608 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
609 memset(s[i].name, 0, sizeof(s[i].name));
610 strlcpy(s[i].name, name, IFNAMSIZ);
611 memcpy(&s[i].map, map, sizeof(s[i].map));
612 break;
616 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
620 * netdev_boot_setup_check - check boot time settings
621 * @dev: the netdevice
623 * Check boot time settings for the device.
624 * The found settings are set for the device to be used
625 * later in the device probing.
626 * Returns 0 if no settings found, 1 if they are.
628 int netdev_boot_setup_check(struct net_device *dev)
630 struct netdev_boot_setup *s = dev_boot_setup;
631 int i;
633 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
634 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
635 !strcmp(dev->name, s[i].name)) {
636 dev->irq = s[i].map.irq;
637 dev->base_addr = s[i].map.base_addr;
638 dev->mem_start = s[i].map.mem_start;
639 dev->mem_end = s[i].map.mem_end;
640 return 1;
643 return 0;
645 EXPORT_SYMBOL(netdev_boot_setup_check);
649 * netdev_boot_base - get address from boot time settings
650 * @prefix: prefix for network device
651 * @unit: id for network device
653 * Check boot time settings for the base address of device.
654 * The found settings are set for the device to be used
655 * later in the device probing.
656 * Returns 0 if no settings found.
658 unsigned long netdev_boot_base(const char *prefix, int unit)
660 const struct netdev_boot_setup *s = dev_boot_setup;
661 char name[IFNAMSIZ];
662 int i;
664 sprintf(name, "%s%d", prefix, unit);
667 * If device already registered then return base of 1
668 * to indicate not to probe for this interface
670 if (__dev_get_by_name(&init_net, name))
671 return 1;
673 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
674 if (!strcmp(name, s[i].name))
675 return s[i].map.base_addr;
676 return 0;
680 * Saves at boot time configured settings for any netdevice.
682 int __init netdev_boot_setup(char *str)
684 int ints[5];
685 struct ifmap map;
687 str = get_options(str, ARRAY_SIZE(ints), ints);
688 if (!str || !*str)
689 return 0;
691 /* Save settings */
692 memset(&map, 0, sizeof(map));
693 if (ints[0] > 0)
694 map.irq = ints[1];
695 if (ints[0] > 1)
696 map.base_addr = ints[2];
697 if (ints[0] > 2)
698 map.mem_start = ints[3];
699 if (ints[0] > 3)
700 map.mem_end = ints[4];
702 /* Add new entry to the list */
703 return netdev_boot_setup_add(str, &map);
706 __setup("netdev=", netdev_boot_setup);
708 /*******************************************************************************
710 * Device Interface Subroutines
712 *******************************************************************************/
715 * dev_get_iflink - get 'iflink' value of a interface
716 * @dev: targeted interface
718 * Indicates the ifindex the interface is linked to.
719 * Physical interfaces have the same 'ifindex' and 'iflink' values.
722 int dev_get_iflink(const struct net_device *dev)
724 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
725 return dev->netdev_ops->ndo_get_iflink(dev);
727 return dev->ifindex;
729 EXPORT_SYMBOL(dev_get_iflink);
732 * dev_fill_metadata_dst - Retrieve tunnel egress information.
733 * @dev: targeted interface
734 * @skb: The packet.
736 * For better visibility of tunnel traffic OVS needs to retrieve
737 * egress tunnel information for a packet. Following API allows
738 * user to get this info.
740 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
742 struct ip_tunnel_info *info;
744 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
745 return -EINVAL;
747 info = skb_tunnel_info_unclone(skb);
748 if (!info)
749 return -ENOMEM;
750 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
751 return -EINVAL;
753 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
755 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
758 * __dev_get_by_name - find a device by its name
759 * @net: the applicable net namespace
760 * @name: name to find
762 * Find an interface by name. Must be called under RTNL semaphore
763 * or @dev_base_lock. If the name is found a pointer to the device
764 * is returned. If the name is not found then %NULL is returned. The
765 * reference counters are not incremented so the caller must be
766 * careful with locks.
769 struct net_device *__dev_get_by_name(struct net *net, const char *name)
771 struct netdev_name_node *node_name;
773 node_name = netdev_name_node_lookup(net, name);
774 return node_name ? node_name->dev : NULL;
776 EXPORT_SYMBOL(__dev_get_by_name);
779 * dev_get_by_name_rcu - find a device by its name
780 * @net: the applicable net namespace
781 * @name: name to find
783 * Find an interface by name.
784 * If the name is found a pointer to the device is returned.
785 * If the name is not found then %NULL is returned.
786 * The reference counters are not incremented so the caller must be
787 * careful with locks. The caller must hold RCU lock.
790 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
792 struct netdev_name_node *node_name;
794 node_name = netdev_name_node_lookup_rcu(net, name);
795 return node_name ? node_name->dev : NULL;
797 EXPORT_SYMBOL(dev_get_by_name_rcu);
800 * dev_get_by_name - find a device by its name
801 * @net: the applicable net namespace
802 * @name: name to find
804 * Find an interface by name. This can be called from any
805 * context and does its own locking. The returned handle has
806 * the usage count incremented and the caller must use dev_put() to
807 * release it when it is no longer needed. %NULL is returned if no
808 * matching device is found.
811 struct net_device *dev_get_by_name(struct net *net, const char *name)
813 struct net_device *dev;
815 rcu_read_lock();
816 dev = dev_get_by_name_rcu(net, name);
817 if (dev)
818 dev_hold(dev);
819 rcu_read_unlock();
820 return dev;
822 EXPORT_SYMBOL(dev_get_by_name);
825 * __dev_get_by_index - find a device by its ifindex
826 * @net: the applicable net namespace
827 * @ifindex: index of device
829 * Search for an interface by index. Returns %NULL if the device
830 * is not found or a pointer to the device. The device has not
831 * had its reference counter increased so the caller must be careful
832 * about locking. The caller must hold either the RTNL semaphore
833 * or @dev_base_lock.
836 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
838 struct net_device *dev;
839 struct hlist_head *head = dev_index_hash(net, ifindex);
841 hlist_for_each_entry(dev, head, index_hlist)
842 if (dev->ifindex == ifindex)
843 return dev;
845 return NULL;
847 EXPORT_SYMBOL(__dev_get_by_index);
850 * dev_get_by_index_rcu - find a device by its ifindex
851 * @net: the applicable net namespace
852 * @ifindex: index of device
854 * Search for an interface by index. Returns %NULL if the device
855 * is not found or a pointer to the device. The device has not
856 * had its reference counter increased so the caller must be careful
857 * about locking. The caller must hold RCU lock.
860 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
862 struct net_device *dev;
863 struct hlist_head *head = dev_index_hash(net, ifindex);
865 hlist_for_each_entry_rcu(dev, head, index_hlist)
866 if (dev->ifindex == ifindex)
867 return dev;
869 return NULL;
871 EXPORT_SYMBOL(dev_get_by_index_rcu);
875 * dev_get_by_index - find a device by its ifindex
876 * @net: the applicable net namespace
877 * @ifindex: index of device
879 * Search for an interface by index. Returns NULL if the device
880 * is not found or a pointer to the device. The device returned has
881 * had a reference added and the pointer is safe until the user calls
882 * dev_put to indicate they have finished with it.
885 struct net_device *dev_get_by_index(struct net *net, int ifindex)
887 struct net_device *dev;
889 rcu_read_lock();
890 dev = dev_get_by_index_rcu(net, ifindex);
891 if (dev)
892 dev_hold(dev);
893 rcu_read_unlock();
894 return dev;
896 EXPORT_SYMBOL(dev_get_by_index);
899 * dev_get_by_napi_id - find a device by napi_id
900 * @napi_id: ID of the NAPI struct
902 * Search for an interface by NAPI ID. Returns %NULL if the device
903 * is not found or a pointer to the device. The device has not had
904 * its reference counter increased so the caller must be careful
905 * about locking. The caller must hold RCU lock.
908 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
910 struct napi_struct *napi;
912 WARN_ON_ONCE(!rcu_read_lock_held());
914 if (napi_id < MIN_NAPI_ID)
915 return NULL;
917 napi = napi_by_id(napi_id);
919 return napi ? napi->dev : NULL;
921 EXPORT_SYMBOL(dev_get_by_napi_id);
924 * netdev_get_name - get a netdevice name, knowing its ifindex.
925 * @net: network namespace
926 * @name: a pointer to the buffer where the name will be stored.
927 * @ifindex: the ifindex of the interface to get the name from.
929 * The use of raw_seqcount_begin() and cond_resched() before
930 * retrying is required as we want to give the writers a chance
931 * to complete when CONFIG_PREEMPT is not set.
933 int netdev_get_name(struct net *net, char *name, int ifindex)
935 struct net_device *dev;
936 unsigned int seq;
938 retry:
939 seq = raw_seqcount_begin(&devnet_rename_seq);
940 rcu_read_lock();
941 dev = dev_get_by_index_rcu(net, ifindex);
942 if (!dev) {
943 rcu_read_unlock();
944 return -ENODEV;
947 strcpy(name, dev->name);
948 rcu_read_unlock();
949 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
950 cond_resched();
951 goto retry;
954 return 0;
958 * dev_getbyhwaddr_rcu - find a device by its hardware address
959 * @net: the applicable net namespace
960 * @type: media type of device
961 * @ha: hardware address
963 * Search for an interface by MAC address. Returns NULL if the device
964 * is not found or a pointer to the device.
965 * The caller must hold RCU or RTNL.
966 * The returned device has not had its ref count increased
967 * and the caller must therefore be careful about locking
971 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
972 const char *ha)
974 struct net_device *dev;
976 for_each_netdev_rcu(net, dev)
977 if (dev->type == type &&
978 !memcmp(dev->dev_addr, ha, dev->addr_len))
979 return dev;
981 return NULL;
983 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
985 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
987 struct net_device *dev;
989 ASSERT_RTNL();
990 for_each_netdev(net, dev)
991 if (dev->type == type)
992 return dev;
994 return NULL;
996 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
998 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1000 struct net_device *dev, *ret = NULL;
1002 rcu_read_lock();
1003 for_each_netdev_rcu(net, dev)
1004 if (dev->type == type) {
1005 dev_hold(dev);
1006 ret = dev;
1007 break;
1009 rcu_read_unlock();
1010 return ret;
1012 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1015 * __dev_get_by_flags - find any device with given flags
1016 * @net: the applicable net namespace
1017 * @if_flags: IFF_* values
1018 * @mask: bitmask of bits in if_flags to check
1020 * Search for any interface with the given flags. Returns NULL if a device
1021 * is not found or a pointer to the device. Must be called inside
1022 * rtnl_lock(), and result refcount is unchanged.
1025 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1026 unsigned short mask)
1028 struct net_device *dev, *ret;
1030 ASSERT_RTNL();
1032 ret = NULL;
1033 for_each_netdev(net, dev) {
1034 if (((dev->flags ^ if_flags) & mask) == 0) {
1035 ret = dev;
1036 break;
1039 return ret;
1041 EXPORT_SYMBOL(__dev_get_by_flags);
1044 * dev_valid_name - check if name is okay for network device
1045 * @name: name string
1047 * Network device names need to be valid file names to
1048 * to allow sysfs to work. We also disallow any kind of
1049 * whitespace.
1051 bool dev_valid_name(const char *name)
1053 if (*name == '\0')
1054 return false;
1055 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1056 return false;
1057 if (!strcmp(name, ".") || !strcmp(name, ".."))
1058 return false;
1060 while (*name) {
1061 if (*name == '/' || *name == ':' || isspace(*name))
1062 return false;
1063 name++;
1065 return true;
1067 EXPORT_SYMBOL(dev_valid_name);
1070 * __dev_alloc_name - allocate a name for a device
1071 * @net: network namespace to allocate the device name in
1072 * @name: name format string
1073 * @buf: scratch buffer and result name string
1075 * Passed a format string - eg "lt%d" it will try and find a suitable
1076 * id. It scans list of devices to build up a free map, then chooses
1077 * the first empty slot. The caller must hold the dev_base or rtnl lock
1078 * while allocating the name and adding the device in order to avoid
1079 * duplicates.
1080 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1081 * Returns the number of the unit assigned or a negative errno code.
1084 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1086 int i = 0;
1087 const char *p;
1088 const int max_netdevices = 8*PAGE_SIZE;
1089 unsigned long *inuse;
1090 struct net_device *d;
1092 if (!dev_valid_name(name))
1093 return -EINVAL;
1095 p = strchr(name, '%');
1096 if (p) {
1098 * Verify the string as this thing may have come from
1099 * the user. There must be either one "%d" and no other "%"
1100 * characters.
1102 if (p[1] != 'd' || strchr(p + 2, '%'))
1103 return -EINVAL;
1105 /* Use one page as a bit array of possible slots */
1106 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1107 if (!inuse)
1108 return -ENOMEM;
1110 for_each_netdev(net, d) {
1111 if (!sscanf(d->name, name, &i))
1112 continue;
1113 if (i < 0 || i >= max_netdevices)
1114 continue;
1116 /* avoid cases where sscanf is not exact inverse of printf */
1117 snprintf(buf, IFNAMSIZ, name, i);
1118 if (!strncmp(buf, d->name, IFNAMSIZ))
1119 set_bit(i, inuse);
1122 i = find_first_zero_bit(inuse, max_netdevices);
1123 free_page((unsigned long) inuse);
1126 snprintf(buf, IFNAMSIZ, name, i);
1127 if (!__dev_get_by_name(net, buf))
1128 return i;
1130 /* It is possible to run out of possible slots
1131 * when the name is long and there isn't enough space left
1132 * for the digits, or if all bits are used.
1134 return -ENFILE;
1137 static int dev_alloc_name_ns(struct net *net,
1138 struct net_device *dev,
1139 const char *name)
1141 char buf[IFNAMSIZ];
1142 int ret;
1144 BUG_ON(!net);
1145 ret = __dev_alloc_name(net, name, buf);
1146 if (ret >= 0)
1147 strlcpy(dev->name, buf, IFNAMSIZ);
1148 return ret;
1152 * dev_alloc_name - allocate a name for a device
1153 * @dev: device
1154 * @name: name format string
1156 * Passed a format string - eg "lt%d" it will try and find a suitable
1157 * id. It scans list of devices to build up a free map, then chooses
1158 * the first empty slot. The caller must hold the dev_base or rtnl lock
1159 * while allocating the name and adding the device in order to avoid
1160 * duplicates.
1161 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1162 * Returns the number of the unit assigned or a negative errno code.
1165 int dev_alloc_name(struct net_device *dev, const char *name)
1167 return dev_alloc_name_ns(dev_net(dev), dev, name);
1169 EXPORT_SYMBOL(dev_alloc_name);
1171 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1172 const char *name)
1174 BUG_ON(!net);
1176 if (!dev_valid_name(name))
1177 return -EINVAL;
1179 if (strchr(name, '%'))
1180 return dev_alloc_name_ns(net, dev, name);
1181 else if (__dev_get_by_name(net, name))
1182 return -EEXIST;
1183 else if (dev->name != name)
1184 strlcpy(dev->name, name, IFNAMSIZ);
1186 return 0;
1190 * dev_change_name - change name of a device
1191 * @dev: device
1192 * @newname: name (or format string) must be at least IFNAMSIZ
1194 * Change name of a device, can pass format strings "eth%d".
1195 * for wildcarding.
1197 int dev_change_name(struct net_device *dev, const char *newname)
1199 unsigned char old_assign_type;
1200 char oldname[IFNAMSIZ];
1201 int err = 0;
1202 int ret;
1203 struct net *net;
1205 ASSERT_RTNL();
1206 BUG_ON(!dev_net(dev));
1208 net = dev_net(dev);
1210 /* Some auto-enslaved devices e.g. failover slaves are
1211 * special, as userspace might rename the device after
1212 * the interface had been brought up and running since
1213 * the point kernel initiated auto-enslavement. Allow
1214 * live name change even when these slave devices are
1215 * up and running.
1217 * Typically, users of these auto-enslaving devices
1218 * don't actually care about slave name change, as
1219 * they are supposed to operate on master interface
1220 * directly.
1222 if (dev->flags & IFF_UP &&
1223 likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1224 return -EBUSY;
1226 write_seqcount_begin(&devnet_rename_seq);
1228 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1229 write_seqcount_end(&devnet_rename_seq);
1230 return 0;
1233 memcpy(oldname, dev->name, IFNAMSIZ);
1235 err = dev_get_valid_name(net, dev, newname);
1236 if (err < 0) {
1237 write_seqcount_end(&devnet_rename_seq);
1238 return err;
1241 if (oldname[0] && !strchr(oldname, '%'))
1242 netdev_info(dev, "renamed from %s\n", oldname);
1244 old_assign_type = dev->name_assign_type;
1245 dev->name_assign_type = NET_NAME_RENAMED;
1247 rollback:
1248 ret = device_rename(&dev->dev, dev->name);
1249 if (ret) {
1250 memcpy(dev->name, oldname, IFNAMSIZ);
1251 dev->name_assign_type = old_assign_type;
1252 write_seqcount_end(&devnet_rename_seq);
1253 return ret;
1256 write_seqcount_end(&devnet_rename_seq);
1258 netdev_adjacent_rename_links(dev, oldname);
1260 write_lock_bh(&dev_base_lock);
1261 netdev_name_node_del(dev->name_node);
1262 write_unlock_bh(&dev_base_lock);
1264 synchronize_rcu();
1266 write_lock_bh(&dev_base_lock);
1267 netdev_name_node_add(net, dev->name_node);
1268 write_unlock_bh(&dev_base_lock);
1270 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1271 ret = notifier_to_errno(ret);
1273 if (ret) {
1274 /* err >= 0 after dev_alloc_name() or stores the first errno */
1275 if (err >= 0) {
1276 err = ret;
1277 write_seqcount_begin(&devnet_rename_seq);
1278 memcpy(dev->name, oldname, IFNAMSIZ);
1279 memcpy(oldname, newname, IFNAMSIZ);
1280 dev->name_assign_type = old_assign_type;
1281 old_assign_type = NET_NAME_RENAMED;
1282 goto rollback;
1283 } else {
1284 pr_err("%s: name change rollback failed: %d\n",
1285 dev->name, ret);
1289 return err;
1293 * dev_set_alias - change ifalias of a device
1294 * @dev: device
1295 * @alias: name up to IFALIASZ
1296 * @len: limit of bytes to copy from info
1298 * Set ifalias for a device,
1300 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1302 struct dev_ifalias *new_alias = NULL;
1304 if (len >= IFALIASZ)
1305 return -EINVAL;
1307 if (len) {
1308 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1309 if (!new_alias)
1310 return -ENOMEM;
1312 memcpy(new_alias->ifalias, alias, len);
1313 new_alias->ifalias[len] = 0;
1316 mutex_lock(&ifalias_mutex);
1317 new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1318 mutex_is_locked(&ifalias_mutex));
1319 mutex_unlock(&ifalias_mutex);
1321 if (new_alias)
1322 kfree_rcu(new_alias, rcuhead);
1324 return len;
1326 EXPORT_SYMBOL(dev_set_alias);
1329 * dev_get_alias - get ifalias of a device
1330 * @dev: device
1331 * @name: buffer to store name of ifalias
1332 * @len: size of buffer
1334 * get ifalias for a device. Caller must make sure dev cannot go
1335 * away, e.g. rcu read lock or own a reference count to device.
1337 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1339 const struct dev_ifalias *alias;
1340 int ret = 0;
1342 rcu_read_lock();
1343 alias = rcu_dereference(dev->ifalias);
1344 if (alias)
1345 ret = snprintf(name, len, "%s", alias->ifalias);
1346 rcu_read_unlock();
1348 return ret;
1352 * netdev_features_change - device changes features
1353 * @dev: device to cause notification
1355 * Called to indicate a device has changed features.
1357 void netdev_features_change(struct net_device *dev)
1359 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1361 EXPORT_SYMBOL(netdev_features_change);
1364 * netdev_state_change - device changes state
1365 * @dev: device to cause notification
1367 * Called to indicate a device has changed state. This function calls
1368 * the notifier chains for netdev_chain and sends a NEWLINK message
1369 * to the routing socket.
1371 void netdev_state_change(struct net_device *dev)
1373 if (dev->flags & IFF_UP) {
1374 struct netdev_notifier_change_info change_info = {
1375 .info.dev = dev,
1378 call_netdevice_notifiers_info(NETDEV_CHANGE,
1379 &change_info.info);
1380 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1383 EXPORT_SYMBOL(netdev_state_change);
1386 * netdev_notify_peers - notify network peers about existence of @dev
1387 * @dev: network device
1389 * Generate traffic such that interested network peers are aware of
1390 * @dev, such as by generating a gratuitous ARP. This may be used when
1391 * a device wants to inform the rest of the network about some sort of
1392 * reconfiguration such as a failover event or virtual machine
1393 * migration.
1395 void netdev_notify_peers(struct net_device *dev)
1397 rtnl_lock();
1398 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1399 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1400 rtnl_unlock();
1402 EXPORT_SYMBOL(netdev_notify_peers);
1404 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1406 const struct net_device_ops *ops = dev->netdev_ops;
1407 int ret;
1409 ASSERT_RTNL();
1411 if (!netif_device_present(dev))
1412 return -ENODEV;
1414 /* Block netpoll from trying to do any rx path servicing.
1415 * If we don't do this there is a chance ndo_poll_controller
1416 * or ndo_poll may be running while we open the device
1418 netpoll_poll_disable(dev);
1420 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1421 ret = notifier_to_errno(ret);
1422 if (ret)
1423 return ret;
1425 set_bit(__LINK_STATE_START, &dev->state);
1427 if (ops->ndo_validate_addr)
1428 ret = ops->ndo_validate_addr(dev);
1430 if (!ret && ops->ndo_open)
1431 ret = ops->ndo_open(dev);
1433 netpoll_poll_enable(dev);
1435 if (ret)
1436 clear_bit(__LINK_STATE_START, &dev->state);
1437 else {
1438 dev->flags |= IFF_UP;
1439 dev_set_rx_mode(dev);
1440 dev_activate(dev);
1441 add_device_randomness(dev->dev_addr, dev->addr_len);
1444 return ret;
1448 * dev_open - prepare an interface for use.
1449 * @dev: device to open
1450 * @extack: netlink extended ack
1452 * Takes a device from down to up state. The device's private open
1453 * function is invoked and then the multicast lists are loaded. Finally
1454 * the device is moved into the up state and a %NETDEV_UP message is
1455 * sent to the netdev notifier chain.
1457 * Calling this function on an active interface is a nop. On a failure
1458 * a negative errno code is returned.
1460 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1462 int ret;
1464 if (dev->flags & IFF_UP)
1465 return 0;
1467 ret = __dev_open(dev, extack);
1468 if (ret < 0)
1469 return ret;
1471 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1472 call_netdevice_notifiers(NETDEV_UP, dev);
1474 return ret;
1476 EXPORT_SYMBOL(dev_open);
1478 static void __dev_close_many(struct list_head *head)
1480 struct net_device *dev;
1482 ASSERT_RTNL();
1483 might_sleep();
1485 list_for_each_entry(dev, head, close_list) {
1486 /* Temporarily disable netpoll until the interface is down */
1487 netpoll_poll_disable(dev);
1489 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1491 clear_bit(__LINK_STATE_START, &dev->state);
1493 /* Synchronize to scheduled poll. We cannot touch poll list, it
1494 * can be even on different cpu. So just clear netif_running().
1496 * dev->stop() will invoke napi_disable() on all of it's
1497 * napi_struct instances on this device.
1499 smp_mb__after_atomic(); /* Commit netif_running(). */
1502 dev_deactivate_many(head);
1504 list_for_each_entry(dev, head, close_list) {
1505 const struct net_device_ops *ops = dev->netdev_ops;
1508 * Call the device specific close. This cannot fail.
1509 * Only if device is UP
1511 * We allow it to be called even after a DETACH hot-plug
1512 * event.
1514 if (ops->ndo_stop)
1515 ops->ndo_stop(dev);
1517 dev->flags &= ~IFF_UP;
1518 netpoll_poll_enable(dev);
1522 static void __dev_close(struct net_device *dev)
1524 LIST_HEAD(single);
1526 list_add(&dev->close_list, &single);
1527 __dev_close_many(&single);
1528 list_del(&single);
1531 void dev_close_many(struct list_head *head, bool unlink)
1533 struct net_device *dev, *tmp;
1535 /* Remove the devices that don't need to be closed */
1536 list_for_each_entry_safe(dev, tmp, head, close_list)
1537 if (!(dev->flags & IFF_UP))
1538 list_del_init(&dev->close_list);
1540 __dev_close_many(head);
1542 list_for_each_entry_safe(dev, tmp, head, close_list) {
1543 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1544 call_netdevice_notifiers(NETDEV_DOWN, dev);
1545 if (unlink)
1546 list_del_init(&dev->close_list);
1549 EXPORT_SYMBOL(dev_close_many);
1552 * dev_close - shutdown an interface.
1553 * @dev: device to shutdown
1555 * This function moves an active device into down state. A
1556 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1557 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1558 * chain.
1560 void dev_close(struct net_device *dev)
1562 if (dev->flags & IFF_UP) {
1563 LIST_HEAD(single);
1565 list_add(&dev->close_list, &single);
1566 dev_close_many(&single, true);
1567 list_del(&single);
1570 EXPORT_SYMBOL(dev_close);
1574 * dev_disable_lro - disable Large Receive Offload on a device
1575 * @dev: device
1577 * Disable Large Receive Offload (LRO) on a net device. Must be
1578 * called under RTNL. This is needed if received packets may be
1579 * forwarded to another interface.
1581 void dev_disable_lro(struct net_device *dev)
1583 struct net_device *lower_dev;
1584 struct list_head *iter;
1586 dev->wanted_features &= ~NETIF_F_LRO;
1587 netdev_update_features(dev);
1589 if (unlikely(dev->features & NETIF_F_LRO))
1590 netdev_WARN(dev, "failed to disable LRO!\n");
1592 netdev_for_each_lower_dev(dev, lower_dev, iter)
1593 dev_disable_lro(lower_dev);
1595 EXPORT_SYMBOL(dev_disable_lro);
1598 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1599 * @dev: device
1601 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1602 * called under RTNL. This is needed if Generic XDP is installed on
1603 * the device.
1605 static void dev_disable_gro_hw(struct net_device *dev)
1607 dev->wanted_features &= ~NETIF_F_GRO_HW;
1608 netdev_update_features(dev);
1610 if (unlikely(dev->features & NETIF_F_GRO_HW))
1611 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1614 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1616 #define N(val) \
1617 case NETDEV_##val: \
1618 return "NETDEV_" __stringify(val);
1619 switch (cmd) {
1620 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1621 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1622 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1623 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1624 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1625 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1626 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1627 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1628 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1629 N(PRE_CHANGEADDR)
1631 #undef N
1632 return "UNKNOWN_NETDEV_EVENT";
1634 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1636 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1637 struct net_device *dev)
1639 struct netdev_notifier_info info = {
1640 .dev = dev,
1643 return nb->notifier_call(nb, val, &info);
1646 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1647 struct net_device *dev)
1649 int err;
1651 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1652 err = notifier_to_errno(err);
1653 if (err)
1654 return err;
1656 if (!(dev->flags & IFF_UP))
1657 return 0;
1659 call_netdevice_notifier(nb, NETDEV_UP, dev);
1660 return 0;
1663 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1664 struct net_device *dev)
1666 if (dev->flags & IFF_UP) {
1667 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1668 dev);
1669 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1671 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1674 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1675 struct net *net)
1677 struct net_device *dev;
1678 int err;
1680 for_each_netdev(net, dev) {
1681 err = call_netdevice_register_notifiers(nb, dev);
1682 if (err)
1683 goto rollback;
1685 return 0;
1687 rollback:
1688 for_each_netdev_continue_reverse(net, dev)
1689 call_netdevice_unregister_notifiers(nb, dev);
1690 return err;
1693 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1694 struct net *net)
1696 struct net_device *dev;
1698 for_each_netdev(net, dev)
1699 call_netdevice_unregister_notifiers(nb, dev);
1702 static int dev_boot_phase = 1;
1705 * register_netdevice_notifier - register a network notifier block
1706 * @nb: notifier
1708 * Register a notifier to be called when network device events occur.
1709 * The notifier passed is linked into the kernel structures and must
1710 * not be reused until it has been unregistered. A negative errno code
1711 * is returned on a failure.
1713 * When registered all registration and up events are replayed
1714 * to the new notifier to allow device to have a race free
1715 * view of the network device list.
1718 int register_netdevice_notifier(struct notifier_block *nb)
1720 struct net *net;
1721 int err;
1723 /* Close race with setup_net() and cleanup_net() */
1724 down_write(&pernet_ops_rwsem);
1725 rtnl_lock();
1726 err = raw_notifier_chain_register(&netdev_chain, nb);
1727 if (err)
1728 goto unlock;
1729 if (dev_boot_phase)
1730 goto unlock;
1731 for_each_net(net) {
1732 err = call_netdevice_register_net_notifiers(nb, net);
1733 if (err)
1734 goto rollback;
1737 unlock:
1738 rtnl_unlock();
1739 up_write(&pernet_ops_rwsem);
1740 return err;
1742 rollback:
1743 for_each_net_continue_reverse(net)
1744 call_netdevice_unregister_net_notifiers(nb, net);
1746 raw_notifier_chain_unregister(&netdev_chain, nb);
1747 goto unlock;
1749 EXPORT_SYMBOL(register_netdevice_notifier);
1752 * unregister_netdevice_notifier - unregister a network notifier block
1753 * @nb: notifier
1755 * Unregister a notifier previously registered by
1756 * register_netdevice_notifier(). The notifier is unlinked into the
1757 * kernel structures and may then be reused. A negative errno code
1758 * is returned on a failure.
1760 * After unregistering unregister and down device events are synthesized
1761 * for all devices on the device list to the removed notifier to remove
1762 * the need for special case cleanup code.
1765 int unregister_netdevice_notifier(struct notifier_block *nb)
1767 struct net_device *dev;
1768 struct net *net;
1769 int err;
1771 /* Close race with setup_net() and cleanup_net() */
1772 down_write(&pernet_ops_rwsem);
1773 rtnl_lock();
1774 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1775 if (err)
1776 goto unlock;
1778 for_each_net(net) {
1779 for_each_netdev(net, dev) {
1780 if (dev->flags & IFF_UP) {
1781 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1782 dev);
1783 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1785 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1788 unlock:
1789 rtnl_unlock();
1790 up_write(&pernet_ops_rwsem);
1791 return err;
1793 EXPORT_SYMBOL(unregister_netdevice_notifier);
1796 * register_netdevice_notifier_net - register a per-netns network notifier block
1797 * @net: network namespace
1798 * @nb: notifier
1800 * Register a notifier to be called when network device events occur.
1801 * The notifier passed is linked into the kernel structures and must
1802 * not be reused until it has been unregistered. A negative errno code
1803 * is returned on a failure.
1805 * When registered all registration and up events are replayed
1806 * to the new notifier to allow device to have a race free
1807 * view of the network device list.
1810 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1812 int err;
1814 rtnl_lock();
1815 err = raw_notifier_chain_register(&net->netdev_chain, nb);
1816 if (err)
1817 goto unlock;
1818 if (dev_boot_phase)
1819 goto unlock;
1821 err = call_netdevice_register_net_notifiers(nb, net);
1822 if (err)
1823 goto chain_unregister;
1825 unlock:
1826 rtnl_unlock();
1827 return err;
1829 chain_unregister:
1830 raw_notifier_chain_unregister(&netdev_chain, nb);
1831 goto unlock;
1833 EXPORT_SYMBOL(register_netdevice_notifier_net);
1836 * unregister_netdevice_notifier_net - unregister a per-netns
1837 * network notifier block
1838 * @net: network namespace
1839 * @nb: notifier
1841 * Unregister a notifier previously registered by
1842 * register_netdevice_notifier(). The notifier is unlinked into the
1843 * kernel structures and may then be reused. A negative errno code
1844 * is returned on a failure.
1846 * After unregistering unregister and down device events are synthesized
1847 * for all devices on the device list to the removed notifier to remove
1848 * the need for special case cleanup code.
1851 int unregister_netdevice_notifier_net(struct net *net,
1852 struct notifier_block *nb)
1854 int err;
1856 rtnl_lock();
1857 err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1858 if (err)
1859 goto unlock;
1861 call_netdevice_unregister_net_notifiers(nb, net);
1863 unlock:
1864 rtnl_unlock();
1865 return err;
1867 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1870 * call_netdevice_notifiers_info - call all network notifier blocks
1871 * @val: value passed unmodified to notifier function
1872 * @info: notifier information data
1874 * Call all network notifier blocks. Parameters and return value
1875 * are as for raw_notifier_call_chain().
1878 static int call_netdevice_notifiers_info(unsigned long val,
1879 struct netdev_notifier_info *info)
1881 struct net *net = dev_net(info->dev);
1882 int ret;
1884 ASSERT_RTNL();
1886 /* Run per-netns notifier block chain first, then run the global one.
1887 * Hopefully, one day, the global one is going to be removed after
1888 * all notifier block registrators get converted to be per-netns.
1890 ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1891 if (ret & NOTIFY_STOP_MASK)
1892 return ret;
1893 return raw_notifier_call_chain(&netdev_chain, val, info);
1896 static int call_netdevice_notifiers_extack(unsigned long val,
1897 struct net_device *dev,
1898 struct netlink_ext_ack *extack)
1900 struct netdev_notifier_info info = {
1901 .dev = dev,
1902 .extack = extack,
1905 return call_netdevice_notifiers_info(val, &info);
1909 * call_netdevice_notifiers - call all network notifier blocks
1910 * @val: value passed unmodified to notifier function
1911 * @dev: net_device pointer passed unmodified to notifier function
1913 * Call all network notifier blocks. Parameters and return value
1914 * are as for raw_notifier_call_chain().
1917 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1919 return call_netdevice_notifiers_extack(val, dev, NULL);
1921 EXPORT_SYMBOL(call_netdevice_notifiers);
1924 * call_netdevice_notifiers_mtu - call all network notifier blocks
1925 * @val: value passed unmodified to notifier function
1926 * @dev: net_device pointer passed unmodified to notifier function
1927 * @arg: additional u32 argument passed to the notifier function
1929 * Call all network notifier blocks. Parameters and return value
1930 * are as for raw_notifier_call_chain().
1932 static int call_netdevice_notifiers_mtu(unsigned long val,
1933 struct net_device *dev, u32 arg)
1935 struct netdev_notifier_info_ext info = {
1936 .info.dev = dev,
1937 .ext.mtu = arg,
1940 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
1942 return call_netdevice_notifiers_info(val, &info.info);
1945 #ifdef CONFIG_NET_INGRESS
1946 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
1948 void net_inc_ingress_queue(void)
1950 static_branch_inc(&ingress_needed_key);
1952 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1954 void net_dec_ingress_queue(void)
1956 static_branch_dec(&ingress_needed_key);
1958 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1959 #endif
1961 #ifdef CONFIG_NET_EGRESS
1962 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
1964 void net_inc_egress_queue(void)
1966 static_branch_inc(&egress_needed_key);
1968 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1970 void net_dec_egress_queue(void)
1972 static_branch_dec(&egress_needed_key);
1974 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1975 #endif
1977 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
1978 #ifdef CONFIG_JUMP_LABEL
1979 static atomic_t netstamp_needed_deferred;
1980 static atomic_t netstamp_wanted;
1981 static void netstamp_clear(struct work_struct *work)
1983 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1984 int wanted;
1986 wanted = atomic_add_return(deferred, &netstamp_wanted);
1987 if (wanted > 0)
1988 static_branch_enable(&netstamp_needed_key);
1989 else
1990 static_branch_disable(&netstamp_needed_key);
1992 static DECLARE_WORK(netstamp_work, netstamp_clear);
1993 #endif
1995 void net_enable_timestamp(void)
1997 #ifdef CONFIG_JUMP_LABEL
1998 int wanted;
2000 while (1) {
2001 wanted = atomic_read(&netstamp_wanted);
2002 if (wanted <= 0)
2003 break;
2004 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2005 return;
2007 atomic_inc(&netstamp_needed_deferred);
2008 schedule_work(&netstamp_work);
2009 #else
2010 static_branch_inc(&netstamp_needed_key);
2011 #endif
2013 EXPORT_SYMBOL(net_enable_timestamp);
2015 void net_disable_timestamp(void)
2017 #ifdef CONFIG_JUMP_LABEL
2018 int wanted;
2020 while (1) {
2021 wanted = atomic_read(&netstamp_wanted);
2022 if (wanted <= 1)
2023 break;
2024 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2025 return;
2027 atomic_dec(&netstamp_needed_deferred);
2028 schedule_work(&netstamp_work);
2029 #else
2030 static_branch_dec(&netstamp_needed_key);
2031 #endif
2033 EXPORT_SYMBOL(net_disable_timestamp);
2035 static inline void net_timestamp_set(struct sk_buff *skb)
2037 skb->tstamp = 0;
2038 if (static_branch_unlikely(&netstamp_needed_key))
2039 __net_timestamp(skb);
2042 #define net_timestamp_check(COND, SKB) \
2043 if (static_branch_unlikely(&netstamp_needed_key)) { \
2044 if ((COND) && !(SKB)->tstamp) \
2045 __net_timestamp(SKB); \
2048 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2050 unsigned int len;
2052 if (!(dev->flags & IFF_UP))
2053 return false;
2055 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
2056 if (skb->len <= len)
2057 return true;
2059 /* if TSO is enabled, we don't care about the length as the packet
2060 * could be forwarded without being segmented before
2062 if (skb_is_gso(skb))
2063 return true;
2065 return false;
2067 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2069 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2071 int ret = ____dev_forward_skb(dev, skb);
2073 if (likely(!ret)) {
2074 skb->protocol = eth_type_trans(skb, dev);
2075 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2078 return ret;
2080 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2083 * dev_forward_skb - loopback an skb to another netif
2085 * @dev: destination network device
2086 * @skb: buffer to forward
2088 * return values:
2089 * NET_RX_SUCCESS (no congestion)
2090 * NET_RX_DROP (packet was dropped, but freed)
2092 * dev_forward_skb can be used for injecting an skb from the
2093 * start_xmit function of one device into the receive queue
2094 * of another device.
2096 * The receiving device may be in another namespace, so
2097 * we have to clear all information in the skb that could
2098 * impact namespace isolation.
2100 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2102 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2104 EXPORT_SYMBOL_GPL(dev_forward_skb);
2106 static inline int deliver_skb(struct sk_buff *skb,
2107 struct packet_type *pt_prev,
2108 struct net_device *orig_dev)
2110 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2111 return -ENOMEM;
2112 refcount_inc(&skb->users);
2113 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2116 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2117 struct packet_type **pt,
2118 struct net_device *orig_dev,
2119 __be16 type,
2120 struct list_head *ptype_list)
2122 struct packet_type *ptype, *pt_prev = *pt;
2124 list_for_each_entry_rcu(ptype, ptype_list, list) {
2125 if (ptype->type != type)
2126 continue;
2127 if (pt_prev)
2128 deliver_skb(skb, pt_prev, orig_dev);
2129 pt_prev = ptype;
2131 *pt = pt_prev;
2134 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2136 if (!ptype->af_packet_priv || !skb->sk)
2137 return false;
2139 if (ptype->id_match)
2140 return ptype->id_match(ptype, skb->sk);
2141 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2142 return true;
2144 return false;
2148 * dev_nit_active - return true if any network interface taps are in use
2150 * @dev: network device to check for the presence of taps
2152 bool dev_nit_active(struct net_device *dev)
2154 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2156 EXPORT_SYMBOL_GPL(dev_nit_active);
2159 * Support routine. Sends outgoing frames to any network
2160 * taps currently in use.
2163 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2165 struct packet_type *ptype;
2166 struct sk_buff *skb2 = NULL;
2167 struct packet_type *pt_prev = NULL;
2168 struct list_head *ptype_list = &ptype_all;
2170 rcu_read_lock();
2171 again:
2172 list_for_each_entry_rcu(ptype, ptype_list, list) {
2173 if (ptype->ignore_outgoing)
2174 continue;
2176 /* Never send packets back to the socket
2177 * they originated from - MvS (miquels@drinkel.ow.org)
2179 if (skb_loop_sk(ptype, skb))
2180 continue;
2182 if (pt_prev) {
2183 deliver_skb(skb2, pt_prev, skb->dev);
2184 pt_prev = ptype;
2185 continue;
2188 /* need to clone skb, done only once */
2189 skb2 = skb_clone(skb, GFP_ATOMIC);
2190 if (!skb2)
2191 goto out_unlock;
2193 net_timestamp_set(skb2);
2195 /* skb->nh should be correctly
2196 * set by sender, so that the second statement is
2197 * just protection against buggy protocols.
2199 skb_reset_mac_header(skb2);
2201 if (skb_network_header(skb2) < skb2->data ||
2202 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2203 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2204 ntohs(skb2->protocol),
2205 dev->name);
2206 skb_reset_network_header(skb2);
2209 skb2->transport_header = skb2->network_header;
2210 skb2->pkt_type = PACKET_OUTGOING;
2211 pt_prev = ptype;
2214 if (ptype_list == &ptype_all) {
2215 ptype_list = &dev->ptype_all;
2216 goto again;
2218 out_unlock:
2219 if (pt_prev) {
2220 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2221 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2222 else
2223 kfree_skb(skb2);
2225 rcu_read_unlock();
2227 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2230 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2231 * @dev: Network device
2232 * @txq: number of queues available
2234 * If real_num_tx_queues is changed the tc mappings may no longer be
2235 * valid. To resolve this verify the tc mapping remains valid and if
2236 * not NULL the mapping. With no priorities mapping to this
2237 * offset/count pair it will no longer be used. In the worst case TC0
2238 * is invalid nothing can be done so disable priority mappings. If is
2239 * expected that drivers will fix this mapping if they can before
2240 * calling netif_set_real_num_tx_queues.
2242 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2244 int i;
2245 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2247 /* If TC0 is invalidated disable TC mapping */
2248 if (tc->offset + tc->count > txq) {
2249 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2250 dev->num_tc = 0;
2251 return;
2254 /* Invalidated prio to tc mappings set to TC0 */
2255 for (i = 1; i < TC_BITMASK + 1; i++) {
2256 int q = netdev_get_prio_tc_map(dev, i);
2258 tc = &dev->tc_to_txq[q];
2259 if (tc->offset + tc->count > txq) {
2260 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2261 i, q);
2262 netdev_set_prio_tc_map(dev, i, 0);
2267 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2269 if (dev->num_tc) {
2270 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2271 int i;
2273 /* walk through the TCs and see if it falls into any of them */
2274 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2275 if ((txq - tc->offset) < tc->count)
2276 return i;
2279 /* didn't find it, just return -1 to indicate no match */
2280 return -1;
2283 return 0;
2285 EXPORT_SYMBOL(netdev_txq_to_tc);
2287 #ifdef CONFIG_XPS
2288 struct static_key xps_needed __read_mostly;
2289 EXPORT_SYMBOL(xps_needed);
2290 struct static_key xps_rxqs_needed __read_mostly;
2291 EXPORT_SYMBOL(xps_rxqs_needed);
2292 static DEFINE_MUTEX(xps_map_mutex);
2293 #define xmap_dereference(P) \
2294 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2296 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2297 int tci, u16 index)
2299 struct xps_map *map = NULL;
2300 int pos;
2302 if (dev_maps)
2303 map = xmap_dereference(dev_maps->attr_map[tci]);
2304 if (!map)
2305 return false;
2307 for (pos = map->len; pos--;) {
2308 if (map->queues[pos] != index)
2309 continue;
2311 if (map->len > 1) {
2312 map->queues[pos] = map->queues[--map->len];
2313 break;
2316 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2317 kfree_rcu(map, rcu);
2318 return false;
2321 return true;
2324 static bool remove_xps_queue_cpu(struct net_device *dev,
2325 struct xps_dev_maps *dev_maps,
2326 int cpu, u16 offset, u16 count)
2328 int num_tc = dev->num_tc ? : 1;
2329 bool active = false;
2330 int tci;
2332 for (tci = cpu * num_tc; num_tc--; tci++) {
2333 int i, j;
2335 for (i = count, j = offset; i--; j++) {
2336 if (!remove_xps_queue(dev_maps, tci, j))
2337 break;
2340 active |= i < 0;
2343 return active;
2346 static void reset_xps_maps(struct net_device *dev,
2347 struct xps_dev_maps *dev_maps,
2348 bool is_rxqs_map)
2350 if (is_rxqs_map) {
2351 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2352 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2353 } else {
2354 RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2356 static_key_slow_dec_cpuslocked(&xps_needed);
2357 kfree_rcu(dev_maps, rcu);
2360 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2361 struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2362 u16 offset, u16 count, bool is_rxqs_map)
2364 bool active = false;
2365 int i, j;
2367 for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2368 j < nr_ids;)
2369 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2370 count);
2371 if (!active)
2372 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2374 if (!is_rxqs_map) {
2375 for (i = offset + (count - 1); count--; i--) {
2376 netdev_queue_numa_node_write(
2377 netdev_get_tx_queue(dev, i),
2378 NUMA_NO_NODE);
2383 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2384 u16 count)
2386 const unsigned long *possible_mask = NULL;
2387 struct xps_dev_maps *dev_maps;
2388 unsigned int nr_ids;
2390 if (!static_key_false(&xps_needed))
2391 return;
2393 cpus_read_lock();
2394 mutex_lock(&xps_map_mutex);
2396 if (static_key_false(&xps_rxqs_needed)) {
2397 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2398 if (dev_maps) {
2399 nr_ids = dev->num_rx_queues;
2400 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2401 offset, count, true);
2405 dev_maps = xmap_dereference(dev->xps_cpus_map);
2406 if (!dev_maps)
2407 goto out_no_maps;
2409 if (num_possible_cpus() > 1)
2410 possible_mask = cpumask_bits(cpu_possible_mask);
2411 nr_ids = nr_cpu_ids;
2412 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2413 false);
2415 out_no_maps:
2416 mutex_unlock(&xps_map_mutex);
2417 cpus_read_unlock();
2420 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2422 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2425 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2426 u16 index, bool is_rxqs_map)
2428 struct xps_map *new_map;
2429 int alloc_len = XPS_MIN_MAP_ALLOC;
2430 int i, pos;
2432 for (pos = 0; map && pos < map->len; pos++) {
2433 if (map->queues[pos] != index)
2434 continue;
2435 return map;
2438 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2439 if (map) {
2440 if (pos < map->alloc_len)
2441 return map;
2443 alloc_len = map->alloc_len * 2;
2446 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2447 * map
2449 if (is_rxqs_map)
2450 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2451 else
2452 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2453 cpu_to_node(attr_index));
2454 if (!new_map)
2455 return NULL;
2457 for (i = 0; i < pos; i++)
2458 new_map->queues[i] = map->queues[i];
2459 new_map->alloc_len = alloc_len;
2460 new_map->len = pos;
2462 return new_map;
2465 /* Must be called under cpus_read_lock */
2466 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2467 u16 index, bool is_rxqs_map)
2469 const unsigned long *online_mask = NULL, *possible_mask = NULL;
2470 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2471 int i, j, tci, numa_node_id = -2;
2472 int maps_sz, num_tc = 1, tc = 0;
2473 struct xps_map *map, *new_map;
2474 bool active = false;
2475 unsigned int nr_ids;
2477 if (dev->num_tc) {
2478 /* Do not allow XPS on subordinate device directly */
2479 num_tc = dev->num_tc;
2480 if (num_tc < 0)
2481 return -EINVAL;
2483 /* If queue belongs to subordinate dev use its map */
2484 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2486 tc = netdev_txq_to_tc(dev, index);
2487 if (tc < 0)
2488 return -EINVAL;
2491 mutex_lock(&xps_map_mutex);
2492 if (is_rxqs_map) {
2493 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2494 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2495 nr_ids = dev->num_rx_queues;
2496 } else {
2497 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2498 if (num_possible_cpus() > 1) {
2499 online_mask = cpumask_bits(cpu_online_mask);
2500 possible_mask = cpumask_bits(cpu_possible_mask);
2502 dev_maps = xmap_dereference(dev->xps_cpus_map);
2503 nr_ids = nr_cpu_ids;
2506 if (maps_sz < L1_CACHE_BYTES)
2507 maps_sz = L1_CACHE_BYTES;
2509 /* allocate memory for queue storage */
2510 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2511 j < nr_ids;) {
2512 if (!new_dev_maps)
2513 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2514 if (!new_dev_maps) {
2515 mutex_unlock(&xps_map_mutex);
2516 return -ENOMEM;
2519 tci = j * num_tc + tc;
2520 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2521 NULL;
2523 map = expand_xps_map(map, j, index, is_rxqs_map);
2524 if (!map)
2525 goto error;
2527 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2530 if (!new_dev_maps)
2531 goto out_no_new_maps;
2533 if (!dev_maps) {
2534 /* Increment static keys at most once per type */
2535 static_key_slow_inc_cpuslocked(&xps_needed);
2536 if (is_rxqs_map)
2537 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2540 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2541 j < nr_ids;) {
2542 /* copy maps belonging to foreign traffic classes */
2543 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2544 /* fill in the new device map from the old device map */
2545 map = xmap_dereference(dev_maps->attr_map[tci]);
2546 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2549 /* We need to explicitly update tci as prevous loop
2550 * could break out early if dev_maps is NULL.
2552 tci = j * num_tc + tc;
2554 if (netif_attr_test_mask(j, mask, nr_ids) &&
2555 netif_attr_test_online(j, online_mask, nr_ids)) {
2556 /* add tx-queue to CPU/rx-queue maps */
2557 int pos = 0;
2559 map = xmap_dereference(new_dev_maps->attr_map[tci]);
2560 while ((pos < map->len) && (map->queues[pos] != index))
2561 pos++;
2563 if (pos == map->len)
2564 map->queues[map->len++] = index;
2565 #ifdef CONFIG_NUMA
2566 if (!is_rxqs_map) {
2567 if (numa_node_id == -2)
2568 numa_node_id = cpu_to_node(j);
2569 else if (numa_node_id != cpu_to_node(j))
2570 numa_node_id = -1;
2572 #endif
2573 } else if (dev_maps) {
2574 /* fill in the new device map from the old device map */
2575 map = xmap_dereference(dev_maps->attr_map[tci]);
2576 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2579 /* copy maps belonging to foreign traffic classes */
2580 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2581 /* fill in the new device map from the old device map */
2582 map = xmap_dereference(dev_maps->attr_map[tci]);
2583 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2587 if (is_rxqs_map)
2588 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2589 else
2590 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2592 /* Cleanup old maps */
2593 if (!dev_maps)
2594 goto out_no_old_maps;
2596 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2597 j < nr_ids;) {
2598 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2599 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2600 map = xmap_dereference(dev_maps->attr_map[tci]);
2601 if (map && map != new_map)
2602 kfree_rcu(map, rcu);
2606 kfree_rcu(dev_maps, rcu);
2608 out_no_old_maps:
2609 dev_maps = new_dev_maps;
2610 active = true;
2612 out_no_new_maps:
2613 if (!is_rxqs_map) {
2614 /* update Tx queue numa node */
2615 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2616 (numa_node_id >= 0) ?
2617 numa_node_id : NUMA_NO_NODE);
2620 if (!dev_maps)
2621 goto out_no_maps;
2623 /* removes tx-queue from unused CPUs/rx-queues */
2624 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2625 j < nr_ids;) {
2626 for (i = tc, tci = j * num_tc; i--; tci++)
2627 active |= remove_xps_queue(dev_maps, tci, index);
2628 if (!netif_attr_test_mask(j, mask, nr_ids) ||
2629 !netif_attr_test_online(j, online_mask, nr_ids))
2630 active |= remove_xps_queue(dev_maps, tci, index);
2631 for (i = num_tc - tc, tci++; --i; tci++)
2632 active |= remove_xps_queue(dev_maps, tci, index);
2635 /* free map if not active */
2636 if (!active)
2637 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2639 out_no_maps:
2640 mutex_unlock(&xps_map_mutex);
2642 return 0;
2643 error:
2644 /* remove any maps that we added */
2645 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2646 j < nr_ids;) {
2647 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2648 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2649 map = dev_maps ?
2650 xmap_dereference(dev_maps->attr_map[tci]) :
2651 NULL;
2652 if (new_map && new_map != map)
2653 kfree(new_map);
2657 mutex_unlock(&xps_map_mutex);
2659 kfree(new_dev_maps);
2660 return -ENOMEM;
2662 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2664 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2665 u16 index)
2667 int ret;
2669 cpus_read_lock();
2670 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2671 cpus_read_unlock();
2673 return ret;
2675 EXPORT_SYMBOL(netif_set_xps_queue);
2677 #endif
2678 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2680 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2682 /* Unbind any subordinate channels */
2683 while (txq-- != &dev->_tx[0]) {
2684 if (txq->sb_dev)
2685 netdev_unbind_sb_channel(dev, txq->sb_dev);
2689 void netdev_reset_tc(struct net_device *dev)
2691 #ifdef CONFIG_XPS
2692 netif_reset_xps_queues_gt(dev, 0);
2693 #endif
2694 netdev_unbind_all_sb_channels(dev);
2696 /* Reset TC configuration of device */
2697 dev->num_tc = 0;
2698 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2699 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2701 EXPORT_SYMBOL(netdev_reset_tc);
2703 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2705 if (tc >= dev->num_tc)
2706 return -EINVAL;
2708 #ifdef CONFIG_XPS
2709 netif_reset_xps_queues(dev, offset, count);
2710 #endif
2711 dev->tc_to_txq[tc].count = count;
2712 dev->tc_to_txq[tc].offset = offset;
2713 return 0;
2715 EXPORT_SYMBOL(netdev_set_tc_queue);
2717 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2719 if (num_tc > TC_MAX_QUEUE)
2720 return -EINVAL;
2722 #ifdef CONFIG_XPS
2723 netif_reset_xps_queues_gt(dev, 0);
2724 #endif
2725 netdev_unbind_all_sb_channels(dev);
2727 dev->num_tc = num_tc;
2728 return 0;
2730 EXPORT_SYMBOL(netdev_set_num_tc);
2732 void netdev_unbind_sb_channel(struct net_device *dev,
2733 struct net_device *sb_dev)
2735 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2737 #ifdef CONFIG_XPS
2738 netif_reset_xps_queues_gt(sb_dev, 0);
2739 #endif
2740 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2741 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2743 while (txq-- != &dev->_tx[0]) {
2744 if (txq->sb_dev == sb_dev)
2745 txq->sb_dev = NULL;
2748 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2750 int netdev_bind_sb_channel_queue(struct net_device *dev,
2751 struct net_device *sb_dev,
2752 u8 tc, u16 count, u16 offset)
2754 /* Make certain the sb_dev and dev are already configured */
2755 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2756 return -EINVAL;
2758 /* We cannot hand out queues we don't have */
2759 if ((offset + count) > dev->real_num_tx_queues)
2760 return -EINVAL;
2762 /* Record the mapping */
2763 sb_dev->tc_to_txq[tc].count = count;
2764 sb_dev->tc_to_txq[tc].offset = offset;
2766 /* Provide a way for Tx queue to find the tc_to_txq map or
2767 * XPS map for itself.
2769 while (count--)
2770 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2772 return 0;
2774 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2776 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2778 /* Do not use a multiqueue device to represent a subordinate channel */
2779 if (netif_is_multiqueue(dev))
2780 return -ENODEV;
2782 /* We allow channels 1 - 32767 to be used for subordinate channels.
2783 * Channel 0 is meant to be "native" mode and used only to represent
2784 * the main root device. We allow writing 0 to reset the device back
2785 * to normal mode after being used as a subordinate channel.
2787 if (channel > S16_MAX)
2788 return -EINVAL;
2790 dev->num_tc = -channel;
2792 return 0;
2794 EXPORT_SYMBOL(netdev_set_sb_channel);
2797 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2798 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2800 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2802 bool disabling;
2803 int rc;
2805 disabling = txq < dev->real_num_tx_queues;
2807 if (txq < 1 || txq > dev->num_tx_queues)
2808 return -EINVAL;
2810 if (dev->reg_state == NETREG_REGISTERED ||
2811 dev->reg_state == NETREG_UNREGISTERING) {
2812 ASSERT_RTNL();
2814 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2815 txq);
2816 if (rc)
2817 return rc;
2819 if (dev->num_tc)
2820 netif_setup_tc(dev, txq);
2822 dev->real_num_tx_queues = txq;
2824 if (disabling) {
2825 synchronize_net();
2826 qdisc_reset_all_tx_gt(dev, txq);
2827 #ifdef CONFIG_XPS
2828 netif_reset_xps_queues_gt(dev, txq);
2829 #endif
2831 } else {
2832 dev->real_num_tx_queues = txq;
2835 return 0;
2837 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2839 #ifdef CONFIG_SYSFS
2841 * netif_set_real_num_rx_queues - set actual number of RX queues used
2842 * @dev: Network device
2843 * @rxq: Actual number of RX queues
2845 * This must be called either with the rtnl_lock held or before
2846 * registration of the net device. Returns 0 on success, or a
2847 * negative error code. If called before registration, it always
2848 * succeeds.
2850 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2852 int rc;
2854 if (rxq < 1 || rxq > dev->num_rx_queues)
2855 return -EINVAL;
2857 if (dev->reg_state == NETREG_REGISTERED) {
2858 ASSERT_RTNL();
2860 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2861 rxq);
2862 if (rc)
2863 return rc;
2866 dev->real_num_rx_queues = rxq;
2867 return 0;
2869 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2870 #endif
2873 * netif_get_num_default_rss_queues - default number of RSS queues
2875 * This routine should set an upper limit on the number of RSS queues
2876 * used by default by multiqueue devices.
2878 int netif_get_num_default_rss_queues(void)
2880 return is_kdump_kernel() ?
2881 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2883 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2885 static void __netif_reschedule(struct Qdisc *q)
2887 struct softnet_data *sd;
2888 unsigned long flags;
2890 local_irq_save(flags);
2891 sd = this_cpu_ptr(&softnet_data);
2892 q->next_sched = NULL;
2893 *sd->output_queue_tailp = q;
2894 sd->output_queue_tailp = &q->next_sched;
2895 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2896 local_irq_restore(flags);
2899 void __netif_schedule(struct Qdisc *q)
2901 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2902 __netif_reschedule(q);
2904 EXPORT_SYMBOL(__netif_schedule);
2906 struct dev_kfree_skb_cb {
2907 enum skb_free_reason reason;
2910 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2912 return (struct dev_kfree_skb_cb *)skb->cb;
2915 void netif_schedule_queue(struct netdev_queue *txq)
2917 rcu_read_lock();
2918 if (!netif_xmit_stopped(txq)) {
2919 struct Qdisc *q = rcu_dereference(txq->qdisc);
2921 __netif_schedule(q);
2923 rcu_read_unlock();
2925 EXPORT_SYMBOL(netif_schedule_queue);
2927 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2929 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2930 struct Qdisc *q;
2932 rcu_read_lock();
2933 q = rcu_dereference(dev_queue->qdisc);
2934 __netif_schedule(q);
2935 rcu_read_unlock();
2938 EXPORT_SYMBOL(netif_tx_wake_queue);
2940 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2942 unsigned long flags;
2944 if (unlikely(!skb))
2945 return;
2947 if (likely(refcount_read(&skb->users) == 1)) {
2948 smp_rmb();
2949 refcount_set(&skb->users, 0);
2950 } else if (likely(!refcount_dec_and_test(&skb->users))) {
2951 return;
2953 get_kfree_skb_cb(skb)->reason = reason;
2954 local_irq_save(flags);
2955 skb->next = __this_cpu_read(softnet_data.completion_queue);
2956 __this_cpu_write(softnet_data.completion_queue, skb);
2957 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2958 local_irq_restore(flags);
2960 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2962 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2964 if (in_irq() || irqs_disabled())
2965 __dev_kfree_skb_irq(skb, reason);
2966 else
2967 dev_kfree_skb(skb);
2969 EXPORT_SYMBOL(__dev_kfree_skb_any);
2973 * netif_device_detach - mark device as removed
2974 * @dev: network device
2976 * Mark device as removed from system and therefore no longer available.
2978 void netif_device_detach(struct net_device *dev)
2980 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2981 netif_running(dev)) {
2982 netif_tx_stop_all_queues(dev);
2985 EXPORT_SYMBOL(netif_device_detach);
2988 * netif_device_attach - mark device as attached
2989 * @dev: network device
2991 * Mark device as attached from system and restart if needed.
2993 void netif_device_attach(struct net_device *dev)
2995 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2996 netif_running(dev)) {
2997 netif_tx_wake_all_queues(dev);
2998 __netdev_watchdog_up(dev);
3001 EXPORT_SYMBOL(netif_device_attach);
3004 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3005 * to be used as a distribution range.
3007 static u16 skb_tx_hash(const struct net_device *dev,
3008 const struct net_device *sb_dev,
3009 struct sk_buff *skb)
3011 u32 hash;
3012 u16 qoffset = 0;
3013 u16 qcount = dev->real_num_tx_queues;
3015 if (dev->num_tc) {
3016 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3018 qoffset = sb_dev->tc_to_txq[tc].offset;
3019 qcount = sb_dev->tc_to_txq[tc].count;
3022 if (skb_rx_queue_recorded(skb)) {
3023 hash = skb_get_rx_queue(skb);
3024 while (unlikely(hash >= qcount))
3025 hash -= qcount;
3026 return hash + qoffset;
3029 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3032 static void skb_warn_bad_offload(const struct sk_buff *skb)
3034 static const netdev_features_t null_features;
3035 struct net_device *dev = skb->dev;
3036 const char *name = "";
3038 if (!net_ratelimit())
3039 return;
3041 if (dev) {
3042 if (dev->dev.parent)
3043 name = dev_driver_string(dev->dev.parent);
3044 else
3045 name = netdev_name(dev);
3047 skb_dump(KERN_WARNING, skb, false);
3048 WARN(1, "%s: caps=(%pNF, %pNF)\n",
3049 name, dev ? &dev->features : &null_features,
3050 skb->sk ? &skb->sk->sk_route_caps : &null_features);
3054 * Invalidate hardware checksum when packet is to be mangled, and
3055 * complete checksum manually on outgoing path.
3057 int skb_checksum_help(struct sk_buff *skb)
3059 __wsum csum;
3060 int ret = 0, offset;
3062 if (skb->ip_summed == CHECKSUM_COMPLETE)
3063 goto out_set_summed;
3065 if (unlikely(skb_shinfo(skb)->gso_size)) {
3066 skb_warn_bad_offload(skb);
3067 return -EINVAL;
3070 /* Before computing a checksum, we should make sure no frag could
3071 * be modified by an external entity : checksum could be wrong.
3073 if (skb_has_shared_frag(skb)) {
3074 ret = __skb_linearize(skb);
3075 if (ret)
3076 goto out;
3079 offset = skb_checksum_start_offset(skb);
3080 BUG_ON(offset >= skb_headlen(skb));
3081 csum = skb_checksum(skb, offset, skb->len - offset, 0);
3083 offset += skb->csum_offset;
3084 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3086 ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3087 if (ret)
3088 goto out;
3090 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3091 out_set_summed:
3092 skb->ip_summed = CHECKSUM_NONE;
3093 out:
3094 return ret;
3096 EXPORT_SYMBOL(skb_checksum_help);
3098 int skb_crc32c_csum_help(struct sk_buff *skb)
3100 __le32 crc32c_csum;
3101 int ret = 0, offset, start;
3103 if (skb->ip_summed != CHECKSUM_PARTIAL)
3104 goto out;
3106 if (unlikely(skb_is_gso(skb)))
3107 goto out;
3109 /* Before computing a checksum, we should make sure no frag could
3110 * be modified by an external entity : checksum could be wrong.
3112 if (unlikely(skb_has_shared_frag(skb))) {
3113 ret = __skb_linearize(skb);
3114 if (ret)
3115 goto out;
3117 start = skb_checksum_start_offset(skb);
3118 offset = start + offsetof(struct sctphdr, checksum);
3119 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3120 ret = -EINVAL;
3121 goto out;
3124 ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3125 if (ret)
3126 goto out;
3128 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3129 skb->len - start, ~(__u32)0,
3130 crc32c_csum_stub));
3131 *(__le32 *)(skb->data + offset) = crc32c_csum;
3132 skb->ip_summed = CHECKSUM_NONE;
3133 skb->csum_not_inet = 0;
3134 out:
3135 return ret;
3138 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3140 __be16 type = skb->protocol;
3142 /* Tunnel gso handlers can set protocol to ethernet. */
3143 if (type == htons(ETH_P_TEB)) {
3144 struct ethhdr *eth;
3146 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3147 return 0;
3149 eth = (struct ethhdr *)skb->data;
3150 type = eth->h_proto;
3153 return __vlan_get_protocol(skb, type, depth);
3157 * skb_mac_gso_segment - mac layer segmentation handler.
3158 * @skb: buffer to segment
3159 * @features: features for the output path (see dev->features)
3161 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3162 netdev_features_t features)
3164 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3165 struct packet_offload *ptype;
3166 int vlan_depth = skb->mac_len;
3167 __be16 type = skb_network_protocol(skb, &vlan_depth);
3169 if (unlikely(!type))
3170 return ERR_PTR(-EINVAL);
3172 __skb_pull(skb, vlan_depth);
3174 rcu_read_lock();
3175 list_for_each_entry_rcu(ptype, &offload_base, list) {
3176 if (ptype->type == type && ptype->callbacks.gso_segment) {
3177 segs = ptype->callbacks.gso_segment(skb, features);
3178 break;
3181 rcu_read_unlock();
3183 __skb_push(skb, skb->data - skb_mac_header(skb));
3185 return segs;
3187 EXPORT_SYMBOL(skb_mac_gso_segment);
3190 /* openvswitch calls this on rx path, so we need a different check.
3192 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3194 if (tx_path)
3195 return skb->ip_summed != CHECKSUM_PARTIAL &&
3196 skb->ip_summed != CHECKSUM_UNNECESSARY;
3198 return skb->ip_summed == CHECKSUM_NONE;
3202 * __skb_gso_segment - Perform segmentation on skb.
3203 * @skb: buffer to segment
3204 * @features: features for the output path (see dev->features)
3205 * @tx_path: whether it is called in TX path
3207 * This function segments the given skb and returns a list of segments.
3209 * It may return NULL if the skb requires no segmentation. This is
3210 * only possible when GSO is used for verifying header integrity.
3212 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
3214 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3215 netdev_features_t features, bool tx_path)
3217 struct sk_buff *segs;
3219 if (unlikely(skb_needs_check(skb, tx_path))) {
3220 int err;
3222 /* We're going to init ->check field in TCP or UDP header */
3223 err = skb_cow_head(skb, 0);
3224 if (err < 0)
3225 return ERR_PTR(err);
3228 /* Only report GSO partial support if it will enable us to
3229 * support segmentation on this frame without needing additional
3230 * work.
3232 if (features & NETIF_F_GSO_PARTIAL) {
3233 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3234 struct net_device *dev = skb->dev;
3236 partial_features |= dev->features & dev->gso_partial_features;
3237 if (!skb_gso_ok(skb, features | partial_features))
3238 features &= ~NETIF_F_GSO_PARTIAL;
3241 BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
3242 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3244 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3245 SKB_GSO_CB(skb)->encap_level = 0;
3247 skb_reset_mac_header(skb);
3248 skb_reset_mac_len(skb);
3250 segs = skb_mac_gso_segment(skb, features);
3252 if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3253 skb_warn_bad_offload(skb);
3255 return segs;
3257 EXPORT_SYMBOL(__skb_gso_segment);
3259 /* Take action when hardware reception checksum errors are detected. */
3260 #ifdef CONFIG_BUG
3261 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3263 if (net_ratelimit()) {
3264 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3265 skb_dump(KERN_ERR, skb, true);
3266 dump_stack();
3269 EXPORT_SYMBOL(netdev_rx_csum_fault);
3270 #endif
3272 /* XXX: check that highmem exists at all on the given machine. */
3273 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3275 #ifdef CONFIG_HIGHMEM
3276 int i;
3278 if (!(dev->features & NETIF_F_HIGHDMA)) {
3279 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3280 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3282 if (PageHighMem(skb_frag_page(frag)))
3283 return 1;
3286 #endif
3287 return 0;
3290 /* If MPLS offload request, verify we are testing hardware MPLS features
3291 * instead of standard features for the netdev.
3293 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3294 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3295 netdev_features_t features,
3296 __be16 type)
3298 if (eth_p_mpls(type))
3299 features &= skb->dev->mpls_features;
3301 return features;
3303 #else
3304 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3305 netdev_features_t features,
3306 __be16 type)
3308 return features;
3310 #endif
3312 static netdev_features_t harmonize_features(struct sk_buff *skb,
3313 netdev_features_t features)
3315 int tmp;
3316 __be16 type;
3318 type = skb_network_protocol(skb, &tmp);
3319 features = net_mpls_features(skb, features, type);
3321 if (skb->ip_summed != CHECKSUM_NONE &&
3322 !can_checksum_protocol(features, type)) {
3323 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3325 if (illegal_highdma(skb->dev, skb))
3326 features &= ~NETIF_F_SG;
3328 return features;
3331 netdev_features_t passthru_features_check(struct sk_buff *skb,
3332 struct net_device *dev,
3333 netdev_features_t features)
3335 return features;
3337 EXPORT_SYMBOL(passthru_features_check);
3339 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3340 struct net_device *dev,
3341 netdev_features_t features)
3343 return vlan_features_check(skb, features);
3346 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3347 struct net_device *dev,
3348 netdev_features_t features)
3350 u16 gso_segs = skb_shinfo(skb)->gso_segs;
3352 if (gso_segs > dev->gso_max_segs)
3353 return features & ~NETIF_F_GSO_MASK;
3355 /* Support for GSO partial features requires software
3356 * intervention before we can actually process the packets
3357 * so we need to strip support for any partial features now
3358 * and we can pull them back in after we have partially
3359 * segmented the frame.
3361 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3362 features &= ~dev->gso_partial_features;
3364 /* Make sure to clear the IPv4 ID mangling feature if the
3365 * IPv4 header has the potential to be fragmented.
3367 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3368 struct iphdr *iph = skb->encapsulation ?
3369 inner_ip_hdr(skb) : ip_hdr(skb);
3371 if (!(iph->frag_off & htons(IP_DF)))
3372 features &= ~NETIF_F_TSO_MANGLEID;
3375 return features;
3378 netdev_features_t netif_skb_features(struct sk_buff *skb)
3380 struct net_device *dev = skb->dev;
3381 netdev_features_t features = dev->features;
3383 if (skb_is_gso(skb))
3384 features = gso_features_check(skb, dev, features);
3386 /* If encapsulation offload request, verify we are testing
3387 * hardware encapsulation features instead of standard
3388 * features for the netdev
3390 if (skb->encapsulation)
3391 features &= dev->hw_enc_features;
3393 if (skb_vlan_tagged(skb))
3394 features = netdev_intersect_features(features,
3395 dev->vlan_features |
3396 NETIF_F_HW_VLAN_CTAG_TX |
3397 NETIF_F_HW_VLAN_STAG_TX);
3399 if (dev->netdev_ops->ndo_features_check)
3400 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3401 features);
3402 else
3403 features &= dflt_features_check(skb, dev, features);
3405 return harmonize_features(skb, features);
3407 EXPORT_SYMBOL(netif_skb_features);
3409 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3410 struct netdev_queue *txq, bool more)
3412 unsigned int len;
3413 int rc;
3415 if (dev_nit_active(dev))
3416 dev_queue_xmit_nit(skb, dev);
3418 len = skb->len;
3419 trace_net_dev_start_xmit(skb, dev);
3420 rc = netdev_start_xmit(skb, dev, txq, more);
3421 trace_net_dev_xmit(skb, rc, dev, len);
3423 return rc;
3426 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3427 struct netdev_queue *txq, int *ret)
3429 struct sk_buff *skb = first;
3430 int rc = NETDEV_TX_OK;
3432 while (skb) {
3433 struct sk_buff *next = skb->next;
3435 skb_mark_not_on_list(skb);
3436 rc = xmit_one(skb, dev, txq, next != NULL);
3437 if (unlikely(!dev_xmit_complete(rc))) {
3438 skb->next = next;
3439 goto out;
3442 skb = next;
3443 if (netif_tx_queue_stopped(txq) && skb) {
3444 rc = NETDEV_TX_BUSY;
3445 break;
3449 out:
3450 *ret = rc;
3451 return skb;
3454 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3455 netdev_features_t features)
3457 if (skb_vlan_tag_present(skb) &&
3458 !vlan_hw_offload_capable(features, skb->vlan_proto))
3459 skb = __vlan_hwaccel_push_inside(skb);
3460 return skb;
3463 int skb_csum_hwoffload_help(struct sk_buff *skb,
3464 const netdev_features_t features)
3466 if (unlikely(skb->csum_not_inet))
3467 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3468 skb_crc32c_csum_help(skb);
3470 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3472 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3474 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3476 netdev_features_t features;
3478 features = netif_skb_features(skb);
3479 skb = validate_xmit_vlan(skb, features);
3480 if (unlikely(!skb))
3481 goto out_null;
3483 skb = sk_validate_xmit_skb(skb, dev);
3484 if (unlikely(!skb))
3485 goto out_null;
3487 if (netif_needs_gso(skb, features)) {
3488 struct sk_buff *segs;
3490 segs = skb_gso_segment(skb, features);
3491 if (IS_ERR(segs)) {
3492 goto out_kfree_skb;
3493 } else if (segs) {
3494 consume_skb(skb);
3495 skb = segs;
3497 } else {
3498 if (skb_needs_linearize(skb, features) &&
3499 __skb_linearize(skb))
3500 goto out_kfree_skb;
3502 /* If packet is not checksummed and device does not
3503 * support checksumming for this protocol, complete
3504 * checksumming here.
3506 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3507 if (skb->encapsulation)
3508 skb_set_inner_transport_header(skb,
3509 skb_checksum_start_offset(skb));
3510 else
3511 skb_set_transport_header(skb,
3512 skb_checksum_start_offset(skb));
3513 if (skb_csum_hwoffload_help(skb, features))
3514 goto out_kfree_skb;
3518 skb = validate_xmit_xfrm(skb, features, again);
3520 return skb;
3522 out_kfree_skb:
3523 kfree_skb(skb);
3524 out_null:
3525 atomic_long_inc(&dev->tx_dropped);
3526 return NULL;
3529 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3531 struct sk_buff *next, *head = NULL, *tail;
3533 for (; skb != NULL; skb = next) {
3534 next = skb->next;
3535 skb_mark_not_on_list(skb);
3537 /* in case skb wont be segmented, point to itself */
3538 skb->prev = skb;
3540 skb = validate_xmit_skb(skb, dev, again);
3541 if (!skb)
3542 continue;
3544 if (!head)
3545 head = skb;
3546 else
3547 tail->next = skb;
3548 /* If skb was segmented, skb->prev points to
3549 * the last segment. If not, it still contains skb.
3551 tail = skb->prev;
3553 return head;
3555 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3557 static void qdisc_pkt_len_init(struct sk_buff *skb)
3559 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3561 qdisc_skb_cb(skb)->pkt_len = skb->len;
3563 /* To get more precise estimation of bytes sent on wire,
3564 * we add to pkt_len the headers size of all segments
3566 if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3567 unsigned int hdr_len;
3568 u16 gso_segs = shinfo->gso_segs;
3570 /* mac layer + network layer */
3571 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3573 /* + transport layer */
3574 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3575 const struct tcphdr *th;
3576 struct tcphdr _tcphdr;
3578 th = skb_header_pointer(skb, skb_transport_offset(skb),
3579 sizeof(_tcphdr), &_tcphdr);
3580 if (likely(th))
3581 hdr_len += __tcp_hdrlen(th);
3582 } else {
3583 struct udphdr _udphdr;
3585 if (skb_header_pointer(skb, skb_transport_offset(skb),
3586 sizeof(_udphdr), &_udphdr))
3587 hdr_len += sizeof(struct udphdr);
3590 if (shinfo->gso_type & SKB_GSO_DODGY)
3591 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3592 shinfo->gso_size);
3594 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3598 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3599 struct net_device *dev,
3600 struct netdev_queue *txq)
3602 spinlock_t *root_lock = qdisc_lock(q);
3603 struct sk_buff *to_free = NULL;
3604 bool contended;
3605 int rc;
3607 qdisc_calculate_pkt_len(skb, q);
3609 if (q->flags & TCQ_F_NOLOCK) {
3610 if ((q->flags & TCQ_F_CAN_BYPASS) && READ_ONCE(q->empty) &&
3611 qdisc_run_begin(q)) {
3612 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
3613 &q->state))) {
3614 __qdisc_drop(skb, &to_free);
3615 rc = NET_XMIT_DROP;
3616 goto end_run;
3618 qdisc_bstats_cpu_update(q, skb);
3620 rc = NET_XMIT_SUCCESS;
3621 if (sch_direct_xmit(skb, q, dev, txq, NULL, true))
3622 __qdisc_run(q);
3624 end_run:
3625 qdisc_run_end(q);
3626 } else {
3627 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3628 qdisc_run(q);
3631 if (unlikely(to_free))
3632 kfree_skb_list(to_free);
3633 return rc;
3637 * Heuristic to force contended enqueues to serialize on a
3638 * separate lock before trying to get qdisc main lock.
3639 * This permits qdisc->running owner to get the lock more
3640 * often and dequeue packets faster.
3642 contended = qdisc_is_running(q);
3643 if (unlikely(contended))
3644 spin_lock(&q->busylock);
3646 spin_lock(root_lock);
3647 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3648 __qdisc_drop(skb, &to_free);
3649 rc = NET_XMIT_DROP;
3650 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3651 qdisc_run_begin(q)) {
3653 * This is a work-conserving queue; there are no old skbs
3654 * waiting to be sent out; and the qdisc is not running -
3655 * xmit the skb directly.
3658 qdisc_bstats_update(q, skb);
3660 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3661 if (unlikely(contended)) {
3662 spin_unlock(&q->busylock);
3663 contended = false;
3665 __qdisc_run(q);
3668 qdisc_run_end(q);
3669 rc = NET_XMIT_SUCCESS;
3670 } else {
3671 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3672 if (qdisc_run_begin(q)) {
3673 if (unlikely(contended)) {
3674 spin_unlock(&q->busylock);
3675 contended = false;
3677 __qdisc_run(q);
3678 qdisc_run_end(q);
3681 spin_unlock(root_lock);
3682 if (unlikely(to_free))
3683 kfree_skb_list(to_free);
3684 if (unlikely(contended))
3685 spin_unlock(&q->busylock);
3686 return rc;
3689 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3690 static void skb_update_prio(struct sk_buff *skb)
3692 const struct netprio_map *map;
3693 const struct sock *sk;
3694 unsigned int prioidx;
3696 if (skb->priority)
3697 return;
3698 map = rcu_dereference_bh(skb->dev->priomap);
3699 if (!map)
3700 return;
3701 sk = skb_to_full_sk(skb);
3702 if (!sk)
3703 return;
3705 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3707 if (prioidx < map->priomap_len)
3708 skb->priority = map->priomap[prioidx];
3710 #else
3711 #define skb_update_prio(skb)
3712 #endif
3715 * dev_loopback_xmit - loop back @skb
3716 * @net: network namespace this loopback is happening in
3717 * @sk: sk needed to be a netfilter okfn
3718 * @skb: buffer to transmit
3720 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3722 skb_reset_mac_header(skb);
3723 __skb_pull(skb, skb_network_offset(skb));
3724 skb->pkt_type = PACKET_LOOPBACK;
3725 skb->ip_summed = CHECKSUM_UNNECESSARY;
3726 WARN_ON(!skb_dst(skb));
3727 skb_dst_force(skb);
3728 netif_rx_ni(skb);
3729 return 0;
3731 EXPORT_SYMBOL(dev_loopback_xmit);
3733 #ifdef CONFIG_NET_EGRESS
3734 static struct sk_buff *
3735 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3737 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3738 struct tcf_result cl_res;
3740 if (!miniq)
3741 return skb;
3743 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3744 mini_qdisc_bstats_cpu_update(miniq, skb);
3746 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3747 case TC_ACT_OK:
3748 case TC_ACT_RECLASSIFY:
3749 skb->tc_index = TC_H_MIN(cl_res.classid);
3750 break;
3751 case TC_ACT_SHOT:
3752 mini_qdisc_qstats_cpu_drop(miniq);
3753 *ret = NET_XMIT_DROP;
3754 kfree_skb(skb);
3755 return NULL;
3756 case TC_ACT_STOLEN:
3757 case TC_ACT_QUEUED:
3758 case TC_ACT_TRAP:
3759 *ret = NET_XMIT_SUCCESS;
3760 consume_skb(skb);
3761 return NULL;
3762 case TC_ACT_REDIRECT:
3763 /* No need to push/pop skb's mac_header here on egress! */
3764 skb_do_redirect(skb);
3765 *ret = NET_XMIT_SUCCESS;
3766 return NULL;
3767 default:
3768 break;
3771 return skb;
3773 #endif /* CONFIG_NET_EGRESS */
3775 #ifdef CONFIG_XPS
3776 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3777 struct xps_dev_maps *dev_maps, unsigned int tci)
3779 struct xps_map *map;
3780 int queue_index = -1;
3782 if (dev->num_tc) {
3783 tci *= dev->num_tc;
3784 tci += netdev_get_prio_tc_map(dev, skb->priority);
3787 map = rcu_dereference(dev_maps->attr_map[tci]);
3788 if (map) {
3789 if (map->len == 1)
3790 queue_index = map->queues[0];
3791 else
3792 queue_index = map->queues[reciprocal_scale(
3793 skb_get_hash(skb), map->len)];
3794 if (unlikely(queue_index >= dev->real_num_tx_queues))
3795 queue_index = -1;
3797 return queue_index;
3799 #endif
3801 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3802 struct sk_buff *skb)
3804 #ifdef CONFIG_XPS
3805 struct xps_dev_maps *dev_maps;
3806 struct sock *sk = skb->sk;
3807 int queue_index = -1;
3809 if (!static_key_false(&xps_needed))
3810 return -1;
3812 rcu_read_lock();
3813 if (!static_key_false(&xps_rxqs_needed))
3814 goto get_cpus_map;
3816 dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3817 if (dev_maps) {
3818 int tci = sk_rx_queue_get(sk);
3820 if (tci >= 0 && tci < dev->num_rx_queues)
3821 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3822 tci);
3825 get_cpus_map:
3826 if (queue_index < 0) {
3827 dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3828 if (dev_maps) {
3829 unsigned int tci = skb->sender_cpu - 1;
3831 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3832 tci);
3835 rcu_read_unlock();
3837 return queue_index;
3838 #else
3839 return -1;
3840 #endif
3843 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3844 struct net_device *sb_dev)
3846 return 0;
3848 EXPORT_SYMBOL(dev_pick_tx_zero);
3850 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3851 struct net_device *sb_dev)
3853 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3855 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3857 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3858 struct net_device *sb_dev)
3860 struct sock *sk = skb->sk;
3861 int queue_index = sk_tx_queue_get(sk);
3863 sb_dev = sb_dev ? : dev;
3865 if (queue_index < 0 || skb->ooo_okay ||
3866 queue_index >= dev->real_num_tx_queues) {
3867 int new_index = get_xps_queue(dev, sb_dev, skb);
3869 if (new_index < 0)
3870 new_index = skb_tx_hash(dev, sb_dev, skb);
3872 if (queue_index != new_index && sk &&
3873 sk_fullsock(sk) &&
3874 rcu_access_pointer(sk->sk_dst_cache))
3875 sk_tx_queue_set(sk, new_index);
3877 queue_index = new_index;
3880 return queue_index;
3882 EXPORT_SYMBOL(netdev_pick_tx);
3884 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
3885 struct sk_buff *skb,
3886 struct net_device *sb_dev)
3888 int queue_index = 0;
3890 #ifdef CONFIG_XPS
3891 u32 sender_cpu = skb->sender_cpu - 1;
3893 if (sender_cpu >= (u32)NR_CPUS)
3894 skb->sender_cpu = raw_smp_processor_id() + 1;
3895 #endif
3897 if (dev->real_num_tx_queues != 1) {
3898 const struct net_device_ops *ops = dev->netdev_ops;
3900 if (ops->ndo_select_queue)
3901 queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
3902 else
3903 queue_index = netdev_pick_tx(dev, skb, sb_dev);
3905 queue_index = netdev_cap_txqueue(dev, queue_index);
3908 skb_set_queue_mapping(skb, queue_index);
3909 return netdev_get_tx_queue(dev, queue_index);
3913 * __dev_queue_xmit - transmit a buffer
3914 * @skb: buffer to transmit
3915 * @sb_dev: suboordinate device used for L2 forwarding offload
3917 * Queue a buffer for transmission to a network device. The caller must
3918 * have set the device and priority and built the buffer before calling
3919 * this function. The function can be called from an interrupt.
3921 * A negative errno code is returned on a failure. A success does not
3922 * guarantee the frame will be transmitted as it may be dropped due
3923 * to congestion or traffic shaping.
3925 * -----------------------------------------------------------------------------------
3926 * I notice this method can also return errors from the queue disciplines,
3927 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3928 * be positive.
3930 * Regardless of the return value, the skb is consumed, so it is currently
3931 * difficult to retry a send to this method. (You can bump the ref count
3932 * before sending to hold a reference for retry if you are careful.)
3934 * When calling this method, interrupts MUST be enabled. This is because
3935 * the BH enable code must have IRQs enabled so that it will not deadlock.
3936 * --BLG
3938 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
3940 struct net_device *dev = skb->dev;
3941 struct netdev_queue *txq;
3942 struct Qdisc *q;
3943 int rc = -ENOMEM;
3944 bool again = false;
3946 skb_reset_mac_header(skb);
3948 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3949 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3951 /* Disable soft irqs for various locks below. Also
3952 * stops preemption for RCU.
3954 rcu_read_lock_bh();
3956 skb_update_prio(skb);
3958 qdisc_pkt_len_init(skb);
3959 #ifdef CONFIG_NET_CLS_ACT
3960 skb->tc_at_ingress = 0;
3961 # ifdef CONFIG_NET_EGRESS
3962 if (static_branch_unlikely(&egress_needed_key)) {
3963 skb = sch_handle_egress(skb, &rc, dev);
3964 if (!skb)
3965 goto out;
3967 # endif
3968 #endif
3969 /* If device/qdisc don't need skb->dst, release it right now while
3970 * its hot in this cpu cache.
3972 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3973 skb_dst_drop(skb);
3974 else
3975 skb_dst_force(skb);
3977 txq = netdev_core_pick_tx(dev, skb, sb_dev);
3978 q = rcu_dereference_bh(txq->qdisc);
3980 trace_net_dev_queue(skb);
3981 if (q->enqueue) {
3982 rc = __dev_xmit_skb(skb, q, dev, txq);
3983 goto out;
3986 /* The device has no queue. Common case for software devices:
3987 * loopback, all the sorts of tunnels...
3989 * Really, it is unlikely that netif_tx_lock protection is necessary
3990 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
3991 * counters.)
3992 * However, it is possible, that they rely on protection
3993 * made by us here.
3995 * Check this and shot the lock. It is not prone from deadlocks.
3996 *Either shot noqueue qdisc, it is even simpler 8)
3998 if (dev->flags & IFF_UP) {
3999 int cpu = smp_processor_id(); /* ok because BHs are off */
4001 if (txq->xmit_lock_owner != cpu) {
4002 if (dev_xmit_recursion())
4003 goto recursion_alert;
4005 skb = validate_xmit_skb(skb, dev, &again);
4006 if (!skb)
4007 goto out;
4009 HARD_TX_LOCK(dev, txq, cpu);
4011 if (!netif_xmit_stopped(txq)) {
4012 dev_xmit_recursion_inc();
4013 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4014 dev_xmit_recursion_dec();
4015 if (dev_xmit_complete(rc)) {
4016 HARD_TX_UNLOCK(dev, txq);
4017 goto out;
4020 HARD_TX_UNLOCK(dev, txq);
4021 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4022 dev->name);
4023 } else {
4024 /* Recursion is detected! It is possible,
4025 * unfortunately
4027 recursion_alert:
4028 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4029 dev->name);
4033 rc = -ENETDOWN;
4034 rcu_read_unlock_bh();
4036 atomic_long_inc(&dev->tx_dropped);
4037 kfree_skb_list(skb);
4038 return rc;
4039 out:
4040 rcu_read_unlock_bh();
4041 return rc;
4044 int dev_queue_xmit(struct sk_buff *skb)
4046 return __dev_queue_xmit(skb, NULL);
4048 EXPORT_SYMBOL(dev_queue_xmit);
4050 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4052 return __dev_queue_xmit(skb, sb_dev);
4054 EXPORT_SYMBOL(dev_queue_xmit_accel);
4056 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4058 struct net_device *dev = skb->dev;
4059 struct sk_buff *orig_skb = skb;
4060 struct netdev_queue *txq;
4061 int ret = NETDEV_TX_BUSY;
4062 bool again = false;
4064 if (unlikely(!netif_running(dev) ||
4065 !netif_carrier_ok(dev)))
4066 goto drop;
4068 skb = validate_xmit_skb_list(skb, dev, &again);
4069 if (skb != orig_skb)
4070 goto drop;
4072 skb_set_queue_mapping(skb, queue_id);
4073 txq = skb_get_tx_queue(dev, skb);
4075 local_bh_disable();
4077 HARD_TX_LOCK(dev, txq, smp_processor_id());
4078 if (!netif_xmit_frozen_or_drv_stopped(txq))
4079 ret = netdev_start_xmit(skb, dev, txq, false);
4080 HARD_TX_UNLOCK(dev, txq);
4082 local_bh_enable();
4084 if (!dev_xmit_complete(ret))
4085 kfree_skb(skb);
4087 return ret;
4088 drop:
4089 atomic_long_inc(&dev->tx_dropped);
4090 kfree_skb_list(skb);
4091 return NET_XMIT_DROP;
4093 EXPORT_SYMBOL(dev_direct_xmit);
4095 /*************************************************************************
4096 * Receiver routines
4097 *************************************************************************/
4099 int netdev_max_backlog __read_mostly = 1000;
4100 EXPORT_SYMBOL(netdev_max_backlog);
4102 int netdev_tstamp_prequeue __read_mostly = 1;
4103 int netdev_budget __read_mostly = 300;
4104 unsigned int __read_mostly netdev_budget_usecs = 2000;
4105 int weight_p __read_mostly = 64; /* old backlog weight */
4106 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
4107 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
4108 int dev_rx_weight __read_mostly = 64;
4109 int dev_tx_weight __read_mostly = 64;
4110 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4111 int gro_normal_batch __read_mostly = 8;
4113 /* Called with irq disabled */
4114 static inline void ____napi_schedule(struct softnet_data *sd,
4115 struct napi_struct *napi)
4117 list_add_tail(&napi->poll_list, &sd->poll_list);
4118 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4121 #ifdef CONFIG_RPS
4123 /* One global table that all flow-based protocols share. */
4124 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4125 EXPORT_SYMBOL(rps_sock_flow_table);
4126 u32 rps_cpu_mask __read_mostly;
4127 EXPORT_SYMBOL(rps_cpu_mask);
4129 struct static_key_false rps_needed __read_mostly;
4130 EXPORT_SYMBOL(rps_needed);
4131 struct static_key_false rfs_needed __read_mostly;
4132 EXPORT_SYMBOL(rfs_needed);
4134 static struct rps_dev_flow *
4135 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4136 struct rps_dev_flow *rflow, u16 next_cpu)
4138 if (next_cpu < nr_cpu_ids) {
4139 #ifdef CONFIG_RFS_ACCEL
4140 struct netdev_rx_queue *rxqueue;
4141 struct rps_dev_flow_table *flow_table;
4142 struct rps_dev_flow *old_rflow;
4143 u32 flow_id;
4144 u16 rxq_index;
4145 int rc;
4147 /* Should we steer this flow to a different hardware queue? */
4148 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4149 !(dev->features & NETIF_F_NTUPLE))
4150 goto out;
4151 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4152 if (rxq_index == skb_get_rx_queue(skb))
4153 goto out;
4155 rxqueue = dev->_rx + rxq_index;
4156 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4157 if (!flow_table)
4158 goto out;
4159 flow_id = skb_get_hash(skb) & flow_table->mask;
4160 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4161 rxq_index, flow_id);
4162 if (rc < 0)
4163 goto out;
4164 old_rflow = rflow;
4165 rflow = &flow_table->flows[flow_id];
4166 rflow->filter = rc;
4167 if (old_rflow->filter == rflow->filter)
4168 old_rflow->filter = RPS_NO_FILTER;
4169 out:
4170 #endif
4171 rflow->last_qtail =
4172 per_cpu(softnet_data, next_cpu).input_queue_head;
4175 rflow->cpu = next_cpu;
4176 return rflow;
4180 * get_rps_cpu is called from netif_receive_skb and returns the target
4181 * CPU from the RPS map of the receiving queue for a given skb.
4182 * rcu_read_lock must be held on entry.
4184 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4185 struct rps_dev_flow **rflowp)
4187 const struct rps_sock_flow_table *sock_flow_table;
4188 struct netdev_rx_queue *rxqueue = dev->_rx;
4189 struct rps_dev_flow_table *flow_table;
4190 struct rps_map *map;
4191 int cpu = -1;
4192 u32 tcpu;
4193 u32 hash;
4195 if (skb_rx_queue_recorded(skb)) {
4196 u16 index = skb_get_rx_queue(skb);
4198 if (unlikely(index >= dev->real_num_rx_queues)) {
4199 WARN_ONCE(dev->real_num_rx_queues > 1,
4200 "%s received packet on queue %u, but number "
4201 "of RX queues is %u\n",
4202 dev->name, index, dev->real_num_rx_queues);
4203 goto done;
4205 rxqueue += index;
4208 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4210 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4211 map = rcu_dereference(rxqueue->rps_map);
4212 if (!flow_table && !map)
4213 goto done;
4215 skb_reset_network_header(skb);
4216 hash = skb_get_hash(skb);
4217 if (!hash)
4218 goto done;
4220 sock_flow_table = rcu_dereference(rps_sock_flow_table);
4221 if (flow_table && sock_flow_table) {
4222 struct rps_dev_flow *rflow;
4223 u32 next_cpu;
4224 u32 ident;
4226 /* First check into global flow table if there is a match */
4227 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4228 if ((ident ^ hash) & ~rps_cpu_mask)
4229 goto try_rps;
4231 next_cpu = ident & rps_cpu_mask;
4233 /* OK, now we know there is a match,
4234 * we can look at the local (per receive queue) flow table
4236 rflow = &flow_table->flows[hash & flow_table->mask];
4237 tcpu = rflow->cpu;
4240 * If the desired CPU (where last recvmsg was done) is
4241 * different from current CPU (one in the rx-queue flow
4242 * table entry), switch if one of the following holds:
4243 * - Current CPU is unset (>= nr_cpu_ids).
4244 * - Current CPU is offline.
4245 * - The current CPU's queue tail has advanced beyond the
4246 * last packet that was enqueued using this table entry.
4247 * This guarantees that all previous packets for the flow
4248 * have been dequeued, thus preserving in order delivery.
4250 if (unlikely(tcpu != next_cpu) &&
4251 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4252 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4253 rflow->last_qtail)) >= 0)) {
4254 tcpu = next_cpu;
4255 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4258 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4259 *rflowp = rflow;
4260 cpu = tcpu;
4261 goto done;
4265 try_rps:
4267 if (map) {
4268 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4269 if (cpu_online(tcpu)) {
4270 cpu = tcpu;
4271 goto done;
4275 done:
4276 return cpu;
4279 #ifdef CONFIG_RFS_ACCEL
4282 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4283 * @dev: Device on which the filter was set
4284 * @rxq_index: RX queue index
4285 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4286 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4288 * Drivers that implement ndo_rx_flow_steer() should periodically call
4289 * this function for each installed filter and remove the filters for
4290 * which it returns %true.
4292 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4293 u32 flow_id, u16 filter_id)
4295 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4296 struct rps_dev_flow_table *flow_table;
4297 struct rps_dev_flow *rflow;
4298 bool expire = true;
4299 unsigned int cpu;
4301 rcu_read_lock();
4302 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4303 if (flow_table && flow_id <= flow_table->mask) {
4304 rflow = &flow_table->flows[flow_id];
4305 cpu = READ_ONCE(rflow->cpu);
4306 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4307 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4308 rflow->last_qtail) <
4309 (int)(10 * flow_table->mask)))
4310 expire = false;
4312 rcu_read_unlock();
4313 return expire;
4315 EXPORT_SYMBOL(rps_may_expire_flow);
4317 #endif /* CONFIG_RFS_ACCEL */
4319 /* Called from hardirq (IPI) context */
4320 static void rps_trigger_softirq(void *data)
4322 struct softnet_data *sd = data;
4324 ____napi_schedule(sd, &sd->backlog);
4325 sd->received_rps++;
4328 #endif /* CONFIG_RPS */
4331 * Check if this softnet_data structure is another cpu one
4332 * If yes, queue it to our IPI list and return 1
4333 * If no, return 0
4335 static int rps_ipi_queued(struct softnet_data *sd)
4337 #ifdef CONFIG_RPS
4338 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4340 if (sd != mysd) {
4341 sd->rps_ipi_next = mysd->rps_ipi_list;
4342 mysd->rps_ipi_list = sd;
4344 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4345 return 1;
4347 #endif /* CONFIG_RPS */
4348 return 0;
4351 #ifdef CONFIG_NET_FLOW_LIMIT
4352 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4353 #endif
4355 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4357 #ifdef CONFIG_NET_FLOW_LIMIT
4358 struct sd_flow_limit *fl;
4359 struct softnet_data *sd;
4360 unsigned int old_flow, new_flow;
4362 if (qlen < (netdev_max_backlog >> 1))
4363 return false;
4365 sd = this_cpu_ptr(&softnet_data);
4367 rcu_read_lock();
4368 fl = rcu_dereference(sd->flow_limit);
4369 if (fl) {
4370 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4371 old_flow = fl->history[fl->history_head];
4372 fl->history[fl->history_head] = new_flow;
4374 fl->history_head++;
4375 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4377 if (likely(fl->buckets[old_flow]))
4378 fl->buckets[old_flow]--;
4380 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4381 fl->count++;
4382 rcu_read_unlock();
4383 return true;
4386 rcu_read_unlock();
4387 #endif
4388 return false;
4392 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4393 * queue (may be a remote CPU queue).
4395 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4396 unsigned int *qtail)
4398 struct softnet_data *sd;
4399 unsigned long flags;
4400 unsigned int qlen;
4402 sd = &per_cpu(softnet_data, cpu);
4404 local_irq_save(flags);
4406 rps_lock(sd);
4407 if (!netif_running(skb->dev))
4408 goto drop;
4409 qlen = skb_queue_len(&sd->input_pkt_queue);
4410 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4411 if (qlen) {
4412 enqueue:
4413 __skb_queue_tail(&sd->input_pkt_queue, skb);
4414 input_queue_tail_incr_save(sd, qtail);
4415 rps_unlock(sd);
4416 local_irq_restore(flags);
4417 return NET_RX_SUCCESS;
4420 /* Schedule NAPI for backlog device
4421 * We can use non atomic operation since we own the queue lock
4423 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4424 if (!rps_ipi_queued(sd))
4425 ____napi_schedule(sd, &sd->backlog);
4427 goto enqueue;
4430 drop:
4431 sd->dropped++;
4432 rps_unlock(sd);
4434 local_irq_restore(flags);
4436 atomic_long_inc(&skb->dev->rx_dropped);
4437 kfree_skb(skb);
4438 return NET_RX_DROP;
4441 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4443 struct net_device *dev = skb->dev;
4444 struct netdev_rx_queue *rxqueue;
4446 rxqueue = dev->_rx;
4448 if (skb_rx_queue_recorded(skb)) {
4449 u16 index = skb_get_rx_queue(skb);
4451 if (unlikely(index >= dev->real_num_rx_queues)) {
4452 WARN_ONCE(dev->real_num_rx_queues > 1,
4453 "%s received packet on queue %u, but number "
4454 "of RX queues is %u\n",
4455 dev->name, index, dev->real_num_rx_queues);
4457 return rxqueue; /* Return first rxqueue */
4459 rxqueue += index;
4461 return rxqueue;
4464 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4465 struct xdp_buff *xdp,
4466 struct bpf_prog *xdp_prog)
4468 struct netdev_rx_queue *rxqueue;
4469 void *orig_data, *orig_data_end;
4470 u32 metalen, act = XDP_DROP;
4471 __be16 orig_eth_type;
4472 struct ethhdr *eth;
4473 bool orig_bcast;
4474 int hlen, off;
4475 u32 mac_len;
4477 /* Reinjected packets coming from act_mirred or similar should
4478 * not get XDP generic processing.
4480 if (skb_cloned(skb) || skb_is_tc_redirected(skb))
4481 return XDP_PASS;
4483 /* XDP packets must be linear and must have sufficient headroom
4484 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4485 * native XDP provides, thus we need to do it here as well.
4487 if (skb_is_nonlinear(skb) ||
4488 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4489 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4490 int troom = skb->tail + skb->data_len - skb->end;
4492 /* In case we have to go down the path and also linearize,
4493 * then lets do the pskb_expand_head() work just once here.
4495 if (pskb_expand_head(skb,
4496 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4497 troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4498 goto do_drop;
4499 if (skb_linearize(skb))
4500 goto do_drop;
4503 /* The XDP program wants to see the packet starting at the MAC
4504 * header.
4506 mac_len = skb->data - skb_mac_header(skb);
4507 hlen = skb_headlen(skb) + mac_len;
4508 xdp->data = skb->data - mac_len;
4509 xdp->data_meta = xdp->data;
4510 xdp->data_end = xdp->data + hlen;
4511 xdp->data_hard_start = skb->data - skb_headroom(skb);
4512 orig_data_end = xdp->data_end;
4513 orig_data = xdp->data;
4514 eth = (struct ethhdr *)xdp->data;
4515 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4516 orig_eth_type = eth->h_proto;
4518 rxqueue = netif_get_rxqueue(skb);
4519 xdp->rxq = &rxqueue->xdp_rxq;
4521 act = bpf_prog_run_xdp(xdp_prog, xdp);
4523 /* check if bpf_xdp_adjust_head was used */
4524 off = xdp->data - orig_data;
4525 if (off) {
4526 if (off > 0)
4527 __skb_pull(skb, off);
4528 else if (off < 0)
4529 __skb_push(skb, -off);
4531 skb->mac_header += off;
4532 skb_reset_network_header(skb);
4535 /* check if bpf_xdp_adjust_tail was used. it can only "shrink"
4536 * pckt.
4538 off = orig_data_end - xdp->data_end;
4539 if (off != 0) {
4540 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4541 skb->len -= off;
4545 /* check if XDP changed eth hdr such SKB needs update */
4546 eth = (struct ethhdr *)xdp->data;
4547 if ((orig_eth_type != eth->h_proto) ||
4548 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4549 __skb_push(skb, ETH_HLEN);
4550 skb->protocol = eth_type_trans(skb, skb->dev);
4553 switch (act) {
4554 case XDP_REDIRECT:
4555 case XDP_TX:
4556 __skb_push(skb, mac_len);
4557 break;
4558 case XDP_PASS:
4559 metalen = xdp->data - xdp->data_meta;
4560 if (metalen)
4561 skb_metadata_set(skb, metalen);
4562 break;
4563 default:
4564 bpf_warn_invalid_xdp_action(act);
4565 /* fall through */
4566 case XDP_ABORTED:
4567 trace_xdp_exception(skb->dev, xdp_prog, act);
4568 /* fall through */
4569 case XDP_DROP:
4570 do_drop:
4571 kfree_skb(skb);
4572 break;
4575 return act;
4578 /* When doing generic XDP we have to bypass the qdisc layer and the
4579 * network taps in order to match in-driver-XDP behavior.
4581 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4583 struct net_device *dev = skb->dev;
4584 struct netdev_queue *txq;
4585 bool free_skb = true;
4586 int cpu, rc;
4588 txq = netdev_core_pick_tx(dev, skb, NULL);
4589 cpu = smp_processor_id();
4590 HARD_TX_LOCK(dev, txq, cpu);
4591 if (!netif_xmit_stopped(txq)) {
4592 rc = netdev_start_xmit(skb, dev, txq, 0);
4593 if (dev_xmit_complete(rc))
4594 free_skb = false;
4596 HARD_TX_UNLOCK(dev, txq);
4597 if (free_skb) {
4598 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4599 kfree_skb(skb);
4602 EXPORT_SYMBOL_GPL(generic_xdp_tx);
4604 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4606 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4608 if (xdp_prog) {
4609 struct xdp_buff xdp;
4610 u32 act;
4611 int err;
4613 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4614 if (act != XDP_PASS) {
4615 switch (act) {
4616 case XDP_REDIRECT:
4617 err = xdp_do_generic_redirect(skb->dev, skb,
4618 &xdp, xdp_prog);
4619 if (err)
4620 goto out_redir;
4621 break;
4622 case XDP_TX:
4623 generic_xdp_tx(skb, xdp_prog);
4624 break;
4626 return XDP_DROP;
4629 return XDP_PASS;
4630 out_redir:
4631 kfree_skb(skb);
4632 return XDP_DROP;
4634 EXPORT_SYMBOL_GPL(do_xdp_generic);
4636 static int netif_rx_internal(struct sk_buff *skb)
4638 int ret;
4640 net_timestamp_check(netdev_tstamp_prequeue, skb);
4642 trace_netif_rx(skb);
4644 #ifdef CONFIG_RPS
4645 if (static_branch_unlikely(&rps_needed)) {
4646 struct rps_dev_flow voidflow, *rflow = &voidflow;
4647 int cpu;
4649 preempt_disable();
4650 rcu_read_lock();
4652 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4653 if (cpu < 0)
4654 cpu = smp_processor_id();
4656 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4658 rcu_read_unlock();
4659 preempt_enable();
4660 } else
4661 #endif
4663 unsigned int qtail;
4665 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4666 put_cpu();
4668 return ret;
4672 * netif_rx - post buffer to the network code
4673 * @skb: buffer to post
4675 * This function receives a packet from a device driver and queues it for
4676 * the upper (protocol) levels to process. It always succeeds. The buffer
4677 * may be dropped during processing for congestion control or by the
4678 * protocol layers.
4680 * return values:
4681 * NET_RX_SUCCESS (no congestion)
4682 * NET_RX_DROP (packet was dropped)
4686 int netif_rx(struct sk_buff *skb)
4688 int ret;
4690 trace_netif_rx_entry(skb);
4692 ret = netif_rx_internal(skb);
4693 trace_netif_rx_exit(ret);
4695 return ret;
4697 EXPORT_SYMBOL(netif_rx);
4699 int netif_rx_ni(struct sk_buff *skb)
4701 int err;
4703 trace_netif_rx_ni_entry(skb);
4705 preempt_disable();
4706 err = netif_rx_internal(skb);
4707 if (local_softirq_pending())
4708 do_softirq();
4709 preempt_enable();
4710 trace_netif_rx_ni_exit(err);
4712 return err;
4714 EXPORT_SYMBOL(netif_rx_ni);
4716 static __latent_entropy void net_tx_action(struct softirq_action *h)
4718 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4720 if (sd->completion_queue) {
4721 struct sk_buff *clist;
4723 local_irq_disable();
4724 clist = sd->completion_queue;
4725 sd->completion_queue = NULL;
4726 local_irq_enable();
4728 while (clist) {
4729 struct sk_buff *skb = clist;
4731 clist = clist->next;
4733 WARN_ON(refcount_read(&skb->users));
4734 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4735 trace_consume_skb(skb);
4736 else
4737 trace_kfree_skb(skb, net_tx_action);
4739 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4740 __kfree_skb(skb);
4741 else
4742 __kfree_skb_defer(skb);
4745 __kfree_skb_flush();
4748 if (sd->output_queue) {
4749 struct Qdisc *head;
4751 local_irq_disable();
4752 head = sd->output_queue;
4753 sd->output_queue = NULL;
4754 sd->output_queue_tailp = &sd->output_queue;
4755 local_irq_enable();
4757 while (head) {
4758 struct Qdisc *q = head;
4759 spinlock_t *root_lock = NULL;
4761 head = head->next_sched;
4763 if (!(q->flags & TCQ_F_NOLOCK)) {
4764 root_lock = qdisc_lock(q);
4765 spin_lock(root_lock);
4767 /* We need to make sure head->next_sched is read
4768 * before clearing __QDISC_STATE_SCHED
4770 smp_mb__before_atomic();
4771 clear_bit(__QDISC_STATE_SCHED, &q->state);
4772 qdisc_run(q);
4773 if (root_lock)
4774 spin_unlock(root_lock);
4778 xfrm_dev_backlog(sd);
4781 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4782 /* This hook is defined here for ATM LANE */
4783 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4784 unsigned char *addr) __read_mostly;
4785 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4786 #endif
4788 static inline struct sk_buff *
4789 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4790 struct net_device *orig_dev)
4792 #ifdef CONFIG_NET_CLS_ACT
4793 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4794 struct tcf_result cl_res;
4796 /* If there's at least one ingress present somewhere (so
4797 * we get here via enabled static key), remaining devices
4798 * that are not configured with an ingress qdisc will bail
4799 * out here.
4801 if (!miniq)
4802 return skb;
4804 if (*pt_prev) {
4805 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4806 *pt_prev = NULL;
4809 qdisc_skb_cb(skb)->pkt_len = skb->len;
4810 skb->tc_at_ingress = 1;
4811 mini_qdisc_bstats_cpu_update(miniq, skb);
4813 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4814 case TC_ACT_OK:
4815 case TC_ACT_RECLASSIFY:
4816 skb->tc_index = TC_H_MIN(cl_res.classid);
4817 break;
4818 case TC_ACT_SHOT:
4819 mini_qdisc_qstats_cpu_drop(miniq);
4820 kfree_skb(skb);
4821 return NULL;
4822 case TC_ACT_STOLEN:
4823 case TC_ACT_QUEUED:
4824 case TC_ACT_TRAP:
4825 consume_skb(skb);
4826 return NULL;
4827 case TC_ACT_REDIRECT:
4828 /* skb_mac_header check was done by cls/act_bpf, so
4829 * we can safely push the L2 header back before
4830 * redirecting to another netdev
4832 __skb_push(skb, skb->mac_len);
4833 skb_do_redirect(skb);
4834 return NULL;
4835 case TC_ACT_CONSUMED:
4836 return NULL;
4837 default:
4838 break;
4840 #endif /* CONFIG_NET_CLS_ACT */
4841 return skb;
4845 * netdev_is_rx_handler_busy - check if receive handler is registered
4846 * @dev: device to check
4848 * Check if a receive handler is already registered for a given device.
4849 * Return true if there one.
4851 * The caller must hold the rtnl_mutex.
4853 bool netdev_is_rx_handler_busy(struct net_device *dev)
4855 ASSERT_RTNL();
4856 return dev && rtnl_dereference(dev->rx_handler);
4858 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4861 * netdev_rx_handler_register - register receive handler
4862 * @dev: device to register a handler for
4863 * @rx_handler: receive handler to register
4864 * @rx_handler_data: data pointer that is used by rx handler
4866 * Register a receive handler for a device. This handler will then be
4867 * called from __netif_receive_skb. A negative errno code is returned
4868 * on a failure.
4870 * The caller must hold the rtnl_mutex.
4872 * For a general description of rx_handler, see enum rx_handler_result.
4874 int netdev_rx_handler_register(struct net_device *dev,
4875 rx_handler_func_t *rx_handler,
4876 void *rx_handler_data)
4878 if (netdev_is_rx_handler_busy(dev))
4879 return -EBUSY;
4881 if (dev->priv_flags & IFF_NO_RX_HANDLER)
4882 return -EINVAL;
4884 /* Note: rx_handler_data must be set before rx_handler */
4885 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4886 rcu_assign_pointer(dev->rx_handler, rx_handler);
4888 return 0;
4890 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4893 * netdev_rx_handler_unregister - unregister receive handler
4894 * @dev: device to unregister a handler from
4896 * Unregister a receive handler from a device.
4898 * The caller must hold the rtnl_mutex.
4900 void netdev_rx_handler_unregister(struct net_device *dev)
4903 ASSERT_RTNL();
4904 RCU_INIT_POINTER(dev->rx_handler, NULL);
4905 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4906 * section has a guarantee to see a non NULL rx_handler_data
4907 * as well.
4909 synchronize_net();
4910 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4912 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4915 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4916 * the special handling of PFMEMALLOC skbs.
4918 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4920 switch (skb->protocol) {
4921 case htons(ETH_P_ARP):
4922 case htons(ETH_P_IP):
4923 case htons(ETH_P_IPV6):
4924 case htons(ETH_P_8021Q):
4925 case htons(ETH_P_8021AD):
4926 return true;
4927 default:
4928 return false;
4932 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4933 int *ret, struct net_device *orig_dev)
4935 #ifdef CONFIG_NETFILTER_INGRESS
4936 if (nf_hook_ingress_active(skb)) {
4937 int ingress_retval;
4939 if (*pt_prev) {
4940 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4941 *pt_prev = NULL;
4944 rcu_read_lock();
4945 ingress_retval = nf_hook_ingress(skb);
4946 rcu_read_unlock();
4947 return ingress_retval;
4949 #endif /* CONFIG_NETFILTER_INGRESS */
4950 return 0;
4953 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc,
4954 struct packet_type **ppt_prev)
4956 struct packet_type *ptype, *pt_prev;
4957 rx_handler_func_t *rx_handler;
4958 struct net_device *orig_dev;
4959 bool deliver_exact = false;
4960 int ret = NET_RX_DROP;
4961 __be16 type;
4963 net_timestamp_check(!netdev_tstamp_prequeue, skb);
4965 trace_netif_receive_skb(skb);
4967 orig_dev = skb->dev;
4969 skb_reset_network_header(skb);
4970 if (!skb_transport_header_was_set(skb))
4971 skb_reset_transport_header(skb);
4972 skb_reset_mac_len(skb);
4974 pt_prev = NULL;
4976 another_round:
4977 skb->skb_iif = skb->dev->ifindex;
4979 __this_cpu_inc(softnet_data.processed);
4981 if (static_branch_unlikely(&generic_xdp_needed_key)) {
4982 int ret2;
4984 preempt_disable();
4985 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4986 preempt_enable();
4988 if (ret2 != XDP_PASS)
4989 return NET_RX_DROP;
4990 skb_reset_mac_len(skb);
4993 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4994 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4995 skb = skb_vlan_untag(skb);
4996 if (unlikely(!skb))
4997 goto out;
5000 if (skb_skip_tc_classify(skb))
5001 goto skip_classify;
5003 if (pfmemalloc)
5004 goto skip_taps;
5006 list_for_each_entry_rcu(ptype, &ptype_all, list) {
5007 if (pt_prev)
5008 ret = deliver_skb(skb, pt_prev, orig_dev);
5009 pt_prev = ptype;
5012 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5013 if (pt_prev)
5014 ret = deliver_skb(skb, pt_prev, orig_dev);
5015 pt_prev = ptype;
5018 skip_taps:
5019 #ifdef CONFIG_NET_INGRESS
5020 if (static_branch_unlikely(&ingress_needed_key)) {
5021 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
5022 if (!skb)
5023 goto out;
5025 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5026 goto out;
5028 #endif
5029 skb_reset_tc(skb);
5030 skip_classify:
5031 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5032 goto drop;
5034 if (skb_vlan_tag_present(skb)) {
5035 if (pt_prev) {
5036 ret = deliver_skb(skb, pt_prev, orig_dev);
5037 pt_prev = NULL;
5039 if (vlan_do_receive(&skb))
5040 goto another_round;
5041 else if (unlikely(!skb))
5042 goto out;
5045 rx_handler = rcu_dereference(skb->dev->rx_handler);
5046 if (rx_handler) {
5047 if (pt_prev) {
5048 ret = deliver_skb(skb, pt_prev, orig_dev);
5049 pt_prev = NULL;
5051 switch (rx_handler(&skb)) {
5052 case RX_HANDLER_CONSUMED:
5053 ret = NET_RX_SUCCESS;
5054 goto out;
5055 case RX_HANDLER_ANOTHER:
5056 goto another_round;
5057 case RX_HANDLER_EXACT:
5058 deliver_exact = true;
5059 case RX_HANDLER_PASS:
5060 break;
5061 default:
5062 BUG();
5066 if (unlikely(skb_vlan_tag_present(skb))) {
5067 check_vlan_id:
5068 if (skb_vlan_tag_get_id(skb)) {
5069 /* Vlan id is non 0 and vlan_do_receive() above couldn't
5070 * find vlan device.
5072 skb->pkt_type = PACKET_OTHERHOST;
5073 } else if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5074 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5075 /* Outer header is 802.1P with vlan 0, inner header is
5076 * 802.1Q or 802.1AD and vlan_do_receive() above could
5077 * not find vlan dev for vlan id 0.
5079 __vlan_hwaccel_clear_tag(skb);
5080 skb = skb_vlan_untag(skb);
5081 if (unlikely(!skb))
5082 goto out;
5083 if (vlan_do_receive(&skb))
5084 /* After stripping off 802.1P header with vlan 0
5085 * vlan dev is found for inner header.
5087 goto another_round;
5088 else if (unlikely(!skb))
5089 goto out;
5090 else
5091 /* We have stripped outer 802.1P vlan 0 header.
5092 * But could not find vlan dev.
5093 * check again for vlan id to set OTHERHOST.
5095 goto check_vlan_id;
5097 /* Note: we might in the future use prio bits
5098 * and set skb->priority like in vlan_do_receive()
5099 * For the time being, just ignore Priority Code Point
5101 __vlan_hwaccel_clear_tag(skb);
5104 type = skb->protocol;
5106 /* deliver only exact match when indicated */
5107 if (likely(!deliver_exact)) {
5108 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5109 &ptype_base[ntohs(type) &
5110 PTYPE_HASH_MASK]);
5113 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5114 &orig_dev->ptype_specific);
5116 if (unlikely(skb->dev != orig_dev)) {
5117 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5118 &skb->dev->ptype_specific);
5121 if (pt_prev) {
5122 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5123 goto drop;
5124 *ppt_prev = pt_prev;
5125 } else {
5126 drop:
5127 if (!deliver_exact)
5128 atomic_long_inc(&skb->dev->rx_dropped);
5129 else
5130 atomic_long_inc(&skb->dev->rx_nohandler);
5131 kfree_skb(skb);
5132 /* Jamal, now you will not able to escape explaining
5133 * me how you were going to use this. :-)
5135 ret = NET_RX_DROP;
5138 out:
5139 return ret;
5142 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5144 struct net_device *orig_dev = skb->dev;
5145 struct packet_type *pt_prev = NULL;
5146 int ret;
5148 ret = __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
5149 if (pt_prev)
5150 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5151 skb->dev, pt_prev, orig_dev);
5152 return ret;
5156 * netif_receive_skb_core - special purpose version of netif_receive_skb
5157 * @skb: buffer to process
5159 * More direct receive version of netif_receive_skb(). It should
5160 * only be used by callers that have a need to skip RPS and Generic XDP.
5161 * Caller must also take care of handling if (page_is_)pfmemalloc.
5163 * This function may only be called from softirq context and interrupts
5164 * should be enabled.
5166 * Return values (usually ignored):
5167 * NET_RX_SUCCESS: no congestion
5168 * NET_RX_DROP: packet was dropped
5170 int netif_receive_skb_core(struct sk_buff *skb)
5172 int ret;
5174 rcu_read_lock();
5175 ret = __netif_receive_skb_one_core(skb, false);
5176 rcu_read_unlock();
5178 return ret;
5180 EXPORT_SYMBOL(netif_receive_skb_core);
5182 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5183 struct packet_type *pt_prev,
5184 struct net_device *orig_dev)
5186 struct sk_buff *skb, *next;
5188 if (!pt_prev)
5189 return;
5190 if (list_empty(head))
5191 return;
5192 if (pt_prev->list_func != NULL)
5193 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5194 ip_list_rcv, head, pt_prev, orig_dev);
5195 else
5196 list_for_each_entry_safe(skb, next, head, list) {
5197 skb_list_del_init(skb);
5198 pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5202 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5204 /* Fast-path assumptions:
5205 * - There is no RX handler.
5206 * - Only one packet_type matches.
5207 * If either of these fails, we will end up doing some per-packet
5208 * processing in-line, then handling the 'last ptype' for the whole
5209 * sublist. This can't cause out-of-order delivery to any single ptype,
5210 * because the 'last ptype' must be constant across the sublist, and all
5211 * other ptypes are handled per-packet.
5213 /* Current (common) ptype of sublist */
5214 struct packet_type *pt_curr = NULL;
5215 /* Current (common) orig_dev of sublist */
5216 struct net_device *od_curr = NULL;
5217 struct list_head sublist;
5218 struct sk_buff *skb, *next;
5220 INIT_LIST_HEAD(&sublist);
5221 list_for_each_entry_safe(skb, next, head, list) {
5222 struct net_device *orig_dev = skb->dev;
5223 struct packet_type *pt_prev = NULL;
5225 skb_list_del_init(skb);
5226 __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
5227 if (!pt_prev)
5228 continue;
5229 if (pt_curr != pt_prev || od_curr != orig_dev) {
5230 /* dispatch old sublist */
5231 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5232 /* start new sublist */
5233 INIT_LIST_HEAD(&sublist);
5234 pt_curr = pt_prev;
5235 od_curr = orig_dev;
5237 list_add_tail(&skb->list, &sublist);
5240 /* dispatch final sublist */
5241 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5244 static int __netif_receive_skb(struct sk_buff *skb)
5246 int ret;
5248 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5249 unsigned int noreclaim_flag;
5252 * PFMEMALLOC skbs are special, they should
5253 * - be delivered to SOCK_MEMALLOC sockets only
5254 * - stay away from userspace
5255 * - have bounded memory usage
5257 * Use PF_MEMALLOC as this saves us from propagating the allocation
5258 * context down to all allocation sites.
5260 noreclaim_flag = memalloc_noreclaim_save();
5261 ret = __netif_receive_skb_one_core(skb, true);
5262 memalloc_noreclaim_restore(noreclaim_flag);
5263 } else
5264 ret = __netif_receive_skb_one_core(skb, false);
5266 return ret;
5269 static void __netif_receive_skb_list(struct list_head *head)
5271 unsigned long noreclaim_flag = 0;
5272 struct sk_buff *skb, *next;
5273 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5275 list_for_each_entry_safe(skb, next, head, list) {
5276 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5277 struct list_head sublist;
5279 /* Handle the previous sublist */
5280 list_cut_before(&sublist, head, &skb->list);
5281 if (!list_empty(&sublist))
5282 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5283 pfmemalloc = !pfmemalloc;
5284 /* See comments in __netif_receive_skb */
5285 if (pfmemalloc)
5286 noreclaim_flag = memalloc_noreclaim_save();
5287 else
5288 memalloc_noreclaim_restore(noreclaim_flag);
5291 /* Handle the remaining sublist */
5292 if (!list_empty(head))
5293 __netif_receive_skb_list_core(head, pfmemalloc);
5294 /* Restore pflags */
5295 if (pfmemalloc)
5296 memalloc_noreclaim_restore(noreclaim_flag);
5299 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5301 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5302 struct bpf_prog *new = xdp->prog;
5303 int ret = 0;
5305 switch (xdp->command) {
5306 case XDP_SETUP_PROG:
5307 rcu_assign_pointer(dev->xdp_prog, new);
5308 if (old)
5309 bpf_prog_put(old);
5311 if (old && !new) {
5312 static_branch_dec(&generic_xdp_needed_key);
5313 } else if (new && !old) {
5314 static_branch_inc(&generic_xdp_needed_key);
5315 dev_disable_lro(dev);
5316 dev_disable_gro_hw(dev);
5318 break;
5320 case XDP_QUERY_PROG:
5321 xdp->prog_id = old ? old->aux->id : 0;
5322 break;
5324 default:
5325 ret = -EINVAL;
5326 break;
5329 return ret;
5332 static int netif_receive_skb_internal(struct sk_buff *skb)
5334 int ret;
5336 net_timestamp_check(netdev_tstamp_prequeue, skb);
5338 if (skb_defer_rx_timestamp(skb))
5339 return NET_RX_SUCCESS;
5341 rcu_read_lock();
5342 #ifdef CONFIG_RPS
5343 if (static_branch_unlikely(&rps_needed)) {
5344 struct rps_dev_flow voidflow, *rflow = &voidflow;
5345 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5347 if (cpu >= 0) {
5348 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5349 rcu_read_unlock();
5350 return ret;
5353 #endif
5354 ret = __netif_receive_skb(skb);
5355 rcu_read_unlock();
5356 return ret;
5359 static void netif_receive_skb_list_internal(struct list_head *head)
5361 struct sk_buff *skb, *next;
5362 struct list_head sublist;
5364 INIT_LIST_HEAD(&sublist);
5365 list_for_each_entry_safe(skb, next, head, list) {
5366 net_timestamp_check(netdev_tstamp_prequeue, skb);
5367 skb_list_del_init(skb);
5368 if (!skb_defer_rx_timestamp(skb))
5369 list_add_tail(&skb->list, &sublist);
5371 list_splice_init(&sublist, head);
5373 rcu_read_lock();
5374 #ifdef CONFIG_RPS
5375 if (static_branch_unlikely(&rps_needed)) {
5376 list_for_each_entry_safe(skb, next, head, list) {
5377 struct rps_dev_flow voidflow, *rflow = &voidflow;
5378 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5380 if (cpu >= 0) {
5381 /* Will be handled, remove from list */
5382 skb_list_del_init(skb);
5383 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5387 #endif
5388 __netif_receive_skb_list(head);
5389 rcu_read_unlock();
5393 * netif_receive_skb - process receive buffer from network
5394 * @skb: buffer to process
5396 * netif_receive_skb() is the main receive data processing function.
5397 * It always succeeds. The buffer may be dropped during processing
5398 * for congestion control or by the protocol layers.
5400 * This function may only be called from softirq context and interrupts
5401 * should be enabled.
5403 * Return values (usually ignored):
5404 * NET_RX_SUCCESS: no congestion
5405 * NET_RX_DROP: packet was dropped
5407 int netif_receive_skb(struct sk_buff *skb)
5409 int ret;
5411 trace_netif_receive_skb_entry(skb);
5413 ret = netif_receive_skb_internal(skb);
5414 trace_netif_receive_skb_exit(ret);
5416 return ret;
5418 EXPORT_SYMBOL(netif_receive_skb);
5421 * netif_receive_skb_list - process many receive buffers from network
5422 * @head: list of skbs to process.
5424 * Since return value of netif_receive_skb() is normally ignored, and
5425 * wouldn't be meaningful for a list, this function returns void.
5427 * This function may only be called from softirq context and interrupts
5428 * should be enabled.
5430 void netif_receive_skb_list(struct list_head *head)
5432 struct sk_buff *skb;
5434 if (list_empty(head))
5435 return;
5436 if (trace_netif_receive_skb_list_entry_enabled()) {
5437 list_for_each_entry(skb, head, list)
5438 trace_netif_receive_skb_list_entry(skb);
5440 netif_receive_skb_list_internal(head);
5441 trace_netif_receive_skb_list_exit(0);
5443 EXPORT_SYMBOL(netif_receive_skb_list);
5445 DEFINE_PER_CPU(struct work_struct, flush_works);
5447 /* Network device is going away, flush any packets still pending */
5448 static void flush_backlog(struct work_struct *work)
5450 struct sk_buff *skb, *tmp;
5451 struct softnet_data *sd;
5453 local_bh_disable();
5454 sd = this_cpu_ptr(&softnet_data);
5456 local_irq_disable();
5457 rps_lock(sd);
5458 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5459 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5460 __skb_unlink(skb, &sd->input_pkt_queue);
5461 kfree_skb(skb);
5462 input_queue_head_incr(sd);
5465 rps_unlock(sd);
5466 local_irq_enable();
5468 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5469 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5470 __skb_unlink(skb, &sd->process_queue);
5471 kfree_skb(skb);
5472 input_queue_head_incr(sd);
5475 local_bh_enable();
5478 static void flush_all_backlogs(void)
5480 unsigned int cpu;
5482 get_online_cpus();
5484 for_each_online_cpu(cpu)
5485 queue_work_on(cpu, system_highpri_wq,
5486 per_cpu_ptr(&flush_works, cpu));
5488 for_each_online_cpu(cpu)
5489 flush_work(per_cpu_ptr(&flush_works, cpu));
5491 put_online_cpus();
5494 INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int));
5495 INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int));
5496 static int napi_gro_complete(struct sk_buff *skb)
5498 struct packet_offload *ptype;
5499 __be16 type = skb->protocol;
5500 struct list_head *head = &offload_base;
5501 int err = -ENOENT;
5503 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5505 if (NAPI_GRO_CB(skb)->count == 1) {
5506 skb_shinfo(skb)->gso_size = 0;
5507 goto out;
5510 rcu_read_lock();
5511 list_for_each_entry_rcu(ptype, head, list) {
5512 if (ptype->type != type || !ptype->callbacks.gro_complete)
5513 continue;
5515 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5516 ipv6_gro_complete, inet_gro_complete,
5517 skb, 0);
5518 break;
5520 rcu_read_unlock();
5522 if (err) {
5523 WARN_ON(&ptype->list == head);
5524 kfree_skb(skb);
5525 return NET_RX_SUCCESS;
5528 out:
5529 return netif_receive_skb_internal(skb);
5532 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5533 bool flush_old)
5535 struct list_head *head = &napi->gro_hash[index].list;
5536 struct sk_buff *skb, *p;
5538 list_for_each_entry_safe_reverse(skb, p, head, list) {
5539 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5540 return;
5541 skb_list_del_init(skb);
5542 napi_gro_complete(skb);
5543 napi->gro_hash[index].count--;
5546 if (!napi->gro_hash[index].count)
5547 __clear_bit(index, &napi->gro_bitmask);
5550 /* napi->gro_hash[].list contains packets ordered by age.
5551 * youngest packets at the head of it.
5552 * Complete skbs in reverse order to reduce latencies.
5554 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5556 unsigned long bitmask = napi->gro_bitmask;
5557 unsigned int i, base = ~0U;
5559 while ((i = ffs(bitmask)) != 0) {
5560 bitmask >>= i;
5561 base += i;
5562 __napi_gro_flush_chain(napi, base, flush_old);
5565 EXPORT_SYMBOL(napi_gro_flush);
5567 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5568 struct sk_buff *skb)
5570 unsigned int maclen = skb->dev->hard_header_len;
5571 u32 hash = skb_get_hash_raw(skb);
5572 struct list_head *head;
5573 struct sk_buff *p;
5575 head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5576 list_for_each_entry(p, head, list) {
5577 unsigned long diffs;
5579 NAPI_GRO_CB(p)->flush = 0;
5581 if (hash != skb_get_hash_raw(p)) {
5582 NAPI_GRO_CB(p)->same_flow = 0;
5583 continue;
5586 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5587 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5588 if (skb_vlan_tag_present(p))
5589 diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
5590 diffs |= skb_metadata_dst_cmp(p, skb);
5591 diffs |= skb_metadata_differs(p, skb);
5592 if (maclen == ETH_HLEN)
5593 diffs |= compare_ether_header(skb_mac_header(p),
5594 skb_mac_header(skb));
5595 else if (!diffs)
5596 diffs = memcmp(skb_mac_header(p),
5597 skb_mac_header(skb),
5598 maclen);
5599 NAPI_GRO_CB(p)->same_flow = !diffs;
5602 return head;
5605 static void skb_gro_reset_offset(struct sk_buff *skb)
5607 const struct skb_shared_info *pinfo = skb_shinfo(skb);
5608 const skb_frag_t *frag0 = &pinfo->frags[0];
5610 NAPI_GRO_CB(skb)->data_offset = 0;
5611 NAPI_GRO_CB(skb)->frag0 = NULL;
5612 NAPI_GRO_CB(skb)->frag0_len = 0;
5614 if (!skb_headlen(skb) && pinfo->nr_frags &&
5615 !PageHighMem(skb_frag_page(frag0))) {
5616 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5617 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5618 skb_frag_size(frag0),
5619 skb->end - skb->tail);
5623 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5625 struct skb_shared_info *pinfo = skb_shinfo(skb);
5627 BUG_ON(skb->end - skb->tail < grow);
5629 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5631 skb->data_len -= grow;
5632 skb->tail += grow;
5634 skb_frag_off_add(&pinfo->frags[0], grow);
5635 skb_frag_size_sub(&pinfo->frags[0], grow);
5637 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5638 skb_frag_unref(skb, 0);
5639 memmove(pinfo->frags, pinfo->frags + 1,
5640 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
5644 static void gro_flush_oldest(struct list_head *head)
5646 struct sk_buff *oldest;
5648 oldest = list_last_entry(head, struct sk_buff, list);
5650 /* We are called with head length >= MAX_GRO_SKBS, so this is
5651 * impossible.
5653 if (WARN_ON_ONCE(!oldest))
5654 return;
5656 /* Do not adjust napi->gro_hash[].count, caller is adding a new
5657 * SKB to the chain.
5659 skb_list_del_init(oldest);
5660 napi_gro_complete(oldest);
5663 INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *,
5664 struct sk_buff *));
5665 INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *,
5666 struct sk_buff *));
5667 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5669 u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5670 struct list_head *head = &offload_base;
5671 struct packet_offload *ptype;
5672 __be16 type = skb->protocol;
5673 struct list_head *gro_head;
5674 struct sk_buff *pp = NULL;
5675 enum gro_result ret;
5676 int same_flow;
5677 int grow;
5679 if (netif_elide_gro(skb->dev))
5680 goto normal;
5682 gro_head = gro_list_prepare(napi, skb);
5684 rcu_read_lock();
5685 list_for_each_entry_rcu(ptype, head, list) {
5686 if (ptype->type != type || !ptype->callbacks.gro_receive)
5687 continue;
5689 skb_set_network_header(skb, skb_gro_offset(skb));
5690 skb_reset_mac_len(skb);
5691 NAPI_GRO_CB(skb)->same_flow = 0;
5692 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5693 NAPI_GRO_CB(skb)->free = 0;
5694 NAPI_GRO_CB(skb)->encap_mark = 0;
5695 NAPI_GRO_CB(skb)->recursion_counter = 0;
5696 NAPI_GRO_CB(skb)->is_fou = 0;
5697 NAPI_GRO_CB(skb)->is_atomic = 1;
5698 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5700 /* Setup for GRO checksum validation */
5701 switch (skb->ip_summed) {
5702 case CHECKSUM_COMPLETE:
5703 NAPI_GRO_CB(skb)->csum = skb->csum;
5704 NAPI_GRO_CB(skb)->csum_valid = 1;
5705 NAPI_GRO_CB(skb)->csum_cnt = 0;
5706 break;
5707 case CHECKSUM_UNNECESSARY:
5708 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5709 NAPI_GRO_CB(skb)->csum_valid = 0;
5710 break;
5711 default:
5712 NAPI_GRO_CB(skb)->csum_cnt = 0;
5713 NAPI_GRO_CB(skb)->csum_valid = 0;
5716 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
5717 ipv6_gro_receive, inet_gro_receive,
5718 gro_head, skb);
5719 break;
5721 rcu_read_unlock();
5723 if (&ptype->list == head)
5724 goto normal;
5726 if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
5727 ret = GRO_CONSUMED;
5728 goto ok;
5731 same_flow = NAPI_GRO_CB(skb)->same_flow;
5732 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5734 if (pp) {
5735 skb_list_del_init(pp);
5736 napi_gro_complete(pp);
5737 napi->gro_hash[hash].count--;
5740 if (same_flow)
5741 goto ok;
5743 if (NAPI_GRO_CB(skb)->flush)
5744 goto normal;
5746 if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5747 gro_flush_oldest(gro_head);
5748 } else {
5749 napi->gro_hash[hash].count++;
5751 NAPI_GRO_CB(skb)->count = 1;
5752 NAPI_GRO_CB(skb)->age = jiffies;
5753 NAPI_GRO_CB(skb)->last = skb;
5754 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5755 list_add(&skb->list, gro_head);
5756 ret = GRO_HELD;
5758 pull:
5759 grow = skb_gro_offset(skb) - skb_headlen(skb);
5760 if (grow > 0)
5761 gro_pull_from_frag0(skb, grow);
5763 if (napi->gro_hash[hash].count) {
5764 if (!test_bit(hash, &napi->gro_bitmask))
5765 __set_bit(hash, &napi->gro_bitmask);
5766 } else if (test_bit(hash, &napi->gro_bitmask)) {
5767 __clear_bit(hash, &napi->gro_bitmask);
5770 return ret;
5772 normal:
5773 ret = GRO_NORMAL;
5774 goto pull;
5777 struct packet_offload *gro_find_receive_by_type(__be16 type)
5779 struct list_head *offload_head = &offload_base;
5780 struct packet_offload *ptype;
5782 list_for_each_entry_rcu(ptype, offload_head, list) {
5783 if (ptype->type != type || !ptype->callbacks.gro_receive)
5784 continue;
5785 return ptype;
5787 return NULL;
5789 EXPORT_SYMBOL(gro_find_receive_by_type);
5791 struct packet_offload *gro_find_complete_by_type(__be16 type)
5793 struct list_head *offload_head = &offload_base;
5794 struct packet_offload *ptype;
5796 list_for_each_entry_rcu(ptype, offload_head, list) {
5797 if (ptype->type != type || !ptype->callbacks.gro_complete)
5798 continue;
5799 return ptype;
5801 return NULL;
5803 EXPORT_SYMBOL(gro_find_complete_by_type);
5805 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5806 static void gro_normal_list(struct napi_struct *napi)
5808 if (!napi->rx_count)
5809 return;
5810 netif_receive_skb_list_internal(&napi->rx_list);
5811 INIT_LIST_HEAD(&napi->rx_list);
5812 napi->rx_count = 0;
5815 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5816 * pass the whole batch up to the stack.
5818 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb)
5820 list_add_tail(&skb->list, &napi->rx_list);
5821 if (++napi->rx_count >= gro_normal_batch)
5822 gro_normal_list(napi);
5825 static void napi_skb_free_stolen_head(struct sk_buff *skb)
5827 skb_dst_drop(skb);
5828 skb_ext_put(skb);
5829 kmem_cache_free(skbuff_head_cache, skb);
5832 static gro_result_t napi_skb_finish(struct napi_struct *napi,
5833 struct sk_buff *skb,
5834 gro_result_t ret)
5836 switch (ret) {
5837 case GRO_NORMAL:
5838 gro_normal_one(napi, skb);
5839 break;
5841 case GRO_DROP:
5842 kfree_skb(skb);
5843 break;
5845 case GRO_MERGED_FREE:
5846 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5847 napi_skb_free_stolen_head(skb);
5848 else
5849 __kfree_skb(skb);
5850 break;
5852 case GRO_HELD:
5853 case GRO_MERGED:
5854 case GRO_CONSUMED:
5855 break;
5858 return ret;
5861 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5863 gro_result_t ret;
5865 skb_mark_napi_id(skb, napi);
5866 trace_napi_gro_receive_entry(skb);
5868 skb_gro_reset_offset(skb);
5870 ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
5871 trace_napi_gro_receive_exit(ret);
5873 return ret;
5875 EXPORT_SYMBOL(napi_gro_receive);
5877 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5879 if (unlikely(skb->pfmemalloc)) {
5880 consume_skb(skb);
5881 return;
5883 __skb_pull(skb, skb_headlen(skb));
5884 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
5885 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5886 __vlan_hwaccel_clear_tag(skb);
5887 skb->dev = napi->dev;
5888 skb->skb_iif = 0;
5890 /* eth_type_trans() assumes pkt_type is PACKET_HOST */
5891 skb->pkt_type = PACKET_HOST;
5893 skb->encapsulation = 0;
5894 skb_shinfo(skb)->gso_type = 0;
5895 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5896 skb_ext_reset(skb);
5898 napi->skb = skb;
5901 struct sk_buff *napi_get_frags(struct napi_struct *napi)
5903 struct sk_buff *skb = napi->skb;
5905 if (!skb) {
5906 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5907 if (skb) {
5908 napi->skb = skb;
5909 skb_mark_napi_id(skb, napi);
5912 return skb;
5914 EXPORT_SYMBOL(napi_get_frags);
5916 static gro_result_t napi_frags_finish(struct napi_struct *napi,
5917 struct sk_buff *skb,
5918 gro_result_t ret)
5920 switch (ret) {
5921 case GRO_NORMAL:
5922 case GRO_HELD:
5923 __skb_push(skb, ETH_HLEN);
5924 skb->protocol = eth_type_trans(skb, skb->dev);
5925 if (ret == GRO_NORMAL)
5926 gro_normal_one(napi, skb);
5927 break;
5929 case GRO_DROP:
5930 napi_reuse_skb(napi, skb);
5931 break;
5933 case GRO_MERGED_FREE:
5934 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5935 napi_skb_free_stolen_head(skb);
5936 else
5937 napi_reuse_skb(napi, skb);
5938 break;
5940 case GRO_MERGED:
5941 case GRO_CONSUMED:
5942 break;
5945 return ret;
5948 /* Upper GRO stack assumes network header starts at gro_offset=0
5949 * Drivers could call both napi_gro_frags() and napi_gro_receive()
5950 * We copy ethernet header into skb->data to have a common layout.
5952 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5954 struct sk_buff *skb = napi->skb;
5955 const struct ethhdr *eth;
5956 unsigned int hlen = sizeof(*eth);
5958 napi->skb = NULL;
5960 skb_reset_mac_header(skb);
5961 skb_gro_reset_offset(skb);
5963 if (unlikely(skb_gro_header_hard(skb, hlen))) {
5964 eth = skb_gro_header_slow(skb, hlen, 0);
5965 if (unlikely(!eth)) {
5966 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5967 __func__, napi->dev->name);
5968 napi_reuse_skb(napi, skb);
5969 return NULL;
5971 } else {
5972 eth = (const struct ethhdr *)skb->data;
5973 gro_pull_from_frag0(skb, hlen);
5974 NAPI_GRO_CB(skb)->frag0 += hlen;
5975 NAPI_GRO_CB(skb)->frag0_len -= hlen;
5977 __skb_pull(skb, hlen);
5980 * This works because the only protocols we care about don't require
5981 * special handling.
5982 * We'll fix it up properly in napi_frags_finish()
5984 skb->protocol = eth->h_proto;
5986 return skb;
5989 gro_result_t napi_gro_frags(struct napi_struct *napi)
5991 gro_result_t ret;
5992 struct sk_buff *skb = napi_frags_skb(napi);
5994 if (!skb)
5995 return GRO_DROP;
5997 trace_napi_gro_frags_entry(skb);
5999 ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6000 trace_napi_gro_frags_exit(ret);
6002 return ret;
6004 EXPORT_SYMBOL(napi_gro_frags);
6006 /* Compute the checksum from gro_offset and return the folded value
6007 * after adding in any pseudo checksum.
6009 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6011 __wsum wsum;
6012 __sum16 sum;
6014 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6016 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6017 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6018 /* See comments in __skb_checksum_complete(). */
6019 if (likely(!sum)) {
6020 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6021 !skb->csum_complete_sw)
6022 netdev_rx_csum_fault(skb->dev, skb);
6025 NAPI_GRO_CB(skb)->csum = wsum;
6026 NAPI_GRO_CB(skb)->csum_valid = 1;
6028 return sum;
6030 EXPORT_SYMBOL(__skb_gro_checksum_complete);
6032 static void net_rps_send_ipi(struct softnet_data *remsd)
6034 #ifdef CONFIG_RPS
6035 while (remsd) {
6036 struct softnet_data *next = remsd->rps_ipi_next;
6038 if (cpu_online(remsd->cpu))
6039 smp_call_function_single_async(remsd->cpu, &remsd->csd);
6040 remsd = next;
6042 #endif
6046 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6047 * Note: called with local irq disabled, but exits with local irq enabled.
6049 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6051 #ifdef CONFIG_RPS
6052 struct softnet_data *remsd = sd->rps_ipi_list;
6054 if (remsd) {
6055 sd->rps_ipi_list = NULL;
6057 local_irq_enable();
6059 /* Send pending IPI's to kick RPS processing on remote cpus. */
6060 net_rps_send_ipi(remsd);
6061 } else
6062 #endif
6063 local_irq_enable();
6066 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6068 #ifdef CONFIG_RPS
6069 return sd->rps_ipi_list != NULL;
6070 #else
6071 return false;
6072 #endif
6075 static int process_backlog(struct napi_struct *napi, int quota)
6077 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6078 bool again = true;
6079 int work = 0;
6081 /* Check if we have pending ipi, its better to send them now,
6082 * not waiting net_rx_action() end.
6084 if (sd_has_rps_ipi_waiting(sd)) {
6085 local_irq_disable();
6086 net_rps_action_and_irq_enable(sd);
6089 napi->weight = dev_rx_weight;
6090 while (again) {
6091 struct sk_buff *skb;
6093 while ((skb = __skb_dequeue(&sd->process_queue))) {
6094 rcu_read_lock();
6095 __netif_receive_skb(skb);
6096 rcu_read_unlock();
6097 input_queue_head_incr(sd);
6098 if (++work >= quota)
6099 return work;
6103 local_irq_disable();
6104 rps_lock(sd);
6105 if (skb_queue_empty(&sd->input_pkt_queue)) {
6107 * Inline a custom version of __napi_complete().
6108 * only current cpu owns and manipulates this napi,
6109 * and NAPI_STATE_SCHED is the only possible flag set
6110 * on backlog.
6111 * We can use a plain write instead of clear_bit(),
6112 * and we dont need an smp_mb() memory barrier.
6114 napi->state = 0;
6115 again = false;
6116 } else {
6117 skb_queue_splice_tail_init(&sd->input_pkt_queue,
6118 &sd->process_queue);
6120 rps_unlock(sd);
6121 local_irq_enable();
6124 return work;
6128 * __napi_schedule - schedule for receive
6129 * @n: entry to schedule
6131 * The entry's receive function will be scheduled to run.
6132 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6134 void __napi_schedule(struct napi_struct *n)
6136 unsigned long flags;
6138 local_irq_save(flags);
6139 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6140 local_irq_restore(flags);
6142 EXPORT_SYMBOL(__napi_schedule);
6145 * napi_schedule_prep - check if napi can be scheduled
6146 * @n: napi context
6148 * Test if NAPI routine is already running, and if not mark
6149 * it as running. This is used as a condition variable
6150 * insure only one NAPI poll instance runs. We also make
6151 * sure there is no pending NAPI disable.
6153 bool napi_schedule_prep(struct napi_struct *n)
6155 unsigned long val, new;
6157 do {
6158 val = READ_ONCE(n->state);
6159 if (unlikely(val & NAPIF_STATE_DISABLE))
6160 return false;
6161 new = val | NAPIF_STATE_SCHED;
6163 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6164 * This was suggested by Alexander Duyck, as compiler
6165 * emits better code than :
6166 * if (val & NAPIF_STATE_SCHED)
6167 * new |= NAPIF_STATE_MISSED;
6169 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6170 NAPIF_STATE_MISSED;
6171 } while (cmpxchg(&n->state, val, new) != val);
6173 return !(val & NAPIF_STATE_SCHED);
6175 EXPORT_SYMBOL(napi_schedule_prep);
6178 * __napi_schedule_irqoff - schedule for receive
6179 * @n: entry to schedule
6181 * Variant of __napi_schedule() assuming hard irqs are masked
6183 void __napi_schedule_irqoff(struct napi_struct *n)
6185 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6187 EXPORT_SYMBOL(__napi_schedule_irqoff);
6189 bool napi_complete_done(struct napi_struct *n, int work_done)
6191 unsigned long flags, val, new;
6194 * 1) Don't let napi dequeue from the cpu poll list
6195 * just in case its running on a different cpu.
6196 * 2) If we are busy polling, do nothing here, we have
6197 * the guarantee we will be called later.
6199 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6200 NAPIF_STATE_IN_BUSY_POLL)))
6201 return false;
6203 gro_normal_list(n);
6205 if (n->gro_bitmask) {
6206 unsigned long timeout = 0;
6208 if (work_done)
6209 timeout = n->dev->gro_flush_timeout;
6211 /* When the NAPI instance uses a timeout and keeps postponing
6212 * it, we need to bound somehow the time packets are kept in
6213 * the GRO layer
6215 napi_gro_flush(n, !!timeout);
6216 if (timeout)
6217 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6218 HRTIMER_MODE_REL_PINNED);
6220 if (unlikely(!list_empty(&n->poll_list))) {
6221 /* If n->poll_list is not empty, we need to mask irqs */
6222 local_irq_save(flags);
6223 list_del_init(&n->poll_list);
6224 local_irq_restore(flags);
6227 do {
6228 val = READ_ONCE(n->state);
6230 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6232 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
6234 /* If STATE_MISSED was set, leave STATE_SCHED set,
6235 * because we will call napi->poll() one more time.
6236 * This C code was suggested by Alexander Duyck to help gcc.
6238 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6239 NAPIF_STATE_SCHED;
6240 } while (cmpxchg(&n->state, val, new) != val);
6242 if (unlikely(val & NAPIF_STATE_MISSED)) {
6243 __napi_schedule(n);
6244 return false;
6247 return true;
6249 EXPORT_SYMBOL(napi_complete_done);
6251 /* must be called under rcu_read_lock(), as we dont take a reference */
6252 static struct napi_struct *napi_by_id(unsigned int napi_id)
6254 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6255 struct napi_struct *napi;
6257 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6258 if (napi->napi_id == napi_id)
6259 return napi;
6261 return NULL;
6264 #if defined(CONFIG_NET_RX_BUSY_POLL)
6266 #define BUSY_POLL_BUDGET 8
6268 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6270 int rc;
6272 /* Busy polling means there is a high chance device driver hard irq
6273 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6274 * set in napi_schedule_prep().
6275 * Since we are about to call napi->poll() once more, we can safely
6276 * clear NAPI_STATE_MISSED.
6278 * Note: x86 could use a single "lock and ..." instruction
6279 * to perform these two clear_bit()
6281 clear_bit(NAPI_STATE_MISSED, &napi->state);
6282 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6284 local_bh_disable();
6286 /* All we really want here is to re-enable device interrupts.
6287 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6289 rc = napi->poll(napi, BUSY_POLL_BUDGET);
6290 /* We can't gro_normal_list() here, because napi->poll() might have
6291 * rearmed the napi (napi_complete_done()) in which case it could
6292 * already be running on another CPU.
6294 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
6295 netpoll_poll_unlock(have_poll_lock);
6296 if (rc == BUSY_POLL_BUDGET) {
6297 /* As the whole budget was spent, we still own the napi so can
6298 * safely handle the rx_list.
6300 gro_normal_list(napi);
6301 __napi_schedule(napi);
6303 local_bh_enable();
6306 void napi_busy_loop(unsigned int napi_id,
6307 bool (*loop_end)(void *, unsigned long),
6308 void *loop_end_arg)
6310 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6311 int (*napi_poll)(struct napi_struct *napi, int budget);
6312 void *have_poll_lock = NULL;
6313 struct napi_struct *napi;
6315 restart:
6316 napi_poll = NULL;
6318 rcu_read_lock();
6320 napi = napi_by_id(napi_id);
6321 if (!napi)
6322 goto out;
6324 preempt_disable();
6325 for (;;) {
6326 int work = 0;
6328 local_bh_disable();
6329 if (!napi_poll) {
6330 unsigned long val = READ_ONCE(napi->state);
6332 /* If multiple threads are competing for this napi,
6333 * we avoid dirtying napi->state as much as we can.
6335 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6336 NAPIF_STATE_IN_BUSY_POLL))
6337 goto count;
6338 if (cmpxchg(&napi->state, val,
6339 val | NAPIF_STATE_IN_BUSY_POLL |
6340 NAPIF_STATE_SCHED) != val)
6341 goto count;
6342 have_poll_lock = netpoll_poll_lock(napi);
6343 napi_poll = napi->poll;
6345 work = napi_poll(napi, BUSY_POLL_BUDGET);
6346 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6347 gro_normal_list(napi);
6348 count:
6349 if (work > 0)
6350 __NET_ADD_STATS(dev_net(napi->dev),
6351 LINUX_MIB_BUSYPOLLRXPACKETS, work);
6352 local_bh_enable();
6354 if (!loop_end || loop_end(loop_end_arg, start_time))
6355 break;
6357 if (unlikely(need_resched())) {
6358 if (napi_poll)
6359 busy_poll_stop(napi, have_poll_lock);
6360 preempt_enable();
6361 rcu_read_unlock();
6362 cond_resched();
6363 if (loop_end(loop_end_arg, start_time))
6364 return;
6365 goto restart;
6367 cpu_relax();
6369 if (napi_poll)
6370 busy_poll_stop(napi, have_poll_lock);
6371 preempt_enable();
6372 out:
6373 rcu_read_unlock();
6375 EXPORT_SYMBOL(napi_busy_loop);
6377 #endif /* CONFIG_NET_RX_BUSY_POLL */
6379 static void napi_hash_add(struct napi_struct *napi)
6381 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
6382 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
6383 return;
6385 spin_lock(&napi_hash_lock);
6387 /* 0..NR_CPUS range is reserved for sender_cpu use */
6388 do {
6389 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6390 napi_gen_id = MIN_NAPI_ID;
6391 } while (napi_by_id(napi_gen_id));
6392 napi->napi_id = napi_gen_id;
6394 hlist_add_head_rcu(&napi->napi_hash_node,
6395 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6397 spin_unlock(&napi_hash_lock);
6400 /* Warning : caller is responsible to make sure rcu grace period
6401 * is respected before freeing memory containing @napi
6403 bool napi_hash_del(struct napi_struct *napi)
6405 bool rcu_sync_needed = false;
6407 spin_lock(&napi_hash_lock);
6409 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
6410 rcu_sync_needed = true;
6411 hlist_del_rcu(&napi->napi_hash_node);
6413 spin_unlock(&napi_hash_lock);
6414 return rcu_sync_needed;
6416 EXPORT_SYMBOL_GPL(napi_hash_del);
6418 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6420 struct napi_struct *napi;
6422 napi = container_of(timer, struct napi_struct, timer);
6424 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6425 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6427 if (napi->gro_bitmask && !napi_disable_pending(napi) &&
6428 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6429 __napi_schedule_irqoff(napi);
6431 return HRTIMER_NORESTART;
6434 static void init_gro_hash(struct napi_struct *napi)
6436 int i;
6438 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6439 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6440 napi->gro_hash[i].count = 0;
6442 napi->gro_bitmask = 0;
6445 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6446 int (*poll)(struct napi_struct *, int), int weight)
6448 INIT_LIST_HEAD(&napi->poll_list);
6449 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6450 napi->timer.function = napi_watchdog;
6451 init_gro_hash(napi);
6452 napi->skb = NULL;
6453 INIT_LIST_HEAD(&napi->rx_list);
6454 napi->rx_count = 0;
6455 napi->poll = poll;
6456 if (weight > NAPI_POLL_WEIGHT)
6457 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6458 weight);
6459 napi->weight = weight;
6460 list_add(&napi->dev_list, &dev->napi_list);
6461 napi->dev = dev;
6462 #ifdef CONFIG_NETPOLL
6463 napi->poll_owner = -1;
6464 #endif
6465 set_bit(NAPI_STATE_SCHED, &napi->state);
6466 napi_hash_add(napi);
6468 EXPORT_SYMBOL(netif_napi_add);
6470 void napi_disable(struct napi_struct *n)
6472 might_sleep();
6473 set_bit(NAPI_STATE_DISABLE, &n->state);
6475 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6476 msleep(1);
6477 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6478 msleep(1);
6480 hrtimer_cancel(&n->timer);
6482 clear_bit(NAPI_STATE_DISABLE, &n->state);
6484 EXPORT_SYMBOL(napi_disable);
6486 static void flush_gro_hash(struct napi_struct *napi)
6488 int i;
6490 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6491 struct sk_buff *skb, *n;
6493 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6494 kfree_skb(skb);
6495 napi->gro_hash[i].count = 0;
6499 /* Must be called in process context */
6500 void netif_napi_del(struct napi_struct *napi)
6502 might_sleep();
6503 if (napi_hash_del(napi))
6504 synchronize_net();
6505 list_del_init(&napi->dev_list);
6506 napi_free_frags(napi);
6508 flush_gro_hash(napi);
6509 napi->gro_bitmask = 0;
6511 EXPORT_SYMBOL(netif_napi_del);
6513 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6515 void *have;
6516 int work, weight;
6518 list_del_init(&n->poll_list);
6520 have = netpoll_poll_lock(n);
6522 weight = n->weight;
6524 /* This NAPI_STATE_SCHED test is for avoiding a race
6525 * with netpoll's poll_napi(). Only the entity which
6526 * obtains the lock and sees NAPI_STATE_SCHED set will
6527 * actually make the ->poll() call. Therefore we avoid
6528 * accidentally calling ->poll() when NAPI is not scheduled.
6530 work = 0;
6531 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6532 work = n->poll(n, weight);
6533 trace_napi_poll(n, work, weight);
6536 WARN_ON_ONCE(work > weight);
6538 if (likely(work < weight))
6539 goto out_unlock;
6541 /* Drivers must not modify the NAPI state if they
6542 * consume the entire weight. In such cases this code
6543 * still "owns" the NAPI instance and therefore can
6544 * move the instance around on the list at-will.
6546 if (unlikely(napi_disable_pending(n))) {
6547 napi_complete(n);
6548 goto out_unlock;
6551 gro_normal_list(n);
6553 if (n->gro_bitmask) {
6554 /* flush too old packets
6555 * If HZ < 1000, flush all packets.
6557 napi_gro_flush(n, HZ >= 1000);
6560 /* Some drivers may have called napi_schedule
6561 * prior to exhausting their budget.
6563 if (unlikely(!list_empty(&n->poll_list))) {
6564 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6565 n->dev ? n->dev->name : "backlog");
6566 goto out_unlock;
6569 list_add_tail(&n->poll_list, repoll);
6571 out_unlock:
6572 netpoll_poll_unlock(have);
6574 return work;
6577 static __latent_entropy void net_rx_action(struct softirq_action *h)
6579 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6580 unsigned long time_limit = jiffies +
6581 usecs_to_jiffies(netdev_budget_usecs);
6582 int budget = netdev_budget;
6583 LIST_HEAD(list);
6584 LIST_HEAD(repoll);
6586 local_irq_disable();
6587 list_splice_init(&sd->poll_list, &list);
6588 local_irq_enable();
6590 for (;;) {
6591 struct napi_struct *n;
6593 if (list_empty(&list)) {
6594 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6595 goto out;
6596 break;
6599 n = list_first_entry(&list, struct napi_struct, poll_list);
6600 budget -= napi_poll(n, &repoll);
6602 /* If softirq window is exhausted then punt.
6603 * Allow this to run for 2 jiffies since which will allow
6604 * an average latency of 1.5/HZ.
6606 if (unlikely(budget <= 0 ||
6607 time_after_eq(jiffies, time_limit))) {
6608 sd->time_squeeze++;
6609 break;
6613 local_irq_disable();
6615 list_splice_tail_init(&sd->poll_list, &list);
6616 list_splice_tail(&repoll, &list);
6617 list_splice(&list, &sd->poll_list);
6618 if (!list_empty(&sd->poll_list))
6619 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6621 net_rps_action_and_irq_enable(sd);
6622 out:
6623 __kfree_skb_flush();
6626 struct netdev_adjacent {
6627 struct net_device *dev;
6629 /* upper master flag, there can only be one master device per list */
6630 bool master;
6632 /* lookup ignore flag */
6633 bool ignore;
6635 /* counter for the number of times this device was added to us */
6636 u16 ref_nr;
6638 /* private field for the users */
6639 void *private;
6641 struct list_head list;
6642 struct rcu_head rcu;
6645 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6646 struct list_head *adj_list)
6648 struct netdev_adjacent *adj;
6650 list_for_each_entry(adj, adj_list, list) {
6651 if (adj->dev == adj_dev)
6652 return adj;
6654 return NULL;
6657 static int ____netdev_has_upper_dev(struct net_device *upper_dev, void *data)
6659 struct net_device *dev = data;
6661 return upper_dev == dev;
6665 * netdev_has_upper_dev - Check if device is linked to an upper device
6666 * @dev: device
6667 * @upper_dev: upper device to check
6669 * Find out if a device is linked to specified upper device and return true
6670 * in case it is. Note that this checks only immediate upper device,
6671 * not through a complete stack of devices. The caller must hold the RTNL lock.
6673 bool netdev_has_upper_dev(struct net_device *dev,
6674 struct net_device *upper_dev)
6676 ASSERT_RTNL();
6678 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6679 upper_dev);
6681 EXPORT_SYMBOL(netdev_has_upper_dev);
6684 * netdev_has_upper_dev_all - Check if device is linked to an upper device
6685 * @dev: device
6686 * @upper_dev: upper device to check
6688 * Find out if a device is linked to specified upper device and return true
6689 * in case it is. Note that this checks the entire upper device chain.
6690 * The caller must hold rcu lock.
6693 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6694 struct net_device *upper_dev)
6696 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6697 upper_dev);
6699 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6702 * netdev_has_any_upper_dev - Check if device is linked to some device
6703 * @dev: device
6705 * Find out if a device is linked to an upper device and return true in case
6706 * it is. The caller must hold the RTNL lock.
6708 bool netdev_has_any_upper_dev(struct net_device *dev)
6710 ASSERT_RTNL();
6712 return !list_empty(&dev->adj_list.upper);
6714 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6717 * netdev_master_upper_dev_get - Get master upper device
6718 * @dev: device
6720 * Find a master upper device and return pointer to it or NULL in case
6721 * it's not there. The caller must hold the RTNL lock.
6723 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6725 struct netdev_adjacent *upper;
6727 ASSERT_RTNL();
6729 if (list_empty(&dev->adj_list.upper))
6730 return NULL;
6732 upper = list_first_entry(&dev->adj_list.upper,
6733 struct netdev_adjacent, list);
6734 if (likely(upper->master))
6735 return upper->dev;
6736 return NULL;
6738 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6740 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6742 struct netdev_adjacent *upper;
6744 ASSERT_RTNL();
6746 if (list_empty(&dev->adj_list.upper))
6747 return NULL;
6749 upper = list_first_entry(&dev->adj_list.upper,
6750 struct netdev_adjacent, list);
6751 if (likely(upper->master) && !upper->ignore)
6752 return upper->dev;
6753 return NULL;
6757 * netdev_has_any_lower_dev - Check if device is linked to some device
6758 * @dev: device
6760 * Find out if a device is linked to a lower device and return true in case
6761 * it is. The caller must hold the RTNL lock.
6763 static bool netdev_has_any_lower_dev(struct net_device *dev)
6765 ASSERT_RTNL();
6767 return !list_empty(&dev->adj_list.lower);
6770 void *netdev_adjacent_get_private(struct list_head *adj_list)
6772 struct netdev_adjacent *adj;
6774 adj = list_entry(adj_list, struct netdev_adjacent, list);
6776 return adj->private;
6778 EXPORT_SYMBOL(netdev_adjacent_get_private);
6781 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6782 * @dev: device
6783 * @iter: list_head ** of the current position
6785 * Gets the next device from the dev's upper list, starting from iter
6786 * position. The caller must hold RCU read lock.
6788 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6789 struct list_head **iter)
6791 struct netdev_adjacent *upper;
6793 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6795 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6797 if (&upper->list == &dev->adj_list.upper)
6798 return NULL;
6800 *iter = &upper->list;
6802 return upper->dev;
6804 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6806 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6807 struct list_head **iter,
6808 bool *ignore)
6810 struct netdev_adjacent *upper;
6812 upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6814 if (&upper->list == &dev->adj_list.upper)
6815 return NULL;
6817 *iter = &upper->list;
6818 *ignore = upper->ignore;
6820 return upper->dev;
6823 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6824 struct list_head **iter)
6826 struct netdev_adjacent *upper;
6828 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6830 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6832 if (&upper->list == &dev->adj_list.upper)
6833 return NULL;
6835 *iter = &upper->list;
6837 return upper->dev;
6840 static int __netdev_walk_all_upper_dev(struct net_device *dev,
6841 int (*fn)(struct net_device *dev,
6842 void *data),
6843 void *data)
6845 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6846 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6847 int ret, cur = 0;
6848 bool ignore;
6850 now = dev;
6851 iter = &dev->adj_list.upper;
6853 while (1) {
6854 if (now != dev) {
6855 ret = fn(now, data);
6856 if (ret)
6857 return ret;
6860 next = NULL;
6861 while (1) {
6862 udev = __netdev_next_upper_dev(now, &iter, &ignore);
6863 if (!udev)
6864 break;
6865 if (ignore)
6866 continue;
6868 next = udev;
6869 niter = &udev->adj_list.upper;
6870 dev_stack[cur] = now;
6871 iter_stack[cur++] = iter;
6872 break;
6875 if (!next) {
6876 if (!cur)
6877 return 0;
6878 next = dev_stack[--cur];
6879 niter = iter_stack[cur];
6882 now = next;
6883 iter = niter;
6886 return 0;
6889 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6890 int (*fn)(struct net_device *dev,
6891 void *data),
6892 void *data)
6894 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6895 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6896 int ret, cur = 0;
6898 now = dev;
6899 iter = &dev->adj_list.upper;
6901 while (1) {
6902 if (now != dev) {
6903 ret = fn(now, data);
6904 if (ret)
6905 return ret;
6908 next = NULL;
6909 while (1) {
6910 udev = netdev_next_upper_dev_rcu(now, &iter);
6911 if (!udev)
6912 break;
6914 next = udev;
6915 niter = &udev->adj_list.upper;
6916 dev_stack[cur] = now;
6917 iter_stack[cur++] = iter;
6918 break;
6921 if (!next) {
6922 if (!cur)
6923 return 0;
6924 next = dev_stack[--cur];
6925 niter = iter_stack[cur];
6928 now = next;
6929 iter = niter;
6932 return 0;
6934 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6936 static bool __netdev_has_upper_dev(struct net_device *dev,
6937 struct net_device *upper_dev)
6939 ASSERT_RTNL();
6941 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
6942 upper_dev);
6946 * netdev_lower_get_next_private - Get the next ->private from the
6947 * lower neighbour list
6948 * @dev: device
6949 * @iter: list_head ** of the current position
6951 * Gets the next netdev_adjacent->private from the dev's lower neighbour
6952 * list, starting from iter position. The caller must hold either hold the
6953 * RTNL lock or its own locking that guarantees that the neighbour lower
6954 * list will remain unchanged.
6956 void *netdev_lower_get_next_private(struct net_device *dev,
6957 struct list_head **iter)
6959 struct netdev_adjacent *lower;
6961 lower = list_entry(*iter, struct netdev_adjacent, list);
6963 if (&lower->list == &dev->adj_list.lower)
6964 return NULL;
6966 *iter = lower->list.next;
6968 return lower->private;
6970 EXPORT_SYMBOL(netdev_lower_get_next_private);
6973 * netdev_lower_get_next_private_rcu - Get the next ->private from the
6974 * lower neighbour list, RCU
6975 * variant
6976 * @dev: device
6977 * @iter: list_head ** of the current position
6979 * Gets the next netdev_adjacent->private from the dev's lower neighbour
6980 * list, starting from iter position. The caller must hold RCU read lock.
6982 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6983 struct list_head **iter)
6985 struct netdev_adjacent *lower;
6987 WARN_ON_ONCE(!rcu_read_lock_held());
6989 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6991 if (&lower->list == &dev->adj_list.lower)
6992 return NULL;
6994 *iter = &lower->list;
6996 return lower->private;
6998 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7001 * netdev_lower_get_next - Get the next device from the lower neighbour
7002 * list
7003 * @dev: device
7004 * @iter: list_head ** of the current position
7006 * Gets the next netdev_adjacent from the dev's lower neighbour
7007 * list, starting from iter position. The caller must hold RTNL lock or
7008 * its own locking that guarantees that the neighbour lower
7009 * list will remain unchanged.
7011 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7013 struct netdev_adjacent *lower;
7015 lower = list_entry(*iter, struct netdev_adjacent, list);
7017 if (&lower->list == &dev->adj_list.lower)
7018 return NULL;
7020 *iter = lower->list.next;
7022 return lower->dev;
7024 EXPORT_SYMBOL(netdev_lower_get_next);
7026 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7027 struct list_head **iter)
7029 struct netdev_adjacent *lower;
7031 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7033 if (&lower->list == &dev->adj_list.lower)
7034 return NULL;
7036 *iter = &lower->list;
7038 return lower->dev;
7041 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7042 struct list_head **iter,
7043 bool *ignore)
7045 struct netdev_adjacent *lower;
7047 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7049 if (&lower->list == &dev->adj_list.lower)
7050 return NULL;
7052 *iter = &lower->list;
7053 *ignore = lower->ignore;
7055 return lower->dev;
7058 int netdev_walk_all_lower_dev(struct net_device *dev,
7059 int (*fn)(struct net_device *dev,
7060 void *data),
7061 void *data)
7063 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7064 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7065 int ret, cur = 0;
7067 now = dev;
7068 iter = &dev->adj_list.lower;
7070 while (1) {
7071 if (now != dev) {
7072 ret = fn(now, data);
7073 if (ret)
7074 return ret;
7077 next = NULL;
7078 while (1) {
7079 ldev = netdev_next_lower_dev(now, &iter);
7080 if (!ldev)
7081 break;
7083 next = ldev;
7084 niter = &ldev->adj_list.lower;
7085 dev_stack[cur] = now;
7086 iter_stack[cur++] = iter;
7087 break;
7090 if (!next) {
7091 if (!cur)
7092 return 0;
7093 next = dev_stack[--cur];
7094 niter = iter_stack[cur];
7097 now = next;
7098 iter = niter;
7101 return 0;
7103 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7105 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7106 int (*fn)(struct net_device *dev,
7107 void *data),
7108 void *data)
7110 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7111 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7112 int ret, cur = 0;
7113 bool ignore;
7115 now = dev;
7116 iter = &dev->adj_list.lower;
7118 while (1) {
7119 if (now != dev) {
7120 ret = fn(now, data);
7121 if (ret)
7122 return ret;
7125 next = NULL;
7126 while (1) {
7127 ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7128 if (!ldev)
7129 break;
7130 if (ignore)
7131 continue;
7133 next = ldev;
7134 niter = &ldev->adj_list.lower;
7135 dev_stack[cur] = now;
7136 iter_stack[cur++] = iter;
7137 break;
7140 if (!next) {
7141 if (!cur)
7142 return 0;
7143 next = dev_stack[--cur];
7144 niter = iter_stack[cur];
7147 now = next;
7148 iter = niter;
7151 return 0;
7154 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7155 struct list_head **iter)
7157 struct netdev_adjacent *lower;
7159 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7160 if (&lower->list == &dev->adj_list.lower)
7161 return NULL;
7163 *iter = &lower->list;
7165 return lower->dev;
7168 static u8 __netdev_upper_depth(struct net_device *dev)
7170 struct net_device *udev;
7171 struct list_head *iter;
7172 u8 max_depth = 0;
7173 bool ignore;
7175 for (iter = &dev->adj_list.upper,
7176 udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7177 udev;
7178 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7179 if (ignore)
7180 continue;
7181 if (max_depth < udev->upper_level)
7182 max_depth = udev->upper_level;
7185 return max_depth;
7188 static u8 __netdev_lower_depth(struct net_device *dev)
7190 struct net_device *ldev;
7191 struct list_head *iter;
7192 u8 max_depth = 0;
7193 bool ignore;
7195 for (iter = &dev->adj_list.lower,
7196 ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7197 ldev;
7198 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7199 if (ignore)
7200 continue;
7201 if (max_depth < ldev->lower_level)
7202 max_depth = ldev->lower_level;
7205 return max_depth;
7208 static int __netdev_update_upper_level(struct net_device *dev, void *data)
7210 dev->upper_level = __netdev_upper_depth(dev) + 1;
7211 return 0;
7214 static int __netdev_update_lower_level(struct net_device *dev, void *data)
7216 dev->lower_level = __netdev_lower_depth(dev) + 1;
7217 return 0;
7220 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7221 int (*fn)(struct net_device *dev,
7222 void *data),
7223 void *data)
7225 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7226 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7227 int ret, cur = 0;
7229 now = dev;
7230 iter = &dev->adj_list.lower;
7232 while (1) {
7233 if (now != dev) {
7234 ret = fn(now, data);
7235 if (ret)
7236 return ret;
7239 next = NULL;
7240 while (1) {
7241 ldev = netdev_next_lower_dev_rcu(now, &iter);
7242 if (!ldev)
7243 break;
7245 next = ldev;
7246 niter = &ldev->adj_list.lower;
7247 dev_stack[cur] = now;
7248 iter_stack[cur++] = iter;
7249 break;
7252 if (!next) {
7253 if (!cur)
7254 return 0;
7255 next = dev_stack[--cur];
7256 niter = iter_stack[cur];
7259 now = next;
7260 iter = niter;
7263 return 0;
7265 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7268 * netdev_lower_get_first_private_rcu - Get the first ->private from the
7269 * lower neighbour list, RCU
7270 * variant
7271 * @dev: device
7273 * Gets the first netdev_adjacent->private from the dev's lower neighbour
7274 * list. The caller must hold RCU read lock.
7276 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7278 struct netdev_adjacent *lower;
7280 lower = list_first_or_null_rcu(&dev->adj_list.lower,
7281 struct netdev_adjacent, list);
7282 if (lower)
7283 return lower->private;
7284 return NULL;
7286 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7289 * netdev_master_upper_dev_get_rcu - Get master upper device
7290 * @dev: device
7292 * Find a master upper device and return pointer to it or NULL in case
7293 * it's not there. The caller must hold the RCU read lock.
7295 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7297 struct netdev_adjacent *upper;
7299 upper = list_first_or_null_rcu(&dev->adj_list.upper,
7300 struct netdev_adjacent, list);
7301 if (upper && likely(upper->master))
7302 return upper->dev;
7303 return NULL;
7305 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7307 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7308 struct net_device *adj_dev,
7309 struct list_head *dev_list)
7311 char linkname[IFNAMSIZ+7];
7313 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7314 "upper_%s" : "lower_%s", adj_dev->name);
7315 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7316 linkname);
7318 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7319 char *name,
7320 struct list_head *dev_list)
7322 char linkname[IFNAMSIZ+7];
7324 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7325 "upper_%s" : "lower_%s", name);
7326 sysfs_remove_link(&(dev->dev.kobj), linkname);
7329 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7330 struct net_device *adj_dev,
7331 struct list_head *dev_list)
7333 return (dev_list == &dev->adj_list.upper ||
7334 dev_list == &dev->adj_list.lower) &&
7335 net_eq(dev_net(dev), dev_net(adj_dev));
7338 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7339 struct net_device *adj_dev,
7340 struct list_head *dev_list,
7341 void *private, bool master)
7343 struct netdev_adjacent *adj;
7344 int ret;
7346 adj = __netdev_find_adj(adj_dev, dev_list);
7348 if (adj) {
7349 adj->ref_nr += 1;
7350 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7351 dev->name, adj_dev->name, adj->ref_nr);
7353 return 0;
7356 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7357 if (!adj)
7358 return -ENOMEM;
7360 adj->dev = adj_dev;
7361 adj->master = master;
7362 adj->ref_nr = 1;
7363 adj->private = private;
7364 adj->ignore = false;
7365 dev_hold(adj_dev);
7367 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7368 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7370 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7371 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7372 if (ret)
7373 goto free_adj;
7376 /* Ensure that master link is always the first item in list. */
7377 if (master) {
7378 ret = sysfs_create_link(&(dev->dev.kobj),
7379 &(adj_dev->dev.kobj), "master");
7380 if (ret)
7381 goto remove_symlinks;
7383 list_add_rcu(&adj->list, dev_list);
7384 } else {
7385 list_add_tail_rcu(&adj->list, dev_list);
7388 return 0;
7390 remove_symlinks:
7391 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7392 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7393 free_adj:
7394 kfree(adj);
7395 dev_put(adj_dev);
7397 return ret;
7400 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7401 struct net_device *adj_dev,
7402 u16 ref_nr,
7403 struct list_head *dev_list)
7405 struct netdev_adjacent *adj;
7407 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7408 dev->name, adj_dev->name, ref_nr);
7410 adj = __netdev_find_adj(adj_dev, dev_list);
7412 if (!adj) {
7413 pr_err("Adjacency does not exist for device %s from %s\n",
7414 dev->name, adj_dev->name);
7415 WARN_ON(1);
7416 return;
7419 if (adj->ref_nr > ref_nr) {
7420 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7421 dev->name, adj_dev->name, ref_nr,
7422 adj->ref_nr - ref_nr);
7423 adj->ref_nr -= ref_nr;
7424 return;
7427 if (adj->master)
7428 sysfs_remove_link(&(dev->dev.kobj), "master");
7430 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7431 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7433 list_del_rcu(&adj->list);
7434 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7435 adj_dev->name, dev->name, adj_dev->name);
7436 dev_put(adj_dev);
7437 kfree_rcu(adj, rcu);
7440 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7441 struct net_device *upper_dev,
7442 struct list_head *up_list,
7443 struct list_head *down_list,
7444 void *private, bool master)
7446 int ret;
7448 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7449 private, master);
7450 if (ret)
7451 return ret;
7453 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7454 private, false);
7455 if (ret) {
7456 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7457 return ret;
7460 return 0;
7463 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7464 struct net_device *upper_dev,
7465 u16 ref_nr,
7466 struct list_head *up_list,
7467 struct list_head *down_list)
7469 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7470 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7473 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7474 struct net_device *upper_dev,
7475 void *private, bool master)
7477 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7478 &dev->adj_list.upper,
7479 &upper_dev->adj_list.lower,
7480 private, master);
7483 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7484 struct net_device *upper_dev)
7486 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7487 &dev->adj_list.upper,
7488 &upper_dev->adj_list.lower);
7491 static int __netdev_upper_dev_link(struct net_device *dev,
7492 struct net_device *upper_dev, bool master,
7493 void *upper_priv, void *upper_info,
7494 struct netlink_ext_ack *extack)
7496 struct netdev_notifier_changeupper_info changeupper_info = {
7497 .info = {
7498 .dev = dev,
7499 .extack = extack,
7501 .upper_dev = upper_dev,
7502 .master = master,
7503 .linking = true,
7504 .upper_info = upper_info,
7506 struct net_device *master_dev;
7507 int ret = 0;
7509 ASSERT_RTNL();
7511 if (dev == upper_dev)
7512 return -EBUSY;
7514 /* To prevent loops, check if dev is not upper device to upper_dev. */
7515 if (__netdev_has_upper_dev(upper_dev, dev))
7516 return -EBUSY;
7518 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7519 return -EMLINK;
7521 if (!master) {
7522 if (__netdev_has_upper_dev(dev, upper_dev))
7523 return -EEXIST;
7524 } else {
7525 master_dev = __netdev_master_upper_dev_get(dev);
7526 if (master_dev)
7527 return master_dev == upper_dev ? -EEXIST : -EBUSY;
7530 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7531 &changeupper_info.info);
7532 ret = notifier_to_errno(ret);
7533 if (ret)
7534 return ret;
7536 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7537 master);
7538 if (ret)
7539 return ret;
7541 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7542 &changeupper_info.info);
7543 ret = notifier_to_errno(ret);
7544 if (ret)
7545 goto rollback;
7547 __netdev_update_upper_level(dev, NULL);
7548 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7550 __netdev_update_lower_level(upper_dev, NULL);
7551 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7552 NULL);
7554 return 0;
7556 rollback:
7557 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7559 return ret;
7563 * netdev_upper_dev_link - Add a link to the upper device
7564 * @dev: device
7565 * @upper_dev: new upper device
7566 * @extack: netlink extended ack
7568 * Adds a link to device which is upper to this one. The caller must hold
7569 * the RTNL lock. On a failure a negative errno code is returned.
7570 * On success the reference counts are adjusted and the function
7571 * returns zero.
7573 int netdev_upper_dev_link(struct net_device *dev,
7574 struct net_device *upper_dev,
7575 struct netlink_ext_ack *extack)
7577 return __netdev_upper_dev_link(dev, upper_dev, false,
7578 NULL, NULL, extack);
7580 EXPORT_SYMBOL(netdev_upper_dev_link);
7583 * netdev_master_upper_dev_link - Add a master link to the upper device
7584 * @dev: device
7585 * @upper_dev: new upper device
7586 * @upper_priv: upper device private
7587 * @upper_info: upper info to be passed down via notifier
7588 * @extack: netlink extended ack
7590 * Adds a link to device which is upper to this one. In this case, only
7591 * one master upper device can be linked, although other non-master devices
7592 * might be linked as well. The caller must hold the RTNL lock.
7593 * On a failure a negative errno code is returned. On success the reference
7594 * counts are adjusted and the function returns zero.
7596 int netdev_master_upper_dev_link(struct net_device *dev,
7597 struct net_device *upper_dev,
7598 void *upper_priv, void *upper_info,
7599 struct netlink_ext_ack *extack)
7601 return __netdev_upper_dev_link(dev, upper_dev, true,
7602 upper_priv, upper_info, extack);
7604 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7607 * netdev_upper_dev_unlink - Removes a link to upper device
7608 * @dev: device
7609 * @upper_dev: new upper device
7611 * Removes a link to device which is upper to this one. The caller must hold
7612 * the RTNL lock.
7614 void netdev_upper_dev_unlink(struct net_device *dev,
7615 struct net_device *upper_dev)
7617 struct netdev_notifier_changeupper_info changeupper_info = {
7618 .info = {
7619 .dev = dev,
7621 .upper_dev = upper_dev,
7622 .linking = false,
7625 ASSERT_RTNL();
7627 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7629 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7630 &changeupper_info.info);
7632 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7634 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7635 &changeupper_info.info);
7637 __netdev_update_upper_level(dev, NULL);
7638 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7640 __netdev_update_lower_level(upper_dev, NULL);
7641 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7642 NULL);
7644 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7646 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7647 struct net_device *lower_dev,
7648 bool val)
7650 struct netdev_adjacent *adj;
7652 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7653 if (adj)
7654 adj->ignore = val;
7656 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7657 if (adj)
7658 adj->ignore = val;
7661 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7662 struct net_device *lower_dev)
7664 __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7667 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7668 struct net_device *lower_dev)
7670 __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7673 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7674 struct net_device *new_dev,
7675 struct net_device *dev,
7676 struct netlink_ext_ack *extack)
7678 int err;
7680 if (!new_dev)
7681 return 0;
7683 if (old_dev && new_dev != old_dev)
7684 netdev_adjacent_dev_disable(dev, old_dev);
7686 err = netdev_upper_dev_link(new_dev, dev, extack);
7687 if (err) {
7688 if (old_dev && new_dev != old_dev)
7689 netdev_adjacent_dev_enable(dev, old_dev);
7690 return err;
7693 return 0;
7695 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7697 void netdev_adjacent_change_commit(struct net_device *old_dev,
7698 struct net_device *new_dev,
7699 struct net_device *dev)
7701 if (!new_dev || !old_dev)
7702 return;
7704 if (new_dev == old_dev)
7705 return;
7707 netdev_adjacent_dev_enable(dev, old_dev);
7708 netdev_upper_dev_unlink(old_dev, dev);
7710 EXPORT_SYMBOL(netdev_adjacent_change_commit);
7712 void netdev_adjacent_change_abort(struct net_device *old_dev,
7713 struct net_device *new_dev,
7714 struct net_device *dev)
7716 if (!new_dev)
7717 return;
7719 if (old_dev && new_dev != old_dev)
7720 netdev_adjacent_dev_enable(dev, old_dev);
7722 netdev_upper_dev_unlink(new_dev, dev);
7724 EXPORT_SYMBOL(netdev_adjacent_change_abort);
7727 * netdev_bonding_info_change - Dispatch event about slave change
7728 * @dev: device
7729 * @bonding_info: info to dispatch
7731 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7732 * The caller must hold the RTNL lock.
7734 void netdev_bonding_info_change(struct net_device *dev,
7735 struct netdev_bonding_info *bonding_info)
7737 struct netdev_notifier_bonding_info info = {
7738 .info.dev = dev,
7741 memcpy(&info.bonding_info, bonding_info,
7742 sizeof(struct netdev_bonding_info));
7743 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7744 &info.info);
7746 EXPORT_SYMBOL(netdev_bonding_info_change);
7748 static void netdev_adjacent_add_links(struct net_device *dev)
7750 struct netdev_adjacent *iter;
7752 struct net *net = dev_net(dev);
7754 list_for_each_entry(iter, &dev->adj_list.upper, list) {
7755 if (!net_eq(net, dev_net(iter->dev)))
7756 continue;
7757 netdev_adjacent_sysfs_add(iter->dev, dev,
7758 &iter->dev->adj_list.lower);
7759 netdev_adjacent_sysfs_add(dev, iter->dev,
7760 &dev->adj_list.upper);
7763 list_for_each_entry(iter, &dev->adj_list.lower, list) {
7764 if (!net_eq(net, dev_net(iter->dev)))
7765 continue;
7766 netdev_adjacent_sysfs_add(iter->dev, dev,
7767 &iter->dev->adj_list.upper);
7768 netdev_adjacent_sysfs_add(dev, iter->dev,
7769 &dev->adj_list.lower);
7773 static void netdev_adjacent_del_links(struct net_device *dev)
7775 struct netdev_adjacent *iter;
7777 struct net *net = dev_net(dev);
7779 list_for_each_entry(iter, &dev->adj_list.upper, list) {
7780 if (!net_eq(net, dev_net(iter->dev)))
7781 continue;
7782 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7783 &iter->dev->adj_list.lower);
7784 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7785 &dev->adj_list.upper);
7788 list_for_each_entry(iter, &dev->adj_list.lower, list) {
7789 if (!net_eq(net, dev_net(iter->dev)))
7790 continue;
7791 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7792 &iter->dev->adj_list.upper);
7793 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7794 &dev->adj_list.lower);
7798 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
7800 struct netdev_adjacent *iter;
7802 struct net *net = dev_net(dev);
7804 list_for_each_entry(iter, &dev->adj_list.upper, list) {
7805 if (!net_eq(net, dev_net(iter->dev)))
7806 continue;
7807 netdev_adjacent_sysfs_del(iter->dev, oldname,
7808 &iter->dev->adj_list.lower);
7809 netdev_adjacent_sysfs_add(iter->dev, dev,
7810 &iter->dev->adj_list.lower);
7813 list_for_each_entry(iter, &dev->adj_list.lower, list) {
7814 if (!net_eq(net, dev_net(iter->dev)))
7815 continue;
7816 netdev_adjacent_sysfs_del(iter->dev, oldname,
7817 &iter->dev->adj_list.upper);
7818 netdev_adjacent_sysfs_add(iter->dev, dev,
7819 &iter->dev->adj_list.upper);
7823 void *netdev_lower_dev_get_private(struct net_device *dev,
7824 struct net_device *lower_dev)
7826 struct netdev_adjacent *lower;
7828 if (!lower_dev)
7829 return NULL;
7830 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
7831 if (!lower)
7832 return NULL;
7834 return lower->private;
7836 EXPORT_SYMBOL(netdev_lower_dev_get_private);
7840 * netdev_lower_change - Dispatch event about lower device state change
7841 * @lower_dev: device
7842 * @lower_state_info: state to dispatch
7844 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
7845 * The caller must hold the RTNL lock.
7847 void netdev_lower_state_changed(struct net_device *lower_dev,
7848 void *lower_state_info)
7850 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
7851 .info.dev = lower_dev,
7854 ASSERT_RTNL();
7855 changelowerstate_info.lower_state_info = lower_state_info;
7856 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
7857 &changelowerstate_info.info);
7859 EXPORT_SYMBOL(netdev_lower_state_changed);
7861 static void dev_change_rx_flags(struct net_device *dev, int flags)
7863 const struct net_device_ops *ops = dev->netdev_ops;
7865 if (ops->ndo_change_rx_flags)
7866 ops->ndo_change_rx_flags(dev, flags);
7869 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
7871 unsigned int old_flags = dev->flags;
7872 kuid_t uid;
7873 kgid_t gid;
7875 ASSERT_RTNL();
7877 dev->flags |= IFF_PROMISC;
7878 dev->promiscuity += inc;
7879 if (dev->promiscuity == 0) {
7881 * Avoid overflow.
7882 * If inc causes overflow, untouch promisc and return error.
7884 if (inc < 0)
7885 dev->flags &= ~IFF_PROMISC;
7886 else {
7887 dev->promiscuity -= inc;
7888 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
7889 dev->name);
7890 return -EOVERFLOW;
7893 if (dev->flags != old_flags) {
7894 pr_info("device %s %s promiscuous mode\n",
7895 dev->name,
7896 dev->flags & IFF_PROMISC ? "entered" : "left");
7897 if (audit_enabled) {
7898 current_uid_gid(&uid, &gid);
7899 audit_log(audit_context(), GFP_ATOMIC,
7900 AUDIT_ANOM_PROMISCUOUS,
7901 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
7902 dev->name, (dev->flags & IFF_PROMISC),
7903 (old_flags & IFF_PROMISC),
7904 from_kuid(&init_user_ns, audit_get_loginuid(current)),
7905 from_kuid(&init_user_ns, uid),
7906 from_kgid(&init_user_ns, gid),
7907 audit_get_sessionid(current));
7910 dev_change_rx_flags(dev, IFF_PROMISC);
7912 if (notify)
7913 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
7914 return 0;
7918 * dev_set_promiscuity - update promiscuity count on a device
7919 * @dev: device
7920 * @inc: modifier
7922 * Add or remove promiscuity from a device. While the count in the device
7923 * remains above zero the interface remains promiscuous. Once it hits zero
7924 * the device reverts back to normal filtering operation. A negative inc
7925 * value is used to drop promiscuity on the device.
7926 * Return 0 if successful or a negative errno code on error.
7928 int dev_set_promiscuity(struct net_device *dev, int inc)
7930 unsigned int old_flags = dev->flags;
7931 int err;
7933 err = __dev_set_promiscuity(dev, inc, true);
7934 if (err < 0)
7935 return err;
7936 if (dev->flags != old_flags)
7937 dev_set_rx_mode(dev);
7938 return err;
7940 EXPORT_SYMBOL(dev_set_promiscuity);
7942 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
7944 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
7946 ASSERT_RTNL();
7948 dev->flags |= IFF_ALLMULTI;
7949 dev->allmulti += inc;
7950 if (dev->allmulti == 0) {
7952 * Avoid overflow.
7953 * If inc causes overflow, untouch allmulti and return error.
7955 if (inc < 0)
7956 dev->flags &= ~IFF_ALLMULTI;
7957 else {
7958 dev->allmulti -= inc;
7959 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
7960 dev->name);
7961 return -EOVERFLOW;
7964 if (dev->flags ^ old_flags) {
7965 dev_change_rx_flags(dev, IFF_ALLMULTI);
7966 dev_set_rx_mode(dev);
7967 if (notify)
7968 __dev_notify_flags(dev, old_flags,
7969 dev->gflags ^ old_gflags);
7971 return 0;
7975 * dev_set_allmulti - update allmulti count on a device
7976 * @dev: device
7977 * @inc: modifier
7979 * Add or remove reception of all multicast frames to a device. While the
7980 * count in the device remains above zero the interface remains listening
7981 * to all interfaces. Once it hits zero the device reverts back to normal
7982 * filtering operation. A negative @inc value is used to drop the counter
7983 * when releasing a resource needing all multicasts.
7984 * Return 0 if successful or a negative errno code on error.
7987 int dev_set_allmulti(struct net_device *dev, int inc)
7989 return __dev_set_allmulti(dev, inc, true);
7991 EXPORT_SYMBOL(dev_set_allmulti);
7994 * Upload unicast and multicast address lists to device and
7995 * configure RX filtering. When the device doesn't support unicast
7996 * filtering it is put in promiscuous mode while unicast addresses
7997 * are present.
7999 void __dev_set_rx_mode(struct net_device *dev)
8001 const struct net_device_ops *ops = dev->netdev_ops;
8003 /* dev_open will call this function so the list will stay sane. */
8004 if (!(dev->flags&IFF_UP))
8005 return;
8007 if (!netif_device_present(dev))
8008 return;
8010 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8011 /* Unicast addresses changes may only happen under the rtnl,
8012 * therefore calling __dev_set_promiscuity here is safe.
8014 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8015 __dev_set_promiscuity(dev, 1, false);
8016 dev->uc_promisc = true;
8017 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8018 __dev_set_promiscuity(dev, -1, false);
8019 dev->uc_promisc = false;
8023 if (ops->ndo_set_rx_mode)
8024 ops->ndo_set_rx_mode(dev);
8027 void dev_set_rx_mode(struct net_device *dev)
8029 netif_addr_lock_bh(dev);
8030 __dev_set_rx_mode(dev);
8031 netif_addr_unlock_bh(dev);
8035 * dev_get_flags - get flags reported to userspace
8036 * @dev: device
8038 * Get the combination of flag bits exported through APIs to userspace.
8040 unsigned int dev_get_flags(const struct net_device *dev)
8042 unsigned int flags;
8044 flags = (dev->flags & ~(IFF_PROMISC |
8045 IFF_ALLMULTI |
8046 IFF_RUNNING |
8047 IFF_LOWER_UP |
8048 IFF_DORMANT)) |
8049 (dev->gflags & (IFF_PROMISC |
8050 IFF_ALLMULTI));
8052 if (netif_running(dev)) {
8053 if (netif_oper_up(dev))
8054 flags |= IFF_RUNNING;
8055 if (netif_carrier_ok(dev))
8056 flags |= IFF_LOWER_UP;
8057 if (netif_dormant(dev))
8058 flags |= IFF_DORMANT;
8061 return flags;
8063 EXPORT_SYMBOL(dev_get_flags);
8065 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8066 struct netlink_ext_ack *extack)
8068 unsigned int old_flags = dev->flags;
8069 int ret;
8071 ASSERT_RTNL();
8074 * Set the flags on our device.
8077 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8078 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8079 IFF_AUTOMEDIA)) |
8080 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8081 IFF_ALLMULTI));
8084 * Load in the correct multicast list now the flags have changed.
8087 if ((old_flags ^ flags) & IFF_MULTICAST)
8088 dev_change_rx_flags(dev, IFF_MULTICAST);
8090 dev_set_rx_mode(dev);
8093 * Have we downed the interface. We handle IFF_UP ourselves
8094 * according to user attempts to set it, rather than blindly
8095 * setting it.
8098 ret = 0;
8099 if ((old_flags ^ flags) & IFF_UP) {
8100 if (old_flags & IFF_UP)
8101 __dev_close(dev);
8102 else
8103 ret = __dev_open(dev, extack);
8106 if ((flags ^ dev->gflags) & IFF_PROMISC) {
8107 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8108 unsigned int old_flags = dev->flags;
8110 dev->gflags ^= IFF_PROMISC;
8112 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8113 if (dev->flags != old_flags)
8114 dev_set_rx_mode(dev);
8117 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8118 * is important. Some (broken) drivers set IFF_PROMISC, when
8119 * IFF_ALLMULTI is requested not asking us and not reporting.
8121 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8122 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8124 dev->gflags ^= IFF_ALLMULTI;
8125 __dev_set_allmulti(dev, inc, false);
8128 return ret;
8131 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8132 unsigned int gchanges)
8134 unsigned int changes = dev->flags ^ old_flags;
8136 if (gchanges)
8137 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8139 if (changes & IFF_UP) {
8140 if (dev->flags & IFF_UP)
8141 call_netdevice_notifiers(NETDEV_UP, dev);
8142 else
8143 call_netdevice_notifiers(NETDEV_DOWN, dev);
8146 if (dev->flags & IFF_UP &&
8147 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8148 struct netdev_notifier_change_info change_info = {
8149 .info = {
8150 .dev = dev,
8152 .flags_changed = changes,
8155 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8160 * dev_change_flags - change device settings
8161 * @dev: device
8162 * @flags: device state flags
8163 * @extack: netlink extended ack
8165 * Change settings on device based state flags. The flags are
8166 * in the userspace exported format.
8168 int dev_change_flags(struct net_device *dev, unsigned int flags,
8169 struct netlink_ext_ack *extack)
8171 int ret;
8172 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8174 ret = __dev_change_flags(dev, flags, extack);
8175 if (ret < 0)
8176 return ret;
8178 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8179 __dev_notify_flags(dev, old_flags, changes);
8180 return ret;
8182 EXPORT_SYMBOL(dev_change_flags);
8184 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8186 const struct net_device_ops *ops = dev->netdev_ops;
8188 if (ops->ndo_change_mtu)
8189 return ops->ndo_change_mtu(dev, new_mtu);
8191 dev->mtu = new_mtu;
8192 return 0;
8194 EXPORT_SYMBOL(__dev_set_mtu);
8197 * dev_set_mtu_ext - Change maximum transfer unit
8198 * @dev: device
8199 * @new_mtu: new transfer unit
8200 * @extack: netlink extended ack
8202 * Change the maximum transfer size of the network device.
8204 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8205 struct netlink_ext_ack *extack)
8207 int err, orig_mtu;
8209 if (new_mtu == dev->mtu)
8210 return 0;
8212 /* MTU must be positive, and in range */
8213 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8214 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8215 return -EINVAL;
8218 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8219 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8220 return -EINVAL;
8223 if (!netif_device_present(dev))
8224 return -ENODEV;
8226 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8227 err = notifier_to_errno(err);
8228 if (err)
8229 return err;
8231 orig_mtu = dev->mtu;
8232 err = __dev_set_mtu(dev, new_mtu);
8234 if (!err) {
8235 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8236 orig_mtu);
8237 err = notifier_to_errno(err);
8238 if (err) {
8239 /* setting mtu back and notifying everyone again,
8240 * so that they have a chance to revert changes.
8242 __dev_set_mtu(dev, orig_mtu);
8243 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8244 new_mtu);
8247 return err;
8250 int dev_set_mtu(struct net_device *dev, int new_mtu)
8252 struct netlink_ext_ack extack;
8253 int err;
8255 memset(&extack, 0, sizeof(extack));
8256 err = dev_set_mtu_ext(dev, new_mtu, &extack);
8257 if (err && extack._msg)
8258 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8259 return err;
8261 EXPORT_SYMBOL(dev_set_mtu);
8264 * dev_change_tx_queue_len - Change TX queue length of a netdevice
8265 * @dev: device
8266 * @new_len: new tx queue length
8268 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8270 unsigned int orig_len = dev->tx_queue_len;
8271 int res;
8273 if (new_len != (unsigned int)new_len)
8274 return -ERANGE;
8276 if (new_len != orig_len) {
8277 dev->tx_queue_len = new_len;
8278 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8279 res = notifier_to_errno(res);
8280 if (res)
8281 goto err_rollback;
8282 res = dev_qdisc_change_tx_queue_len(dev);
8283 if (res)
8284 goto err_rollback;
8287 return 0;
8289 err_rollback:
8290 netdev_err(dev, "refused to change device tx_queue_len\n");
8291 dev->tx_queue_len = orig_len;
8292 return res;
8296 * dev_set_group - Change group this device belongs to
8297 * @dev: device
8298 * @new_group: group this device should belong to
8300 void dev_set_group(struct net_device *dev, int new_group)
8302 dev->group = new_group;
8304 EXPORT_SYMBOL(dev_set_group);
8307 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8308 * @dev: device
8309 * @addr: new address
8310 * @extack: netlink extended ack
8312 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8313 struct netlink_ext_ack *extack)
8315 struct netdev_notifier_pre_changeaddr_info info = {
8316 .info.dev = dev,
8317 .info.extack = extack,
8318 .dev_addr = addr,
8320 int rc;
8322 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8323 return notifier_to_errno(rc);
8325 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8328 * dev_set_mac_address - Change Media Access Control Address
8329 * @dev: device
8330 * @sa: new address
8331 * @extack: netlink extended ack
8333 * Change the hardware (MAC) address of the device
8335 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8336 struct netlink_ext_ack *extack)
8338 const struct net_device_ops *ops = dev->netdev_ops;
8339 int err;
8341 if (!ops->ndo_set_mac_address)
8342 return -EOPNOTSUPP;
8343 if (sa->sa_family != dev->type)
8344 return -EINVAL;
8345 if (!netif_device_present(dev))
8346 return -ENODEV;
8347 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8348 if (err)
8349 return err;
8350 err = ops->ndo_set_mac_address(dev, sa);
8351 if (err)
8352 return err;
8353 dev->addr_assign_type = NET_ADDR_SET;
8354 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8355 add_device_randomness(dev->dev_addr, dev->addr_len);
8356 return 0;
8358 EXPORT_SYMBOL(dev_set_mac_address);
8361 * dev_change_carrier - Change device carrier
8362 * @dev: device
8363 * @new_carrier: new value
8365 * Change device carrier
8367 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8369 const struct net_device_ops *ops = dev->netdev_ops;
8371 if (!ops->ndo_change_carrier)
8372 return -EOPNOTSUPP;
8373 if (!netif_device_present(dev))
8374 return -ENODEV;
8375 return ops->ndo_change_carrier(dev, new_carrier);
8377 EXPORT_SYMBOL(dev_change_carrier);
8380 * dev_get_phys_port_id - Get device physical port ID
8381 * @dev: device
8382 * @ppid: port ID
8384 * Get device physical port ID
8386 int dev_get_phys_port_id(struct net_device *dev,
8387 struct netdev_phys_item_id *ppid)
8389 const struct net_device_ops *ops = dev->netdev_ops;
8391 if (!ops->ndo_get_phys_port_id)
8392 return -EOPNOTSUPP;
8393 return ops->ndo_get_phys_port_id(dev, ppid);
8395 EXPORT_SYMBOL(dev_get_phys_port_id);
8398 * dev_get_phys_port_name - Get device physical port name
8399 * @dev: device
8400 * @name: port name
8401 * @len: limit of bytes to copy to name
8403 * Get device physical port name
8405 int dev_get_phys_port_name(struct net_device *dev,
8406 char *name, size_t len)
8408 const struct net_device_ops *ops = dev->netdev_ops;
8409 int err;
8411 if (ops->ndo_get_phys_port_name) {
8412 err = ops->ndo_get_phys_port_name(dev, name, len);
8413 if (err != -EOPNOTSUPP)
8414 return err;
8416 return devlink_compat_phys_port_name_get(dev, name, len);
8418 EXPORT_SYMBOL(dev_get_phys_port_name);
8421 * dev_get_port_parent_id - Get the device's port parent identifier
8422 * @dev: network device
8423 * @ppid: pointer to a storage for the port's parent identifier
8424 * @recurse: allow/disallow recursion to lower devices
8426 * Get the devices's port parent identifier
8428 int dev_get_port_parent_id(struct net_device *dev,
8429 struct netdev_phys_item_id *ppid,
8430 bool recurse)
8432 const struct net_device_ops *ops = dev->netdev_ops;
8433 struct netdev_phys_item_id first = { };
8434 struct net_device *lower_dev;
8435 struct list_head *iter;
8436 int err;
8438 if (ops->ndo_get_port_parent_id) {
8439 err = ops->ndo_get_port_parent_id(dev, ppid);
8440 if (err != -EOPNOTSUPP)
8441 return err;
8444 err = devlink_compat_switch_id_get(dev, ppid);
8445 if (!err || err != -EOPNOTSUPP)
8446 return err;
8448 if (!recurse)
8449 return -EOPNOTSUPP;
8451 netdev_for_each_lower_dev(dev, lower_dev, iter) {
8452 err = dev_get_port_parent_id(lower_dev, ppid, recurse);
8453 if (err)
8454 break;
8455 if (!first.id_len)
8456 first = *ppid;
8457 else if (memcmp(&first, ppid, sizeof(*ppid)))
8458 return -ENODATA;
8461 return err;
8463 EXPORT_SYMBOL(dev_get_port_parent_id);
8466 * netdev_port_same_parent_id - Indicate if two network devices have
8467 * the same port parent identifier
8468 * @a: first network device
8469 * @b: second network device
8471 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8473 struct netdev_phys_item_id a_id = { };
8474 struct netdev_phys_item_id b_id = { };
8476 if (dev_get_port_parent_id(a, &a_id, true) ||
8477 dev_get_port_parent_id(b, &b_id, true))
8478 return false;
8480 return netdev_phys_item_id_same(&a_id, &b_id);
8482 EXPORT_SYMBOL(netdev_port_same_parent_id);
8485 * dev_change_proto_down - update protocol port state information
8486 * @dev: device
8487 * @proto_down: new value
8489 * This info can be used by switch drivers to set the phys state of the
8490 * port.
8492 int dev_change_proto_down(struct net_device *dev, bool proto_down)
8494 const struct net_device_ops *ops = dev->netdev_ops;
8496 if (!ops->ndo_change_proto_down)
8497 return -EOPNOTSUPP;
8498 if (!netif_device_present(dev))
8499 return -ENODEV;
8500 return ops->ndo_change_proto_down(dev, proto_down);
8502 EXPORT_SYMBOL(dev_change_proto_down);
8505 * dev_change_proto_down_generic - generic implementation for
8506 * ndo_change_proto_down that sets carrier according to
8507 * proto_down.
8509 * @dev: device
8510 * @proto_down: new value
8512 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
8514 if (proto_down)
8515 netif_carrier_off(dev);
8516 else
8517 netif_carrier_on(dev);
8518 dev->proto_down = proto_down;
8519 return 0;
8521 EXPORT_SYMBOL(dev_change_proto_down_generic);
8523 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
8524 enum bpf_netdev_command cmd)
8526 struct netdev_bpf xdp;
8528 if (!bpf_op)
8529 return 0;
8531 memset(&xdp, 0, sizeof(xdp));
8532 xdp.command = cmd;
8534 /* Query must always succeed. */
8535 WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG);
8537 return xdp.prog_id;
8540 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
8541 struct netlink_ext_ack *extack, u32 flags,
8542 struct bpf_prog *prog)
8544 struct netdev_bpf xdp;
8546 memset(&xdp, 0, sizeof(xdp));
8547 if (flags & XDP_FLAGS_HW_MODE)
8548 xdp.command = XDP_SETUP_PROG_HW;
8549 else
8550 xdp.command = XDP_SETUP_PROG;
8551 xdp.extack = extack;
8552 xdp.flags = flags;
8553 xdp.prog = prog;
8555 return bpf_op(dev, &xdp);
8558 static void dev_xdp_uninstall(struct net_device *dev)
8560 struct netdev_bpf xdp;
8561 bpf_op_t ndo_bpf;
8563 /* Remove generic XDP */
8564 WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
8566 /* Remove from the driver */
8567 ndo_bpf = dev->netdev_ops->ndo_bpf;
8568 if (!ndo_bpf)
8569 return;
8571 memset(&xdp, 0, sizeof(xdp));
8572 xdp.command = XDP_QUERY_PROG;
8573 WARN_ON(ndo_bpf(dev, &xdp));
8574 if (xdp.prog_id)
8575 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8576 NULL));
8578 /* Remove HW offload */
8579 memset(&xdp, 0, sizeof(xdp));
8580 xdp.command = XDP_QUERY_PROG_HW;
8581 if (!ndo_bpf(dev, &xdp) && xdp.prog_id)
8582 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8583 NULL));
8587 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
8588 * @dev: device
8589 * @extack: netlink extended ack
8590 * @fd: new program fd or negative value to clear
8591 * @flags: xdp-related flags
8593 * Set or clear a bpf program for a device
8595 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
8596 int fd, u32 flags)
8598 const struct net_device_ops *ops = dev->netdev_ops;
8599 enum bpf_netdev_command query;
8600 struct bpf_prog *prog = NULL;
8601 bpf_op_t bpf_op, bpf_chk;
8602 bool offload;
8603 int err;
8605 ASSERT_RTNL();
8607 offload = flags & XDP_FLAGS_HW_MODE;
8608 query = offload ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG;
8610 bpf_op = bpf_chk = ops->ndo_bpf;
8611 if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE))) {
8612 NL_SET_ERR_MSG(extack, "underlying driver does not support XDP in native mode");
8613 return -EOPNOTSUPP;
8615 if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
8616 bpf_op = generic_xdp_install;
8617 if (bpf_op == bpf_chk)
8618 bpf_chk = generic_xdp_install;
8620 if (fd >= 0) {
8621 u32 prog_id;
8623 if (!offload && __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG)) {
8624 NL_SET_ERR_MSG(extack, "native and generic XDP can't be active at the same time");
8625 return -EEXIST;
8628 prog_id = __dev_xdp_query(dev, bpf_op, query);
8629 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && prog_id) {
8630 NL_SET_ERR_MSG(extack, "XDP program already attached");
8631 return -EBUSY;
8634 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
8635 bpf_op == ops->ndo_bpf);
8636 if (IS_ERR(prog))
8637 return PTR_ERR(prog);
8639 if (!offload && bpf_prog_is_dev_bound(prog->aux)) {
8640 NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
8641 bpf_prog_put(prog);
8642 return -EINVAL;
8645 /* prog->aux->id may be 0 for orphaned device-bound progs */
8646 if (prog->aux->id && prog->aux->id == prog_id) {
8647 bpf_prog_put(prog);
8648 return 0;
8650 } else {
8651 if (!__dev_xdp_query(dev, bpf_op, query))
8652 return 0;
8655 err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
8656 if (err < 0 && prog)
8657 bpf_prog_put(prog);
8659 return err;
8663 * dev_new_index - allocate an ifindex
8664 * @net: the applicable net namespace
8666 * Returns a suitable unique value for a new device interface
8667 * number. The caller must hold the rtnl semaphore or the
8668 * dev_base_lock to be sure it remains unique.
8670 static int dev_new_index(struct net *net)
8672 int ifindex = net->ifindex;
8674 for (;;) {
8675 if (++ifindex <= 0)
8676 ifindex = 1;
8677 if (!__dev_get_by_index(net, ifindex))
8678 return net->ifindex = ifindex;
8682 /* Delayed registration/unregisteration */
8683 static LIST_HEAD(net_todo_list);
8684 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
8686 static void net_set_todo(struct net_device *dev)
8688 list_add_tail(&dev->todo_list, &net_todo_list);
8689 dev_net(dev)->dev_unreg_count++;
8692 static void rollback_registered_many(struct list_head *head)
8694 struct net_device *dev, *tmp;
8695 LIST_HEAD(close_head);
8697 BUG_ON(dev_boot_phase);
8698 ASSERT_RTNL();
8700 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
8701 /* Some devices call without registering
8702 * for initialization unwind. Remove those
8703 * devices and proceed with the remaining.
8705 if (dev->reg_state == NETREG_UNINITIALIZED) {
8706 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
8707 dev->name, dev);
8709 WARN_ON(1);
8710 list_del(&dev->unreg_list);
8711 continue;
8713 dev->dismantle = true;
8714 BUG_ON(dev->reg_state != NETREG_REGISTERED);
8717 /* If device is running, close it first. */
8718 list_for_each_entry(dev, head, unreg_list)
8719 list_add_tail(&dev->close_list, &close_head);
8720 dev_close_many(&close_head, true);
8722 list_for_each_entry(dev, head, unreg_list) {
8723 /* And unlink it from device chain. */
8724 unlist_netdevice(dev);
8726 dev->reg_state = NETREG_UNREGISTERING;
8728 flush_all_backlogs();
8730 synchronize_net();
8732 list_for_each_entry(dev, head, unreg_list) {
8733 struct sk_buff *skb = NULL;
8735 /* Shutdown queueing discipline. */
8736 dev_shutdown(dev);
8738 dev_xdp_uninstall(dev);
8740 /* Notify protocols, that we are about to destroy
8741 * this device. They should clean all the things.
8743 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8745 if (!dev->rtnl_link_ops ||
8746 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8747 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
8748 GFP_KERNEL, NULL, 0);
8751 * Flush the unicast and multicast chains
8753 dev_uc_flush(dev);
8754 dev_mc_flush(dev);
8756 netdev_name_node_alt_flush(dev);
8757 netdev_name_node_free(dev->name_node);
8759 if (dev->netdev_ops->ndo_uninit)
8760 dev->netdev_ops->ndo_uninit(dev);
8762 if (skb)
8763 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
8765 /* Notifier chain MUST detach us all upper devices. */
8766 WARN_ON(netdev_has_any_upper_dev(dev));
8767 WARN_ON(netdev_has_any_lower_dev(dev));
8769 /* Remove entries from kobject tree */
8770 netdev_unregister_kobject(dev);
8771 #ifdef CONFIG_XPS
8772 /* Remove XPS queueing entries */
8773 netif_reset_xps_queues_gt(dev, 0);
8774 #endif
8777 synchronize_net();
8779 list_for_each_entry(dev, head, unreg_list)
8780 dev_put(dev);
8783 static void rollback_registered(struct net_device *dev)
8785 LIST_HEAD(single);
8787 list_add(&dev->unreg_list, &single);
8788 rollback_registered_many(&single);
8789 list_del(&single);
8792 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
8793 struct net_device *upper, netdev_features_t features)
8795 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8796 netdev_features_t feature;
8797 int feature_bit;
8799 for_each_netdev_feature(upper_disables, feature_bit) {
8800 feature = __NETIF_F_BIT(feature_bit);
8801 if (!(upper->wanted_features & feature)
8802 && (features & feature)) {
8803 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
8804 &feature, upper->name);
8805 features &= ~feature;
8809 return features;
8812 static void netdev_sync_lower_features(struct net_device *upper,
8813 struct net_device *lower, netdev_features_t features)
8815 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8816 netdev_features_t feature;
8817 int feature_bit;
8819 for_each_netdev_feature(upper_disables, feature_bit) {
8820 feature = __NETIF_F_BIT(feature_bit);
8821 if (!(features & feature) && (lower->features & feature)) {
8822 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
8823 &feature, lower->name);
8824 lower->wanted_features &= ~feature;
8825 netdev_update_features(lower);
8827 if (unlikely(lower->features & feature))
8828 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
8829 &feature, lower->name);
8834 static netdev_features_t netdev_fix_features(struct net_device *dev,
8835 netdev_features_t features)
8837 /* Fix illegal checksum combinations */
8838 if ((features & NETIF_F_HW_CSUM) &&
8839 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
8840 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
8841 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
8844 /* TSO requires that SG is present as well. */
8845 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
8846 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
8847 features &= ~NETIF_F_ALL_TSO;
8850 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
8851 !(features & NETIF_F_IP_CSUM)) {
8852 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
8853 features &= ~NETIF_F_TSO;
8854 features &= ~NETIF_F_TSO_ECN;
8857 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
8858 !(features & NETIF_F_IPV6_CSUM)) {
8859 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
8860 features &= ~NETIF_F_TSO6;
8863 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
8864 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
8865 features &= ~NETIF_F_TSO_MANGLEID;
8867 /* TSO ECN requires that TSO is present as well. */
8868 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
8869 features &= ~NETIF_F_TSO_ECN;
8871 /* Software GSO depends on SG. */
8872 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
8873 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
8874 features &= ~NETIF_F_GSO;
8877 /* GSO partial features require GSO partial be set */
8878 if ((features & dev->gso_partial_features) &&
8879 !(features & NETIF_F_GSO_PARTIAL)) {
8880 netdev_dbg(dev,
8881 "Dropping partially supported GSO features since no GSO partial.\n");
8882 features &= ~dev->gso_partial_features;
8885 if (!(features & NETIF_F_RXCSUM)) {
8886 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
8887 * successfully merged by hardware must also have the
8888 * checksum verified by hardware. If the user does not
8889 * want to enable RXCSUM, logically, we should disable GRO_HW.
8891 if (features & NETIF_F_GRO_HW) {
8892 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
8893 features &= ~NETIF_F_GRO_HW;
8897 /* LRO/HW-GRO features cannot be combined with RX-FCS */
8898 if (features & NETIF_F_RXFCS) {
8899 if (features & NETIF_F_LRO) {
8900 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
8901 features &= ~NETIF_F_LRO;
8904 if (features & NETIF_F_GRO_HW) {
8905 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
8906 features &= ~NETIF_F_GRO_HW;
8910 return features;
8913 int __netdev_update_features(struct net_device *dev)
8915 struct net_device *upper, *lower;
8916 netdev_features_t features;
8917 struct list_head *iter;
8918 int err = -1;
8920 ASSERT_RTNL();
8922 features = netdev_get_wanted_features(dev);
8924 if (dev->netdev_ops->ndo_fix_features)
8925 features = dev->netdev_ops->ndo_fix_features(dev, features);
8927 /* driver might be less strict about feature dependencies */
8928 features = netdev_fix_features(dev, features);
8930 /* some features can't be enabled if they're off an an upper device */
8931 netdev_for_each_upper_dev_rcu(dev, upper, iter)
8932 features = netdev_sync_upper_features(dev, upper, features);
8934 if (dev->features == features)
8935 goto sync_lower;
8937 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
8938 &dev->features, &features);
8940 if (dev->netdev_ops->ndo_set_features)
8941 err = dev->netdev_ops->ndo_set_features(dev, features);
8942 else
8943 err = 0;
8945 if (unlikely(err < 0)) {
8946 netdev_err(dev,
8947 "set_features() failed (%d); wanted %pNF, left %pNF\n",
8948 err, &features, &dev->features);
8949 /* return non-0 since some features might have changed and
8950 * it's better to fire a spurious notification than miss it
8952 return -1;
8955 sync_lower:
8956 /* some features must be disabled on lower devices when disabled
8957 * on an upper device (think: bonding master or bridge)
8959 netdev_for_each_lower_dev(dev, lower, iter)
8960 netdev_sync_lower_features(dev, lower, features);
8962 if (!err) {
8963 netdev_features_t diff = features ^ dev->features;
8965 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
8966 /* udp_tunnel_{get,drop}_rx_info both need
8967 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
8968 * device, or they won't do anything.
8969 * Thus we need to update dev->features
8970 * *before* calling udp_tunnel_get_rx_info,
8971 * but *after* calling udp_tunnel_drop_rx_info.
8973 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
8974 dev->features = features;
8975 udp_tunnel_get_rx_info(dev);
8976 } else {
8977 udp_tunnel_drop_rx_info(dev);
8981 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
8982 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
8983 dev->features = features;
8984 err |= vlan_get_rx_ctag_filter_info(dev);
8985 } else {
8986 vlan_drop_rx_ctag_filter_info(dev);
8990 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
8991 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
8992 dev->features = features;
8993 err |= vlan_get_rx_stag_filter_info(dev);
8994 } else {
8995 vlan_drop_rx_stag_filter_info(dev);
8999 dev->features = features;
9002 return err < 0 ? 0 : 1;
9006 * netdev_update_features - recalculate device features
9007 * @dev: the device to check
9009 * Recalculate dev->features set and send notifications if it
9010 * has changed. Should be called after driver or hardware dependent
9011 * conditions might have changed that influence the features.
9013 void netdev_update_features(struct net_device *dev)
9015 if (__netdev_update_features(dev))
9016 netdev_features_change(dev);
9018 EXPORT_SYMBOL(netdev_update_features);
9021 * netdev_change_features - recalculate device features
9022 * @dev: the device to check
9024 * Recalculate dev->features set and send notifications even
9025 * if they have not changed. Should be called instead of
9026 * netdev_update_features() if also dev->vlan_features might
9027 * have changed to allow the changes to be propagated to stacked
9028 * VLAN devices.
9030 void netdev_change_features(struct net_device *dev)
9032 __netdev_update_features(dev);
9033 netdev_features_change(dev);
9035 EXPORT_SYMBOL(netdev_change_features);
9038 * netif_stacked_transfer_operstate - transfer operstate
9039 * @rootdev: the root or lower level device to transfer state from
9040 * @dev: the device to transfer operstate to
9042 * Transfer operational state from root to device. This is normally
9043 * called when a stacking relationship exists between the root
9044 * device and the device(a leaf device).
9046 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9047 struct net_device *dev)
9049 if (rootdev->operstate == IF_OPER_DORMANT)
9050 netif_dormant_on(dev);
9051 else
9052 netif_dormant_off(dev);
9054 if (netif_carrier_ok(rootdev))
9055 netif_carrier_on(dev);
9056 else
9057 netif_carrier_off(dev);
9059 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9061 static int netif_alloc_rx_queues(struct net_device *dev)
9063 unsigned int i, count = dev->num_rx_queues;
9064 struct netdev_rx_queue *rx;
9065 size_t sz = count * sizeof(*rx);
9066 int err = 0;
9068 BUG_ON(count < 1);
9070 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9071 if (!rx)
9072 return -ENOMEM;
9074 dev->_rx = rx;
9076 for (i = 0; i < count; i++) {
9077 rx[i].dev = dev;
9079 /* XDP RX-queue setup */
9080 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
9081 if (err < 0)
9082 goto err_rxq_info;
9084 return 0;
9086 err_rxq_info:
9087 /* Rollback successful reg's and free other resources */
9088 while (i--)
9089 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9090 kvfree(dev->_rx);
9091 dev->_rx = NULL;
9092 return err;
9095 static void netif_free_rx_queues(struct net_device *dev)
9097 unsigned int i, count = dev->num_rx_queues;
9099 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9100 if (!dev->_rx)
9101 return;
9103 for (i = 0; i < count; i++)
9104 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9106 kvfree(dev->_rx);
9109 static void netdev_init_one_queue(struct net_device *dev,
9110 struct netdev_queue *queue, void *_unused)
9112 /* Initialize queue lock */
9113 spin_lock_init(&queue->_xmit_lock);
9114 lockdep_set_class(&queue->_xmit_lock, &dev->qdisc_xmit_lock_key);
9115 queue->xmit_lock_owner = -1;
9116 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9117 queue->dev = dev;
9118 #ifdef CONFIG_BQL
9119 dql_init(&queue->dql, HZ);
9120 #endif
9123 static void netif_free_tx_queues(struct net_device *dev)
9125 kvfree(dev->_tx);
9128 static int netif_alloc_netdev_queues(struct net_device *dev)
9130 unsigned int count = dev->num_tx_queues;
9131 struct netdev_queue *tx;
9132 size_t sz = count * sizeof(*tx);
9134 if (count < 1 || count > 0xffff)
9135 return -EINVAL;
9137 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9138 if (!tx)
9139 return -ENOMEM;
9141 dev->_tx = tx;
9143 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9144 spin_lock_init(&dev->tx_global_lock);
9146 return 0;
9149 void netif_tx_stop_all_queues(struct net_device *dev)
9151 unsigned int i;
9153 for (i = 0; i < dev->num_tx_queues; i++) {
9154 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
9156 netif_tx_stop_queue(txq);
9159 EXPORT_SYMBOL(netif_tx_stop_all_queues);
9161 static void netdev_register_lockdep_key(struct net_device *dev)
9163 lockdep_register_key(&dev->qdisc_tx_busylock_key);
9164 lockdep_register_key(&dev->qdisc_running_key);
9165 lockdep_register_key(&dev->qdisc_xmit_lock_key);
9166 lockdep_register_key(&dev->addr_list_lock_key);
9169 static void netdev_unregister_lockdep_key(struct net_device *dev)
9171 lockdep_unregister_key(&dev->qdisc_tx_busylock_key);
9172 lockdep_unregister_key(&dev->qdisc_running_key);
9173 lockdep_unregister_key(&dev->qdisc_xmit_lock_key);
9174 lockdep_unregister_key(&dev->addr_list_lock_key);
9177 void netdev_update_lockdep_key(struct net_device *dev)
9179 struct netdev_queue *queue;
9180 int i;
9182 lockdep_unregister_key(&dev->qdisc_xmit_lock_key);
9183 lockdep_unregister_key(&dev->addr_list_lock_key);
9185 lockdep_register_key(&dev->qdisc_xmit_lock_key);
9186 lockdep_register_key(&dev->addr_list_lock_key);
9188 lockdep_set_class(&dev->addr_list_lock, &dev->addr_list_lock_key);
9189 for (i = 0; i < dev->num_tx_queues; i++) {
9190 queue = netdev_get_tx_queue(dev, i);
9192 lockdep_set_class(&queue->_xmit_lock,
9193 &dev->qdisc_xmit_lock_key);
9196 EXPORT_SYMBOL(netdev_update_lockdep_key);
9199 * register_netdevice - register a network device
9200 * @dev: device to register
9202 * Take a completed network device structure and add it to the kernel
9203 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9204 * chain. 0 is returned on success. A negative errno code is returned
9205 * on a failure to set up the device, or if the name is a duplicate.
9207 * Callers must hold the rtnl semaphore. You may want
9208 * register_netdev() instead of this.
9210 * BUGS:
9211 * The locking appears insufficient to guarantee two parallel registers
9212 * will not get the same name.
9215 int register_netdevice(struct net_device *dev)
9217 int ret;
9218 struct net *net = dev_net(dev);
9220 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9221 NETDEV_FEATURE_COUNT);
9222 BUG_ON(dev_boot_phase);
9223 ASSERT_RTNL();
9225 might_sleep();
9227 /* When net_device's are persistent, this will be fatal. */
9228 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
9229 BUG_ON(!net);
9231 spin_lock_init(&dev->addr_list_lock);
9232 lockdep_set_class(&dev->addr_list_lock, &dev->addr_list_lock_key);
9234 ret = dev_get_valid_name(net, dev, dev->name);
9235 if (ret < 0)
9236 goto out;
9238 ret = -ENOMEM;
9239 dev->name_node = netdev_name_node_head_alloc(dev);
9240 if (!dev->name_node)
9241 goto out;
9243 /* Init, if this function is available */
9244 if (dev->netdev_ops->ndo_init) {
9245 ret = dev->netdev_ops->ndo_init(dev);
9246 if (ret) {
9247 if (ret > 0)
9248 ret = -EIO;
9249 goto out;
9253 if (((dev->hw_features | dev->features) &
9254 NETIF_F_HW_VLAN_CTAG_FILTER) &&
9255 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
9256 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
9257 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
9258 ret = -EINVAL;
9259 goto err_uninit;
9262 ret = -EBUSY;
9263 if (!dev->ifindex)
9264 dev->ifindex = dev_new_index(net);
9265 else if (__dev_get_by_index(net, dev->ifindex))
9266 goto err_uninit;
9268 /* Transfer changeable features to wanted_features and enable
9269 * software offloads (GSO and GRO).
9271 dev->hw_features |= NETIF_F_SOFT_FEATURES;
9272 dev->features |= NETIF_F_SOFT_FEATURES;
9274 if (dev->netdev_ops->ndo_udp_tunnel_add) {
9275 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9276 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9279 dev->wanted_features = dev->features & dev->hw_features;
9281 if (!(dev->flags & IFF_LOOPBACK))
9282 dev->hw_features |= NETIF_F_NOCACHE_COPY;
9284 /* If IPv4 TCP segmentation offload is supported we should also
9285 * allow the device to enable segmenting the frame with the option
9286 * of ignoring a static IP ID value. This doesn't enable the
9287 * feature itself but allows the user to enable it later.
9289 if (dev->hw_features & NETIF_F_TSO)
9290 dev->hw_features |= NETIF_F_TSO_MANGLEID;
9291 if (dev->vlan_features & NETIF_F_TSO)
9292 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
9293 if (dev->mpls_features & NETIF_F_TSO)
9294 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
9295 if (dev->hw_enc_features & NETIF_F_TSO)
9296 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
9298 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
9300 dev->vlan_features |= NETIF_F_HIGHDMA;
9302 /* Make NETIF_F_SG inheritable to tunnel devices.
9304 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
9306 /* Make NETIF_F_SG inheritable to MPLS.
9308 dev->mpls_features |= NETIF_F_SG;
9310 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
9311 ret = notifier_to_errno(ret);
9312 if (ret)
9313 goto err_uninit;
9315 ret = netdev_register_kobject(dev);
9316 if (ret)
9317 goto err_uninit;
9318 dev->reg_state = NETREG_REGISTERED;
9320 __netdev_update_features(dev);
9323 * Default initial state at registry is that the
9324 * device is present.
9327 set_bit(__LINK_STATE_PRESENT, &dev->state);
9329 linkwatch_init_dev(dev);
9331 dev_init_scheduler(dev);
9332 dev_hold(dev);
9333 list_netdevice(dev);
9334 add_device_randomness(dev->dev_addr, dev->addr_len);
9336 /* If the device has permanent device address, driver should
9337 * set dev_addr and also addr_assign_type should be set to
9338 * NET_ADDR_PERM (default value).
9340 if (dev->addr_assign_type == NET_ADDR_PERM)
9341 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
9343 /* Notify protocols, that a new device appeared. */
9344 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
9345 ret = notifier_to_errno(ret);
9346 if (ret) {
9347 rollback_registered(dev);
9348 rcu_barrier();
9350 dev->reg_state = NETREG_UNREGISTERED;
9353 * Prevent userspace races by waiting until the network
9354 * device is fully setup before sending notifications.
9356 if (!dev->rtnl_link_ops ||
9357 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
9358 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9360 out:
9361 return ret;
9363 err_uninit:
9364 if (dev->name_node)
9365 netdev_name_node_free(dev->name_node);
9366 if (dev->netdev_ops->ndo_uninit)
9367 dev->netdev_ops->ndo_uninit(dev);
9368 if (dev->priv_destructor)
9369 dev->priv_destructor(dev);
9370 goto out;
9372 EXPORT_SYMBOL(register_netdevice);
9375 * init_dummy_netdev - init a dummy network device for NAPI
9376 * @dev: device to init
9378 * This takes a network device structure and initialize the minimum
9379 * amount of fields so it can be used to schedule NAPI polls without
9380 * registering a full blown interface. This is to be used by drivers
9381 * that need to tie several hardware interfaces to a single NAPI
9382 * poll scheduler due to HW limitations.
9384 int init_dummy_netdev(struct net_device *dev)
9386 /* Clear everything. Note we don't initialize spinlocks
9387 * are they aren't supposed to be taken by any of the
9388 * NAPI code and this dummy netdev is supposed to be
9389 * only ever used for NAPI polls
9391 memset(dev, 0, sizeof(struct net_device));
9393 /* make sure we BUG if trying to hit standard
9394 * register/unregister code path
9396 dev->reg_state = NETREG_DUMMY;
9398 /* NAPI wants this */
9399 INIT_LIST_HEAD(&dev->napi_list);
9401 /* a dummy interface is started by default */
9402 set_bit(__LINK_STATE_PRESENT, &dev->state);
9403 set_bit(__LINK_STATE_START, &dev->state);
9405 /* napi_busy_loop stats accounting wants this */
9406 dev_net_set(dev, &init_net);
9408 /* Note : We dont allocate pcpu_refcnt for dummy devices,
9409 * because users of this 'device' dont need to change
9410 * its refcount.
9413 return 0;
9415 EXPORT_SYMBOL_GPL(init_dummy_netdev);
9419 * register_netdev - register a network device
9420 * @dev: device to register
9422 * Take a completed network device structure and add it to the kernel
9423 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9424 * chain. 0 is returned on success. A negative errno code is returned
9425 * on a failure to set up the device, or if the name is a duplicate.
9427 * This is a wrapper around register_netdevice that takes the rtnl semaphore
9428 * and expands the device name if you passed a format string to
9429 * alloc_netdev.
9431 int register_netdev(struct net_device *dev)
9433 int err;
9435 if (rtnl_lock_killable())
9436 return -EINTR;
9437 err = register_netdevice(dev);
9438 rtnl_unlock();
9439 return err;
9441 EXPORT_SYMBOL(register_netdev);
9443 int netdev_refcnt_read(const struct net_device *dev)
9445 int i, refcnt = 0;
9447 for_each_possible_cpu(i)
9448 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
9449 return refcnt;
9451 EXPORT_SYMBOL(netdev_refcnt_read);
9454 * netdev_wait_allrefs - wait until all references are gone.
9455 * @dev: target net_device
9457 * This is called when unregistering network devices.
9459 * Any protocol or device that holds a reference should register
9460 * for netdevice notification, and cleanup and put back the
9461 * reference if they receive an UNREGISTER event.
9462 * We can get stuck here if buggy protocols don't correctly
9463 * call dev_put.
9465 static void netdev_wait_allrefs(struct net_device *dev)
9467 unsigned long rebroadcast_time, warning_time;
9468 int refcnt;
9470 linkwatch_forget_dev(dev);
9472 rebroadcast_time = warning_time = jiffies;
9473 refcnt = netdev_refcnt_read(dev);
9475 while (refcnt != 0) {
9476 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
9477 rtnl_lock();
9479 /* Rebroadcast unregister notification */
9480 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9482 __rtnl_unlock();
9483 rcu_barrier();
9484 rtnl_lock();
9486 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
9487 &dev->state)) {
9488 /* We must not have linkwatch events
9489 * pending on unregister. If this
9490 * happens, we simply run the queue
9491 * unscheduled, resulting in a noop
9492 * for this device.
9494 linkwatch_run_queue();
9497 __rtnl_unlock();
9499 rebroadcast_time = jiffies;
9502 msleep(250);
9504 refcnt = netdev_refcnt_read(dev);
9506 if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
9507 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
9508 dev->name, refcnt);
9509 warning_time = jiffies;
9514 /* The sequence is:
9516 * rtnl_lock();
9517 * ...
9518 * register_netdevice(x1);
9519 * register_netdevice(x2);
9520 * ...
9521 * unregister_netdevice(y1);
9522 * unregister_netdevice(y2);
9523 * ...
9524 * rtnl_unlock();
9525 * free_netdev(y1);
9526 * free_netdev(y2);
9528 * We are invoked by rtnl_unlock().
9529 * This allows us to deal with problems:
9530 * 1) We can delete sysfs objects which invoke hotplug
9531 * without deadlocking with linkwatch via keventd.
9532 * 2) Since we run with the RTNL semaphore not held, we can sleep
9533 * safely in order to wait for the netdev refcnt to drop to zero.
9535 * We must not return until all unregister events added during
9536 * the interval the lock was held have been completed.
9538 void netdev_run_todo(void)
9540 struct list_head list;
9542 /* Snapshot list, allow later requests */
9543 list_replace_init(&net_todo_list, &list);
9545 __rtnl_unlock();
9548 /* Wait for rcu callbacks to finish before next phase */
9549 if (!list_empty(&list))
9550 rcu_barrier();
9552 while (!list_empty(&list)) {
9553 struct net_device *dev
9554 = list_first_entry(&list, struct net_device, todo_list);
9555 list_del(&dev->todo_list);
9557 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
9558 pr_err("network todo '%s' but state %d\n",
9559 dev->name, dev->reg_state);
9560 dump_stack();
9561 continue;
9564 dev->reg_state = NETREG_UNREGISTERED;
9566 netdev_wait_allrefs(dev);
9568 /* paranoia */
9569 BUG_ON(netdev_refcnt_read(dev));
9570 BUG_ON(!list_empty(&dev->ptype_all));
9571 BUG_ON(!list_empty(&dev->ptype_specific));
9572 WARN_ON(rcu_access_pointer(dev->ip_ptr));
9573 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
9574 #if IS_ENABLED(CONFIG_DECNET)
9575 WARN_ON(dev->dn_ptr);
9576 #endif
9577 if (dev->priv_destructor)
9578 dev->priv_destructor(dev);
9579 if (dev->needs_free_netdev)
9580 free_netdev(dev);
9582 /* Report a network device has been unregistered */
9583 rtnl_lock();
9584 dev_net(dev)->dev_unreg_count--;
9585 __rtnl_unlock();
9586 wake_up(&netdev_unregistering_wq);
9588 /* Free network device */
9589 kobject_put(&dev->dev.kobj);
9593 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
9594 * all the same fields in the same order as net_device_stats, with only
9595 * the type differing, but rtnl_link_stats64 may have additional fields
9596 * at the end for newer counters.
9598 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
9599 const struct net_device_stats *netdev_stats)
9601 #if BITS_PER_LONG == 64
9602 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
9603 memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
9604 /* zero out counters that only exist in rtnl_link_stats64 */
9605 memset((char *)stats64 + sizeof(*netdev_stats), 0,
9606 sizeof(*stats64) - sizeof(*netdev_stats));
9607 #else
9608 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
9609 const unsigned long *src = (const unsigned long *)netdev_stats;
9610 u64 *dst = (u64 *)stats64;
9612 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
9613 for (i = 0; i < n; i++)
9614 dst[i] = src[i];
9615 /* zero out counters that only exist in rtnl_link_stats64 */
9616 memset((char *)stats64 + n * sizeof(u64), 0,
9617 sizeof(*stats64) - n * sizeof(u64));
9618 #endif
9620 EXPORT_SYMBOL(netdev_stats_to_stats64);
9623 * dev_get_stats - get network device statistics
9624 * @dev: device to get statistics from
9625 * @storage: place to store stats
9627 * Get network statistics from device. Return @storage.
9628 * The device driver may provide its own method by setting
9629 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
9630 * otherwise the internal statistics structure is used.
9632 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
9633 struct rtnl_link_stats64 *storage)
9635 const struct net_device_ops *ops = dev->netdev_ops;
9637 if (ops->ndo_get_stats64) {
9638 memset(storage, 0, sizeof(*storage));
9639 ops->ndo_get_stats64(dev, storage);
9640 } else if (ops->ndo_get_stats) {
9641 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
9642 } else {
9643 netdev_stats_to_stats64(storage, &dev->stats);
9645 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
9646 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
9647 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
9648 return storage;
9650 EXPORT_SYMBOL(dev_get_stats);
9652 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
9654 struct netdev_queue *queue = dev_ingress_queue(dev);
9656 #ifdef CONFIG_NET_CLS_ACT
9657 if (queue)
9658 return queue;
9659 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
9660 if (!queue)
9661 return NULL;
9662 netdev_init_one_queue(dev, queue, NULL);
9663 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
9664 queue->qdisc_sleeping = &noop_qdisc;
9665 rcu_assign_pointer(dev->ingress_queue, queue);
9666 #endif
9667 return queue;
9670 static const struct ethtool_ops default_ethtool_ops;
9672 void netdev_set_default_ethtool_ops(struct net_device *dev,
9673 const struct ethtool_ops *ops)
9675 if (dev->ethtool_ops == &default_ethtool_ops)
9676 dev->ethtool_ops = ops;
9678 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
9680 void netdev_freemem(struct net_device *dev)
9682 char *addr = (char *)dev - dev->padded;
9684 kvfree(addr);
9688 * alloc_netdev_mqs - allocate network device
9689 * @sizeof_priv: size of private data to allocate space for
9690 * @name: device name format string
9691 * @name_assign_type: origin of device name
9692 * @setup: callback to initialize device
9693 * @txqs: the number of TX subqueues to allocate
9694 * @rxqs: the number of RX subqueues to allocate
9696 * Allocates a struct net_device with private data area for driver use
9697 * and performs basic initialization. Also allocates subqueue structs
9698 * for each queue on the device.
9700 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
9701 unsigned char name_assign_type,
9702 void (*setup)(struct net_device *),
9703 unsigned int txqs, unsigned int rxqs)
9705 struct net_device *dev;
9706 unsigned int alloc_size;
9707 struct net_device *p;
9709 BUG_ON(strlen(name) >= sizeof(dev->name));
9711 if (txqs < 1) {
9712 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
9713 return NULL;
9716 if (rxqs < 1) {
9717 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
9718 return NULL;
9721 alloc_size = sizeof(struct net_device);
9722 if (sizeof_priv) {
9723 /* ensure 32-byte alignment of private area */
9724 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
9725 alloc_size += sizeof_priv;
9727 /* ensure 32-byte alignment of whole construct */
9728 alloc_size += NETDEV_ALIGN - 1;
9730 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9731 if (!p)
9732 return NULL;
9734 dev = PTR_ALIGN(p, NETDEV_ALIGN);
9735 dev->padded = (char *)dev - (char *)p;
9737 dev->pcpu_refcnt = alloc_percpu(int);
9738 if (!dev->pcpu_refcnt)
9739 goto free_dev;
9741 if (dev_addr_init(dev))
9742 goto free_pcpu;
9744 dev_mc_init(dev);
9745 dev_uc_init(dev);
9747 dev_net_set(dev, &init_net);
9749 netdev_register_lockdep_key(dev);
9751 dev->gso_max_size = GSO_MAX_SIZE;
9752 dev->gso_max_segs = GSO_MAX_SEGS;
9753 dev->upper_level = 1;
9754 dev->lower_level = 1;
9756 INIT_LIST_HEAD(&dev->napi_list);
9757 INIT_LIST_HEAD(&dev->unreg_list);
9758 INIT_LIST_HEAD(&dev->close_list);
9759 INIT_LIST_HEAD(&dev->link_watch_list);
9760 INIT_LIST_HEAD(&dev->adj_list.upper);
9761 INIT_LIST_HEAD(&dev->adj_list.lower);
9762 INIT_LIST_HEAD(&dev->ptype_all);
9763 INIT_LIST_HEAD(&dev->ptype_specific);
9764 #ifdef CONFIG_NET_SCHED
9765 hash_init(dev->qdisc_hash);
9766 #endif
9767 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
9768 setup(dev);
9770 if (!dev->tx_queue_len) {
9771 dev->priv_flags |= IFF_NO_QUEUE;
9772 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
9775 dev->num_tx_queues = txqs;
9776 dev->real_num_tx_queues = txqs;
9777 if (netif_alloc_netdev_queues(dev))
9778 goto free_all;
9780 dev->num_rx_queues = rxqs;
9781 dev->real_num_rx_queues = rxqs;
9782 if (netif_alloc_rx_queues(dev))
9783 goto free_all;
9785 strcpy(dev->name, name);
9786 dev->name_assign_type = name_assign_type;
9787 dev->group = INIT_NETDEV_GROUP;
9788 if (!dev->ethtool_ops)
9789 dev->ethtool_ops = &default_ethtool_ops;
9791 nf_hook_ingress_init(dev);
9793 return dev;
9795 free_all:
9796 free_netdev(dev);
9797 return NULL;
9799 free_pcpu:
9800 free_percpu(dev->pcpu_refcnt);
9801 free_dev:
9802 netdev_freemem(dev);
9803 return NULL;
9805 EXPORT_SYMBOL(alloc_netdev_mqs);
9808 * free_netdev - free network device
9809 * @dev: device
9811 * This function does the last stage of destroying an allocated device
9812 * interface. The reference to the device object is released. If this
9813 * is the last reference then it will be freed.Must be called in process
9814 * context.
9816 void free_netdev(struct net_device *dev)
9818 struct napi_struct *p, *n;
9820 might_sleep();
9821 netif_free_tx_queues(dev);
9822 netif_free_rx_queues(dev);
9824 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
9826 /* Flush device addresses */
9827 dev_addr_flush(dev);
9829 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
9830 netif_napi_del(p);
9832 free_percpu(dev->pcpu_refcnt);
9833 dev->pcpu_refcnt = NULL;
9835 netdev_unregister_lockdep_key(dev);
9837 /* Compatibility with error handling in drivers */
9838 if (dev->reg_state == NETREG_UNINITIALIZED) {
9839 netdev_freemem(dev);
9840 return;
9843 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
9844 dev->reg_state = NETREG_RELEASED;
9846 /* will free via device release */
9847 put_device(&dev->dev);
9849 EXPORT_SYMBOL(free_netdev);
9852 * synchronize_net - Synchronize with packet receive processing
9854 * Wait for packets currently being received to be done.
9855 * Does not block later packets from starting.
9857 void synchronize_net(void)
9859 might_sleep();
9860 if (rtnl_is_locked())
9861 synchronize_rcu_expedited();
9862 else
9863 synchronize_rcu();
9865 EXPORT_SYMBOL(synchronize_net);
9868 * unregister_netdevice_queue - remove device from the kernel
9869 * @dev: device
9870 * @head: list
9872 * This function shuts down a device interface and removes it
9873 * from the kernel tables.
9874 * If head not NULL, device is queued to be unregistered later.
9876 * Callers must hold the rtnl semaphore. You may want
9877 * unregister_netdev() instead of this.
9880 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
9882 ASSERT_RTNL();
9884 if (head) {
9885 list_move_tail(&dev->unreg_list, head);
9886 } else {
9887 rollback_registered(dev);
9888 /* Finish processing unregister after unlock */
9889 net_set_todo(dev);
9892 EXPORT_SYMBOL(unregister_netdevice_queue);
9895 * unregister_netdevice_many - unregister many devices
9896 * @head: list of devices
9898 * Note: As most callers use a stack allocated list_head,
9899 * we force a list_del() to make sure stack wont be corrupted later.
9901 void unregister_netdevice_many(struct list_head *head)
9903 struct net_device *dev;
9905 if (!list_empty(head)) {
9906 rollback_registered_many(head);
9907 list_for_each_entry(dev, head, unreg_list)
9908 net_set_todo(dev);
9909 list_del(head);
9912 EXPORT_SYMBOL(unregister_netdevice_many);
9915 * unregister_netdev - remove device from the kernel
9916 * @dev: device
9918 * This function shuts down a device interface and removes it
9919 * from the kernel tables.
9921 * This is just a wrapper for unregister_netdevice that takes
9922 * the rtnl semaphore. In general you want to use this and not
9923 * unregister_netdevice.
9925 void unregister_netdev(struct net_device *dev)
9927 rtnl_lock();
9928 unregister_netdevice(dev);
9929 rtnl_unlock();
9931 EXPORT_SYMBOL(unregister_netdev);
9934 * dev_change_net_namespace - move device to different nethost namespace
9935 * @dev: device
9936 * @net: network namespace
9937 * @pat: If not NULL name pattern to try if the current device name
9938 * is already taken in the destination network namespace.
9940 * This function shuts down a device interface and moves it
9941 * to a new network namespace. On success 0 is returned, on
9942 * a failure a netagive errno code is returned.
9944 * Callers must hold the rtnl semaphore.
9947 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
9949 int err, new_nsid, new_ifindex;
9951 ASSERT_RTNL();
9953 /* Don't allow namespace local devices to be moved. */
9954 err = -EINVAL;
9955 if (dev->features & NETIF_F_NETNS_LOCAL)
9956 goto out;
9958 /* Ensure the device has been registrered */
9959 if (dev->reg_state != NETREG_REGISTERED)
9960 goto out;
9962 /* Get out if there is nothing todo */
9963 err = 0;
9964 if (net_eq(dev_net(dev), net))
9965 goto out;
9967 /* Pick the destination device name, and ensure
9968 * we can use it in the destination network namespace.
9970 err = -EEXIST;
9971 if (__dev_get_by_name(net, dev->name)) {
9972 /* We get here if we can't use the current device name */
9973 if (!pat)
9974 goto out;
9975 err = dev_get_valid_name(net, dev, pat);
9976 if (err < 0)
9977 goto out;
9981 * And now a mini version of register_netdevice unregister_netdevice.
9984 /* If device is running close it first. */
9985 dev_close(dev);
9987 /* And unlink it from device chain */
9988 unlist_netdevice(dev);
9990 synchronize_net();
9992 /* Shutdown queueing discipline. */
9993 dev_shutdown(dev);
9995 /* Notify protocols, that we are about to destroy
9996 * this device. They should clean all the things.
9998 * Note that dev->reg_state stays at NETREG_REGISTERED.
9999 * This is wanted because this way 8021q and macvlan know
10000 * the device is just moving and can keep their slaves up.
10002 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10003 rcu_barrier();
10005 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
10006 /* If there is an ifindex conflict assign a new one */
10007 if (__dev_get_by_index(net, dev->ifindex))
10008 new_ifindex = dev_new_index(net);
10009 else
10010 new_ifindex = dev->ifindex;
10012 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
10013 new_ifindex);
10016 * Flush the unicast and multicast chains
10018 dev_uc_flush(dev);
10019 dev_mc_flush(dev);
10021 /* Send a netdev-removed uevent to the old namespace */
10022 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
10023 netdev_adjacent_del_links(dev);
10025 /* Actually switch the network namespace */
10026 dev_net_set(dev, net);
10027 dev->ifindex = new_ifindex;
10029 /* Send a netdev-add uevent to the new namespace */
10030 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
10031 netdev_adjacent_add_links(dev);
10033 /* Fixup kobjects */
10034 err = device_rename(&dev->dev, dev->name);
10035 WARN_ON(err);
10037 /* Add the device back in the hashes */
10038 list_netdevice(dev);
10040 /* Notify protocols, that a new device appeared. */
10041 call_netdevice_notifiers(NETDEV_REGISTER, dev);
10044 * Prevent userspace races by waiting until the network
10045 * device is fully setup before sending notifications.
10047 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10049 synchronize_net();
10050 err = 0;
10051 out:
10052 return err;
10054 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
10056 static int dev_cpu_dead(unsigned int oldcpu)
10058 struct sk_buff **list_skb;
10059 struct sk_buff *skb;
10060 unsigned int cpu;
10061 struct softnet_data *sd, *oldsd, *remsd = NULL;
10063 local_irq_disable();
10064 cpu = smp_processor_id();
10065 sd = &per_cpu(softnet_data, cpu);
10066 oldsd = &per_cpu(softnet_data, oldcpu);
10068 /* Find end of our completion_queue. */
10069 list_skb = &sd->completion_queue;
10070 while (*list_skb)
10071 list_skb = &(*list_skb)->next;
10072 /* Append completion queue from offline CPU. */
10073 *list_skb = oldsd->completion_queue;
10074 oldsd->completion_queue = NULL;
10076 /* Append output queue from offline CPU. */
10077 if (oldsd->output_queue) {
10078 *sd->output_queue_tailp = oldsd->output_queue;
10079 sd->output_queue_tailp = oldsd->output_queue_tailp;
10080 oldsd->output_queue = NULL;
10081 oldsd->output_queue_tailp = &oldsd->output_queue;
10083 /* Append NAPI poll list from offline CPU, with one exception :
10084 * process_backlog() must be called by cpu owning percpu backlog.
10085 * We properly handle process_queue & input_pkt_queue later.
10087 while (!list_empty(&oldsd->poll_list)) {
10088 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
10089 struct napi_struct,
10090 poll_list);
10092 list_del_init(&napi->poll_list);
10093 if (napi->poll == process_backlog)
10094 napi->state = 0;
10095 else
10096 ____napi_schedule(sd, napi);
10099 raise_softirq_irqoff(NET_TX_SOFTIRQ);
10100 local_irq_enable();
10102 #ifdef CONFIG_RPS
10103 remsd = oldsd->rps_ipi_list;
10104 oldsd->rps_ipi_list = NULL;
10105 #endif
10106 /* send out pending IPI's on offline CPU */
10107 net_rps_send_ipi(remsd);
10109 /* Process offline CPU's input_pkt_queue */
10110 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
10111 netif_rx_ni(skb);
10112 input_queue_head_incr(oldsd);
10114 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
10115 netif_rx_ni(skb);
10116 input_queue_head_incr(oldsd);
10119 return 0;
10123 * netdev_increment_features - increment feature set by one
10124 * @all: current feature set
10125 * @one: new feature set
10126 * @mask: mask feature set
10128 * Computes a new feature set after adding a device with feature set
10129 * @one to the master device with current feature set @all. Will not
10130 * enable anything that is off in @mask. Returns the new feature set.
10132 netdev_features_t netdev_increment_features(netdev_features_t all,
10133 netdev_features_t one, netdev_features_t mask)
10135 if (mask & NETIF_F_HW_CSUM)
10136 mask |= NETIF_F_CSUM_MASK;
10137 mask |= NETIF_F_VLAN_CHALLENGED;
10139 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
10140 all &= one | ~NETIF_F_ALL_FOR_ALL;
10142 /* If one device supports hw checksumming, set for all. */
10143 if (all & NETIF_F_HW_CSUM)
10144 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
10146 return all;
10148 EXPORT_SYMBOL(netdev_increment_features);
10150 static struct hlist_head * __net_init netdev_create_hash(void)
10152 int i;
10153 struct hlist_head *hash;
10155 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
10156 if (hash != NULL)
10157 for (i = 0; i < NETDEV_HASHENTRIES; i++)
10158 INIT_HLIST_HEAD(&hash[i]);
10160 return hash;
10163 /* Initialize per network namespace state */
10164 static int __net_init netdev_init(struct net *net)
10166 BUILD_BUG_ON(GRO_HASH_BUCKETS >
10167 8 * FIELD_SIZEOF(struct napi_struct, gro_bitmask));
10169 if (net != &init_net)
10170 INIT_LIST_HEAD(&net->dev_base_head);
10172 net->dev_name_head = netdev_create_hash();
10173 if (net->dev_name_head == NULL)
10174 goto err_name;
10176 net->dev_index_head = netdev_create_hash();
10177 if (net->dev_index_head == NULL)
10178 goto err_idx;
10180 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
10182 return 0;
10184 err_idx:
10185 kfree(net->dev_name_head);
10186 err_name:
10187 return -ENOMEM;
10191 * netdev_drivername - network driver for the device
10192 * @dev: network device
10194 * Determine network driver for device.
10196 const char *netdev_drivername(const struct net_device *dev)
10198 const struct device_driver *driver;
10199 const struct device *parent;
10200 const char *empty = "";
10202 parent = dev->dev.parent;
10203 if (!parent)
10204 return empty;
10206 driver = parent->driver;
10207 if (driver && driver->name)
10208 return driver->name;
10209 return empty;
10212 static void __netdev_printk(const char *level, const struct net_device *dev,
10213 struct va_format *vaf)
10215 if (dev && dev->dev.parent) {
10216 dev_printk_emit(level[1] - '0',
10217 dev->dev.parent,
10218 "%s %s %s%s: %pV",
10219 dev_driver_string(dev->dev.parent),
10220 dev_name(dev->dev.parent),
10221 netdev_name(dev), netdev_reg_state(dev),
10222 vaf);
10223 } else if (dev) {
10224 printk("%s%s%s: %pV",
10225 level, netdev_name(dev), netdev_reg_state(dev), vaf);
10226 } else {
10227 printk("%s(NULL net_device): %pV", level, vaf);
10231 void netdev_printk(const char *level, const struct net_device *dev,
10232 const char *format, ...)
10234 struct va_format vaf;
10235 va_list args;
10237 va_start(args, format);
10239 vaf.fmt = format;
10240 vaf.va = &args;
10242 __netdev_printk(level, dev, &vaf);
10244 va_end(args);
10246 EXPORT_SYMBOL(netdev_printk);
10248 #define define_netdev_printk_level(func, level) \
10249 void func(const struct net_device *dev, const char *fmt, ...) \
10251 struct va_format vaf; \
10252 va_list args; \
10254 va_start(args, fmt); \
10256 vaf.fmt = fmt; \
10257 vaf.va = &args; \
10259 __netdev_printk(level, dev, &vaf); \
10261 va_end(args); \
10263 EXPORT_SYMBOL(func);
10265 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
10266 define_netdev_printk_level(netdev_alert, KERN_ALERT);
10267 define_netdev_printk_level(netdev_crit, KERN_CRIT);
10268 define_netdev_printk_level(netdev_err, KERN_ERR);
10269 define_netdev_printk_level(netdev_warn, KERN_WARNING);
10270 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
10271 define_netdev_printk_level(netdev_info, KERN_INFO);
10273 static void __net_exit netdev_exit(struct net *net)
10275 kfree(net->dev_name_head);
10276 kfree(net->dev_index_head);
10277 if (net != &init_net)
10278 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
10281 static struct pernet_operations __net_initdata netdev_net_ops = {
10282 .init = netdev_init,
10283 .exit = netdev_exit,
10286 static void __net_exit default_device_exit(struct net *net)
10288 struct net_device *dev, *aux;
10290 * Push all migratable network devices back to the
10291 * initial network namespace
10293 rtnl_lock();
10294 for_each_netdev_safe(net, dev, aux) {
10295 int err;
10296 char fb_name[IFNAMSIZ];
10298 /* Ignore unmoveable devices (i.e. loopback) */
10299 if (dev->features & NETIF_F_NETNS_LOCAL)
10300 continue;
10302 /* Leave virtual devices for the generic cleanup */
10303 if (dev->rtnl_link_ops)
10304 continue;
10306 /* Push remaining network devices to init_net */
10307 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
10308 if (__dev_get_by_name(&init_net, fb_name))
10309 snprintf(fb_name, IFNAMSIZ, "dev%%d");
10310 err = dev_change_net_namespace(dev, &init_net, fb_name);
10311 if (err) {
10312 pr_emerg("%s: failed to move %s to init_net: %d\n",
10313 __func__, dev->name, err);
10314 BUG();
10317 rtnl_unlock();
10320 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
10322 /* Return with the rtnl_lock held when there are no network
10323 * devices unregistering in any network namespace in net_list.
10325 struct net *net;
10326 bool unregistering;
10327 DEFINE_WAIT_FUNC(wait, woken_wake_function);
10329 add_wait_queue(&netdev_unregistering_wq, &wait);
10330 for (;;) {
10331 unregistering = false;
10332 rtnl_lock();
10333 list_for_each_entry(net, net_list, exit_list) {
10334 if (net->dev_unreg_count > 0) {
10335 unregistering = true;
10336 break;
10339 if (!unregistering)
10340 break;
10341 __rtnl_unlock();
10343 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
10345 remove_wait_queue(&netdev_unregistering_wq, &wait);
10348 static void __net_exit default_device_exit_batch(struct list_head *net_list)
10350 /* At exit all network devices most be removed from a network
10351 * namespace. Do this in the reverse order of registration.
10352 * Do this across as many network namespaces as possible to
10353 * improve batching efficiency.
10355 struct net_device *dev;
10356 struct net *net;
10357 LIST_HEAD(dev_kill_list);
10359 /* To prevent network device cleanup code from dereferencing
10360 * loopback devices or network devices that have been freed
10361 * wait here for all pending unregistrations to complete,
10362 * before unregistring the loopback device and allowing the
10363 * network namespace be freed.
10365 * The netdev todo list containing all network devices
10366 * unregistrations that happen in default_device_exit_batch
10367 * will run in the rtnl_unlock() at the end of
10368 * default_device_exit_batch.
10370 rtnl_lock_unregistering(net_list);
10371 list_for_each_entry(net, net_list, exit_list) {
10372 for_each_netdev_reverse(net, dev) {
10373 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
10374 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
10375 else
10376 unregister_netdevice_queue(dev, &dev_kill_list);
10379 unregister_netdevice_many(&dev_kill_list);
10380 rtnl_unlock();
10383 static struct pernet_operations __net_initdata default_device_ops = {
10384 .exit = default_device_exit,
10385 .exit_batch = default_device_exit_batch,
10389 * Initialize the DEV module. At boot time this walks the device list and
10390 * unhooks any devices that fail to initialise (normally hardware not
10391 * present) and leaves us with a valid list of present and active devices.
10396 * This is called single threaded during boot, so no need
10397 * to take the rtnl semaphore.
10399 static int __init net_dev_init(void)
10401 int i, rc = -ENOMEM;
10403 BUG_ON(!dev_boot_phase);
10405 if (dev_proc_init())
10406 goto out;
10408 if (netdev_kobject_init())
10409 goto out;
10411 INIT_LIST_HEAD(&ptype_all);
10412 for (i = 0; i < PTYPE_HASH_SIZE; i++)
10413 INIT_LIST_HEAD(&ptype_base[i]);
10415 INIT_LIST_HEAD(&offload_base);
10417 if (register_pernet_subsys(&netdev_net_ops))
10418 goto out;
10421 * Initialise the packet receive queues.
10424 for_each_possible_cpu(i) {
10425 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
10426 struct softnet_data *sd = &per_cpu(softnet_data, i);
10428 INIT_WORK(flush, flush_backlog);
10430 skb_queue_head_init(&sd->input_pkt_queue);
10431 skb_queue_head_init(&sd->process_queue);
10432 #ifdef CONFIG_XFRM_OFFLOAD
10433 skb_queue_head_init(&sd->xfrm_backlog);
10434 #endif
10435 INIT_LIST_HEAD(&sd->poll_list);
10436 sd->output_queue_tailp = &sd->output_queue;
10437 #ifdef CONFIG_RPS
10438 sd->csd.func = rps_trigger_softirq;
10439 sd->csd.info = sd;
10440 sd->cpu = i;
10441 #endif
10443 init_gro_hash(&sd->backlog);
10444 sd->backlog.poll = process_backlog;
10445 sd->backlog.weight = weight_p;
10448 dev_boot_phase = 0;
10450 /* The loopback device is special if any other network devices
10451 * is present in a network namespace the loopback device must
10452 * be present. Since we now dynamically allocate and free the
10453 * loopback device ensure this invariant is maintained by
10454 * keeping the loopback device as the first device on the
10455 * list of network devices. Ensuring the loopback devices
10456 * is the first device that appears and the last network device
10457 * that disappears.
10459 if (register_pernet_device(&loopback_net_ops))
10460 goto out;
10462 if (register_pernet_device(&default_device_ops))
10463 goto out;
10465 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
10466 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
10468 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
10469 NULL, dev_cpu_dead);
10470 WARN_ON(rc < 0);
10471 rc = 0;
10472 out:
10473 return rc;
10476 subsys_initcall(net_dev_init);