1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * NET3 Protocol independent device support routines.
5 * Derived from the non IP parts of dev.c 1.0.19
7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Florian la Roche <rzsfl@rz.uni-sb.de>
12 * Alan Cox <gw4pts@gw4pts.ampr.org>
13 * David Hinds <dahinds@users.sourceforge.net>
14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15 * Adam Sulmicki <adam@cfar.umd.edu>
16 * Pekka Riikonen <priikone@poesidon.pspt.fi>
19 * D.J. Barrow : Fixed bug where dev->refcnt gets set
20 * to 2 if register_netdev gets called
21 * before net_dev_init & also removed a
22 * few lines of code in the process.
23 * Alan Cox : device private ioctl copies fields back.
24 * Alan Cox : Transmit queue code does relevant
25 * stunts to keep the queue safe.
26 * Alan Cox : Fixed double lock.
27 * Alan Cox : Fixed promisc NULL pointer trap
28 * ???????? : Support the full private ioctl range
29 * Alan Cox : Moved ioctl permission check into
31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
32 * Alan Cox : 100 backlog just doesn't cut it when
33 * you start doing multicast video 8)
34 * Alan Cox : Rewrote net_bh and list manager.
35 * Alan Cox : Fix ETH_P_ALL echoback lengths.
36 * Alan Cox : Took out transmit every packet pass
37 * Saved a few bytes in the ioctl handler
38 * Alan Cox : Network driver sets packet type before
39 * calling netif_rx. Saves a function
41 * Alan Cox : Hashed net_bh()
42 * Richard Kooijman: Timestamp fixes.
43 * Alan Cox : Wrong field in SIOCGIFDSTADDR
44 * Alan Cox : Device lock protection.
45 * Alan Cox : Fixed nasty side effect of device close
47 * Rudi Cilibrasi : Pass the right thing to
49 * Dave Miller : 32bit quantity for the device lock to
50 * make it work out on a Sparc.
51 * Bjorn Ekwall : Added KERNELD hack.
52 * Alan Cox : Cleaned up the backlog initialise.
53 * Craig Metz : SIOCGIFCONF fix if space for under
55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
56 * is no device open function.
57 * Andi Kleen : Fix error reporting for SIOCGIFCONF
58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
59 * Cyrus Durgin : Cleaned for KMOD
60 * Adam Sulmicki : Bug Fix : Network Device Unload
61 * A network device unload needs to purge
63 * Paul Rusty Russell : SIOCSIFNAME
64 * Pekka Riikonen : Netdev boot-time settings code
65 * Andrew Morton : Make unregister_netdevice wait
66 * indefinitely on dev->refcnt
67 * J Hadi Salim : - Backlog queue sampling
68 * - netif_rx() feedback
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/string.h>
84 #include <linux/socket.h>
85 #include <linux/sockios.h>
86 #include <linux/errno.h>
87 #include <linux/interrupt.h>
88 #include <linux/if_ether.h>
89 #include <linux/netdevice.h>
90 #include <linux/etherdevice.h>
91 #include <linux/ethtool.h>
92 #include <linux/skbuff.h>
93 #include <linux/bpf.h>
94 #include <linux/bpf_trace.h>
95 #include <net/net_namespace.h>
97 #include <net/busy_poll.h>
98 #include <linux/rtnetlink.h>
99 #include <linux/stat.h>
101 #include <net/dst_metadata.h>
102 #include <net/pkt_sched.h>
103 #include <net/pkt_cls.h>
104 #include <net/checksum.h>
105 #include <net/xfrm.h>
106 #include <linux/highmem.h>
107 #include <linux/init.h>
108 #include <linux/module.h>
109 #include <linux/netpoll.h>
110 #include <linux/rcupdate.h>
111 #include <linux/delay.h>
112 #include <net/iw_handler.h>
113 #include <asm/current.h>
114 #include <linux/audit.h>
115 #include <linux/dmaengine.h>
116 #include <linux/err.h>
117 #include <linux/ctype.h>
118 #include <linux/if_arp.h>
119 #include <linux/if_vlan.h>
120 #include <linux/ip.h>
122 #include <net/mpls.h>
123 #include <linux/ipv6.h>
124 #include <linux/in.h>
125 #include <linux/jhash.h>
126 #include <linux/random.h>
127 #include <trace/events/napi.h>
128 #include <trace/events/net.h>
129 #include <trace/events/skb.h>
130 #include <linux/inetdevice.h>
131 #include <linux/cpu_rmap.h>
132 #include <linux/static_key.h>
133 #include <linux/hashtable.h>
134 #include <linux/vmalloc.h>
135 #include <linux/if_macvlan.h>
136 #include <linux/errqueue.h>
137 #include <linux/hrtimer.h>
138 #include <linux/netfilter_ingress.h>
139 #include <linux/crash_dump.h>
140 #include <linux/sctp.h>
141 #include <net/udp_tunnel.h>
142 #include <linux/net_namespace.h>
143 #include <linux/indirect_call_wrapper.h>
144 #include <net/devlink.h>
146 #include "net-sysfs.h"
148 #define MAX_GRO_SKBS 8
149 #define MAX_NEST_DEV 8
151 /* This should be increased if a protocol with a bigger head is added. */
152 #define GRO_MAX_HEAD (MAX_HEADER + 128)
154 static DEFINE_SPINLOCK(ptype_lock
);
155 static DEFINE_SPINLOCK(offload_lock
);
156 struct list_head ptype_base
[PTYPE_HASH_SIZE
] __read_mostly
;
157 struct list_head ptype_all __read_mostly
; /* Taps */
158 static struct list_head offload_base __read_mostly
;
160 static int netif_rx_internal(struct sk_buff
*skb
);
161 static int call_netdevice_notifiers_info(unsigned long val
,
162 struct netdev_notifier_info
*info
);
163 static int call_netdevice_notifiers_extack(unsigned long val
,
164 struct net_device
*dev
,
165 struct netlink_ext_ack
*extack
);
166 static struct napi_struct
*napi_by_id(unsigned int napi_id
);
169 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
172 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
174 * Writers must hold the rtnl semaphore while they loop through the
175 * dev_base_head list, and hold dev_base_lock for writing when they do the
176 * actual updates. This allows pure readers to access the list even
177 * while a writer is preparing to update it.
179 * To put it another way, dev_base_lock is held for writing only to
180 * protect against pure readers; the rtnl semaphore provides the
181 * protection against other writers.
183 * See, for example usages, register_netdevice() and
184 * unregister_netdevice(), which must be called with the rtnl
187 DEFINE_RWLOCK(dev_base_lock
);
188 EXPORT_SYMBOL(dev_base_lock
);
190 static DEFINE_MUTEX(ifalias_mutex
);
192 /* protects napi_hash addition/deletion and napi_gen_id */
193 static DEFINE_SPINLOCK(napi_hash_lock
);
195 static unsigned int napi_gen_id
= NR_CPUS
;
196 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash
, 8);
198 static seqcount_t devnet_rename_seq
;
200 static inline void dev_base_seq_inc(struct net
*net
)
202 while (++net
->dev_base_seq
== 0)
206 static inline struct hlist_head
*dev_name_hash(struct net
*net
, const char *name
)
208 unsigned int hash
= full_name_hash(net
, name
, strnlen(name
, IFNAMSIZ
));
210 return &net
->dev_name_head
[hash_32(hash
, NETDEV_HASHBITS
)];
213 static inline struct hlist_head
*dev_index_hash(struct net
*net
, int ifindex
)
215 return &net
->dev_index_head
[ifindex
& (NETDEV_HASHENTRIES
- 1)];
218 static inline void rps_lock(struct softnet_data
*sd
)
221 spin_lock(&sd
->input_pkt_queue
.lock
);
225 static inline void rps_unlock(struct softnet_data
*sd
)
228 spin_unlock(&sd
->input_pkt_queue
.lock
);
232 static struct netdev_name_node
*netdev_name_node_alloc(struct net_device
*dev
,
235 struct netdev_name_node
*name_node
;
237 name_node
= kmalloc(sizeof(*name_node
), GFP_KERNEL
);
240 INIT_HLIST_NODE(&name_node
->hlist
);
241 name_node
->dev
= dev
;
242 name_node
->name
= name
;
246 static struct netdev_name_node
*
247 netdev_name_node_head_alloc(struct net_device
*dev
)
249 struct netdev_name_node
*name_node
;
251 name_node
= netdev_name_node_alloc(dev
, dev
->name
);
254 INIT_LIST_HEAD(&name_node
->list
);
258 static void netdev_name_node_free(struct netdev_name_node
*name_node
)
263 static void netdev_name_node_add(struct net
*net
,
264 struct netdev_name_node
*name_node
)
266 hlist_add_head_rcu(&name_node
->hlist
,
267 dev_name_hash(net
, name_node
->name
));
270 static void netdev_name_node_del(struct netdev_name_node
*name_node
)
272 hlist_del_rcu(&name_node
->hlist
);
275 static struct netdev_name_node
*netdev_name_node_lookup(struct net
*net
,
278 struct hlist_head
*head
= dev_name_hash(net
, name
);
279 struct netdev_name_node
*name_node
;
281 hlist_for_each_entry(name_node
, head
, hlist
)
282 if (!strcmp(name_node
->name
, name
))
287 static struct netdev_name_node
*netdev_name_node_lookup_rcu(struct net
*net
,
290 struct hlist_head
*head
= dev_name_hash(net
, name
);
291 struct netdev_name_node
*name_node
;
293 hlist_for_each_entry_rcu(name_node
, head
, hlist
)
294 if (!strcmp(name_node
->name
, name
))
299 int netdev_name_node_alt_create(struct net_device
*dev
, const char *name
)
301 struct netdev_name_node
*name_node
;
302 struct net
*net
= dev_net(dev
);
304 name_node
= netdev_name_node_lookup(net
, name
);
307 name_node
= netdev_name_node_alloc(dev
, name
);
310 netdev_name_node_add(net
, name_node
);
311 /* The node that holds dev->name acts as a head of per-device list. */
312 list_add_tail(&name_node
->list
, &dev
->name_node
->list
);
316 EXPORT_SYMBOL(netdev_name_node_alt_create
);
318 static void __netdev_name_node_alt_destroy(struct netdev_name_node
*name_node
)
320 list_del(&name_node
->list
);
321 netdev_name_node_del(name_node
);
322 kfree(name_node
->name
);
323 netdev_name_node_free(name_node
);
326 int netdev_name_node_alt_destroy(struct net_device
*dev
, const char *name
)
328 struct netdev_name_node
*name_node
;
329 struct net
*net
= dev_net(dev
);
331 name_node
= netdev_name_node_lookup(net
, name
);
334 __netdev_name_node_alt_destroy(name_node
);
338 EXPORT_SYMBOL(netdev_name_node_alt_destroy
);
340 static void netdev_name_node_alt_flush(struct net_device
*dev
)
342 struct netdev_name_node
*name_node
, *tmp
;
344 list_for_each_entry_safe(name_node
, tmp
, &dev
->name_node
->list
, list
)
345 __netdev_name_node_alt_destroy(name_node
);
348 /* Device list insertion */
349 static void list_netdevice(struct net_device
*dev
)
351 struct net
*net
= dev_net(dev
);
355 write_lock_bh(&dev_base_lock
);
356 list_add_tail_rcu(&dev
->dev_list
, &net
->dev_base_head
);
357 netdev_name_node_add(net
, dev
->name_node
);
358 hlist_add_head_rcu(&dev
->index_hlist
,
359 dev_index_hash(net
, dev
->ifindex
));
360 write_unlock_bh(&dev_base_lock
);
362 dev_base_seq_inc(net
);
365 /* Device list removal
366 * caller must respect a RCU grace period before freeing/reusing dev
368 static void unlist_netdevice(struct net_device
*dev
)
372 /* Unlink dev from the device chain */
373 write_lock_bh(&dev_base_lock
);
374 list_del_rcu(&dev
->dev_list
);
375 netdev_name_node_del(dev
->name_node
);
376 hlist_del_rcu(&dev
->index_hlist
);
377 write_unlock_bh(&dev_base_lock
);
379 dev_base_seq_inc(dev_net(dev
));
386 static RAW_NOTIFIER_HEAD(netdev_chain
);
389 * Device drivers call our routines to queue packets here. We empty the
390 * queue in the local softnet handler.
393 DEFINE_PER_CPU_ALIGNED(struct softnet_data
, softnet_data
);
394 EXPORT_PER_CPU_SYMBOL(softnet_data
);
396 /*******************************************************************************
398 * Protocol management and registration routines
400 *******************************************************************************/
404 * Add a protocol ID to the list. Now that the input handler is
405 * smarter we can dispense with all the messy stuff that used to be
408 * BEWARE!!! Protocol handlers, mangling input packets,
409 * MUST BE last in hash buckets and checking protocol handlers
410 * MUST start from promiscuous ptype_all chain in net_bh.
411 * It is true now, do not change it.
412 * Explanation follows: if protocol handler, mangling packet, will
413 * be the first on list, it is not able to sense, that packet
414 * is cloned and should be copied-on-write, so that it will
415 * change it and subsequent readers will get broken packet.
419 static inline struct list_head
*ptype_head(const struct packet_type
*pt
)
421 if (pt
->type
== htons(ETH_P_ALL
))
422 return pt
->dev
? &pt
->dev
->ptype_all
: &ptype_all
;
424 return pt
->dev
? &pt
->dev
->ptype_specific
:
425 &ptype_base
[ntohs(pt
->type
) & PTYPE_HASH_MASK
];
429 * dev_add_pack - add packet handler
430 * @pt: packet type declaration
432 * Add a protocol handler to the networking stack. The passed &packet_type
433 * is linked into kernel lists and may not be freed until it has been
434 * removed from the kernel lists.
436 * This call does not sleep therefore it can not
437 * guarantee all CPU's that are in middle of receiving packets
438 * will see the new packet type (until the next received packet).
441 void dev_add_pack(struct packet_type
*pt
)
443 struct list_head
*head
= ptype_head(pt
);
445 spin_lock(&ptype_lock
);
446 list_add_rcu(&pt
->list
, head
);
447 spin_unlock(&ptype_lock
);
449 EXPORT_SYMBOL(dev_add_pack
);
452 * __dev_remove_pack - remove packet handler
453 * @pt: packet type declaration
455 * Remove a protocol handler that was previously added to the kernel
456 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
457 * from the kernel lists and can be freed or reused once this function
460 * The packet type might still be in use by receivers
461 * and must not be freed until after all the CPU's have gone
462 * through a quiescent state.
464 void __dev_remove_pack(struct packet_type
*pt
)
466 struct list_head
*head
= ptype_head(pt
);
467 struct packet_type
*pt1
;
469 spin_lock(&ptype_lock
);
471 list_for_each_entry(pt1
, head
, list
) {
473 list_del_rcu(&pt
->list
);
478 pr_warn("dev_remove_pack: %p not found\n", pt
);
480 spin_unlock(&ptype_lock
);
482 EXPORT_SYMBOL(__dev_remove_pack
);
485 * dev_remove_pack - remove packet handler
486 * @pt: packet type declaration
488 * Remove a protocol handler that was previously added to the kernel
489 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
490 * from the kernel lists and can be freed or reused once this function
493 * This call sleeps to guarantee that no CPU is looking at the packet
496 void dev_remove_pack(struct packet_type
*pt
)
498 __dev_remove_pack(pt
);
502 EXPORT_SYMBOL(dev_remove_pack
);
506 * dev_add_offload - register offload handlers
507 * @po: protocol offload declaration
509 * Add protocol offload handlers to the networking stack. The passed
510 * &proto_offload is linked into kernel lists and may not be freed until
511 * it has been removed from the kernel lists.
513 * This call does not sleep therefore it can not
514 * guarantee all CPU's that are in middle of receiving packets
515 * will see the new offload handlers (until the next received packet).
517 void dev_add_offload(struct packet_offload
*po
)
519 struct packet_offload
*elem
;
521 spin_lock(&offload_lock
);
522 list_for_each_entry(elem
, &offload_base
, list
) {
523 if (po
->priority
< elem
->priority
)
526 list_add_rcu(&po
->list
, elem
->list
.prev
);
527 spin_unlock(&offload_lock
);
529 EXPORT_SYMBOL(dev_add_offload
);
532 * __dev_remove_offload - remove offload handler
533 * @po: packet offload declaration
535 * Remove a protocol offload handler that was previously added to the
536 * kernel offload handlers by dev_add_offload(). The passed &offload_type
537 * is removed from the kernel lists and can be freed or reused once this
540 * The packet type might still be in use by receivers
541 * and must not be freed until after all the CPU's have gone
542 * through a quiescent state.
544 static void __dev_remove_offload(struct packet_offload
*po
)
546 struct list_head
*head
= &offload_base
;
547 struct packet_offload
*po1
;
549 spin_lock(&offload_lock
);
551 list_for_each_entry(po1
, head
, list
) {
553 list_del_rcu(&po
->list
);
558 pr_warn("dev_remove_offload: %p not found\n", po
);
560 spin_unlock(&offload_lock
);
564 * dev_remove_offload - remove packet offload handler
565 * @po: packet offload declaration
567 * Remove a packet offload handler that was previously added to the kernel
568 * offload handlers by dev_add_offload(). The passed &offload_type is
569 * removed from the kernel lists and can be freed or reused once this
572 * This call sleeps to guarantee that no CPU is looking at the packet
575 void dev_remove_offload(struct packet_offload
*po
)
577 __dev_remove_offload(po
);
581 EXPORT_SYMBOL(dev_remove_offload
);
583 /******************************************************************************
585 * Device Boot-time Settings Routines
587 ******************************************************************************/
589 /* Boot time configuration table */
590 static struct netdev_boot_setup dev_boot_setup
[NETDEV_BOOT_SETUP_MAX
];
593 * netdev_boot_setup_add - add new setup entry
594 * @name: name of the device
595 * @map: configured settings for the device
597 * Adds new setup entry to the dev_boot_setup list. The function
598 * returns 0 on error and 1 on success. This is a generic routine to
601 static int netdev_boot_setup_add(char *name
, struct ifmap
*map
)
603 struct netdev_boot_setup
*s
;
607 for (i
= 0; i
< NETDEV_BOOT_SETUP_MAX
; i
++) {
608 if (s
[i
].name
[0] == '\0' || s
[i
].name
[0] == ' ') {
609 memset(s
[i
].name
, 0, sizeof(s
[i
].name
));
610 strlcpy(s
[i
].name
, name
, IFNAMSIZ
);
611 memcpy(&s
[i
].map
, map
, sizeof(s
[i
].map
));
616 return i
>= NETDEV_BOOT_SETUP_MAX
? 0 : 1;
620 * netdev_boot_setup_check - check boot time settings
621 * @dev: the netdevice
623 * Check boot time settings for the device.
624 * The found settings are set for the device to be used
625 * later in the device probing.
626 * Returns 0 if no settings found, 1 if they are.
628 int netdev_boot_setup_check(struct net_device
*dev
)
630 struct netdev_boot_setup
*s
= dev_boot_setup
;
633 for (i
= 0; i
< NETDEV_BOOT_SETUP_MAX
; i
++) {
634 if (s
[i
].name
[0] != '\0' && s
[i
].name
[0] != ' ' &&
635 !strcmp(dev
->name
, s
[i
].name
)) {
636 dev
->irq
= s
[i
].map
.irq
;
637 dev
->base_addr
= s
[i
].map
.base_addr
;
638 dev
->mem_start
= s
[i
].map
.mem_start
;
639 dev
->mem_end
= s
[i
].map
.mem_end
;
645 EXPORT_SYMBOL(netdev_boot_setup_check
);
649 * netdev_boot_base - get address from boot time settings
650 * @prefix: prefix for network device
651 * @unit: id for network device
653 * Check boot time settings for the base address of device.
654 * The found settings are set for the device to be used
655 * later in the device probing.
656 * Returns 0 if no settings found.
658 unsigned long netdev_boot_base(const char *prefix
, int unit
)
660 const struct netdev_boot_setup
*s
= dev_boot_setup
;
664 sprintf(name
, "%s%d", prefix
, unit
);
667 * If device already registered then return base of 1
668 * to indicate not to probe for this interface
670 if (__dev_get_by_name(&init_net
, name
))
673 for (i
= 0; i
< NETDEV_BOOT_SETUP_MAX
; i
++)
674 if (!strcmp(name
, s
[i
].name
))
675 return s
[i
].map
.base_addr
;
680 * Saves at boot time configured settings for any netdevice.
682 int __init
netdev_boot_setup(char *str
)
687 str
= get_options(str
, ARRAY_SIZE(ints
), ints
);
692 memset(&map
, 0, sizeof(map
));
696 map
.base_addr
= ints
[2];
698 map
.mem_start
= ints
[3];
700 map
.mem_end
= ints
[4];
702 /* Add new entry to the list */
703 return netdev_boot_setup_add(str
, &map
);
706 __setup("netdev=", netdev_boot_setup
);
708 /*******************************************************************************
710 * Device Interface Subroutines
712 *******************************************************************************/
715 * dev_get_iflink - get 'iflink' value of a interface
716 * @dev: targeted interface
718 * Indicates the ifindex the interface is linked to.
719 * Physical interfaces have the same 'ifindex' and 'iflink' values.
722 int dev_get_iflink(const struct net_device
*dev
)
724 if (dev
->netdev_ops
&& dev
->netdev_ops
->ndo_get_iflink
)
725 return dev
->netdev_ops
->ndo_get_iflink(dev
);
729 EXPORT_SYMBOL(dev_get_iflink
);
732 * dev_fill_metadata_dst - Retrieve tunnel egress information.
733 * @dev: targeted interface
736 * For better visibility of tunnel traffic OVS needs to retrieve
737 * egress tunnel information for a packet. Following API allows
738 * user to get this info.
740 int dev_fill_metadata_dst(struct net_device
*dev
, struct sk_buff
*skb
)
742 struct ip_tunnel_info
*info
;
744 if (!dev
->netdev_ops
|| !dev
->netdev_ops
->ndo_fill_metadata_dst
)
747 info
= skb_tunnel_info_unclone(skb
);
750 if (unlikely(!(info
->mode
& IP_TUNNEL_INFO_TX
)))
753 return dev
->netdev_ops
->ndo_fill_metadata_dst(dev
, skb
);
755 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst
);
758 * __dev_get_by_name - find a device by its name
759 * @net: the applicable net namespace
760 * @name: name to find
762 * Find an interface by name. Must be called under RTNL semaphore
763 * or @dev_base_lock. If the name is found a pointer to the device
764 * is returned. If the name is not found then %NULL is returned. The
765 * reference counters are not incremented so the caller must be
766 * careful with locks.
769 struct net_device
*__dev_get_by_name(struct net
*net
, const char *name
)
771 struct netdev_name_node
*node_name
;
773 node_name
= netdev_name_node_lookup(net
, name
);
774 return node_name
? node_name
->dev
: NULL
;
776 EXPORT_SYMBOL(__dev_get_by_name
);
779 * dev_get_by_name_rcu - find a device by its name
780 * @net: the applicable net namespace
781 * @name: name to find
783 * Find an interface by name.
784 * If the name is found a pointer to the device is returned.
785 * If the name is not found then %NULL is returned.
786 * The reference counters are not incremented so the caller must be
787 * careful with locks. The caller must hold RCU lock.
790 struct net_device
*dev_get_by_name_rcu(struct net
*net
, const char *name
)
792 struct netdev_name_node
*node_name
;
794 node_name
= netdev_name_node_lookup_rcu(net
, name
);
795 return node_name
? node_name
->dev
: NULL
;
797 EXPORT_SYMBOL(dev_get_by_name_rcu
);
800 * dev_get_by_name - find a device by its name
801 * @net: the applicable net namespace
802 * @name: name to find
804 * Find an interface by name. This can be called from any
805 * context and does its own locking. The returned handle has
806 * the usage count incremented and the caller must use dev_put() to
807 * release it when it is no longer needed. %NULL is returned if no
808 * matching device is found.
811 struct net_device
*dev_get_by_name(struct net
*net
, const char *name
)
813 struct net_device
*dev
;
816 dev
= dev_get_by_name_rcu(net
, name
);
822 EXPORT_SYMBOL(dev_get_by_name
);
825 * __dev_get_by_index - find a device by its ifindex
826 * @net: the applicable net namespace
827 * @ifindex: index of device
829 * Search for an interface by index. Returns %NULL if the device
830 * is not found or a pointer to the device. The device has not
831 * had its reference counter increased so the caller must be careful
832 * about locking. The caller must hold either the RTNL semaphore
836 struct net_device
*__dev_get_by_index(struct net
*net
, int ifindex
)
838 struct net_device
*dev
;
839 struct hlist_head
*head
= dev_index_hash(net
, ifindex
);
841 hlist_for_each_entry(dev
, head
, index_hlist
)
842 if (dev
->ifindex
== ifindex
)
847 EXPORT_SYMBOL(__dev_get_by_index
);
850 * dev_get_by_index_rcu - find a device by its ifindex
851 * @net: the applicable net namespace
852 * @ifindex: index of device
854 * Search for an interface by index. Returns %NULL if the device
855 * is not found or a pointer to the device. The device has not
856 * had its reference counter increased so the caller must be careful
857 * about locking. The caller must hold RCU lock.
860 struct net_device
*dev_get_by_index_rcu(struct net
*net
, int ifindex
)
862 struct net_device
*dev
;
863 struct hlist_head
*head
= dev_index_hash(net
, ifindex
);
865 hlist_for_each_entry_rcu(dev
, head
, index_hlist
)
866 if (dev
->ifindex
== ifindex
)
871 EXPORT_SYMBOL(dev_get_by_index_rcu
);
875 * dev_get_by_index - find a device by its ifindex
876 * @net: the applicable net namespace
877 * @ifindex: index of device
879 * Search for an interface by index. Returns NULL if the device
880 * is not found or a pointer to the device. The device returned has
881 * had a reference added and the pointer is safe until the user calls
882 * dev_put to indicate they have finished with it.
885 struct net_device
*dev_get_by_index(struct net
*net
, int ifindex
)
887 struct net_device
*dev
;
890 dev
= dev_get_by_index_rcu(net
, ifindex
);
896 EXPORT_SYMBOL(dev_get_by_index
);
899 * dev_get_by_napi_id - find a device by napi_id
900 * @napi_id: ID of the NAPI struct
902 * Search for an interface by NAPI ID. Returns %NULL if the device
903 * is not found or a pointer to the device. The device has not had
904 * its reference counter increased so the caller must be careful
905 * about locking. The caller must hold RCU lock.
908 struct net_device
*dev_get_by_napi_id(unsigned int napi_id
)
910 struct napi_struct
*napi
;
912 WARN_ON_ONCE(!rcu_read_lock_held());
914 if (napi_id
< MIN_NAPI_ID
)
917 napi
= napi_by_id(napi_id
);
919 return napi
? napi
->dev
: NULL
;
921 EXPORT_SYMBOL(dev_get_by_napi_id
);
924 * netdev_get_name - get a netdevice name, knowing its ifindex.
925 * @net: network namespace
926 * @name: a pointer to the buffer where the name will be stored.
927 * @ifindex: the ifindex of the interface to get the name from.
929 * The use of raw_seqcount_begin() and cond_resched() before
930 * retrying is required as we want to give the writers a chance
931 * to complete when CONFIG_PREEMPT is not set.
933 int netdev_get_name(struct net
*net
, char *name
, int ifindex
)
935 struct net_device
*dev
;
939 seq
= raw_seqcount_begin(&devnet_rename_seq
);
941 dev
= dev_get_by_index_rcu(net
, ifindex
);
947 strcpy(name
, dev
->name
);
949 if (read_seqcount_retry(&devnet_rename_seq
, seq
)) {
958 * dev_getbyhwaddr_rcu - find a device by its hardware address
959 * @net: the applicable net namespace
960 * @type: media type of device
961 * @ha: hardware address
963 * Search for an interface by MAC address. Returns NULL if the device
964 * is not found or a pointer to the device.
965 * The caller must hold RCU or RTNL.
966 * The returned device has not had its ref count increased
967 * and the caller must therefore be careful about locking
971 struct net_device
*dev_getbyhwaddr_rcu(struct net
*net
, unsigned short type
,
974 struct net_device
*dev
;
976 for_each_netdev_rcu(net
, dev
)
977 if (dev
->type
== type
&&
978 !memcmp(dev
->dev_addr
, ha
, dev
->addr_len
))
983 EXPORT_SYMBOL(dev_getbyhwaddr_rcu
);
985 struct net_device
*__dev_getfirstbyhwtype(struct net
*net
, unsigned short type
)
987 struct net_device
*dev
;
990 for_each_netdev(net
, dev
)
991 if (dev
->type
== type
)
996 EXPORT_SYMBOL(__dev_getfirstbyhwtype
);
998 struct net_device
*dev_getfirstbyhwtype(struct net
*net
, unsigned short type
)
1000 struct net_device
*dev
, *ret
= NULL
;
1003 for_each_netdev_rcu(net
, dev
)
1004 if (dev
->type
== type
) {
1012 EXPORT_SYMBOL(dev_getfirstbyhwtype
);
1015 * __dev_get_by_flags - find any device with given flags
1016 * @net: the applicable net namespace
1017 * @if_flags: IFF_* values
1018 * @mask: bitmask of bits in if_flags to check
1020 * Search for any interface with the given flags. Returns NULL if a device
1021 * is not found or a pointer to the device. Must be called inside
1022 * rtnl_lock(), and result refcount is unchanged.
1025 struct net_device
*__dev_get_by_flags(struct net
*net
, unsigned short if_flags
,
1026 unsigned short mask
)
1028 struct net_device
*dev
, *ret
;
1033 for_each_netdev(net
, dev
) {
1034 if (((dev
->flags
^ if_flags
) & mask
) == 0) {
1041 EXPORT_SYMBOL(__dev_get_by_flags
);
1044 * dev_valid_name - check if name is okay for network device
1045 * @name: name string
1047 * Network device names need to be valid file names to
1048 * to allow sysfs to work. We also disallow any kind of
1051 bool dev_valid_name(const char *name
)
1055 if (strnlen(name
, IFNAMSIZ
) == IFNAMSIZ
)
1057 if (!strcmp(name
, ".") || !strcmp(name
, ".."))
1061 if (*name
== '/' || *name
== ':' || isspace(*name
))
1067 EXPORT_SYMBOL(dev_valid_name
);
1070 * __dev_alloc_name - allocate a name for a device
1071 * @net: network namespace to allocate the device name in
1072 * @name: name format string
1073 * @buf: scratch buffer and result name string
1075 * Passed a format string - eg "lt%d" it will try and find a suitable
1076 * id. It scans list of devices to build up a free map, then chooses
1077 * the first empty slot. The caller must hold the dev_base or rtnl lock
1078 * while allocating the name and adding the device in order to avoid
1080 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1081 * Returns the number of the unit assigned or a negative errno code.
1084 static int __dev_alloc_name(struct net
*net
, const char *name
, char *buf
)
1088 const int max_netdevices
= 8*PAGE_SIZE
;
1089 unsigned long *inuse
;
1090 struct net_device
*d
;
1092 if (!dev_valid_name(name
))
1095 p
= strchr(name
, '%');
1098 * Verify the string as this thing may have come from
1099 * the user. There must be either one "%d" and no other "%"
1102 if (p
[1] != 'd' || strchr(p
+ 2, '%'))
1105 /* Use one page as a bit array of possible slots */
1106 inuse
= (unsigned long *) get_zeroed_page(GFP_ATOMIC
);
1110 for_each_netdev(net
, d
) {
1111 if (!sscanf(d
->name
, name
, &i
))
1113 if (i
< 0 || i
>= max_netdevices
)
1116 /* avoid cases where sscanf is not exact inverse of printf */
1117 snprintf(buf
, IFNAMSIZ
, name
, i
);
1118 if (!strncmp(buf
, d
->name
, IFNAMSIZ
))
1122 i
= find_first_zero_bit(inuse
, max_netdevices
);
1123 free_page((unsigned long) inuse
);
1126 snprintf(buf
, IFNAMSIZ
, name
, i
);
1127 if (!__dev_get_by_name(net
, buf
))
1130 /* It is possible to run out of possible slots
1131 * when the name is long and there isn't enough space left
1132 * for the digits, or if all bits are used.
1137 static int dev_alloc_name_ns(struct net
*net
,
1138 struct net_device
*dev
,
1145 ret
= __dev_alloc_name(net
, name
, buf
);
1147 strlcpy(dev
->name
, buf
, IFNAMSIZ
);
1152 * dev_alloc_name - allocate a name for a device
1154 * @name: name format string
1156 * Passed a format string - eg "lt%d" it will try and find a suitable
1157 * id. It scans list of devices to build up a free map, then chooses
1158 * the first empty slot. The caller must hold the dev_base or rtnl lock
1159 * while allocating the name and adding the device in order to avoid
1161 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1162 * Returns the number of the unit assigned or a negative errno code.
1165 int dev_alloc_name(struct net_device
*dev
, const char *name
)
1167 return dev_alloc_name_ns(dev_net(dev
), dev
, name
);
1169 EXPORT_SYMBOL(dev_alloc_name
);
1171 static int dev_get_valid_name(struct net
*net
, struct net_device
*dev
,
1176 if (!dev_valid_name(name
))
1179 if (strchr(name
, '%'))
1180 return dev_alloc_name_ns(net
, dev
, name
);
1181 else if (__dev_get_by_name(net
, name
))
1183 else if (dev
->name
!= name
)
1184 strlcpy(dev
->name
, name
, IFNAMSIZ
);
1190 * dev_change_name - change name of a device
1192 * @newname: name (or format string) must be at least IFNAMSIZ
1194 * Change name of a device, can pass format strings "eth%d".
1197 int dev_change_name(struct net_device
*dev
, const char *newname
)
1199 unsigned char old_assign_type
;
1200 char oldname
[IFNAMSIZ
];
1206 BUG_ON(!dev_net(dev
));
1210 /* Some auto-enslaved devices e.g. failover slaves are
1211 * special, as userspace might rename the device after
1212 * the interface had been brought up and running since
1213 * the point kernel initiated auto-enslavement. Allow
1214 * live name change even when these slave devices are
1217 * Typically, users of these auto-enslaving devices
1218 * don't actually care about slave name change, as
1219 * they are supposed to operate on master interface
1222 if (dev
->flags
& IFF_UP
&&
1223 likely(!(dev
->priv_flags
& IFF_LIVE_RENAME_OK
)))
1226 write_seqcount_begin(&devnet_rename_seq
);
1228 if (strncmp(newname
, dev
->name
, IFNAMSIZ
) == 0) {
1229 write_seqcount_end(&devnet_rename_seq
);
1233 memcpy(oldname
, dev
->name
, IFNAMSIZ
);
1235 err
= dev_get_valid_name(net
, dev
, newname
);
1237 write_seqcount_end(&devnet_rename_seq
);
1241 if (oldname
[0] && !strchr(oldname
, '%'))
1242 netdev_info(dev
, "renamed from %s\n", oldname
);
1244 old_assign_type
= dev
->name_assign_type
;
1245 dev
->name_assign_type
= NET_NAME_RENAMED
;
1248 ret
= device_rename(&dev
->dev
, dev
->name
);
1250 memcpy(dev
->name
, oldname
, IFNAMSIZ
);
1251 dev
->name_assign_type
= old_assign_type
;
1252 write_seqcount_end(&devnet_rename_seq
);
1256 write_seqcount_end(&devnet_rename_seq
);
1258 netdev_adjacent_rename_links(dev
, oldname
);
1260 write_lock_bh(&dev_base_lock
);
1261 netdev_name_node_del(dev
->name_node
);
1262 write_unlock_bh(&dev_base_lock
);
1266 write_lock_bh(&dev_base_lock
);
1267 netdev_name_node_add(net
, dev
->name_node
);
1268 write_unlock_bh(&dev_base_lock
);
1270 ret
= call_netdevice_notifiers(NETDEV_CHANGENAME
, dev
);
1271 ret
= notifier_to_errno(ret
);
1274 /* err >= 0 after dev_alloc_name() or stores the first errno */
1277 write_seqcount_begin(&devnet_rename_seq
);
1278 memcpy(dev
->name
, oldname
, IFNAMSIZ
);
1279 memcpy(oldname
, newname
, IFNAMSIZ
);
1280 dev
->name_assign_type
= old_assign_type
;
1281 old_assign_type
= NET_NAME_RENAMED
;
1284 pr_err("%s: name change rollback failed: %d\n",
1293 * dev_set_alias - change ifalias of a device
1295 * @alias: name up to IFALIASZ
1296 * @len: limit of bytes to copy from info
1298 * Set ifalias for a device,
1300 int dev_set_alias(struct net_device
*dev
, const char *alias
, size_t len
)
1302 struct dev_ifalias
*new_alias
= NULL
;
1304 if (len
>= IFALIASZ
)
1308 new_alias
= kmalloc(sizeof(*new_alias
) + len
+ 1, GFP_KERNEL
);
1312 memcpy(new_alias
->ifalias
, alias
, len
);
1313 new_alias
->ifalias
[len
] = 0;
1316 mutex_lock(&ifalias_mutex
);
1317 new_alias
= rcu_replace_pointer(dev
->ifalias
, new_alias
,
1318 mutex_is_locked(&ifalias_mutex
));
1319 mutex_unlock(&ifalias_mutex
);
1322 kfree_rcu(new_alias
, rcuhead
);
1326 EXPORT_SYMBOL(dev_set_alias
);
1329 * dev_get_alias - get ifalias of a device
1331 * @name: buffer to store name of ifalias
1332 * @len: size of buffer
1334 * get ifalias for a device. Caller must make sure dev cannot go
1335 * away, e.g. rcu read lock or own a reference count to device.
1337 int dev_get_alias(const struct net_device
*dev
, char *name
, size_t len
)
1339 const struct dev_ifalias
*alias
;
1343 alias
= rcu_dereference(dev
->ifalias
);
1345 ret
= snprintf(name
, len
, "%s", alias
->ifalias
);
1352 * netdev_features_change - device changes features
1353 * @dev: device to cause notification
1355 * Called to indicate a device has changed features.
1357 void netdev_features_change(struct net_device
*dev
)
1359 call_netdevice_notifiers(NETDEV_FEAT_CHANGE
, dev
);
1361 EXPORT_SYMBOL(netdev_features_change
);
1364 * netdev_state_change - device changes state
1365 * @dev: device to cause notification
1367 * Called to indicate a device has changed state. This function calls
1368 * the notifier chains for netdev_chain and sends a NEWLINK message
1369 * to the routing socket.
1371 void netdev_state_change(struct net_device
*dev
)
1373 if (dev
->flags
& IFF_UP
) {
1374 struct netdev_notifier_change_info change_info
= {
1378 call_netdevice_notifiers_info(NETDEV_CHANGE
,
1380 rtmsg_ifinfo(RTM_NEWLINK
, dev
, 0, GFP_KERNEL
);
1383 EXPORT_SYMBOL(netdev_state_change
);
1386 * netdev_notify_peers - notify network peers about existence of @dev
1387 * @dev: network device
1389 * Generate traffic such that interested network peers are aware of
1390 * @dev, such as by generating a gratuitous ARP. This may be used when
1391 * a device wants to inform the rest of the network about some sort of
1392 * reconfiguration such as a failover event or virtual machine
1395 void netdev_notify_peers(struct net_device
*dev
)
1398 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS
, dev
);
1399 call_netdevice_notifiers(NETDEV_RESEND_IGMP
, dev
);
1402 EXPORT_SYMBOL(netdev_notify_peers
);
1404 static int __dev_open(struct net_device
*dev
, struct netlink_ext_ack
*extack
)
1406 const struct net_device_ops
*ops
= dev
->netdev_ops
;
1411 if (!netif_device_present(dev
))
1414 /* Block netpoll from trying to do any rx path servicing.
1415 * If we don't do this there is a chance ndo_poll_controller
1416 * or ndo_poll may be running while we open the device
1418 netpoll_poll_disable(dev
);
1420 ret
= call_netdevice_notifiers_extack(NETDEV_PRE_UP
, dev
, extack
);
1421 ret
= notifier_to_errno(ret
);
1425 set_bit(__LINK_STATE_START
, &dev
->state
);
1427 if (ops
->ndo_validate_addr
)
1428 ret
= ops
->ndo_validate_addr(dev
);
1430 if (!ret
&& ops
->ndo_open
)
1431 ret
= ops
->ndo_open(dev
);
1433 netpoll_poll_enable(dev
);
1436 clear_bit(__LINK_STATE_START
, &dev
->state
);
1438 dev
->flags
|= IFF_UP
;
1439 dev_set_rx_mode(dev
);
1441 add_device_randomness(dev
->dev_addr
, dev
->addr_len
);
1448 * dev_open - prepare an interface for use.
1449 * @dev: device to open
1450 * @extack: netlink extended ack
1452 * Takes a device from down to up state. The device's private open
1453 * function is invoked and then the multicast lists are loaded. Finally
1454 * the device is moved into the up state and a %NETDEV_UP message is
1455 * sent to the netdev notifier chain.
1457 * Calling this function on an active interface is a nop. On a failure
1458 * a negative errno code is returned.
1460 int dev_open(struct net_device
*dev
, struct netlink_ext_ack
*extack
)
1464 if (dev
->flags
& IFF_UP
)
1467 ret
= __dev_open(dev
, extack
);
1471 rtmsg_ifinfo(RTM_NEWLINK
, dev
, IFF_UP
|IFF_RUNNING
, GFP_KERNEL
);
1472 call_netdevice_notifiers(NETDEV_UP
, dev
);
1476 EXPORT_SYMBOL(dev_open
);
1478 static void __dev_close_many(struct list_head
*head
)
1480 struct net_device
*dev
;
1485 list_for_each_entry(dev
, head
, close_list
) {
1486 /* Temporarily disable netpoll until the interface is down */
1487 netpoll_poll_disable(dev
);
1489 call_netdevice_notifiers(NETDEV_GOING_DOWN
, dev
);
1491 clear_bit(__LINK_STATE_START
, &dev
->state
);
1493 /* Synchronize to scheduled poll. We cannot touch poll list, it
1494 * can be even on different cpu. So just clear netif_running().
1496 * dev->stop() will invoke napi_disable() on all of it's
1497 * napi_struct instances on this device.
1499 smp_mb__after_atomic(); /* Commit netif_running(). */
1502 dev_deactivate_many(head
);
1504 list_for_each_entry(dev
, head
, close_list
) {
1505 const struct net_device_ops
*ops
= dev
->netdev_ops
;
1508 * Call the device specific close. This cannot fail.
1509 * Only if device is UP
1511 * We allow it to be called even after a DETACH hot-plug
1517 dev
->flags
&= ~IFF_UP
;
1518 netpoll_poll_enable(dev
);
1522 static void __dev_close(struct net_device
*dev
)
1526 list_add(&dev
->close_list
, &single
);
1527 __dev_close_many(&single
);
1531 void dev_close_many(struct list_head
*head
, bool unlink
)
1533 struct net_device
*dev
, *tmp
;
1535 /* Remove the devices that don't need to be closed */
1536 list_for_each_entry_safe(dev
, tmp
, head
, close_list
)
1537 if (!(dev
->flags
& IFF_UP
))
1538 list_del_init(&dev
->close_list
);
1540 __dev_close_many(head
);
1542 list_for_each_entry_safe(dev
, tmp
, head
, close_list
) {
1543 rtmsg_ifinfo(RTM_NEWLINK
, dev
, IFF_UP
|IFF_RUNNING
, GFP_KERNEL
);
1544 call_netdevice_notifiers(NETDEV_DOWN
, dev
);
1546 list_del_init(&dev
->close_list
);
1549 EXPORT_SYMBOL(dev_close_many
);
1552 * dev_close - shutdown an interface.
1553 * @dev: device to shutdown
1555 * This function moves an active device into down state. A
1556 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1557 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1560 void dev_close(struct net_device
*dev
)
1562 if (dev
->flags
& IFF_UP
) {
1565 list_add(&dev
->close_list
, &single
);
1566 dev_close_many(&single
, true);
1570 EXPORT_SYMBOL(dev_close
);
1574 * dev_disable_lro - disable Large Receive Offload on a device
1577 * Disable Large Receive Offload (LRO) on a net device. Must be
1578 * called under RTNL. This is needed if received packets may be
1579 * forwarded to another interface.
1581 void dev_disable_lro(struct net_device
*dev
)
1583 struct net_device
*lower_dev
;
1584 struct list_head
*iter
;
1586 dev
->wanted_features
&= ~NETIF_F_LRO
;
1587 netdev_update_features(dev
);
1589 if (unlikely(dev
->features
& NETIF_F_LRO
))
1590 netdev_WARN(dev
, "failed to disable LRO!\n");
1592 netdev_for_each_lower_dev(dev
, lower_dev
, iter
)
1593 dev_disable_lro(lower_dev
);
1595 EXPORT_SYMBOL(dev_disable_lro
);
1598 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1601 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1602 * called under RTNL. This is needed if Generic XDP is installed on
1605 static void dev_disable_gro_hw(struct net_device
*dev
)
1607 dev
->wanted_features
&= ~NETIF_F_GRO_HW
;
1608 netdev_update_features(dev
);
1610 if (unlikely(dev
->features
& NETIF_F_GRO_HW
))
1611 netdev_WARN(dev
, "failed to disable GRO_HW!\n");
1614 const char *netdev_cmd_to_name(enum netdev_cmd cmd
)
1617 case NETDEV_##val: \
1618 return "NETDEV_" __stringify(val);
1620 N(UP
) N(DOWN
) N(REBOOT
) N(CHANGE
) N(REGISTER
) N(UNREGISTER
)
1621 N(CHANGEMTU
) N(CHANGEADDR
) N(GOING_DOWN
) N(CHANGENAME
) N(FEAT_CHANGE
)
1622 N(BONDING_FAILOVER
) N(PRE_UP
) N(PRE_TYPE_CHANGE
) N(POST_TYPE_CHANGE
)
1623 N(POST_INIT
) N(RELEASE
) N(NOTIFY_PEERS
) N(JOIN
) N(CHANGEUPPER
)
1624 N(RESEND_IGMP
) N(PRECHANGEMTU
) N(CHANGEINFODATA
) N(BONDING_INFO
)
1625 N(PRECHANGEUPPER
) N(CHANGELOWERSTATE
) N(UDP_TUNNEL_PUSH_INFO
)
1626 N(UDP_TUNNEL_DROP_INFO
) N(CHANGE_TX_QUEUE_LEN
)
1627 N(CVLAN_FILTER_PUSH_INFO
) N(CVLAN_FILTER_DROP_INFO
)
1628 N(SVLAN_FILTER_PUSH_INFO
) N(SVLAN_FILTER_DROP_INFO
)
1632 return "UNKNOWN_NETDEV_EVENT";
1634 EXPORT_SYMBOL_GPL(netdev_cmd_to_name
);
1636 static int call_netdevice_notifier(struct notifier_block
*nb
, unsigned long val
,
1637 struct net_device
*dev
)
1639 struct netdev_notifier_info info
= {
1643 return nb
->notifier_call(nb
, val
, &info
);
1646 static int call_netdevice_register_notifiers(struct notifier_block
*nb
,
1647 struct net_device
*dev
)
1651 err
= call_netdevice_notifier(nb
, NETDEV_REGISTER
, dev
);
1652 err
= notifier_to_errno(err
);
1656 if (!(dev
->flags
& IFF_UP
))
1659 call_netdevice_notifier(nb
, NETDEV_UP
, dev
);
1663 static void call_netdevice_unregister_notifiers(struct notifier_block
*nb
,
1664 struct net_device
*dev
)
1666 if (dev
->flags
& IFF_UP
) {
1667 call_netdevice_notifier(nb
, NETDEV_GOING_DOWN
,
1669 call_netdevice_notifier(nb
, NETDEV_DOWN
, dev
);
1671 call_netdevice_notifier(nb
, NETDEV_UNREGISTER
, dev
);
1674 static int call_netdevice_register_net_notifiers(struct notifier_block
*nb
,
1677 struct net_device
*dev
;
1680 for_each_netdev(net
, dev
) {
1681 err
= call_netdevice_register_notifiers(nb
, dev
);
1688 for_each_netdev_continue_reverse(net
, dev
)
1689 call_netdevice_unregister_notifiers(nb
, dev
);
1693 static void call_netdevice_unregister_net_notifiers(struct notifier_block
*nb
,
1696 struct net_device
*dev
;
1698 for_each_netdev(net
, dev
)
1699 call_netdevice_unregister_notifiers(nb
, dev
);
1702 static int dev_boot_phase
= 1;
1705 * register_netdevice_notifier - register a network notifier block
1708 * Register a notifier to be called when network device events occur.
1709 * The notifier passed is linked into the kernel structures and must
1710 * not be reused until it has been unregistered. A negative errno code
1711 * is returned on a failure.
1713 * When registered all registration and up events are replayed
1714 * to the new notifier to allow device to have a race free
1715 * view of the network device list.
1718 int register_netdevice_notifier(struct notifier_block
*nb
)
1723 /* Close race with setup_net() and cleanup_net() */
1724 down_write(&pernet_ops_rwsem
);
1726 err
= raw_notifier_chain_register(&netdev_chain
, nb
);
1732 err
= call_netdevice_register_net_notifiers(nb
, net
);
1739 up_write(&pernet_ops_rwsem
);
1743 for_each_net_continue_reverse(net
)
1744 call_netdevice_unregister_net_notifiers(nb
, net
);
1746 raw_notifier_chain_unregister(&netdev_chain
, nb
);
1749 EXPORT_SYMBOL(register_netdevice_notifier
);
1752 * unregister_netdevice_notifier - unregister a network notifier block
1755 * Unregister a notifier previously registered by
1756 * register_netdevice_notifier(). The notifier is unlinked into the
1757 * kernel structures and may then be reused. A negative errno code
1758 * is returned on a failure.
1760 * After unregistering unregister and down device events are synthesized
1761 * for all devices on the device list to the removed notifier to remove
1762 * the need for special case cleanup code.
1765 int unregister_netdevice_notifier(struct notifier_block
*nb
)
1767 struct net_device
*dev
;
1771 /* Close race with setup_net() and cleanup_net() */
1772 down_write(&pernet_ops_rwsem
);
1774 err
= raw_notifier_chain_unregister(&netdev_chain
, nb
);
1779 for_each_netdev(net
, dev
) {
1780 if (dev
->flags
& IFF_UP
) {
1781 call_netdevice_notifier(nb
, NETDEV_GOING_DOWN
,
1783 call_netdevice_notifier(nb
, NETDEV_DOWN
, dev
);
1785 call_netdevice_notifier(nb
, NETDEV_UNREGISTER
, dev
);
1790 up_write(&pernet_ops_rwsem
);
1793 EXPORT_SYMBOL(unregister_netdevice_notifier
);
1796 * register_netdevice_notifier_net - register a per-netns network notifier block
1797 * @net: network namespace
1800 * Register a notifier to be called when network device events occur.
1801 * The notifier passed is linked into the kernel structures and must
1802 * not be reused until it has been unregistered. A negative errno code
1803 * is returned on a failure.
1805 * When registered all registration and up events are replayed
1806 * to the new notifier to allow device to have a race free
1807 * view of the network device list.
1810 int register_netdevice_notifier_net(struct net
*net
, struct notifier_block
*nb
)
1815 err
= raw_notifier_chain_register(&net
->netdev_chain
, nb
);
1821 err
= call_netdevice_register_net_notifiers(nb
, net
);
1823 goto chain_unregister
;
1830 raw_notifier_chain_unregister(&netdev_chain
, nb
);
1833 EXPORT_SYMBOL(register_netdevice_notifier_net
);
1836 * unregister_netdevice_notifier_net - unregister a per-netns
1837 * network notifier block
1838 * @net: network namespace
1841 * Unregister a notifier previously registered by
1842 * register_netdevice_notifier(). The notifier is unlinked into the
1843 * kernel structures and may then be reused. A negative errno code
1844 * is returned on a failure.
1846 * After unregistering unregister and down device events are synthesized
1847 * for all devices on the device list to the removed notifier to remove
1848 * the need for special case cleanup code.
1851 int unregister_netdevice_notifier_net(struct net
*net
,
1852 struct notifier_block
*nb
)
1857 err
= raw_notifier_chain_unregister(&net
->netdev_chain
, nb
);
1861 call_netdevice_unregister_net_notifiers(nb
, net
);
1867 EXPORT_SYMBOL(unregister_netdevice_notifier_net
);
1870 * call_netdevice_notifiers_info - call all network notifier blocks
1871 * @val: value passed unmodified to notifier function
1872 * @info: notifier information data
1874 * Call all network notifier blocks. Parameters and return value
1875 * are as for raw_notifier_call_chain().
1878 static int call_netdevice_notifiers_info(unsigned long val
,
1879 struct netdev_notifier_info
*info
)
1881 struct net
*net
= dev_net(info
->dev
);
1886 /* Run per-netns notifier block chain first, then run the global one.
1887 * Hopefully, one day, the global one is going to be removed after
1888 * all notifier block registrators get converted to be per-netns.
1890 ret
= raw_notifier_call_chain(&net
->netdev_chain
, val
, info
);
1891 if (ret
& NOTIFY_STOP_MASK
)
1893 return raw_notifier_call_chain(&netdev_chain
, val
, info
);
1896 static int call_netdevice_notifiers_extack(unsigned long val
,
1897 struct net_device
*dev
,
1898 struct netlink_ext_ack
*extack
)
1900 struct netdev_notifier_info info
= {
1905 return call_netdevice_notifiers_info(val
, &info
);
1909 * call_netdevice_notifiers - call all network notifier blocks
1910 * @val: value passed unmodified to notifier function
1911 * @dev: net_device pointer passed unmodified to notifier function
1913 * Call all network notifier blocks. Parameters and return value
1914 * are as for raw_notifier_call_chain().
1917 int call_netdevice_notifiers(unsigned long val
, struct net_device
*dev
)
1919 return call_netdevice_notifiers_extack(val
, dev
, NULL
);
1921 EXPORT_SYMBOL(call_netdevice_notifiers
);
1924 * call_netdevice_notifiers_mtu - call all network notifier blocks
1925 * @val: value passed unmodified to notifier function
1926 * @dev: net_device pointer passed unmodified to notifier function
1927 * @arg: additional u32 argument passed to the notifier function
1929 * Call all network notifier blocks. Parameters and return value
1930 * are as for raw_notifier_call_chain().
1932 static int call_netdevice_notifiers_mtu(unsigned long val
,
1933 struct net_device
*dev
, u32 arg
)
1935 struct netdev_notifier_info_ext info
= {
1940 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext
, info
) != 0);
1942 return call_netdevice_notifiers_info(val
, &info
.info
);
1945 #ifdef CONFIG_NET_INGRESS
1946 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key
);
1948 void net_inc_ingress_queue(void)
1950 static_branch_inc(&ingress_needed_key
);
1952 EXPORT_SYMBOL_GPL(net_inc_ingress_queue
);
1954 void net_dec_ingress_queue(void)
1956 static_branch_dec(&ingress_needed_key
);
1958 EXPORT_SYMBOL_GPL(net_dec_ingress_queue
);
1961 #ifdef CONFIG_NET_EGRESS
1962 static DEFINE_STATIC_KEY_FALSE(egress_needed_key
);
1964 void net_inc_egress_queue(void)
1966 static_branch_inc(&egress_needed_key
);
1968 EXPORT_SYMBOL_GPL(net_inc_egress_queue
);
1970 void net_dec_egress_queue(void)
1972 static_branch_dec(&egress_needed_key
);
1974 EXPORT_SYMBOL_GPL(net_dec_egress_queue
);
1977 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key
);
1978 #ifdef CONFIG_JUMP_LABEL
1979 static atomic_t netstamp_needed_deferred
;
1980 static atomic_t netstamp_wanted
;
1981 static void netstamp_clear(struct work_struct
*work
)
1983 int deferred
= atomic_xchg(&netstamp_needed_deferred
, 0);
1986 wanted
= atomic_add_return(deferred
, &netstamp_wanted
);
1988 static_branch_enable(&netstamp_needed_key
);
1990 static_branch_disable(&netstamp_needed_key
);
1992 static DECLARE_WORK(netstamp_work
, netstamp_clear
);
1995 void net_enable_timestamp(void)
1997 #ifdef CONFIG_JUMP_LABEL
2001 wanted
= atomic_read(&netstamp_wanted
);
2004 if (atomic_cmpxchg(&netstamp_wanted
, wanted
, wanted
+ 1) == wanted
)
2007 atomic_inc(&netstamp_needed_deferred
);
2008 schedule_work(&netstamp_work
);
2010 static_branch_inc(&netstamp_needed_key
);
2013 EXPORT_SYMBOL(net_enable_timestamp
);
2015 void net_disable_timestamp(void)
2017 #ifdef CONFIG_JUMP_LABEL
2021 wanted
= atomic_read(&netstamp_wanted
);
2024 if (atomic_cmpxchg(&netstamp_wanted
, wanted
, wanted
- 1) == wanted
)
2027 atomic_dec(&netstamp_needed_deferred
);
2028 schedule_work(&netstamp_work
);
2030 static_branch_dec(&netstamp_needed_key
);
2033 EXPORT_SYMBOL(net_disable_timestamp
);
2035 static inline void net_timestamp_set(struct sk_buff
*skb
)
2038 if (static_branch_unlikely(&netstamp_needed_key
))
2039 __net_timestamp(skb
);
2042 #define net_timestamp_check(COND, SKB) \
2043 if (static_branch_unlikely(&netstamp_needed_key)) { \
2044 if ((COND) && !(SKB)->tstamp) \
2045 __net_timestamp(SKB); \
2048 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2052 if (!(dev
->flags
& IFF_UP
))
2055 len
= dev
->mtu
+ dev
->hard_header_len
+ VLAN_HLEN
;
2056 if (skb
->len
<= len
)
2059 /* if TSO is enabled, we don't care about the length as the packet
2060 * could be forwarded without being segmented before
2062 if (skb_is_gso(skb
))
2067 EXPORT_SYMBOL_GPL(is_skb_forwardable
);
2069 int __dev_forward_skb(struct net_device
*dev
, struct sk_buff
*skb
)
2071 int ret
= ____dev_forward_skb(dev
, skb
);
2074 skb
->protocol
= eth_type_trans(skb
, dev
);
2075 skb_postpull_rcsum(skb
, eth_hdr(skb
), ETH_HLEN
);
2080 EXPORT_SYMBOL_GPL(__dev_forward_skb
);
2083 * dev_forward_skb - loopback an skb to another netif
2085 * @dev: destination network device
2086 * @skb: buffer to forward
2089 * NET_RX_SUCCESS (no congestion)
2090 * NET_RX_DROP (packet was dropped, but freed)
2092 * dev_forward_skb can be used for injecting an skb from the
2093 * start_xmit function of one device into the receive queue
2094 * of another device.
2096 * The receiving device may be in another namespace, so
2097 * we have to clear all information in the skb that could
2098 * impact namespace isolation.
2100 int dev_forward_skb(struct net_device
*dev
, struct sk_buff
*skb
)
2102 return __dev_forward_skb(dev
, skb
) ?: netif_rx_internal(skb
);
2104 EXPORT_SYMBOL_GPL(dev_forward_skb
);
2106 static inline int deliver_skb(struct sk_buff
*skb
,
2107 struct packet_type
*pt_prev
,
2108 struct net_device
*orig_dev
)
2110 if (unlikely(skb_orphan_frags_rx(skb
, GFP_ATOMIC
)))
2112 refcount_inc(&skb
->users
);
2113 return pt_prev
->func(skb
, skb
->dev
, pt_prev
, orig_dev
);
2116 static inline void deliver_ptype_list_skb(struct sk_buff
*skb
,
2117 struct packet_type
**pt
,
2118 struct net_device
*orig_dev
,
2120 struct list_head
*ptype_list
)
2122 struct packet_type
*ptype
, *pt_prev
= *pt
;
2124 list_for_each_entry_rcu(ptype
, ptype_list
, list
) {
2125 if (ptype
->type
!= type
)
2128 deliver_skb(skb
, pt_prev
, orig_dev
);
2134 static inline bool skb_loop_sk(struct packet_type
*ptype
, struct sk_buff
*skb
)
2136 if (!ptype
->af_packet_priv
|| !skb
->sk
)
2139 if (ptype
->id_match
)
2140 return ptype
->id_match(ptype
, skb
->sk
);
2141 else if ((struct sock
*)ptype
->af_packet_priv
== skb
->sk
)
2148 * dev_nit_active - return true if any network interface taps are in use
2150 * @dev: network device to check for the presence of taps
2152 bool dev_nit_active(struct net_device
*dev
)
2154 return !list_empty(&ptype_all
) || !list_empty(&dev
->ptype_all
);
2156 EXPORT_SYMBOL_GPL(dev_nit_active
);
2159 * Support routine. Sends outgoing frames to any network
2160 * taps currently in use.
2163 void dev_queue_xmit_nit(struct sk_buff
*skb
, struct net_device
*dev
)
2165 struct packet_type
*ptype
;
2166 struct sk_buff
*skb2
= NULL
;
2167 struct packet_type
*pt_prev
= NULL
;
2168 struct list_head
*ptype_list
= &ptype_all
;
2172 list_for_each_entry_rcu(ptype
, ptype_list
, list
) {
2173 if (ptype
->ignore_outgoing
)
2176 /* Never send packets back to the socket
2177 * they originated from - MvS (miquels@drinkel.ow.org)
2179 if (skb_loop_sk(ptype
, skb
))
2183 deliver_skb(skb2
, pt_prev
, skb
->dev
);
2188 /* need to clone skb, done only once */
2189 skb2
= skb_clone(skb
, GFP_ATOMIC
);
2193 net_timestamp_set(skb2
);
2195 /* skb->nh should be correctly
2196 * set by sender, so that the second statement is
2197 * just protection against buggy protocols.
2199 skb_reset_mac_header(skb2
);
2201 if (skb_network_header(skb2
) < skb2
->data
||
2202 skb_network_header(skb2
) > skb_tail_pointer(skb2
)) {
2203 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2204 ntohs(skb2
->protocol
),
2206 skb_reset_network_header(skb2
);
2209 skb2
->transport_header
= skb2
->network_header
;
2210 skb2
->pkt_type
= PACKET_OUTGOING
;
2214 if (ptype_list
== &ptype_all
) {
2215 ptype_list
= &dev
->ptype_all
;
2220 if (!skb_orphan_frags_rx(skb2
, GFP_ATOMIC
))
2221 pt_prev
->func(skb2
, skb
->dev
, pt_prev
, skb
->dev
);
2227 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit
);
2230 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2231 * @dev: Network device
2232 * @txq: number of queues available
2234 * If real_num_tx_queues is changed the tc mappings may no longer be
2235 * valid. To resolve this verify the tc mapping remains valid and if
2236 * not NULL the mapping. With no priorities mapping to this
2237 * offset/count pair it will no longer be used. In the worst case TC0
2238 * is invalid nothing can be done so disable priority mappings. If is
2239 * expected that drivers will fix this mapping if they can before
2240 * calling netif_set_real_num_tx_queues.
2242 static void netif_setup_tc(struct net_device
*dev
, unsigned int txq
)
2245 struct netdev_tc_txq
*tc
= &dev
->tc_to_txq
[0];
2247 /* If TC0 is invalidated disable TC mapping */
2248 if (tc
->offset
+ tc
->count
> txq
) {
2249 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2254 /* Invalidated prio to tc mappings set to TC0 */
2255 for (i
= 1; i
< TC_BITMASK
+ 1; i
++) {
2256 int q
= netdev_get_prio_tc_map(dev
, i
);
2258 tc
= &dev
->tc_to_txq
[q
];
2259 if (tc
->offset
+ tc
->count
> txq
) {
2260 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2262 netdev_set_prio_tc_map(dev
, i
, 0);
2267 int netdev_txq_to_tc(struct net_device
*dev
, unsigned int txq
)
2270 struct netdev_tc_txq
*tc
= &dev
->tc_to_txq
[0];
2273 /* walk through the TCs and see if it falls into any of them */
2274 for (i
= 0; i
< TC_MAX_QUEUE
; i
++, tc
++) {
2275 if ((txq
- tc
->offset
) < tc
->count
)
2279 /* didn't find it, just return -1 to indicate no match */
2285 EXPORT_SYMBOL(netdev_txq_to_tc
);
2288 struct static_key xps_needed __read_mostly
;
2289 EXPORT_SYMBOL(xps_needed
);
2290 struct static_key xps_rxqs_needed __read_mostly
;
2291 EXPORT_SYMBOL(xps_rxqs_needed
);
2292 static DEFINE_MUTEX(xps_map_mutex
);
2293 #define xmap_dereference(P) \
2294 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2296 static bool remove_xps_queue(struct xps_dev_maps
*dev_maps
,
2299 struct xps_map
*map
= NULL
;
2303 map
= xmap_dereference(dev_maps
->attr_map
[tci
]);
2307 for (pos
= map
->len
; pos
--;) {
2308 if (map
->queues
[pos
] != index
)
2312 map
->queues
[pos
] = map
->queues
[--map
->len
];
2316 RCU_INIT_POINTER(dev_maps
->attr_map
[tci
], NULL
);
2317 kfree_rcu(map
, rcu
);
2324 static bool remove_xps_queue_cpu(struct net_device
*dev
,
2325 struct xps_dev_maps
*dev_maps
,
2326 int cpu
, u16 offset
, u16 count
)
2328 int num_tc
= dev
->num_tc
? : 1;
2329 bool active
= false;
2332 for (tci
= cpu
* num_tc
; num_tc
--; tci
++) {
2335 for (i
= count
, j
= offset
; i
--; j
++) {
2336 if (!remove_xps_queue(dev_maps
, tci
, j
))
2346 static void reset_xps_maps(struct net_device
*dev
,
2347 struct xps_dev_maps
*dev_maps
,
2351 static_key_slow_dec_cpuslocked(&xps_rxqs_needed
);
2352 RCU_INIT_POINTER(dev
->xps_rxqs_map
, NULL
);
2354 RCU_INIT_POINTER(dev
->xps_cpus_map
, NULL
);
2356 static_key_slow_dec_cpuslocked(&xps_needed
);
2357 kfree_rcu(dev_maps
, rcu
);
2360 static void clean_xps_maps(struct net_device
*dev
, const unsigned long *mask
,
2361 struct xps_dev_maps
*dev_maps
, unsigned int nr_ids
,
2362 u16 offset
, u16 count
, bool is_rxqs_map
)
2364 bool active
= false;
2367 for (j
= -1; j
= netif_attrmask_next(j
, mask
, nr_ids
),
2369 active
|= remove_xps_queue_cpu(dev
, dev_maps
, j
, offset
,
2372 reset_xps_maps(dev
, dev_maps
, is_rxqs_map
);
2375 for (i
= offset
+ (count
- 1); count
--; i
--) {
2376 netdev_queue_numa_node_write(
2377 netdev_get_tx_queue(dev
, i
),
2383 static void netif_reset_xps_queues(struct net_device
*dev
, u16 offset
,
2386 const unsigned long *possible_mask
= NULL
;
2387 struct xps_dev_maps
*dev_maps
;
2388 unsigned int nr_ids
;
2390 if (!static_key_false(&xps_needed
))
2394 mutex_lock(&xps_map_mutex
);
2396 if (static_key_false(&xps_rxqs_needed
)) {
2397 dev_maps
= xmap_dereference(dev
->xps_rxqs_map
);
2399 nr_ids
= dev
->num_rx_queues
;
2400 clean_xps_maps(dev
, possible_mask
, dev_maps
, nr_ids
,
2401 offset
, count
, true);
2405 dev_maps
= xmap_dereference(dev
->xps_cpus_map
);
2409 if (num_possible_cpus() > 1)
2410 possible_mask
= cpumask_bits(cpu_possible_mask
);
2411 nr_ids
= nr_cpu_ids
;
2412 clean_xps_maps(dev
, possible_mask
, dev_maps
, nr_ids
, offset
, count
,
2416 mutex_unlock(&xps_map_mutex
);
2420 static void netif_reset_xps_queues_gt(struct net_device
*dev
, u16 index
)
2422 netif_reset_xps_queues(dev
, index
, dev
->num_tx_queues
- index
);
2425 static struct xps_map
*expand_xps_map(struct xps_map
*map
, int attr_index
,
2426 u16 index
, bool is_rxqs_map
)
2428 struct xps_map
*new_map
;
2429 int alloc_len
= XPS_MIN_MAP_ALLOC
;
2432 for (pos
= 0; map
&& pos
< map
->len
; pos
++) {
2433 if (map
->queues
[pos
] != index
)
2438 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2440 if (pos
< map
->alloc_len
)
2443 alloc_len
= map
->alloc_len
* 2;
2446 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2450 new_map
= kzalloc(XPS_MAP_SIZE(alloc_len
), GFP_KERNEL
);
2452 new_map
= kzalloc_node(XPS_MAP_SIZE(alloc_len
), GFP_KERNEL
,
2453 cpu_to_node(attr_index
));
2457 for (i
= 0; i
< pos
; i
++)
2458 new_map
->queues
[i
] = map
->queues
[i
];
2459 new_map
->alloc_len
= alloc_len
;
2465 /* Must be called under cpus_read_lock */
2466 int __netif_set_xps_queue(struct net_device
*dev
, const unsigned long *mask
,
2467 u16 index
, bool is_rxqs_map
)
2469 const unsigned long *online_mask
= NULL
, *possible_mask
= NULL
;
2470 struct xps_dev_maps
*dev_maps
, *new_dev_maps
= NULL
;
2471 int i
, j
, tci
, numa_node_id
= -2;
2472 int maps_sz
, num_tc
= 1, tc
= 0;
2473 struct xps_map
*map
, *new_map
;
2474 bool active
= false;
2475 unsigned int nr_ids
;
2478 /* Do not allow XPS on subordinate device directly */
2479 num_tc
= dev
->num_tc
;
2483 /* If queue belongs to subordinate dev use its map */
2484 dev
= netdev_get_tx_queue(dev
, index
)->sb_dev
? : dev
;
2486 tc
= netdev_txq_to_tc(dev
, index
);
2491 mutex_lock(&xps_map_mutex
);
2493 maps_sz
= XPS_RXQ_DEV_MAPS_SIZE(num_tc
, dev
->num_rx_queues
);
2494 dev_maps
= xmap_dereference(dev
->xps_rxqs_map
);
2495 nr_ids
= dev
->num_rx_queues
;
2497 maps_sz
= XPS_CPU_DEV_MAPS_SIZE(num_tc
);
2498 if (num_possible_cpus() > 1) {
2499 online_mask
= cpumask_bits(cpu_online_mask
);
2500 possible_mask
= cpumask_bits(cpu_possible_mask
);
2502 dev_maps
= xmap_dereference(dev
->xps_cpus_map
);
2503 nr_ids
= nr_cpu_ids
;
2506 if (maps_sz
< L1_CACHE_BYTES
)
2507 maps_sz
= L1_CACHE_BYTES
;
2509 /* allocate memory for queue storage */
2510 for (j
= -1; j
= netif_attrmask_next_and(j
, online_mask
, mask
, nr_ids
),
2513 new_dev_maps
= kzalloc(maps_sz
, GFP_KERNEL
);
2514 if (!new_dev_maps
) {
2515 mutex_unlock(&xps_map_mutex
);
2519 tci
= j
* num_tc
+ tc
;
2520 map
= dev_maps
? xmap_dereference(dev_maps
->attr_map
[tci
]) :
2523 map
= expand_xps_map(map
, j
, index
, is_rxqs_map
);
2527 RCU_INIT_POINTER(new_dev_maps
->attr_map
[tci
], map
);
2531 goto out_no_new_maps
;
2534 /* Increment static keys at most once per type */
2535 static_key_slow_inc_cpuslocked(&xps_needed
);
2537 static_key_slow_inc_cpuslocked(&xps_rxqs_needed
);
2540 for (j
= -1; j
= netif_attrmask_next(j
, possible_mask
, nr_ids
),
2542 /* copy maps belonging to foreign traffic classes */
2543 for (i
= tc
, tci
= j
* num_tc
; dev_maps
&& i
--; tci
++) {
2544 /* fill in the new device map from the old device map */
2545 map
= xmap_dereference(dev_maps
->attr_map
[tci
]);
2546 RCU_INIT_POINTER(new_dev_maps
->attr_map
[tci
], map
);
2549 /* We need to explicitly update tci as prevous loop
2550 * could break out early if dev_maps is NULL.
2552 tci
= j
* num_tc
+ tc
;
2554 if (netif_attr_test_mask(j
, mask
, nr_ids
) &&
2555 netif_attr_test_online(j
, online_mask
, nr_ids
)) {
2556 /* add tx-queue to CPU/rx-queue maps */
2559 map
= xmap_dereference(new_dev_maps
->attr_map
[tci
]);
2560 while ((pos
< map
->len
) && (map
->queues
[pos
] != index
))
2563 if (pos
== map
->len
)
2564 map
->queues
[map
->len
++] = index
;
2567 if (numa_node_id
== -2)
2568 numa_node_id
= cpu_to_node(j
);
2569 else if (numa_node_id
!= cpu_to_node(j
))
2573 } else if (dev_maps
) {
2574 /* fill in the new device map from the old device map */
2575 map
= xmap_dereference(dev_maps
->attr_map
[tci
]);
2576 RCU_INIT_POINTER(new_dev_maps
->attr_map
[tci
], map
);
2579 /* copy maps belonging to foreign traffic classes */
2580 for (i
= num_tc
- tc
, tci
++; dev_maps
&& --i
; tci
++) {
2581 /* fill in the new device map from the old device map */
2582 map
= xmap_dereference(dev_maps
->attr_map
[tci
]);
2583 RCU_INIT_POINTER(new_dev_maps
->attr_map
[tci
], map
);
2588 rcu_assign_pointer(dev
->xps_rxqs_map
, new_dev_maps
);
2590 rcu_assign_pointer(dev
->xps_cpus_map
, new_dev_maps
);
2592 /* Cleanup old maps */
2594 goto out_no_old_maps
;
2596 for (j
= -1; j
= netif_attrmask_next(j
, possible_mask
, nr_ids
),
2598 for (i
= num_tc
, tci
= j
* num_tc
; i
--; tci
++) {
2599 new_map
= xmap_dereference(new_dev_maps
->attr_map
[tci
]);
2600 map
= xmap_dereference(dev_maps
->attr_map
[tci
]);
2601 if (map
&& map
!= new_map
)
2602 kfree_rcu(map
, rcu
);
2606 kfree_rcu(dev_maps
, rcu
);
2609 dev_maps
= new_dev_maps
;
2614 /* update Tx queue numa node */
2615 netdev_queue_numa_node_write(netdev_get_tx_queue(dev
, index
),
2616 (numa_node_id
>= 0) ?
2617 numa_node_id
: NUMA_NO_NODE
);
2623 /* removes tx-queue from unused CPUs/rx-queues */
2624 for (j
= -1; j
= netif_attrmask_next(j
, possible_mask
, nr_ids
),
2626 for (i
= tc
, tci
= j
* num_tc
; i
--; tci
++)
2627 active
|= remove_xps_queue(dev_maps
, tci
, index
);
2628 if (!netif_attr_test_mask(j
, mask
, nr_ids
) ||
2629 !netif_attr_test_online(j
, online_mask
, nr_ids
))
2630 active
|= remove_xps_queue(dev_maps
, tci
, index
);
2631 for (i
= num_tc
- tc
, tci
++; --i
; tci
++)
2632 active
|= remove_xps_queue(dev_maps
, tci
, index
);
2635 /* free map if not active */
2637 reset_xps_maps(dev
, dev_maps
, is_rxqs_map
);
2640 mutex_unlock(&xps_map_mutex
);
2644 /* remove any maps that we added */
2645 for (j
= -1; j
= netif_attrmask_next(j
, possible_mask
, nr_ids
),
2647 for (i
= num_tc
, tci
= j
* num_tc
; i
--; tci
++) {
2648 new_map
= xmap_dereference(new_dev_maps
->attr_map
[tci
]);
2650 xmap_dereference(dev_maps
->attr_map
[tci
]) :
2652 if (new_map
&& new_map
!= map
)
2657 mutex_unlock(&xps_map_mutex
);
2659 kfree(new_dev_maps
);
2662 EXPORT_SYMBOL_GPL(__netif_set_xps_queue
);
2664 int netif_set_xps_queue(struct net_device
*dev
, const struct cpumask
*mask
,
2670 ret
= __netif_set_xps_queue(dev
, cpumask_bits(mask
), index
, false);
2675 EXPORT_SYMBOL(netif_set_xps_queue
);
2678 static void netdev_unbind_all_sb_channels(struct net_device
*dev
)
2680 struct netdev_queue
*txq
= &dev
->_tx
[dev
->num_tx_queues
];
2682 /* Unbind any subordinate channels */
2683 while (txq
-- != &dev
->_tx
[0]) {
2685 netdev_unbind_sb_channel(dev
, txq
->sb_dev
);
2689 void netdev_reset_tc(struct net_device
*dev
)
2692 netif_reset_xps_queues_gt(dev
, 0);
2694 netdev_unbind_all_sb_channels(dev
);
2696 /* Reset TC configuration of device */
2698 memset(dev
->tc_to_txq
, 0, sizeof(dev
->tc_to_txq
));
2699 memset(dev
->prio_tc_map
, 0, sizeof(dev
->prio_tc_map
));
2701 EXPORT_SYMBOL(netdev_reset_tc
);
2703 int netdev_set_tc_queue(struct net_device
*dev
, u8 tc
, u16 count
, u16 offset
)
2705 if (tc
>= dev
->num_tc
)
2709 netif_reset_xps_queues(dev
, offset
, count
);
2711 dev
->tc_to_txq
[tc
].count
= count
;
2712 dev
->tc_to_txq
[tc
].offset
= offset
;
2715 EXPORT_SYMBOL(netdev_set_tc_queue
);
2717 int netdev_set_num_tc(struct net_device
*dev
, u8 num_tc
)
2719 if (num_tc
> TC_MAX_QUEUE
)
2723 netif_reset_xps_queues_gt(dev
, 0);
2725 netdev_unbind_all_sb_channels(dev
);
2727 dev
->num_tc
= num_tc
;
2730 EXPORT_SYMBOL(netdev_set_num_tc
);
2732 void netdev_unbind_sb_channel(struct net_device
*dev
,
2733 struct net_device
*sb_dev
)
2735 struct netdev_queue
*txq
= &dev
->_tx
[dev
->num_tx_queues
];
2738 netif_reset_xps_queues_gt(sb_dev
, 0);
2740 memset(sb_dev
->tc_to_txq
, 0, sizeof(sb_dev
->tc_to_txq
));
2741 memset(sb_dev
->prio_tc_map
, 0, sizeof(sb_dev
->prio_tc_map
));
2743 while (txq
-- != &dev
->_tx
[0]) {
2744 if (txq
->sb_dev
== sb_dev
)
2748 EXPORT_SYMBOL(netdev_unbind_sb_channel
);
2750 int netdev_bind_sb_channel_queue(struct net_device
*dev
,
2751 struct net_device
*sb_dev
,
2752 u8 tc
, u16 count
, u16 offset
)
2754 /* Make certain the sb_dev and dev are already configured */
2755 if (sb_dev
->num_tc
>= 0 || tc
>= dev
->num_tc
)
2758 /* We cannot hand out queues we don't have */
2759 if ((offset
+ count
) > dev
->real_num_tx_queues
)
2762 /* Record the mapping */
2763 sb_dev
->tc_to_txq
[tc
].count
= count
;
2764 sb_dev
->tc_to_txq
[tc
].offset
= offset
;
2766 /* Provide a way for Tx queue to find the tc_to_txq map or
2767 * XPS map for itself.
2770 netdev_get_tx_queue(dev
, count
+ offset
)->sb_dev
= sb_dev
;
2774 EXPORT_SYMBOL(netdev_bind_sb_channel_queue
);
2776 int netdev_set_sb_channel(struct net_device
*dev
, u16 channel
)
2778 /* Do not use a multiqueue device to represent a subordinate channel */
2779 if (netif_is_multiqueue(dev
))
2782 /* We allow channels 1 - 32767 to be used for subordinate channels.
2783 * Channel 0 is meant to be "native" mode and used only to represent
2784 * the main root device. We allow writing 0 to reset the device back
2785 * to normal mode after being used as a subordinate channel.
2787 if (channel
> S16_MAX
)
2790 dev
->num_tc
= -channel
;
2794 EXPORT_SYMBOL(netdev_set_sb_channel
);
2797 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2798 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2800 int netif_set_real_num_tx_queues(struct net_device
*dev
, unsigned int txq
)
2805 disabling
= txq
< dev
->real_num_tx_queues
;
2807 if (txq
< 1 || txq
> dev
->num_tx_queues
)
2810 if (dev
->reg_state
== NETREG_REGISTERED
||
2811 dev
->reg_state
== NETREG_UNREGISTERING
) {
2814 rc
= netdev_queue_update_kobjects(dev
, dev
->real_num_tx_queues
,
2820 netif_setup_tc(dev
, txq
);
2822 dev
->real_num_tx_queues
= txq
;
2826 qdisc_reset_all_tx_gt(dev
, txq
);
2828 netif_reset_xps_queues_gt(dev
, txq
);
2832 dev
->real_num_tx_queues
= txq
;
2837 EXPORT_SYMBOL(netif_set_real_num_tx_queues
);
2841 * netif_set_real_num_rx_queues - set actual number of RX queues used
2842 * @dev: Network device
2843 * @rxq: Actual number of RX queues
2845 * This must be called either with the rtnl_lock held or before
2846 * registration of the net device. Returns 0 on success, or a
2847 * negative error code. If called before registration, it always
2850 int netif_set_real_num_rx_queues(struct net_device
*dev
, unsigned int rxq
)
2854 if (rxq
< 1 || rxq
> dev
->num_rx_queues
)
2857 if (dev
->reg_state
== NETREG_REGISTERED
) {
2860 rc
= net_rx_queue_update_kobjects(dev
, dev
->real_num_rx_queues
,
2866 dev
->real_num_rx_queues
= rxq
;
2869 EXPORT_SYMBOL(netif_set_real_num_rx_queues
);
2873 * netif_get_num_default_rss_queues - default number of RSS queues
2875 * This routine should set an upper limit on the number of RSS queues
2876 * used by default by multiqueue devices.
2878 int netif_get_num_default_rss_queues(void)
2880 return is_kdump_kernel() ?
2881 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES
, num_online_cpus());
2883 EXPORT_SYMBOL(netif_get_num_default_rss_queues
);
2885 static void __netif_reschedule(struct Qdisc
*q
)
2887 struct softnet_data
*sd
;
2888 unsigned long flags
;
2890 local_irq_save(flags
);
2891 sd
= this_cpu_ptr(&softnet_data
);
2892 q
->next_sched
= NULL
;
2893 *sd
->output_queue_tailp
= q
;
2894 sd
->output_queue_tailp
= &q
->next_sched
;
2895 raise_softirq_irqoff(NET_TX_SOFTIRQ
);
2896 local_irq_restore(flags
);
2899 void __netif_schedule(struct Qdisc
*q
)
2901 if (!test_and_set_bit(__QDISC_STATE_SCHED
, &q
->state
))
2902 __netif_reschedule(q
);
2904 EXPORT_SYMBOL(__netif_schedule
);
2906 struct dev_kfree_skb_cb
{
2907 enum skb_free_reason reason
;
2910 static struct dev_kfree_skb_cb
*get_kfree_skb_cb(const struct sk_buff
*skb
)
2912 return (struct dev_kfree_skb_cb
*)skb
->cb
;
2915 void netif_schedule_queue(struct netdev_queue
*txq
)
2918 if (!netif_xmit_stopped(txq
)) {
2919 struct Qdisc
*q
= rcu_dereference(txq
->qdisc
);
2921 __netif_schedule(q
);
2925 EXPORT_SYMBOL(netif_schedule_queue
);
2927 void netif_tx_wake_queue(struct netdev_queue
*dev_queue
)
2929 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF
, &dev_queue
->state
)) {
2933 q
= rcu_dereference(dev_queue
->qdisc
);
2934 __netif_schedule(q
);
2938 EXPORT_SYMBOL(netif_tx_wake_queue
);
2940 void __dev_kfree_skb_irq(struct sk_buff
*skb
, enum skb_free_reason reason
)
2942 unsigned long flags
;
2947 if (likely(refcount_read(&skb
->users
) == 1)) {
2949 refcount_set(&skb
->users
, 0);
2950 } else if (likely(!refcount_dec_and_test(&skb
->users
))) {
2953 get_kfree_skb_cb(skb
)->reason
= reason
;
2954 local_irq_save(flags
);
2955 skb
->next
= __this_cpu_read(softnet_data
.completion_queue
);
2956 __this_cpu_write(softnet_data
.completion_queue
, skb
);
2957 raise_softirq_irqoff(NET_TX_SOFTIRQ
);
2958 local_irq_restore(flags
);
2960 EXPORT_SYMBOL(__dev_kfree_skb_irq
);
2962 void __dev_kfree_skb_any(struct sk_buff
*skb
, enum skb_free_reason reason
)
2964 if (in_irq() || irqs_disabled())
2965 __dev_kfree_skb_irq(skb
, reason
);
2969 EXPORT_SYMBOL(__dev_kfree_skb_any
);
2973 * netif_device_detach - mark device as removed
2974 * @dev: network device
2976 * Mark device as removed from system and therefore no longer available.
2978 void netif_device_detach(struct net_device
*dev
)
2980 if (test_and_clear_bit(__LINK_STATE_PRESENT
, &dev
->state
) &&
2981 netif_running(dev
)) {
2982 netif_tx_stop_all_queues(dev
);
2985 EXPORT_SYMBOL(netif_device_detach
);
2988 * netif_device_attach - mark device as attached
2989 * @dev: network device
2991 * Mark device as attached from system and restart if needed.
2993 void netif_device_attach(struct net_device
*dev
)
2995 if (!test_and_set_bit(__LINK_STATE_PRESENT
, &dev
->state
) &&
2996 netif_running(dev
)) {
2997 netif_tx_wake_all_queues(dev
);
2998 __netdev_watchdog_up(dev
);
3001 EXPORT_SYMBOL(netif_device_attach
);
3004 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3005 * to be used as a distribution range.
3007 static u16
skb_tx_hash(const struct net_device
*dev
,
3008 const struct net_device
*sb_dev
,
3009 struct sk_buff
*skb
)
3013 u16 qcount
= dev
->real_num_tx_queues
;
3016 u8 tc
= netdev_get_prio_tc_map(dev
, skb
->priority
);
3018 qoffset
= sb_dev
->tc_to_txq
[tc
].offset
;
3019 qcount
= sb_dev
->tc_to_txq
[tc
].count
;
3022 if (skb_rx_queue_recorded(skb
)) {
3023 hash
= skb_get_rx_queue(skb
);
3024 while (unlikely(hash
>= qcount
))
3026 return hash
+ qoffset
;
3029 return (u16
) reciprocal_scale(skb_get_hash(skb
), qcount
) + qoffset
;
3032 static void skb_warn_bad_offload(const struct sk_buff
*skb
)
3034 static const netdev_features_t null_features
;
3035 struct net_device
*dev
= skb
->dev
;
3036 const char *name
= "";
3038 if (!net_ratelimit())
3042 if (dev
->dev
.parent
)
3043 name
= dev_driver_string(dev
->dev
.parent
);
3045 name
= netdev_name(dev
);
3047 skb_dump(KERN_WARNING
, skb
, false);
3048 WARN(1, "%s: caps=(%pNF, %pNF)\n",
3049 name
, dev
? &dev
->features
: &null_features
,
3050 skb
->sk
? &skb
->sk
->sk_route_caps
: &null_features
);
3054 * Invalidate hardware checksum when packet is to be mangled, and
3055 * complete checksum manually on outgoing path.
3057 int skb_checksum_help(struct sk_buff
*skb
)
3060 int ret
= 0, offset
;
3062 if (skb
->ip_summed
== CHECKSUM_COMPLETE
)
3063 goto out_set_summed
;
3065 if (unlikely(skb_shinfo(skb
)->gso_size
)) {
3066 skb_warn_bad_offload(skb
);
3070 /* Before computing a checksum, we should make sure no frag could
3071 * be modified by an external entity : checksum could be wrong.
3073 if (skb_has_shared_frag(skb
)) {
3074 ret
= __skb_linearize(skb
);
3079 offset
= skb_checksum_start_offset(skb
);
3080 BUG_ON(offset
>= skb_headlen(skb
));
3081 csum
= skb_checksum(skb
, offset
, skb
->len
- offset
, 0);
3083 offset
+= skb
->csum_offset
;
3084 BUG_ON(offset
+ sizeof(__sum16
) > skb_headlen(skb
));
3086 ret
= skb_ensure_writable(skb
, offset
+ sizeof(__sum16
));
3090 *(__sum16
*)(skb
->data
+ offset
) = csum_fold(csum
) ?: CSUM_MANGLED_0
;
3092 skb
->ip_summed
= CHECKSUM_NONE
;
3096 EXPORT_SYMBOL(skb_checksum_help
);
3098 int skb_crc32c_csum_help(struct sk_buff
*skb
)
3101 int ret
= 0, offset
, start
;
3103 if (skb
->ip_summed
!= CHECKSUM_PARTIAL
)
3106 if (unlikely(skb_is_gso(skb
)))
3109 /* Before computing a checksum, we should make sure no frag could
3110 * be modified by an external entity : checksum could be wrong.
3112 if (unlikely(skb_has_shared_frag(skb
))) {
3113 ret
= __skb_linearize(skb
);
3117 start
= skb_checksum_start_offset(skb
);
3118 offset
= start
+ offsetof(struct sctphdr
, checksum
);
3119 if (WARN_ON_ONCE(offset
>= skb_headlen(skb
))) {
3124 ret
= skb_ensure_writable(skb
, offset
+ sizeof(__le32
));
3128 crc32c_csum
= cpu_to_le32(~__skb_checksum(skb
, start
,
3129 skb
->len
- start
, ~(__u32
)0,
3131 *(__le32
*)(skb
->data
+ offset
) = crc32c_csum
;
3132 skb
->ip_summed
= CHECKSUM_NONE
;
3133 skb
->csum_not_inet
= 0;
3138 __be16
skb_network_protocol(struct sk_buff
*skb
, int *depth
)
3140 __be16 type
= skb
->protocol
;
3142 /* Tunnel gso handlers can set protocol to ethernet. */
3143 if (type
== htons(ETH_P_TEB
)) {
3146 if (unlikely(!pskb_may_pull(skb
, sizeof(struct ethhdr
))))
3149 eth
= (struct ethhdr
*)skb
->data
;
3150 type
= eth
->h_proto
;
3153 return __vlan_get_protocol(skb
, type
, depth
);
3157 * skb_mac_gso_segment - mac layer segmentation handler.
3158 * @skb: buffer to segment
3159 * @features: features for the output path (see dev->features)
3161 struct sk_buff
*skb_mac_gso_segment(struct sk_buff
*skb
,
3162 netdev_features_t features
)
3164 struct sk_buff
*segs
= ERR_PTR(-EPROTONOSUPPORT
);
3165 struct packet_offload
*ptype
;
3166 int vlan_depth
= skb
->mac_len
;
3167 __be16 type
= skb_network_protocol(skb
, &vlan_depth
);
3169 if (unlikely(!type
))
3170 return ERR_PTR(-EINVAL
);
3172 __skb_pull(skb
, vlan_depth
);
3175 list_for_each_entry_rcu(ptype
, &offload_base
, list
) {
3176 if (ptype
->type
== type
&& ptype
->callbacks
.gso_segment
) {
3177 segs
= ptype
->callbacks
.gso_segment(skb
, features
);
3183 __skb_push(skb
, skb
->data
- skb_mac_header(skb
));
3187 EXPORT_SYMBOL(skb_mac_gso_segment
);
3190 /* openvswitch calls this on rx path, so we need a different check.
3192 static inline bool skb_needs_check(struct sk_buff
*skb
, bool tx_path
)
3195 return skb
->ip_summed
!= CHECKSUM_PARTIAL
&&
3196 skb
->ip_summed
!= CHECKSUM_UNNECESSARY
;
3198 return skb
->ip_summed
== CHECKSUM_NONE
;
3202 * __skb_gso_segment - Perform segmentation on skb.
3203 * @skb: buffer to segment
3204 * @features: features for the output path (see dev->features)
3205 * @tx_path: whether it is called in TX path
3207 * This function segments the given skb and returns a list of segments.
3209 * It may return NULL if the skb requires no segmentation. This is
3210 * only possible when GSO is used for verifying header integrity.
3212 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
3214 struct sk_buff
*__skb_gso_segment(struct sk_buff
*skb
,
3215 netdev_features_t features
, bool tx_path
)
3217 struct sk_buff
*segs
;
3219 if (unlikely(skb_needs_check(skb
, tx_path
))) {
3222 /* We're going to init ->check field in TCP or UDP header */
3223 err
= skb_cow_head(skb
, 0);
3225 return ERR_PTR(err
);
3228 /* Only report GSO partial support if it will enable us to
3229 * support segmentation on this frame without needing additional
3232 if (features
& NETIF_F_GSO_PARTIAL
) {
3233 netdev_features_t partial_features
= NETIF_F_GSO_ROBUST
;
3234 struct net_device
*dev
= skb
->dev
;
3236 partial_features
|= dev
->features
& dev
->gso_partial_features
;
3237 if (!skb_gso_ok(skb
, features
| partial_features
))
3238 features
&= ~NETIF_F_GSO_PARTIAL
;
3241 BUILD_BUG_ON(SKB_SGO_CB_OFFSET
+
3242 sizeof(*SKB_GSO_CB(skb
)) > sizeof(skb
->cb
));
3244 SKB_GSO_CB(skb
)->mac_offset
= skb_headroom(skb
);
3245 SKB_GSO_CB(skb
)->encap_level
= 0;
3247 skb_reset_mac_header(skb
);
3248 skb_reset_mac_len(skb
);
3250 segs
= skb_mac_gso_segment(skb
, features
);
3252 if (unlikely(skb_needs_check(skb
, tx_path
) && !IS_ERR(segs
)))
3253 skb_warn_bad_offload(skb
);
3257 EXPORT_SYMBOL(__skb_gso_segment
);
3259 /* Take action when hardware reception checksum errors are detected. */
3261 void netdev_rx_csum_fault(struct net_device
*dev
, struct sk_buff
*skb
)
3263 if (net_ratelimit()) {
3264 pr_err("%s: hw csum failure\n", dev
? dev
->name
: "<unknown>");
3265 skb_dump(KERN_ERR
, skb
, true);
3269 EXPORT_SYMBOL(netdev_rx_csum_fault
);
3272 /* XXX: check that highmem exists at all on the given machine. */
3273 static int illegal_highdma(struct net_device
*dev
, struct sk_buff
*skb
)
3275 #ifdef CONFIG_HIGHMEM
3278 if (!(dev
->features
& NETIF_F_HIGHDMA
)) {
3279 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
3280 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
3282 if (PageHighMem(skb_frag_page(frag
)))
3290 /* If MPLS offload request, verify we are testing hardware MPLS features
3291 * instead of standard features for the netdev.
3293 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3294 static netdev_features_t
net_mpls_features(struct sk_buff
*skb
,
3295 netdev_features_t features
,
3298 if (eth_p_mpls(type
))
3299 features
&= skb
->dev
->mpls_features
;
3304 static netdev_features_t
net_mpls_features(struct sk_buff
*skb
,
3305 netdev_features_t features
,
3312 static netdev_features_t
harmonize_features(struct sk_buff
*skb
,
3313 netdev_features_t features
)
3318 type
= skb_network_protocol(skb
, &tmp
);
3319 features
= net_mpls_features(skb
, features
, type
);
3321 if (skb
->ip_summed
!= CHECKSUM_NONE
&&
3322 !can_checksum_protocol(features
, type
)) {
3323 features
&= ~(NETIF_F_CSUM_MASK
| NETIF_F_GSO_MASK
);
3325 if (illegal_highdma(skb
->dev
, skb
))
3326 features
&= ~NETIF_F_SG
;
3331 netdev_features_t
passthru_features_check(struct sk_buff
*skb
,
3332 struct net_device
*dev
,
3333 netdev_features_t features
)
3337 EXPORT_SYMBOL(passthru_features_check
);
3339 static netdev_features_t
dflt_features_check(struct sk_buff
*skb
,
3340 struct net_device
*dev
,
3341 netdev_features_t features
)
3343 return vlan_features_check(skb
, features
);
3346 static netdev_features_t
gso_features_check(const struct sk_buff
*skb
,
3347 struct net_device
*dev
,
3348 netdev_features_t features
)
3350 u16 gso_segs
= skb_shinfo(skb
)->gso_segs
;
3352 if (gso_segs
> dev
->gso_max_segs
)
3353 return features
& ~NETIF_F_GSO_MASK
;
3355 /* Support for GSO partial features requires software
3356 * intervention before we can actually process the packets
3357 * so we need to strip support for any partial features now
3358 * and we can pull them back in after we have partially
3359 * segmented the frame.
3361 if (!(skb_shinfo(skb
)->gso_type
& SKB_GSO_PARTIAL
))
3362 features
&= ~dev
->gso_partial_features
;
3364 /* Make sure to clear the IPv4 ID mangling feature if the
3365 * IPv4 header has the potential to be fragmented.
3367 if (skb_shinfo(skb
)->gso_type
& SKB_GSO_TCPV4
) {
3368 struct iphdr
*iph
= skb
->encapsulation
?
3369 inner_ip_hdr(skb
) : ip_hdr(skb
);
3371 if (!(iph
->frag_off
& htons(IP_DF
)))
3372 features
&= ~NETIF_F_TSO_MANGLEID
;
3378 netdev_features_t
netif_skb_features(struct sk_buff
*skb
)
3380 struct net_device
*dev
= skb
->dev
;
3381 netdev_features_t features
= dev
->features
;
3383 if (skb_is_gso(skb
))
3384 features
= gso_features_check(skb
, dev
, features
);
3386 /* If encapsulation offload request, verify we are testing
3387 * hardware encapsulation features instead of standard
3388 * features for the netdev
3390 if (skb
->encapsulation
)
3391 features
&= dev
->hw_enc_features
;
3393 if (skb_vlan_tagged(skb
))
3394 features
= netdev_intersect_features(features
,
3395 dev
->vlan_features
|
3396 NETIF_F_HW_VLAN_CTAG_TX
|
3397 NETIF_F_HW_VLAN_STAG_TX
);
3399 if (dev
->netdev_ops
->ndo_features_check
)
3400 features
&= dev
->netdev_ops
->ndo_features_check(skb
, dev
,
3403 features
&= dflt_features_check(skb
, dev
, features
);
3405 return harmonize_features(skb
, features
);
3407 EXPORT_SYMBOL(netif_skb_features
);
3409 static int xmit_one(struct sk_buff
*skb
, struct net_device
*dev
,
3410 struct netdev_queue
*txq
, bool more
)
3415 if (dev_nit_active(dev
))
3416 dev_queue_xmit_nit(skb
, dev
);
3419 trace_net_dev_start_xmit(skb
, dev
);
3420 rc
= netdev_start_xmit(skb
, dev
, txq
, more
);
3421 trace_net_dev_xmit(skb
, rc
, dev
, len
);
3426 struct sk_buff
*dev_hard_start_xmit(struct sk_buff
*first
, struct net_device
*dev
,
3427 struct netdev_queue
*txq
, int *ret
)
3429 struct sk_buff
*skb
= first
;
3430 int rc
= NETDEV_TX_OK
;
3433 struct sk_buff
*next
= skb
->next
;
3435 skb_mark_not_on_list(skb
);
3436 rc
= xmit_one(skb
, dev
, txq
, next
!= NULL
);
3437 if (unlikely(!dev_xmit_complete(rc
))) {
3443 if (netif_tx_queue_stopped(txq
) && skb
) {
3444 rc
= NETDEV_TX_BUSY
;
3454 static struct sk_buff
*validate_xmit_vlan(struct sk_buff
*skb
,
3455 netdev_features_t features
)
3457 if (skb_vlan_tag_present(skb
) &&
3458 !vlan_hw_offload_capable(features
, skb
->vlan_proto
))
3459 skb
= __vlan_hwaccel_push_inside(skb
);
3463 int skb_csum_hwoffload_help(struct sk_buff
*skb
,
3464 const netdev_features_t features
)
3466 if (unlikely(skb
->csum_not_inet
))
3467 return !!(features
& NETIF_F_SCTP_CRC
) ? 0 :
3468 skb_crc32c_csum_help(skb
);
3470 return !!(features
& NETIF_F_CSUM_MASK
) ? 0 : skb_checksum_help(skb
);
3472 EXPORT_SYMBOL(skb_csum_hwoffload_help
);
3474 static struct sk_buff
*validate_xmit_skb(struct sk_buff
*skb
, struct net_device
*dev
, bool *again
)
3476 netdev_features_t features
;
3478 features
= netif_skb_features(skb
);
3479 skb
= validate_xmit_vlan(skb
, features
);
3483 skb
= sk_validate_xmit_skb(skb
, dev
);
3487 if (netif_needs_gso(skb
, features
)) {
3488 struct sk_buff
*segs
;
3490 segs
= skb_gso_segment(skb
, features
);
3498 if (skb_needs_linearize(skb
, features
) &&
3499 __skb_linearize(skb
))
3502 /* If packet is not checksummed and device does not
3503 * support checksumming for this protocol, complete
3504 * checksumming here.
3506 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
3507 if (skb
->encapsulation
)
3508 skb_set_inner_transport_header(skb
,
3509 skb_checksum_start_offset(skb
));
3511 skb_set_transport_header(skb
,
3512 skb_checksum_start_offset(skb
));
3513 if (skb_csum_hwoffload_help(skb
, features
))
3518 skb
= validate_xmit_xfrm(skb
, features
, again
);
3525 atomic_long_inc(&dev
->tx_dropped
);
3529 struct sk_buff
*validate_xmit_skb_list(struct sk_buff
*skb
, struct net_device
*dev
, bool *again
)
3531 struct sk_buff
*next
, *head
= NULL
, *tail
;
3533 for (; skb
!= NULL
; skb
= next
) {
3535 skb_mark_not_on_list(skb
);
3537 /* in case skb wont be segmented, point to itself */
3540 skb
= validate_xmit_skb(skb
, dev
, again
);
3548 /* If skb was segmented, skb->prev points to
3549 * the last segment. If not, it still contains skb.
3555 EXPORT_SYMBOL_GPL(validate_xmit_skb_list
);
3557 static void qdisc_pkt_len_init(struct sk_buff
*skb
)
3559 const struct skb_shared_info
*shinfo
= skb_shinfo(skb
);
3561 qdisc_skb_cb(skb
)->pkt_len
= skb
->len
;
3563 /* To get more precise estimation of bytes sent on wire,
3564 * we add to pkt_len the headers size of all segments
3566 if (shinfo
->gso_size
&& skb_transport_header_was_set(skb
)) {
3567 unsigned int hdr_len
;
3568 u16 gso_segs
= shinfo
->gso_segs
;
3570 /* mac layer + network layer */
3571 hdr_len
= skb_transport_header(skb
) - skb_mac_header(skb
);
3573 /* + transport layer */
3574 if (likely(shinfo
->gso_type
& (SKB_GSO_TCPV4
| SKB_GSO_TCPV6
))) {
3575 const struct tcphdr
*th
;
3576 struct tcphdr _tcphdr
;
3578 th
= skb_header_pointer(skb
, skb_transport_offset(skb
),
3579 sizeof(_tcphdr
), &_tcphdr
);
3581 hdr_len
+= __tcp_hdrlen(th
);
3583 struct udphdr _udphdr
;
3585 if (skb_header_pointer(skb
, skb_transport_offset(skb
),
3586 sizeof(_udphdr
), &_udphdr
))
3587 hdr_len
+= sizeof(struct udphdr
);
3590 if (shinfo
->gso_type
& SKB_GSO_DODGY
)
3591 gso_segs
= DIV_ROUND_UP(skb
->len
- hdr_len
,
3594 qdisc_skb_cb(skb
)->pkt_len
+= (gso_segs
- 1) * hdr_len
;
3598 static inline int __dev_xmit_skb(struct sk_buff
*skb
, struct Qdisc
*q
,
3599 struct net_device
*dev
,
3600 struct netdev_queue
*txq
)
3602 spinlock_t
*root_lock
= qdisc_lock(q
);
3603 struct sk_buff
*to_free
= NULL
;
3607 qdisc_calculate_pkt_len(skb
, q
);
3609 if (q
->flags
& TCQ_F_NOLOCK
) {
3610 if ((q
->flags
& TCQ_F_CAN_BYPASS
) && READ_ONCE(q
->empty
) &&
3611 qdisc_run_begin(q
)) {
3612 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED
,
3614 __qdisc_drop(skb
, &to_free
);
3618 qdisc_bstats_cpu_update(q
, skb
);
3620 rc
= NET_XMIT_SUCCESS
;
3621 if (sch_direct_xmit(skb
, q
, dev
, txq
, NULL
, true))
3627 rc
= q
->enqueue(skb
, q
, &to_free
) & NET_XMIT_MASK
;
3631 if (unlikely(to_free
))
3632 kfree_skb_list(to_free
);
3637 * Heuristic to force contended enqueues to serialize on a
3638 * separate lock before trying to get qdisc main lock.
3639 * This permits qdisc->running owner to get the lock more
3640 * often and dequeue packets faster.
3642 contended
= qdisc_is_running(q
);
3643 if (unlikely(contended
))
3644 spin_lock(&q
->busylock
);
3646 spin_lock(root_lock
);
3647 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED
, &q
->state
))) {
3648 __qdisc_drop(skb
, &to_free
);
3650 } else if ((q
->flags
& TCQ_F_CAN_BYPASS
) && !qdisc_qlen(q
) &&
3651 qdisc_run_begin(q
)) {
3653 * This is a work-conserving queue; there are no old skbs
3654 * waiting to be sent out; and the qdisc is not running -
3655 * xmit the skb directly.
3658 qdisc_bstats_update(q
, skb
);
3660 if (sch_direct_xmit(skb
, q
, dev
, txq
, root_lock
, true)) {
3661 if (unlikely(contended
)) {
3662 spin_unlock(&q
->busylock
);
3669 rc
= NET_XMIT_SUCCESS
;
3671 rc
= q
->enqueue(skb
, q
, &to_free
) & NET_XMIT_MASK
;
3672 if (qdisc_run_begin(q
)) {
3673 if (unlikely(contended
)) {
3674 spin_unlock(&q
->busylock
);
3681 spin_unlock(root_lock
);
3682 if (unlikely(to_free
))
3683 kfree_skb_list(to_free
);
3684 if (unlikely(contended
))
3685 spin_unlock(&q
->busylock
);
3689 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3690 static void skb_update_prio(struct sk_buff
*skb
)
3692 const struct netprio_map
*map
;
3693 const struct sock
*sk
;
3694 unsigned int prioidx
;
3698 map
= rcu_dereference_bh(skb
->dev
->priomap
);
3701 sk
= skb_to_full_sk(skb
);
3705 prioidx
= sock_cgroup_prioidx(&sk
->sk_cgrp_data
);
3707 if (prioidx
< map
->priomap_len
)
3708 skb
->priority
= map
->priomap
[prioidx
];
3711 #define skb_update_prio(skb)
3715 * dev_loopback_xmit - loop back @skb
3716 * @net: network namespace this loopback is happening in
3717 * @sk: sk needed to be a netfilter okfn
3718 * @skb: buffer to transmit
3720 int dev_loopback_xmit(struct net
*net
, struct sock
*sk
, struct sk_buff
*skb
)
3722 skb_reset_mac_header(skb
);
3723 __skb_pull(skb
, skb_network_offset(skb
));
3724 skb
->pkt_type
= PACKET_LOOPBACK
;
3725 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
3726 WARN_ON(!skb_dst(skb
));
3731 EXPORT_SYMBOL(dev_loopback_xmit
);
3733 #ifdef CONFIG_NET_EGRESS
3734 static struct sk_buff
*
3735 sch_handle_egress(struct sk_buff
*skb
, int *ret
, struct net_device
*dev
)
3737 struct mini_Qdisc
*miniq
= rcu_dereference_bh(dev
->miniq_egress
);
3738 struct tcf_result cl_res
;
3743 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3744 mini_qdisc_bstats_cpu_update(miniq
, skb
);
3746 switch (tcf_classify(skb
, miniq
->filter_list
, &cl_res
, false)) {
3748 case TC_ACT_RECLASSIFY
:
3749 skb
->tc_index
= TC_H_MIN(cl_res
.classid
);
3752 mini_qdisc_qstats_cpu_drop(miniq
);
3753 *ret
= NET_XMIT_DROP
;
3759 *ret
= NET_XMIT_SUCCESS
;
3762 case TC_ACT_REDIRECT
:
3763 /* No need to push/pop skb's mac_header here on egress! */
3764 skb_do_redirect(skb
);
3765 *ret
= NET_XMIT_SUCCESS
;
3773 #endif /* CONFIG_NET_EGRESS */
3776 static int __get_xps_queue_idx(struct net_device
*dev
, struct sk_buff
*skb
,
3777 struct xps_dev_maps
*dev_maps
, unsigned int tci
)
3779 struct xps_map
*map
;
3780 int queue_index
= -1;
3784 tci
+= netdev_get_prio_tc_map(dev
, skb
->priority
);
3787 map
= rcu_dereference(dev_maps
->attr_map
[tci
]);
3790 queue_index
= map
->queues
[0];
3792 queue_index
= map
->queues
[reciprocal_scale(
3793 skb_get_hash(skb
), map
->len
)];
3794 if (unlikely(queue_index
>= dev
->real_num_tx_queues
))
3801 static int get_xps_queue(struct net_device
*dev
, struct net_device
*sb_dev
,
3802 struct sk_buff
*skb
)
3805 struct xps_dev_maps
*dev_maps
;
3806 struct sock
*sk
= skb
->sk
;
3807 int queue_index
= -1;
3809 if (!static_key_false(&xps_needed
))
3813 if (!static_key_false(&xps_rxqs_needed
))
3816 dev_maps
= rcu_dereference(sb_dev
->xps_rxqs_map
);
3818 int tci
= sk_rx_queue_get(sk
);
3820 if (tci
>= 0 && tci
< dev
->num_rx_queues
)
3821 queue_index
= __get_xps_queue_idx(dev
, skb
, dev_maps
,
3826 if (queue_index
< 0) {
3827 dev_maps
= rcu_dereference(sb_dev
->xps_cpus_map
);
3829 unsigned int tci
= skb
->sender_cpu
- 1;
3831 queue_index
= __get_xps_queue_idx(dev
, skb
, dev_maps
,
3843 u16
dev_pick_tx_zero(struct net_device
*dev
, struct sk_buff
*skb
,
3844 struct net_device
*sb_dev
)
3848 EXPORT_SYMBOL(dev_pick_tx_zero
);
3850 u16
dev_pick_tx_cpu_id(struct net_device
*dev
, struct sk_buff
*skb
,
3851 struct net_device
*sb_dev
)
3853 return (u16
)raw_smp_processor_id() % dev
->real_num_tx_queues
;
3855 EXPORT_SYMBOL(dev_pick_tx_cpu_id
);
3857 u16
netdev_pick_tx(struct net_device
*dev
, struct sk_buff
*skb
,
3858 struct net_device
*sb_dev
)
3860 struct sock
*sk
= skb
->sk
;
3861 int queue_index
= sk_tx_queue_get(sk
);
3863 sb_dev
= sb_dev
? : dev
;
3865 if (queue_index
< 0 || skb
->ooo_okay
||
3866 queue_index
>= dev
->real_num_tx_queues
) {
3867 int new_index
= get_xps_queue(dev
, sb_dev
, skb
);
3870 new_index
= skb_tx_hash(dev
, sb_dev
, skb
);
3872 if (queue_index
!= new_index
&& sk
&&
3874 rcu_access_pointer(sk
->sk_dst_cache
))
3875 sk_tx_queue_set(sk
, new_index
);
3877 queue_index
= new_index
;
3882 EXPORT_SYMBOL(netdev_pick_tx
);
3884 struct netdev_queue
*netdev_core_pick_tx(struct net_device
*dev
,
3885 struct sk_buff
*skb
,
3886 struct net_device
*sb_dev
)
3888 int queue_index
= 0;
3891 u32 sender_cpu
= skb
->sender_cpu
- 1;
3893 if (sender_cpu
>= (u32
)NR_CPUS
)
3894 skb
->sender_cpu
= raw_smp_processor_id() + 1;
3897 if (dev
->real_num_tx_queues
!= 1) {
3898 const struct net_device_ops
*ops
= dev
->netdev_ops
;
3900 if (ops
->ndo_select_queue
)
3901 queue_index
= ops
->ndo_select_queue(dev
, skb
, sb_dev
);
3903 queue_index
= netdev_pick_tx(dev
, skb
, sb_dev
);
3905 queue_index
= netdev_cap_txqueue(dev
, queue_index
);
3908 skb_set_queue_mapping(skb
, queue_index
);
3909 return netdev_get_tx_queue(dev
, queue_index
);
3913 * __dev_queue_xmit - transmit a buffer
3914 * @skb: buffer to transmit
3915 * @sb_dev: suboordinate device used for L2 forwarding offload
3917 * Queue a buffer for transmission to a network device. The caller must
3918 * have set the device and priority and built the buffer before calling
3919 * this function. The function can be called from an interrupt.
3921 * A negative errno code is returned on a failure. A success does not
3922 * guarantee the frame will be transmitted as it may be dropped due
3923 * to congestion or traffic shaping.
3925 * -----------------------------------------------------------------------------------
3926 * I notice this method can also return errors from the queue disciplines,
3927 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3930 * Regardless of the return value, the skb is consumed, so it is currently
3931 * difficult to retry a send to this method. (You can bump the ref count
3932 * before sending to hold a reference for retry if you are careful.)
3934 * When calling this method, interrupts MUST be enabled. This is because
3935 * the BH enable code must have IRQs enabled so that it will not deadlock.
3938 static int __dev_queue_xmit(struct sk_buff
*skb
, struct net_device
*sb_dev
)
3940 struct net_device
*dev
= skb
->dev
;
3941 struct netdev_queue
*txq
;
3946 skb_reset_mac_header(skb
);
3948 if (unlikely(skb_shinfo(skb
)->tx_flags
& SKBTX_SCHED_TSTAMP
))
3949 __skb_tstamp_tx(skb
, NULL
, skb
->sk
, SCM_TSTAMP_SCHED
);
3951 /* Disable soft irqs for various locks below. Also
3952 * stops preemption for RCU.
3956 skb_update_prio(skb
);
3958 qdisc_pkt_len_init(skb
);
3959 #ifdef CONFIG_NET_CLS_ACT
3960 skb
->tc_at_ingress
= 0;
3961 # ifdef CONFIG_NET_EGRESS
3962 if (static_branch_unlikely(&egress_needed_key
)) {
3963 skb
= sch_handle_egress(skb
, &rc
, dev
);
3969 /* If device/qdisc don't need skb->dst, release it right now while
3970 * its hot in this cpu cache.
3972 if (dev
->priv_flags
& IFF_XMIT_DST_RELEASE
)
3977 txq
= netdev_core_pick_tx(dev
, skb
, sb_dev
);
3978 q
= rcu_dereference_bh(txq
->qdisc
);
3980 trace_net_dev_queue(skb
);
3982 rc
= __dev_xmit_skb(skb
, q
, dev
, txq
);
3986 /* The device has no queue. Common case for software devices:
3987 * loopback, all the sorts of tunnels...
3989 * Really, it is unlikely that netif_tx_lock protection is necessary
3990 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
3992 * However, it is possible, that they rely on protection
3995 * Check this and shot the lock. It is not prone from deadlocks.
3996 *Either shot noqueue qdisc, it is even simpler 8)
3998 if (dev
->flags
& IFF_UP
) {
3999 int cpu
= smp_processor_id(); /* ok because BHs are off */
4001 if (txq
->xmit_lock_owner
!= cpu
) {
4002 if (dev_xmit_recursion())
4003 goto recursion_alert
;
4005 skb
= validate_xmit_skb(skb
, dev
, &again
);
4009 HARD_TX_LOCK(dev
, txq
, cpu
);
4011 if (!netif_xmit_stopped(txq
)) {
4012 dev_xmit_recursion_inc();
4013 skb
= dev_hard_start_xmit(skb
, dev
, txq
, &rc
);
4014 dev_xmit_recursion_dec();
4015 if (dev_xmit_complete(rc
)) {
4016 HARD_TX_UNLOCK(dev
, txq
);
4020 HARD_TX_UNLOCK(dev
, txq
);
4021 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4024 /* Recursion is detected! It is possible,
4028 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4034 rcu_read_unlock_bh();
4036 atomic_long_inc(&dev
->tx_dropped
);
4037 kfree_skb_list(skb
);
4040 rcu_read_unlock_bh();
4044 int dev_queue_xmit(struct sk_buff
*skb
)
4046 return __dev_queue_xmit(skb
, NULL
);
4048 EXPORT_SYMBOL(dev_queue_xmit
);
4050 int dev_queue_xmit_accel(struct sk_buff
*skb
, struct net_device
*sb_dev
)
4052 return __dev_queue_xmit(skb
, sb_dev
);
4054 EXPORT_SYMBOL(dev_queue_xmit_accel
);
4056 int dev_direct_xmit(struct sk_buff
*skb
, u16 queue_id
)
4058 struct net_device
*dev
= skb
->dev
;
4059 struct sk_buff
*orig_skb
= skb
;
4060 struct netdev_queue
*txq
;
4061 int ret
= NETDEV_TX_BUSY
;
4064 if (unlikely(!netif_running(dev
) ||
4065 !netif_carrier_ok(dev
)))
4068 skb
= validate_xmit_skb_list(skb
, dev
, &again
);
4069 if (skb
!= orig_skb
)
4072 skb_set_queue_mapping(skb
, queue_id
);
4073 txq
= skb_get_tx_queue(dev
, skb
);
4077 HARD_TX_LOCK(dev
, txq
, smp_processor_id());
4078 if (!netif_xmit_frozen_or_drv_stopped(txq
))
4079 ret
= netdev_start_xmit(skb
, dev
, txq
, false);
4080 HARD_TX_UNLOCK(dev
, txq
);
4084 if (!dev_xmit_complete(ret
))
4089 atomic_long_inc(&dev
->tx_dropped
);
4090 kfree_skb_list(skb
);
4091 return NET_XMIT_DROP
;
4093 EXPORT_SYMBOL(dev_direct_xmit
);
4095 /*************************************************************************
4097 *************************************************************************/
4099 int netdev_max_backlog __read_mostly
= 1000;
4100 EXPORT_SYMBOL(netdev_max_backlog
);
4102 int netdev_tstamp_prequeue __read_mostly
= 1;
4103 int netdev_budget __read_mostly
= 300;
4104 unsigned int __read_mostly netdev_budget_usecs
= 2000;
4105 int weight_p __read_mostly
= 64; /* old backlog weight */
4106 int dev_weight_rx_bias __read_mostly
= 1; /* bias for backlog weight */
4107 int dev_weight_tx_bias __read_mostly
= 1; /* bias for output_queue quota */
4108 int dev_rx_weight __read_mostly
= 64;
4109 int dev_tx_weight __read_mostly
= 64;
4110 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4111 int gro_normal_batch __read_mostly
= 8;
4113 /* Called with irq disabled */
4114 static inline void ____napi_schedule(struct softnet_data
*sd
,
4115 struct napi_struct
*napi
)
4117 list_add_tail(&napi
->poll_list
, &sd
->poll_list
);
4118 __raise_softirq_irqoff(NET_RX_SOFTIRQ
);
4123 /* One global table that all flow-based protocols share. */
4124 struct rps_sock_flow_table __rcu
*rps_sock_flow_table __read_mostly
;
4125 EXPORT_SYMBOL(rps_sock_flow_table
);
4126 u32 rps_cpu_mask __read_mostly
;
4127 EXPORT_SYMBOL(rps_cpu_mask
);
4129 struct static_key_false rps_needed __read_mostly
;
4130 EXPORT_SYMBOL(rps_needed
);
4131 struct static_key_false rfs_needed __read_mostly
;
4132 EXPORT_SYMBOL(rfs_needed
);
4134 static struct rps_dev_flow
*
4135 set_rps_cpu(struct net_device
*dev
, struct sk_buff
*skb
,
4136 struct rps_dev_flow
*rflow
, u16 next_cpu
)
4138 if (next_cpu
< nr_cpu_ids
) {
4139 #ifdef CONFIG_RFS_ACCEL
4140 struct netdev_rx_queue
*rxqueue
;
4141 struct rps_dev_flow_table
*flow_table
;
4142 struct rps_dev_flow
*old_rflow
;
4147 /* Should we steer this flow to a different hardware queue? */
4148 if (!skb_rx_queue_recorded(skb
) || !dev
->rx_cpu_rmap
||
4149 !(dev
->features
& NETIF_F_NTUPLE
))
4151 rxq_index
= cpu_rmap_lookup_index(dev
->rx_cpu_rmap
, next_cpu
);
4152 if (rxq_index
== skb_get_rx_queue(skb
))
4155 rxqueue
= dev
->_rx
+ rxq_index
;
4156 flow_table
= rcu_dereference(rxqueue
->rps_flow_table
);
4159 flow_id
= skb_get_hash(skb
) & flow_table
->mask
;
4160 rc
= dev
->netdev_ops
->ndo_rx_flow_steer(dev
, skb
,
4161 rxq_index
, flow_id
);
4165 rflow
= &flow_table
->flows
[flow_id
];
4167 if (old_rflow
->filter
== rflow
->filter
)
4168 old_rflow
->filter
= RPS_NO_FILTER
;
4172 per_cpu(softnet_data
, next_cpu
).input_queue_head
;
4175 rflow
->cpu
= next_cpu
;
4180 * get_rps_cpu is called from netif_receive_skb and returns the target
4181 * CPU from the RPS map of the receiving queue for a given skb.
4182 * rcu_read_lock must be held on entry.
4184 static int get_rps_cpu(struct net_device
*dev
, struct sk_buff
*skb
,
4185 struct rps_dev_flow
**rflowp
)
4187 const struct rps_sock_flow_table
*sock_flow_table
;
4188 struct netdev_rx_queue
*rxqueue
= dev
->_rx
;
4189 struct rps_dev_flow_table
*flow_table
;
4190 struct rps_map
*map
;
4195 if (skb_rx_queue_recorded(skb
)) {
4196 u16 index
= skb_get_rx_queue(skb
);
4198 if (unlikely(index
>= dev
->real_num_rx_queues
)) {
4199 WARN_ONCE(dev
->real_num_rx_queues
> 1,
4200 "%s received packet on queue %u, but number "
4201 "of RX queues is %u\n",
4202 dev
->name
, index
, dev
->real_num_rx_queues
);
4208 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4210 flow_table
= rcu_dereference(rxqueue
->rps_flow_table
);
4211 map
= rcu_dereference(rxqueue
->rps_map
);
4212 if (!flow_table
&& !map
)
4215 skb_reset_network_header(skb
);
4216 hash
= skb_get_hash(skb
);
4220 sock_flow_table
= rcu_dereference(rps_sock_flow_table
);
4221 if (flow_table
&& sock_flow_table
) {
4222 struct rps_dev_flow
*rflow
;
4226 /* First check into global flow table if there is a match */
4227 ident
= sock_flow_table
->ents
[hash
& sock_flow_table
->mask
];
4228 if ((ident
^ hash
) & ~rps_cpu_mask
)
4231 next_cpu
= ident
& rps_cpu_mask
;
4233 /* OK, now we know there is a match,
4234 * we can look at the local (per receive queue) flow table
4236 rflow
= &flow_table
->flows
[hash
& flow_table
->mask
];
4240 * If the desired CPU (where last recvmsg was done) is
4241 * different from current CPU (one in the rx-queue flow
4242 * table entry), switch if one of the following holds:
4243 * - Current CPU is unset (>= nr_cpu_ids).
4244 * - Current CPU is offline.
4245 * - The current CPU's queue tail has advanced beyond the
4246 * last packet that was enqueued using this table entry.
4247 * This guarantees that all previous packets for the flow
4248 * have been dequeued, thus preserving in order delivery.
4250 if (unlikely(tcpu
!= next_cpu
) &&
4251 (tcpu
>= nr_cpu_ids
|| !cpu_online(tcpu
) ||
4252 ((int)(per_cpu(softnet_data
, tcpu
).input_queue_head
-
4253 rflow
->last_qtail
)) >= 0)) {
4255 rflow
= set_rps_cpu(dev
, skb
, rflow
, next_cpu
);
4258 if (tcpu
< nr_cpu_ids
&& cpu_online(tcpu
)) {
4268 tcpu
= map
->cpus
[reciprocal_scale(hash
, map
->len
)];
4269 if (cpu_online(tcpu
)) {
4279 #ifdef CONFIG_RFS_ACCEL
4282 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4283 * @dev: Device on which the filter was set
4284 * @rxq_index: RX queue index
4285 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4286 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4288 * Drivers that implement ndo_rx_flow_steer() should periodically call
4289 * this function for each installed filter and remove the filters for
4290 * which it returns %true.
4292 bool rps_may_expire_flow(struct net_device
*dev
, u16 rxq_index
,
4293 u32 flow_id
, u16 filter_id
)
4295 struct netdev_rx_queue
*rxqueue
= dev
->_rx
+ rxq_index
;
4296 struct rps_dev_flow_table
*flow_table
;
4297 struct rps_dev_flow
*rflow
;
4302 flow_table
= rcu_dereference(rxqueue
->rps_flow_table
);
4303 if (flow_table
&& flow_id
<= flow_table
->mask
) {
4304 rflow
= &flow_table
->flows
[flow_id
];
4305 cpu
= READ_ONCE(rflow
->cpu
);
4306 if (rflow
->filter
== filter_id
&& cpu
< nr_cpu_ids
&&
4307 ((int)(per_cpu(softnet_data
, cpu
).input_queue_head
-
4308 rflow
->last_qtail
) <
4309 (int)(10 * flow_table
->mask
)))
4315 EXPORT_SYMBOL(rps_may_expire_flow
);
4317 #endif /* CONFIG_RFS_ACCEL */
4319 /* Called from hardirq (IPI) context */
4320 static void rps_trigger_softirq(void *data
)
4322 struct softnet_data
*sd
= data
;
4324 ____napi_schedule(sd
, &sd
->backlog
);
4328 #endif /* CONFIG_RPS */
4331 * Check if this softnet_data structure is another cpu one
4332 * If yes, queue it to our IPI list and return 1
4335 static int rps_ipi_queued(struct softnet_data
*sd
)
4338 struct softnet_data
*mysd
= this_cpu_ptr(&softnet_data
);
4341 sd
->rps_ipi_next
= mysd
->rps_ipi_list
;
4342 mysd
->rps_ipi_list
= sd
;
4344 __raise_softirq_irqoff(NET_RX_SOFTIRQ
);
4347 #endif /* CONFIG_RPS */
4351 #ifdef CONFIG_NET_FLOW_LIMIT
4352 int netdev_flow_limit_table_len __read_mostly
= (1 << 12);
4355 static bool skb_flow_limit(struct sk_buff
*skb
, unsigned int qlen
)
4357 #ifdef CONFIG_NET_FLOW_LIMIT
4358 struct sd_flow_limit
*fl
;
4359 struct softnet_data
*sd
;
4360 unsigned int old_flow
, new_flow
;
4362 if (qlen
< (netdev_max_backlog
>> 1))
4365 sd
= this_cpu_ptr(&softnet_data
);
4368 fl
= rcu_dereference(sd
->flow_limit
);
4370 new_flow
= skb_get_hash(skb
) & (fl
->num_buckets
- 1);
4371 old_flow
= fl
->history
[fl
->history_head
];
4372 fl
->history
[fl
->history_head
] = new_flow
;
4375 fl
->history_head
&= FLOW_LIMIT_HISTORY
- 1;
4377 if (likely(fl
->buckets
[old_flow
]))
4378 fl
->buckets
[old_flow
]--;
4380 if (++fl
->buckets
[new_flow
] > (FLOW_LIMIT_HISTORY
>> 1)) {
4392 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4393 * queue (may be a remote CPU queue).
4395 static int enqueue_to_backlog(struct sk_buff
*skb
, int cpu
,
4396 unsigned int *qtail
)
4398 struct softnet_data
*sd
;
4399 unsigned long flags
;
4402 sd
= &per_cpu(softnet_data
, cpu
);
4404 local_irq_save(flags
);
4407 if (!netif_running(skb
->dev
))
4409 qlen
= skb_queue_len(&sd
->input_pkt_queue
);
4410 if (qlen
<= netdev_max_backlog
&& !skb_flow_limit(skb
, qlen
)) {
4413 __skb_queue_tail(&sd
->input_pkt_queue
, skb
);
4414 input_queue_tail_incr_save(sd
, qtail
);
4416 local_irq_restore(flags
);
4417 return NET_RX_SUCCESS
;
4420 /* Schedule NAPI for backlog device
4421 * We can use non atomic operation since we own the queue lock
4423 if (!__test_and_set_bit(NAPI_STATE_SCHED
, &sd
->backlog
.state
)) {
4424 if (!rps_ipi_queued(sd
))
4425 ____napi_schedule(sd
, &sd
->backlog
);
4434 local_irq_restore(flags
);
4436 atomic_long_inc(&skb
->dev
->rx_dropped
);
4441 static struct netdev_rx_queue
*netif_get_rxqueue(struct sk_buff
*skb
)
4443 struct net_device
*dev
= skb
->dev
;
4444 struct netdev_rx_queue
*rxqueue
;
4448 if (skb_rx_queue_recorded(skb
)) {
4449 u16 index
= skb_get_rx_queue(skb
);
4451 if (unlikely(index
>= dev
->real_num_rx_queues
)) {
4452 WARN_ONCE(dev
->real_num_rx_queues
> 1,
4453 "%s received packet on queue %u, but number "
4454 "of RX queues is %u\n",
4455 dev
->name
, index
, dev
->real_num_rx_queues
);
4457 return rxqueue
; /* Return first rxqueue */
4464 static u32
netif_receive_generic_xdp(struct sk_buff
*skb
,
4465 struct xdp_buff
*xdp
,
4466 struct bpf_prog
*xdp_prog
)
4468 struct netdev_rx_queue
*rxqueue
;
4469 void *orig_data
, *orig_data_end
;
4470 u32 metalen
, act
= XDP_DROP
;
4471 __be16 orig_eth_type
;
4477 /* Reinjected packets coming from act_mirred or similar should
4478 * not get XDP generic processing.
4480 if (skb_cloned(skb
) || skb_is_tc_redirected(skb
))
4483 /* XDP packets must be linear and must have sufficient headroom
4484 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4485 * native XDP provides, thus we need to do it here as well.
4487 if (skb_is_nonlinear(skb
) ||
4488 skb_headroom(skb
) < XDP_PACKET_HEADROOM
) {
4489 int hroom
= XDP_PACKET_HEADROOM
- skb_headroom(skb
);
4490 int troom
= skb
->tail
+ skb
->data_len
- skb
->end
;
4492 /* In case we have to go down the path and also linearize,
4493 * then lets do the pskb_expand_head() work just once here.
4495 if (pskb_expand_head(skb
,
4496 hroom
> 0 ? ALIGN(hroom
, NET_SKB_PAD
) : 0,
4497 troom
> 0 ? troom
+ 128 : 0, GFP_ATOMIC
))
4499 if (skb_linearize(skb
))
4503 /* The XDP program wants to see the packet starting at the MAC
4506 mac_len
= skb
->data
- skb_mac_header(skb
);
4507 hlen
= skb_headlen(skb
) + mac_len
;
4508 xdp
->data
= skb
->data
- mac_len
;
4509 xdp
->data_meta
= xdp
->data
;
4510 xdp
->data_end
= xdp
->data
+ hlen
;
4511 xdp
->data_hard_start
= skb
->data
- skb_headroom(skb
);
4512 orig_data_end
= xdp
->data_end
;
4513 orig_data
= xdp
->data
;
4514 eth
= (struct ethhdr
*)xdp
->data
;
4515 orig_bcast
= is_multicast_ether_addr_64bits(eth
->h_dest
);
4516 orig_eth_type
= eth
->h_proto
;
4518 rxqueue
= netif_get_rxqueue(skb
);
4519 xdp
->rxq
= &rxqueue
->xdp_rxq
;
4521 act
= bpf_prog_run_xdp(xdp_prog
, xdp
);
4523 /* check if bpf_xdp_adjust_head was used */
4524 off
= xdp
->data
- orig_data
;
4527 __skb_pull(skb
, off
);
4529 __skb_push(skb
, -off
);
4531 skb
->mac_header
+= off
;
4532 skb_reset_network_header(skb
);
4535 /* check if bpf_xdp_adjust_tail was used. it can only "shrink"
4538 off
= orig_data_end
- xdp
->data_end
;
4540 skb_set_tail_pointer(skb
, xdp
->data_end
- xdp
->data
);
4545 /* check if XDP changed eth hdr such SKB needs update */
4546 eth
= (struct ethhdr
*)xdp
->data
;
4547 if ((orig_eth_type
!= eth
->h_proto
) ||
4548 (orig_bcast
!= is_multicast_ether_addr_64bits(eth
->h_dest
))) {
4549 __skb_push(skb
, ETH_HLEN
);
4550 skb
->protocol
= eth_type_trans(skb
, skb
->dev
);
4556 __skb_push(skb
, mac_len
);
4559 metalen
= xdp
->data
- xdp
->data_meta
;
4561 skb_metadata_set(skb
, metalen
);
4564 bpf_warn_invalid_xdp_action(act
);
4567 trace_xdp_exception(skb
->dev
, xdp_prog
, act
);
4578 /* When doing generic XDP we have to bypass the qdisc layer and the
4579 * network taps in order to match in-driver-XDP behavior.
4581 void generic_xdp_tx(struct sk_buff
*skb
, struct bpf_prog
*xdp_prog
)
4583 struct net_device
*dev
= skb
->dev
;
4584 struct netdev_queue
*txq
;
4585 bool free_skb
= true;
4588 txq
= netdev_core_pick_tx(dev
, skb
, NULL
);
4589 cpu
= smp_processor_id();
4590 HARD_TX_LOCK(dev
, txq
, cpu
);
4591 if (!netif_xmit_stopped(txq
)) {
4592 rc
= netdev_start_xmit(skb
, dev
, txq
, 0);
4593 if (dev_xmit_complete(rc
))
4596 HARD_TX_UNLOCK(dev
, txq
);
4598 trace_xdp_exception(dev
, xdp_prog
, XDP_TX
);
4602 EXPORT_SYMBOL_GPL(generic_xdp_tx
);
4604 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key
);
4606 int do_xdp_generic(struct bpf_prog
*xdp_prog
, struct sk_buff
*skb
)
4609 struct xdp_buff xdp
;
4613 act
= netif_receive_generic_xdp(skb
, &xdp
, xdp_prog
);
4614 if (act
!= XDP_PASS
) {
4617 err
= xdp_do_generic_redirect(skb
->dev
, skb
,
4623 generic_xdp_tx(skb
, xdp_prog
);
4634 EXPORT_SYMBOL_GPL(do_xdp_generic
);
4636 static int netif_rx_internal(struct sk_buff
*skb
)
4640 net_timestamp_check(netdev_tstamp_prequeue
, skb
);
4642 trace_netif_rx(skb
);
4645 if (static_branch_unlikely(&rps_needed
)) {
4646 struct rps_dev_flow voidflow
, *rflow
= &voidflow
;
4652 cpu
= get_rps_cpu(skb
->dev
, skb
, &rflow
);
4654 cpu
= smp_processor_id();
4656 ret
= enqueue_to_backlog(skb
, cpu
, &rflow
->last_qtail
);
4665 ret
= enqueue_to_backlog(skb
, get_cpu(), &qtail
);
4672 * netif_rx - post buffer to the network code
4673 * @skb: buffer to post
4675 * This function receives a packet from a device driver and queues it for
4676 * the upper (protocol) levels to process. It always succeeds. The buffer
4677 * may be dropped during processing for congestion control or by the
4681 * NET_RX_SUCCESS (no congestion)
4682 * NET_RX_DROP (packet was dropped)
4686 int netif_rx(struct sk_buff
*skb
)
4690 trace_netif_rx_entry(skb
);
4692 ret
= netif_rx_internal(skb
);
4693 trace_netif_rx_exit(ret
);
4697 EXPORT_SYMBOL(netif_rx
);
4699 int netif_rx_ni(struct sk_buff
*skb
)
4703 trace_netif_rx_ni_entry(skb
);
4706 err
= netif_rx_internal(skb
);
4707 if (local_softirq_pending())
4710 trace_netif_rx_ni_exit(err
);
4714 EXPORT_SYMBOL(netif_rx_ni
);
4716 static __latent_entropy
void net_tx_action(struct softirq_action
*h
)
4718 struct softnet_data
*sd
= this_cpu_ptr(&softnet_data
);
4720 if (sd
->completion_queue
) {
4721 struct sk_buff
*clist
;
4723 local_irq_disable();
4724 clist
= sd
->completion_queue
;
4725 sd
->completion_queue
= NULL
;
4729 struct sk_buff
*skb
= clist
;
4731 clist
= clist
->next
;
4733 WARN_ON(refcount_read(&skb
->users
));
4734 if (likely(get_kfree_skb_cb(skb
)->reason
== SKB_REASON_CONSUMED
))
4735 trace_consume_skb(skb
);
4737 trace_kfree_skb(skb
, net_tx_action
);
4739 if (skb
->fclone
!= SKB_FCLONE_UNAVAILABLE
)
4742 __kfree_skb_defer(skb
);
4745 __kfree_skb_flush();
4748 if (sd
->output_queue
) {
4751 local_irq_disable();
4752 head
= sd
->output_queue
;
4753 sd
->output_queue
= NULL
;
4754 sd
->output_queue_tailp
= &sd
->output_queue
;
4758 struct Qdisc
*q
= head
;
4759 spinlock_t
*root_lock
= NULL
;
4761 head
= head
->next_sched
;
4763 if (!(q
->flags
& TCQ_F_NOLOCK
)) {
4764 root_lock
= qdisc_lock(q
);
4765 spin_lock(root_lock
);
4767 /* We need to make sure head->next_sched is read
4768 * before clearing __QDISC_STATE_SCHED
4770 smp_mb__before_atomic();
4771 clear_bit(__QDISC_STATE_SCHED
, &q
->state
);
4774 spin_unlock(root_lock
);
4778 xfrm_dev_backlog(sd
);
4781 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4782 /* This hook is defined here for ATM LANE */
4783 int (*br_fdb_test_addr_hook
)(struct net_device
*dev
,
4784 unsigned char *addr
) __read_mostly
;
4785 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook
);
4788 static inline struct sk_buff
*
4789 sch_handle_ingress(struct sk_buff
*skb
, struct packet_type
**pt_prev
, int *ret
,
4790 struct net_device
*orig_dev
)
4792 #ifdef CONFIG_NET_CLS_ACT
4793 struct mini_Qdisc
*miniq
= rcu_dereference_bh(skb
->dev
->miniq_ingress
);
4794 struct tcf_result cl_res
;
4796 /* If there's at least one ingress present somewhere (so
4797 * we get here via enabled static key), remaining devices
4798 * that are not configured with an ingress qdisc will bail
4805 *ret
= deliver_skb(skb
, *pt_prev
, orig_dev
);
4809 qdisc_skb_cb(skb
)->pkt_len
= skb
->len
;
4810 skb
->tc_at_ingress
= 1;
4811 mini_qdisc_bstats_cpu_update(miniq
, skb
);
4813 switch (tcf_classify(skb
, miniq
->filter_list
, &cl_res
, false)) {
4815 case TC_ACT_RECLASSIFY
:
4816 skb
->tc_index
= TC_H_MIN(cl_res
.classid
);
4819 mini_qdisc_qstats_cpu_drop(miniq
);
4827 case TC_ACT_REDIRECT
:
4828 /* skb_mac_header check was done by cls/act_bpf, so
4829 * we can safely push the L2 header back before
4830 * redirecting to another netdev
4832 __skb_push(skb
, skb
->mac_len
);
4833 skb_do_redirect(skb
);
4835 case TC_ACT_CONSUMED
:
4840 #endif /* CONFIG_NET_CLS_ACT */
4845 * netdev_is_rx_handler_busy - check if receive handler is registered
4846 * @dev: device to check
4848 * Check if a receive handler is already registered for a given device.
4849 * Return true if there one.
4851 * The caller must hold the rtnl_mutex.
4853 bool netdev_is_rx_handler_busy(struct net_device
*dev
)
4856 return dev
&& rtnl_dereference(dev
->rx_handler
);
4858 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy
);
4861 * netdev_rx_handler_register - register receive handler
4862 * @dev: device to register a handler for
4863 * @rx_handler: receive handler to register
4864 * @rx_handler_data: data pointer that is used by rx handler
4866 * Register a receive handler for a device. This handler will then be
4867 * called from __netif_receive_skb. A negative errno code is returned
4870 * The caller must hold the rtnl_mutex.
4872 * For a general description of rx_handler, see enum rx_handler_result.
4874 int netdev_rx_handler_register(struct net_device
*dev
,
4875 rx_handler_func_t
*rx_handler
,
4876 void *rx_handler_data
)
4878 if (netdev_is_rx_handler_busy(dev
))
4881 if (dev
->priv_flags
& IFF_NO_RX_HANDLER
)
4884 /* Note: rx_handler_data must be set before rx_handler */
4885 rcu_assign_pointer(dev
->rx_handler_data
, rx_handler_data
);
4886 rcu_assign_pointer(dev
->rx_handler
, rx_handler
);
4890 EXPORT_SYMBOL_GPL(netdev_rx_handler_register
);
4893 * netdev_rx_handler_unregister - unregister receive handler
4894 * @dev: device to unregister a handler from
4896 * Unregister a receive handler from a device.
4898 * The caller must hold the rtnl_mutex.
4900 void netdev_rx_handler_unregister(struct net_device
*dev
)
4904 RCU_INIT_POINTER(dev
->rx_handler
, NULL
);
4905 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4906 * section has a guarantee to see a non NULL rx_handler_data
4910 RCU_INIT_POINTER(dev
->rx_handler_data
, NULL
);
4912 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister
);
4915 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4916 * the special handling of PFMEMALLOC skbs.
4918 static bool skb_pfmemalloc_protocol(struct sk_buff
*skb
)
4920 switch (skb
->protocol
) {
4921 case htons(ETH_P_ARP
):
4922 case htons(ETH_P_IP
):
4923 case htons(ETH_P_IPV6
):
4924 case htons(ETH_P_8021Q
):
4925 case htons(ETH_P_8021AD
):
4932 static inline int nf_ingress(struct sk_buff
*skb
, struct packet_type
**pt_prev
,
4933 int *ret
, struct net_device
*orig_dev
)
4935 #ifdef CONFIG_NETFILTER_INGRESS
4936 if (nf_hook_ingress_active(skb
)) {
4940 *ret
= deliver_skb(skb
, *pt_prev
, orig_dev
);
4945 ingress_retval
= nf_hook_ingress(skb
);
4947 return ingress_retval
;
4949 #endif /* CONFIG_NETFILTER_INGRESS */
4953 static int __netif_receive_skb_core(struct sk_buff
*skb
, bool pfmemalloc
,
4954 struct packet_type
**ppt_prev
)
4956 struct packet_type
*ptype
, *pt_prev
;
4957 rx_handler_func_t
*rx_handler
;
4958 struct net_device
*orig_dev
;
4959 bool deliver_exact
= false;
4960 int ret
= NET_RX_DROP
;
4963 net_timestamp_check(!netdev_tstamp_prequeue
, skb
);
4965 trace_netif_receive_skb(skb
);
4967 orig_dev
= skb
->dev
;
4969 skb_reset_network_header(skb
);
4970 if (!skb_transport_header_was_set(skb
))
4971 skb_reset_transport_header(skb
);
4972 skb_reset_mac_len(skb
);
4977 skb
->skb_iif
= skb
->dev
->ifindex
;
4979 __this_cpu_inc(softnet_data
.processed
);
4981 if (static_branch_unlikely(&generic_xdp_needed_key
)) {
4985 ret2
= do_xdp_generic(rcu_dereference(skb
->dev
->xdp_prog
), skb
);
4988 if (ret2
!= XDP_PASS
)
4990 skb_reset_mac_len(skb
);
4993 if (skb
->protocol
== cpu_to_be16(ETH_P_8021Q
) ||
4994 skb
->protocol
== cpu_to_be16(ETH_P_8021AD
)) {
4995 skb
= skb_vlan_untag(skb
);
5000 if (skb_skip_tc_classify(skb
))
5006 list_for_each_entry_rcu(ptype
, &ptype_all
, list
) {
5008 ret
= deliver_skb(skb
, pt_prev
, orig_dev
);
5012 list_for_each_entry_rcu(ptype
, &skb
->dev
->ptype_all
, list
) {
5014 ret
= deliver_skb(skb
, pt_prev
, orig_dev
);
5019 #ifdef CONFIG_NET_INGRESS
5020 if (static_branch_unlikely(&ingress_needed_key
)) {
5021 skb
= sch_handle_ingress(skb
, &pt_prev
, &ret
, orig_dev
);
5025 if (nf_ingress(skb
, &pt_prev
, &ret
, orig_dev
) < 0)
5031 if (pfmemalloc
&& !skb_pfmemalloc_protocol(skb
))
5034 if (skb_vlan_tag_present(skb
)) {
5036 ret
= deliver_skb(skb
, pt_prev
, orig_dev
);
5039 if (vlan_do_receive(&skb
))
5041 else if (unlikely(!skb
))
5045 rx_handler
= rcu_dereference(skb
->dev
->rx_handler
);
5048 ret
= deliver_skb(skb
, pt_prev
, orig_dev
);
5051 switch (rx_handler(&skb
)) {
5052 case RX_HANDLER_CONSUMED
:
5053 ret
= NET_RX_SUCCESS
;
5055 case RX_HANDLER_ANOTHER
:
5057 case RX_HANDLER_EXACT
:
5058 deliver_exact
= true;
5059 case RX_HANDLER_PASS
:
5066 if (unlikely(skb_vlan_tag_present(skb
))) {
5068 if (skb_vlan_tag_get_id(skb
)) {
5069 /* Vlan id is non 0 and vlan_do_receive() above couldn't
5072 skb
->pkt_type
= PACKET_OTHERHOST
;
5073 } else if (skb
->protocol
== cpu_to_be16(ETH_P_8021Q
) ||
5074 skb
->protocol
== cpu_to_be16(ETH_P_8021AD
)) {
5075 /* Outer header is 802.1P with vlan 0, inner header is
5076 * 802.1Q or 802.1AD and vlan_do_receive() above could
5077 * not find vlan dev for vlan id 0.
5079 __vlan_hwaccel_clear_tag(skb
);
5080 skb
= skb_vlan_untag(skb
);
5083 if (vlan_do_receive(&skb
))
5084 /* After stripping off 802.1P header with vlan 0
5085 * vlan dev is found for inner header.
5088 else if (unlikely(!skb
))
5091 /* We have stripped outer 802.1P vlan 0 header.
5092 * But could not find vlan dev.
5093 * check again for vlan id to set OTHERHOST.
5097 /* Note: we might in the future use prio bits
5098 * and set skb->priority like in vlan_do_receive()
5099 * For the time being, just ignore Priority Code Point
5101 __vlan_hwaccel_clear_tag(skb
);
5104 type
= skb
->protocol
;
5106 /* deliver only exact match when indicated */
5107 if (likely(!deliver_exact
)) {
5108 deliver_ptype_list_skb(skb
, &pt_prev
, orig_dev
, type
,
5109 &ptype_base
[ntohs(type
) &
5113 deliver_ptype_list_skb(skb
, &pt_prev
, orig_dev
, type
,
5114 &orig_dev
->ptype_specific
);
5116 if (unlikely(skb
->dev
!= orig_dev
)) {
5117 deliver_ptype_list_skb(skb
, &pt_prev
, orig_dev
, type
,
5118 &skb
->dev
->ptype_specific
);
5122 if (unlikely(skb_orphan_frags_rx(skb
, GFP_ATOMIC
)))
5124 *ppt_prev
= pt_prev
;
5128 atomic_long_inc(&skb
->dev
->rx_dropped
);
5130 atomic_long_inc(&skb
->dev
->rx_nohandler
);
5132 /* Jamal, now you will not able to escape explaining
5133 * me how you were going to use this. :-)
5142 static int __netif_receive_skb_one_core(struct sk_buff
*skb
, bool pfmemalloc
)
5144 struct net_device
*orig_dev
= skb
->dev
;
5145 struct packet_type
*pt_prev
= NULL
;
5148 ret
= __netif_receive_skb_core(skb
, pfmemalloc
, &pt_prev
);
5150 ret
= INDIRECT_CALL_INET(pt_prev
->func
, ipv6_rcv
, ip_rcv
, skb
,
5151 skb
->dev
, pt_prev
, orig_dev
);
5156 * netif_receive_skb_core - special purpose version of netif_receive_skb
5157 * @skb: buffer to process
5159 * More direct receive version of netif_receive_skb(). It should
5160 * only be used by callers that have a need to skip RPS and Generic XDP.
5161 * Caller must also take care of handling if (page_is_)pfmemalloc.
5163 * This function may only be called from softirq context and interrupts
5164 * should be enabled.
5166 * Return values (usually ignored):
5167 * NET_RX_SUCCESS: no congestion
5168 * NET_RX_DROP: packet was dropped
5170 int netif_receive_skb_core(struct sk_buff
*skb
)
5175 ret
= __netif_receive_skb_one_core(skb
, false);
5180 EXPORT_SYMBOL(netif_receive_skb_core
);
5182 static inline void __netif_receive_skb_list_ptype(struct list_head
*head
,
5183 struct packet_type
*pt_prev
,
5184 struct net_device
*orig_dev
)
5186 struct sk_buff
*skb
, *next
;
5190 if (list_empty(head
))
5192 if (pt_prev
->list_func
!= NULL
)
5193 INDIRECT_CALL_INET(pt_prev
->list_func
, ipv6_list_rcv
,
5194 ip_list_rcv
, head
, pt_prev
, orig_dev
);
5196 list_for_each_entry_safe(skb
, next
, head
, list
) {
5197 skb_list_del_init(skb
);
5198 pt_prev
->func(skb
, skb
->dev
, pt_prev
, orig_dev
);
5202 static void __netif_receive_skb_list_core(struct list_head
*head
, bool pfmemalloc
)
5204 /* Fast-path assumptions:
5205 * - There is no RX handler.
5206 * - Only one packet_type matches.
5207 * If either of these fails, we will end up doing some per-packet
5208 * processing in-line, then handling the 'last ptype' for the whole
5209 * sublist. This can't cause out-of-order delivery to any single ptype,
5210 * because the 'last ptype' must be constant across the sublist, and all
5211 * other ptypes are handled per-packet.
5213 /* Current (common) ptype of sublist */
5214 struct packet_type
*pt_curr
= NULL
;
5215 /* Current (common) orig_dev of sublist */
5216 struct net_device
*od_curr
= NULL
;
5217 struct list_head sublist
;
5218 struct sk_buff
*skb
, *next
;
5220 INIT_LIST_HEAD(&sublist
);
5221 list_for_each_entry_safe(skb
, next
, head
, list
) {
5222 struct net_device
*orig_dev
= skb
->dev
;
5223 struct packet_type
*pt_prev
= NULL
;
5225 skb_list_del_init(skb
);
5226 __netif_receive_skb_core(skb
, pfmemalloc
, &pt_prev
);
5229 if (pt_curr
!= pt_prev
|| od_curr
!= orig_dev
) {
5230 /* dispatch old sublist */
5231 __netif_receive_skb_list_ptype(&sublist
, pt_curr
, od_curr
);
5232 /* start new sublist */
5233 INIT_LIST_HEAD(&sublist
);
5237 list_add_tail(&skb
->list
, &sublist
);
5240 /* dispatch final sublist */
5241 __netif_receive_skb_list_ptype(&sublist
, pt_curr
, od_curr
);
5244 static int __netif_receive_skb(struct sk_buff
*skb
)
5248 if (sk_memalloc_socks() && skb_pfmemalloc(skb
)) {
5249 unsigned int noreclaim_flag
;
5252 * PFMEMALLOC skbs are special, they should
5253 * - be delivered to SOCK_MEMALLOC sockets only
5254 * - stay away from userspace
5255 * - have bounded memory usage
5257 * Use PF_MEMALLOC as this saves us from propagating the allocation
5258 * context down to all allocation sites.
5260 noreclaim_flag
= memalloc_noreclaim_save();
5261 ret
= __netif_receive_skb_one_core(skb
, true);
5262 memalloc_noreclaim_restore(noreclaim_flag
);
5264 ret
= __netif_receive_skb_one_core(skb
, false);
5269 static void __netif_receive_skb_list(struct list_head
*head
)
5271 unsigned long noreclaim_flag
= 0;
5272 struct sk_buff
*skb
, *next
;
5273 bool pfmemalloc
= false; /* Is current sublist PF_MEMALLOC? */
5275 list_for_each_entry_safe(skb
, next
, head
, list
) {
5276 if ((sk_memalloc_socks() && skb_pfmemalloc(skb
)) != pfmemalloc
) {
5277 struct list_head sublist
;
5279 /* Handle the previous sublist */
5280 list_cut_before(&sublist
, head
, &skb
->list
);
5281 if (!list_empty(&sublist
))
5282 __netif_receive_skb_list_core(&sublist
, pfmemalloc
);
5283 pfmemalloc
= !pfmemalloc
;
5284 /* See comments in __netif_receive_skb */
5286 noreclaim_flag
= memalloc_noreclaim_save();
5288 memalloc_noreclaim_restore(noreclaim_flag
);
5291 /* Handle the remaining sublist */
5292 if (!list_empty(head
))
5293 __netif_receive_skb_list_core(head
, pfmemalloc
);
5294 /* Restore pflags */
5296 memalloc_noreclaim_restore(noreclaim_flag
);
5299 static int generic_xdp_install(struct net_device
*dev
, struct netdev_bpf
*xdp
)
5301 struct bpf_prog
*old
= rtnl_dereference(dev
->xdp_prog
);
5302 struct bpf_prog
*new = xdp
->prog
;
5305 switch (xdp
->command
) {
5306 case XDP_SETUP_PROG
:
5307 rcu_assign_pointer(dev
->xdp_prog
, new);
5312 static_branch_dec(&generic_xdp_needed_key
);
5313 } else if (new && !old
) {
5314 static_branch_inc(&generic_xdp_needed_key
);
5315 dev_disable_lro(dev
);
5316 dev_disable_gro_hw(dev
);
5320 case XDP_QUERY_PROG
:
5321 xdp
->prog_id
= old
? old
->aux
->id
: 0;
5332 static int netif_receive_skb_internal(struct sk_buff
*skb
)
5336 net_timestamp_check(netdev_tstamp_prequeue
, skb
);
5338 if (skb_defer_rx_timestamp(skb
))
5339 return NET_RX_SUCCESS
;
5343 if (static_branch_unlikely(&rps_needed
)) {
5344 struct rps_dev_flow voidflow
, *rflow
= &voidflow
;
5345 int cpu
= get_rps_cpu(skb
->dev
, skb
, &rflow
);
5348 ret
= enqueue_to_backlog(skb
, cpu
, &rflow
->last_qtail
);
5354 ret
= __netif_receive_skb(skb
);
5359 static void netif_receive_skb_list_internal(struct list_head
*head
)
5361 struct sk_buff
*skb
, *next
;
5362 struct list_head sublist
;
5364 INIT_LIST_HEAD(&sublist
);
5365 list_for_each_entry_safe(skb
, next
, head
, list
) {
5366 net_timestamp_check(netdev_tstamp_prequeue
, skb
);
5367 skb_list_del_init(skb
);
5368 if (!skb_defer_rx_timestamp(skb
))
5369 list_add_tail(&skb
->list
, &sublist
);
5371 list_splice_init(&sublist
, head
);
5375 if (static_branch_unlikely(&rps_needed
)) {
5376 list_for_each_entry_safe(skb
, next
, head
, list
) {
5377 struct rps_dev_flow voidflow
, *rflow
= &voidflow
;
5378 int cpu
= get_rps_cpu(skb
->dev
, skb
, &rflow
);
5381 /* Will be handled, remove from list */
5382 skb_list_del_init(skb
);
5383 enqueue_to_backlog(skb
, cpu
, &rflow
->last_qtail
);
5388 __netif_receive_skb_list(head
);
5393 * netif_receive_skb - process receive buffer from network
5394 * @skb: buffer to process
5396 * netif_receive_skb() is the main receive data processing function.
5397 * It always succeeds. The buffer may be dropped during processing
5398 * for congestion control or by the protocol layers.
5400 * This function may only be called from softirq context and interrupts
5401 * should be enabled.
5403 * Return values (usually ignored):
5404 * NET_RX_SUCCESS: no congestion
5405 * NET_RX_DROP: packet was dropped
5407 int netif_receive_skb(struct sk_buff
*skb
)
5411 trace_netif_receive_skb_entry(skb
);
5413 ret
= netif_receive_skb_internal(skb
);
5414 trace_netif_receive_skb_exit(ret
);
5418 EXPORT_SYMBOL(netif_receive_skb
);
5421 * netif_receive_skb_list - process many receive buffers from network
5422 * @head: list of skbs to process.
5424 * Since return value of netif_receive_skb() is normally ignored, and
5425 * wouldn't be meaningful for a list, this function returns void.
5427 * This function may only be called from softirq context and interrupts
5428 * should be enabled.
5430 void netif_receive_skb_list(struct list_head
*head
)
5432 struct sk_buff
*skb
;
5434 if (list_empty(head
))
5436 if (trace_netif_receive_skb_list_entry_enabled()) {
5437 list_for_each_entry(skb
, head
, list
)
5438 trace_netif_receive_skb_list_entry(skb
);
5440 netif_receive_skb_list_internal(head
);
5441 trace_netif_receive_skb_list_exit(0);
5443 EXPORT_SYMBOL(netif_receive_skb_list
);
5445 DEFINE_PER_CPU(struct work_struct
, flush_works
);
5447 /* Network device is going away, flush any packets still pending */
5448 static void flush_backlog(struct work_struct
*work
)
5450 struct sk_buff
*skb
, *tmp
;
5451 struct softnet_data
*sd
;
5454 sd
= this_cpu_ptr(&softnet_data
);
5456 local_irq_disable();
5458 skb_queue_walk_safe(&sd
->input_pkt_queue
, skb
, tmp
) {
5459 if (skb
->dev
->reg_state
== NETREG_UNREGISTERING
) {
5460 __skb_unlink(skb
, &sd
->input_pkt_queue
);
5462 input_queue_head_incr(sd
);
5468 skb_queue_walk_safe(&sd
->process_queue
, skb
, tmp
) {
5469 if (skb
->dev
->reg_state
== NETREG_UNREGISTERING
) {
5470 __skb_unlink(skb
, &sd
->process_queue
);
5472 input_queue_head_incr(sd
);
5478 static void flush_all_backlogs(void)
5484 for_each_online_cpu(cpu
)
5485 queue_work_on(cpu
, system_highpri_wq
,
5486 per_cpu_ptr(&flush_works
, cpu
));
5488 for_each_online_cpu(cpu
)
5489 flush_work(per_cpu_ptr(&flush_works
, cpu
));
5494 INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff
*, int));
5495 INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff
*, int));
5496 static int napi_gro_complete(struct sk_buff
*skb
)
5498 struct packet_offload
*ptype
;
5499 __be16 type
= skb
->protocol
;
5500 struct list_head
*head
= &offload_base
;
5503 BUILD_BUG_ON(sizeof(struct napi_gro_cb
) > sizeof(skb
->cb
));
5505 if (NAPI_GRO_CB(skb
)->count
== 1) {
5506 skb_shinfo(skb
)->gso_size
= 0;
5511 list_for_each_entry_rcu(ptype
, head
, list
) {
5512 if (ptype
->type
!= type
|| !ptype
->callbacks
.gro_complete
)
5515 err
= INDIRECT_CALL_INET(ptype
->callbacks
.gro_complete
,
5516 ipv6_gro_complete
, inet_gro_complete
,
5523 WARN_ON(&ptype
->list
== head
);
5525 return NET_RX_SUCCESS
;
5529 return netif_receive_skb_internal(skb
);
5532 static void __napi_gro_flush_chain(struct napi_struct
*napi
, u32 index
,
5535 struct list_head
*head
= &napi
->gro_hash
[index
].list
;
5536 struct sk_buff
*skb
, *p
;
5538 list_for_each_entry_safe_reverse(skb
, p
, head
, list
) {
5539 if (flush_old
&& NAPI_GRO_CB(skb
)->age
== jiffies
)
5541 skb_list_del_init(skb
);
5542 napi_gro_complete(skb
);
5543 napi
->gro_hash
[index
].count
--;
5546 if (!napi
->gro_hash
[index
].count
)
5547 __clear_bit(index
, &napi
->gro_bitmask
);
5550 /* napi->gro_hash[].list contains packets ordered by age.
5551 * youngest packets at the head of it.
5552 * Complete skbs in reverse order to reduce latencies.
5554 void napi_gro_flush(struct napi_struct
*napi
, bool flush_old
)
5556 unsigned long bitmask
= napi
->gro_bitmask
;
5557 unsigned int i
, base
= ~0U;
5559 while ((i
= ffs(bitmask
)) != 0) {
5562 __napi_gro_flush_chain(napi
, base
, flush_old
);
5565 EXPORT_SYMBOL(napi_gro_flush
);
5567 static struct list_head
*gro_list_prepare(struct napi_struct
*napi
,
5568 struct sk_buff
*skb
)
5570 unsigned int maclen
= skb
->dev
->hard_header_len
;
5571 u32 hash
= skb_get_hash_raw(skb
);
5572 struct list_head
*head
;
5575 head
= &napi
->gro_hash
[hash
& (GRO_HASH_BUCKETS
- 1)].list
;
5576 list_for_each_entry(p
, head
, list
) {
5577 unsigned long diffs
;
5579 NAPI_GRO_CB(p
)->flush
= 0;
5581 if (hash
!= skb_get_hash_raw(p
)) {
5582 NAPI_GRO_CB(p
)->same_flow
= 0;
5586 diffs
= (unsigned long)p
->dev
^ (unsigned long)skb
->dev
;
5587 diffs
|= skb_vlan_tag_present(p
) ^ skb_vlan_tag_present(skb
);
5588 if (skb_vlan_tag_present(p
))
5589 diffs
|= skb_vlan_tag_get(p
) ^ skb_vlan_tag_get(skb
);
5590 diffs
|= skb_metadata_dst_cmp(p
, skb
);
5591 diffs
|= skb_metadata_differs(p
, skb
);
5592 if (maclen
== ETH_HLEN
)
5593 diffs
|= compare_ether_header(skb_mac_header(p
),
5594 skb_mac_header(skb
));
5596 diffs
= memcmp(skb_mac_header(p
),
5597 skb_mac_header(skb
),
5599 NAPI_GRO_CB(p
)->same_flow
= !diffs
;
5605 static void skb_gro_reset_offset(struct sk_buff
*skb
)
5607 const struct skb_shared_info
*pinfo
= skb_shinfo(skb
);
5608 const skb_frag_t
*frag0
= &pinfo
->frags
[0];
5610 NAPI_GRO_CB(skb
)->data_offset
= 0;
5611 NAPI_GRO_CB(skb
)->frag0
= NULL
;
5612 NAPI_GRO_CB(skb
)->frag0_len
= 0;
5614 if (!skb_headlen(skb
) && pinfo
->nr_frags
&&
5615 !PageHighMem(skb_frag_page(frag0
))) {
5616 NAPI_GRO_CB(skb
)->frag0
= skb_frag_address(frag0
);
5617 NAPI_GRO_CB(skb
)->frag0_len
= min_t(unsigned int,
5618 skb_frag_size(frag0
),
5619 skb
->end
- skb
->tail
);
5623 static void gro_pull_from_frag0(struct sk_buff
*skb
, int grow
)
5625 struct skb_shared_info
*pinfo
= skb_shinfo(skb
);
5627 BUG_ON(skb
->end
- skb
->tail
< grow
);
5629 memcpy(skb_tail_pointer(skb
), NAPI_GRO_CB(skb
)->frag0
, grow
);
5631 skb
->data_len
-= grow
;
5634 skb_frag_off_add(&pinfo
->frags
[0], grow
);
5635 skb_frag_size_sub(&pinfo
->frags
[0], grow
);
5637 if (unlikely(!skb_frag_size(&pinfo
->frags
[0]))) {
5638 skb_frag_unref(skb
, 0);
5639 memmove(pinfo
->frags
, pinfo
->frags
+ 1,
5640 --pinfo
->nr_frags
* sizeof(pinfo
->frags
[0]));
5644 static void gro_flush_oldest(struct list_head
*head
)
5646 struct sk_buff
*oldest
;
5648 oldest
= list_last_entry(head
, struct sk_buff
, list
);
5650 /* We are called with head length >= MAX_GRO_SKBS, so this is
5653 if (WARN_ON_ONCE(!oldest
))
5656 /* Do not adjust napi->gro_hash[].count, caller is adding a new
5659 skb_list_del_init(oldest
);
5660 napi_gro_complete(oldest
);
5663 INDIRECT_CALLABLE_DECLARE(struct sk_buff
*inet_gro_receive(struct list_head
*,
5665 INDIRECT_CALLABLE_DECLARE(struct sk_buff
*ipv6_gro_receive(struct list_head
*,
5667 static enum gro_result
dev_gro_receive(struct napi_struct
*napi
, struct sk_buff
*skb
)
5669 u32 hash
= skb_get_hash_raw(skb
) & (GRO_HASH_BUCKETS
- 1);
5670 struct list_head
*head
= &offload_base
;
5671 struct packet_offload
*ptype
;
5672 __be16 type
= skb
->protocol
;
5673 struct list_head
*gro_head
;
5674 struct sk_buff
*pp
= NULL
;
5675 enum gro_result ret
;
5679 if (netif_elide_gro(skb
->dev
))
5682 gro_head
= gro_list_prepare(napi
, skb
);
5685 list_for_each_entry_rcu(ptype
, head
, list
) {
5686 if (ptype
->type
!= type
|| !ptype
->callbacks
.gro_receive
)
5689 skb_set_network_header(skb
, skb_gro_offset(skb
));
5690 skb_reset_mac_len(skb
);
5691 NAPI_GRO_CB(skb
)->same_flow
= 0;
5692 NAPI_GRO_CB(skb
)->flush
= skb_is_gso(skb
) || skb_has_frag_list(skb
);
5693 NAPI_GRO_CB(skb
)->free
= 0;
5694 NAPI_GRO_CB(skb
)->encap_mark
= 0;
5695 NAPI_GRO_CB(skb
)->recursion_counter
= 0;
5696 NAPI_GRO_CB(skb
)->is_fou
= 0;
5697 NAPI_GRO_CB(skb
)->is_atomic
= 1;
5698 NAPI_GRO_CB(skb
)->gro_remcsum_start
= 0;
5700 /* Setup for GRO checksum validation */
5701 switch (skb
->ip_summed
) {
5702 case CHECKSUM_COMPLETE
:
5703 NAPI_GRO_CB(skb
)->csum
= skb
->csum
;
5704 NAPI_GRO_CB(skb
)->csum_valid
= 1;
5705 NAPI_GRO_CB(skb
)->csum_cnt
= 0;
5707 case CHECKSUM_UNNECESSARY
:
5708 NAPI_GRO_CB(skb
)->csum_cnt
= skb
->csum_level
+ 1;
5709 NAPI_GRO_CB(skb
)->csum_valid
= 0;
5712 NAPI_GRO_CB(skb
)->csum_cnt
= 0;
5713 NAPI_GRO_CB(skb
)->csum_valid
= 0;
5716 pp
= INDIRECT_CALL_INET(ptype
->callbacks
.gro_receive
,
5717 ipv6_gro_receive
, inet_gro_receive
,
5723 if (&ptype
->list
== head
)
5726 if (IS_ERR(pp
) && PTR_ERR(pp
) == -EINPROGRESS
) {
5731 same_flow
= NAPI_GRO_CB(skb
)->same_flow
;
5732 ret
= NAPI_GRO_CB(skb
)->free
? GRO_MERGED_FREE
: GRO_MERGED
;
5735 skb_list_del_init(pp
);
5736 napi_gro_complete(pp
);
5737 napi
->gro_hash
[hash
].count
--;
5743 if (NAPI_GRO_CB(skb
)->flush
)
5746 if (unlikely(napi
->gro_hash
[hash
].count
>= MAX_GRO_SKBS
)) {
5747 gro_flush_oldest(gro_head
);
5749 napi
->gro_hash
[hash
].count
++;
5751 NAPI_GRO_CB(skb
)->count
= 1;
5752 NAPI_GRO_CB(skb
)->age
= jiffies
;
5753 NAPI_GRO_CB(skb
)->last
= skb
;
5754 skb_shinfo(skb
)->gso_size
= skb_gro_len(skb
);
5755 list_add(&skb
->list
, gro_head
);
5759 grow
= skb_gro_offset(skb
) - skb_headlen(skb
);
5761 gro_pull_from_frag0(skb
, grow
);
5763 if (napi
->gro_hash
[hash
].count
) {
5764 if (!test_bit(hash
, &napi
->gro_bitmask
))
5765 __set_bit(hash
, &napi
->gro_bitmask
);
5766 } else if (test_bit(hash
, &napi
->gro_bitmask
)) {
5767 __clear_bit(hash
, &napi
->gro_bitmask
);
5777 struct packet_offload
*gro_find_receive_by_type(__be16 type
)
5779 struct list_head
*offload_head
= &offload_base
;
5780 struct packet_offload
*ptype
;
5782 list_for_each_entry_rcu(ptype
, offload_head
, list
) {
5783 if (ptype
->type
!= type
|| !ptype
->callbacks
.gro_receive
)
5789 EXPORT_SYMBOL(gro_find_receive_by_type
);
5791 struct packet_offload
*gro_find_complete_by_type(__be16 type
)
5793 struct list_head
*offload_head
= &offload_base
;
5794 struct packet_offload
*ptype
;
5796 list_for_each_entry_rcu(ptype
, offload_head
, list
) {
5797 if (ptype
->type
!= type
|| !ptype
->callbacks
.gro_complete
)
5803 EXPORT_SYMBOL(gro_find_complete_by_type
);
5805 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5806 static void gro_normal_list(struct napi_struct
*napi
)
5808 if (!napi
->rx_count
)
5810 netif_receive_skb_list_internal(&napi
->rx_list
);
5811 INIT_LIST_HEAD(&napi
->rx_list
);
5815 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5816 * pass the whole batch up to the stack.
5818 static void gro_normal_one(struct napi_struct
*napi
, struct sk_buff
*skb
)
5820 list_add_tail(&skb
->list
, &napi
->rx_list
);
5821 if (++napi
->rx_count
>= gro_normal_batch
)
5822 gro_normal_list(napi
);
5825 static void napi_skb_free_stolen_head(struct sk_buff
*skb
)
5829 kmem_cache_free(skbuff_head_cache
, skb
);
5832 static gro_result_t
napi_skb_finish(struct napi_struct
*napi
,
5833 struct sk_buff
*skb
,
5838 gro_normal_one(napi
, skb
);
5845 case GRO_MERGED_FREE
:
5846 if (NAPI_GRO_CB(skb
)->free
== NAPI_GRO_FREE_STOLEN_HEAD
)
5847 napi_skb_free_stolen_head(skb
);
5861 gro_result_t
napi_gro_receive(struct napi_struct
*napi
, struct sk_buff
*skb
)
5865 skb_mark_napi_id(skb
, napi
);
5866 trace_napi_gro_receive_entry(skb
);
5868 skb_gro_reset_offset(skb
);
5870 ret
= napi_skb_finish(napi
, skb
, dev_gro_receive(napi
, skb
));
5871 trace_napi_gro_receive_exit(ret
);
5875 EXPORT_SYMBOL(napi_gro_receive
);
5877 static void napi_reuse_skb(struct napi_struct
*napi
, struct sk_buff
*skb
)
5879 if (unlikely(skb
->pfmemalloc
)) {
5883 __skb_pull(skb
, skb_headlen(skb
));
5884 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
5885 skb_reserve(skb
, NET_SKB_PAD
+ NET_IP_ALIGN
- skb_headroom(skb
));
5886 __vlan_hwaccel_clear_tag(skb
);
5887 skb
->dev
= napi
->dev
;
5890 /* eth_type_trans() assumes pkt_type is PACKET_HOST */
5891 skb
->pkt_type
= PACKET_HOST
;
5893 skb
->encapsulation
= 0;
5894 skb_shinfo(skb
)->gso_type
= 0;
5895 skb
->truesize
= SKB_TRUESIZE(skb_end_offset(skb
));
5901 struct sk_buff
*napi_get_frags(struct napi_struct
*napi
)
5903 struct sk_buff
*skb
= napi
->skb
;
5906 skb
= napi_alloc_skb(napi
, GRO_MAX_HEAD
);
5909 skb_mark_napi_id(skb
, napi
);
5914 EXPORT_SYMBOL(napi_get_frags
);
5916 static gro_result_t
napi_frags_finish(struct napi_struct
*napi
,
5917 struct sk_buff
*skb
,
5923 __skb_push(skb
, ETH_HLEN
);
5924 skb
->protocol
= eth_type_trans(skb
, skb
->dev
);
5925 if (ret
== GRO_NORMAL
)
5926 gro_normal_one(napi
, skb
);
5930 napi_reuse_skb(napi
, skb
);
5933 case GRO_MERGED_FREE
:
5934 if (NAPI_GRO_CB(skb
)->free
== NAPI_GRO_FREE_STOLEN_HEAD
)
5935 napi_skb_free_stolen_head(skb
);
5937 napi_reuse_skb(napi
, skb
);
5948 /* Upper GRO stack assumes network header starts at gro_offset=0
5949 * Drivers could call both napi_gro_frags() and napi_gro_receive()
5950 * We copy ethernet header into skb->data to have a common layout.
5952 static struct sk_buff
*napi_frags_skb(struct napi_struct
*napi
)
5954 struct sk_buff
*skb
= napi
->skb
;
5955 const struct ethhdr
*eth
;
5956 unsigned int hlen
= sizeof(*eth
);
5960 skb_reset_mac_header(skb
);
5961 skb_gro_reset_offset(skb
);
5963 if (unlikely(skb_gro_header_hard(skb
, hlen
))) {
5964 eth
= skb_gro_header_slow(skb
, hlen
, 0);
5965 if (unlikely(!eth
)) {
5966 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5967 __func__
, napi
->dev
->name
);
5968 napi_reuse_skb(napi
, skb
);
5972 eth
= (const struct ethhdr
*)skb
->data
;
5973 gro_pull_from_frag0(skb
, hlen
);
5974 NAPI_GRO_CB(skb
)->frag0
+= hlen
;
5975 NAPI_GRO_CB(skb
)->frag0_len
-= hlen
;
5977 __skb_pull(skb
, hlen
);
5980 * This works because the only protocols we care about don't require
5982 * We'll fix it up properly in napi_frags_finish()
5984 skb
->protocol
= eth
->h_proto
;
5989 gro_result_t
napi_gro_frags(struct napi_struct
*napi
)
5992 struct sk_buff
*skb
= napi_frags_skb(napi
);
5997 trace_napi_gro_frags_entry(skb
);
5999 ret
= napi_frags_finish(napi
, skb
, dev_gro_receive(napi
, skb
));
6000 trace_napi_gro_frags_exit(ret
);
6004 EXPORT_SYMBOL(napi_gro_frags
);
6006 /* Compute the checksum from gro_offset and return the folded value
6007 * after adding in any pseudo checksum.
6009 __sum16
__skb_gro_checksum_complete(struct sk_buff
*skb
)
6014 wsum
= skb_checksum(skb
, skb_gro_offset(skb
), skb_gro_len(skb
), 0);
6016 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6017 sum
= csum_fold(csum_add(NAPI_GRO_CB(skb
)->csum
, wsum
));
6018 /* See comments in __skb_checksum_complete(). */
6020 if (unlikely(skb
->ip_summed
== CHECKSUM_COMPLETE
) &&
6021 !skb
->csum_complete_sw
)
6022 netdev_rx_csum_fault(skb
->dev
, skb
);
6025 NAPI_GRO_CB(skb
)->csum
= wsum
;
6026 NAPI_GRO_CB(skb
)->csum_valid
= 1;
6030 EXPORT_SYMBOL(__skb_gro_checksum_complete
);
6032 static void net_rps_send_ipi(struct softnet_data
*remsd
)
6036 struct softnet_data
*next
= remsd
->rps_ipi_next
;
6038 if (cpu_online(remsd
->cpu
))
6039 smp_call_function_single_async(remsd
->cpu
, &remsd
->csd
);
6046 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6047 * Note: called with local irq disabled, but exits with local irq enabled.
6049 static void net_rps_action_and_irq_enable(struct softnet_data
*sd
)
6052 struct softnet_data
*remsd
= sd
->rps_ipi_list
;
6055 sd
->rps_ipi_list
= NULL
;
6059 /* Send pending IPI's to kick RPS processing on remote cpus. */
6060 net_rps_send_ipi(remsd
);
6066 static bool sd_has_rps_ipi_waiting(struct softnet_data
*sd
)
6069 return sd
->rps_ipi_list
!= NULL
;
6075 static int process_backlog(struct napi_struct
*napi
, int quota
)
6077 struct softnet_data
*sd
= container_of(napi
, struct softnet_data
, backlog
);
6081 /* Check if we have pending ipi, its better to send them now,
6082 * not waiting net_rx_action() end.
6084 if (sd_has_rps_ipi_waiting(sd
)) {
6085 local_irq_disable();
6086 net_rps_action_and_irq_enable(sd
);
6089 napi
->weight
= dev_rx_weight
;
6091 struct sk_buff
*skb
;
6093 while ((skb
= __skb_dequeue(&sd
->process_queue
))) {
6095 __netif_receive_skb(skb
);
6097 input_queue_head_incr(sd
);
6098 if (++work
>= quota
)
6103 local_irq_disable();
6105 if (skb_queue_empty(&sd
->input_pkt_queue
)) {
6107 * Inline a custom version of __napi_complete().
6108 * only current cpu owns and manipulates this napi,
6109 * and NAPI_STATE_SCHED is the only possible flag set
6111 * We can use a plain write instead of clear_bit(),
6112 * and we dont need an smp_mb() memory barrier.
6117 skb_queue_splice_tail_init(&sd
->input_pkt_queue
,
6118 &sd
->process_queue
);
6128 * __napi_schedule - schedule for receive
6129 * @n: entry to schedule
6131 * The entry's receive function will be scheduled to run.
6132 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6134 void __napi_schedule(struct napi_struct
*n
)
6136 unsigned long flags
;
6138 local_irq_save(flags
);
6139 ____napi_schedule(this_cpu_ptr(&softnet_data
), n
);
6140 local_irq_restore(flags
);
6142 EXPORT_SYMBOL(__napi_schedule
);
6145 * napi_schedule_prep - check if napi can be scheduled
6148 * Test if NAPI routine is already running, and if not mark
6149 * it as running. This is used as a condition variable
6150 * insure only one NAPI poll instance runs. We also make
6151 * sure there is no pending NAPI disable.
6153 bool napi_schedule_prep(struct napi_struct
*n
)
6155 unsigned long val
, new;
6158 val
= READ_ONCE(n
->state
);
6159 if (unlikely(val
& NAPIF_STATE_DISABLE
))
6161 new = val
| NAPIF_STATE_SCHED
;
6163 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6164 * This was suggested by Alexander Duyck, as compiler
6165 * emits better code than :
6166 * if (val & NAPIF_STATE_SCHED)
6167 * new |= NAPIF_STATE_MISSED;
6169 new |= (val
& NAPIF_STATE_SCHED
) / NAPIF_STATE_SCHED
*
6171 } while (cmpxchg(&n
->state
, val
, new) != val
);
6173 return !(val
& NAPIF_STATE_SCHED
);
6175 EXPORT_SYMBOL(napi_schedule_prep
);
6178 * __napi_schedule_irqoff - schedule for receive
6179 * @n: entry to schedule
6181 * Variant of __napi_schedule() assuming hard irqs are masked
6183 void __napi_schedule_irqoff(struct napi_struct
*n
)
6185 ____napi_schedule(this_cpu_ptr(&softnet_data
), n
);
6187 EXPORT_SYMBOL(__napi_schedule_irqoff
);
6189 bool napi_complete_done(struct napi_struct
*n
, int work_done
)
6191 unsigned long flags
, val
, new;
6194 * 1) Don't let napi dequeue from the cpu poll list
6195 * just in case its running on a different cpu.
6196 * 2) If we are busy polling, do nothing here, we have
6197 * the guarantee we will be called later.
6199 if (unlikely(n
->state
& (NAPIF_STATE_NPSVC
|
6200 NAPIF_STATE_IN_BUSY_POLL
)))
6205 if (n
->gro_bitmask
) {
6206 unsigned long timeout
= 0;
6209 timeout
= n
->dev
->gro_flush_timeout
;
6211 /* When the NAPI instance uses a timeout and keeps postponing
6212 * it, we need to bound somehow the time packets are kept in
6215 napi_gro_flush(n
, !!timeout
);
6217 hrtimer_start(&n
->timer
, ns_to_ktime(timeout
),
6218 HRTIMER_MODE_REL_PINNED
);
6220 if (unlikely(!list_empty(&n
->poll_list
))) {
6221 /* If n->poll_list is not empty, we need to mask irqs */
6222 local_irq_save(flags
);
6223 list_del_init(&n
->poll_list
);
6224 local_irq_restore(flags
);
6228 val
= READ_ONCE(n
->state
);
6230 WARN_ON_ONCE(!(val
& NAPIF_STATE_SCHED
));
6232 new = val
& ~(NAPIF_STATE_MISSED
| NAPIF_STATE_SCHED
);
6234 /* If STATE_MISSED was set, leave STATE_SCHED set,
6235 * because we will call napi->poll() one more time.
6236 * This C code was suggested by Alexander Duyck to help gcc.
6238 new |= (val
& NAPIF_STATE_MISSED
) / NAPIF_STATE_MISSED
*
6240 } while (cmpxchg(&n
->state
, val
, new) != val
);
6242 if (unlikely(val
& NAPIF_STATE_MISSED
)) {
6249 EXPORT_SYMBOL(napi_complete_done
);
6251 /* must be called under rcu_read_lock(), as we dont take a reference */
6252 static struct napi_struct
*napi_by_id(unsigned int napi_id
)
6254 unsigned int hash
= napi_id
% HASH_SIZE(napi_hash
);
6255 struct napi_struct
*napi
;
6257 hlist_for_each_entry_rcu(napi
, &napi_hash
[hash
], napi_hash_node
)
6258 if (napi
->napi_id
== napi_id
)
6264 #if defined(CONFIG_NET_RX_BUSY_POLL)
6266 #define BUSY_POLL_BUDGET 8
6268 static void busy_poll_stop(struct napi_struct
*napi
, void *have_poll_lock
)
6272 /* Busy polling means there is a high chance device driver hard irq
6273 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6274 * set in napi_schedule_prep().
6275 * Since we are about to call napi->poll() once more, we can safely
6276 * clear NAPI_STATE_MISSED.
6278 * Note: x86 could use a single "lock and ..." instruction
6279 * to perform these two clear_bit()
6281 clear_bit(NAPI_STATE_MISSED
, &napi
->state
);
6282 clear_bit(NAPI_STATE_IN_BUSY_POLL
, &napi
->state
);
6286 /* All we really want here is to re-enable device interrupts.
6287 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6289 rc
= napi
->poll(napi
, BUSY_POLL_BUDGET
);
6290 /* We can't gro_normal_list() here, because napi->poll() might have
6291 * rearmed the napi (napi_complete_done()) in which case it could
6292 * already be running on another CPU.
6294 trace_napi_poll(napi
, rc
, BUSY_POLL_BUDGET
);
6295 netpoll_poll_unlock(have_poll_lock
);
6296 if (rc
== BUSY_POLL_BUDGET
) {
6297 /* As the whole budget was spent, we still own the napi so can
6298 * safely handle the rx_list.
6300 gro_normal_list(napi
);
6301 __napi_schedule(napi
);
6306 void napi_busy_loop(unsigned int napi_id
,
6307 bool (*loop_end
)(void *, unsigned long),
6310 unsigned long start_time
= loop_end
? busy_loop_current_time() : 0;
6311 int (*napi_poll
)(struct napi_struct
*napi
, int budget
);
6312 void *have_poll_lock
= NULL
;
6313 struct napi_struct
*napi
;
6320 napi
= napi_by_id(napi_id
);
6330 unsigned long val
= READ_ONCE(napi
->state
);
6332 /* If multiple threads are competing for this napi,
6333 * we avoid dirtying napi->state as much as we can.
6335 if (val
& (NAPIF_STATE_DISABLE
| NAPIF_STATE_SCHED
|
6336 NAPIF_STATE_IN_BUSY_POLL
))
6338 if (cmpxchg(&napi
->state
, val
,
6339 val
| NAPIF_STATE_IN_BUSY_POLL
|
6340 NAPIF_STATE_SCHED
) != val
)
6342 have_poll_lock
= netpoll_poll_lock(napi
);
6343 napi_poll
= napi
->poll
;
6345 work
= napi_poll(napi
, BUSY_POLL_BUDGET
);
6346 trace_napi_poll(napi
, work
, BUSY_POLL_BUDGET
);
6347 gro_normal_list(napi
);
6350 __NET_ADD_STATS(dev_net(napi
->dev
),
6351 LINUX_MIB_BUSYPOLLRXPACKETS
, work
);
6354 if (!loop_end
|| loop_end(loop_end_arg
, start_time
))
6357 if (unlikely(need_resched())) {
6359 busy_poll_stop(napi
, have_poll_lock
);
6363 if (loop_end(loop_end_arg
, start_time
))
6370 busy_poll_stop(napi
, have_poll_lock
);
6375 EXPORT_SYMBOL(napi_busy_loop
);
6377 #endif /* CONFIG_NET_RX_BUSY_POLL */
6379 static void napi_hash_add(struct napi_struct
*napi
)
6381 if (test_bit(NAPI_STATE_NO_BUSY_POLL
, &napi
->state
) ||
6382 test_and_set_bit(NAPI_STATE_HASHED
, &napi
->state
))
6385 spin_lock(&napi_hash_lock
);
6387 /* 0..NR_CPUS range is reserved for sender_cpu use */
6389 if (unlikely(++napi_gen_id
< MIN_NAPI_ID
))
6390 napi_gen_id
= MIN_NAPI_ID
;
6391 } while (napi_by_id(napi_gen_id
));
6392 napi
->napi_id
= napi_gen_id
;
6394 hlist_add_head_rcu(&napi
->napi_hash_node
,
6395 &napi_hash
[napi
->napi_id
% HASH_SIZE(napi_hash
)]);
6397 spin_unlock(&napi_hash_lock
);
6400 /* Warning : caller is responsible to make sure rcu grace period
6401 * is respected before freeing memory containing @napi
6403 bool napi_hash_del(struct napi_struct
*napi
)
6405 bool rcu_sync_needed
= false;
6407 spin_lock(&napi_hash_lock
);
6409 if (test_and_clear_bit(NAPI_STATE_HASHED
, &napi
->state
)) {
6410 rcu_sync_needed
= true;
6411 hlist_del_rcu(&napi
->napi_hash_node
);
6413 spin_unlock(&napi_hash_lock
);
6414 return rcu_sync_needed
;
6416 EXPORT_SYMBOL_GPL(napi_hash_del
);
6418 static enum hrtimer_restart
napi_watchdog(struct hrtimer
*timer
)
6420 struct napi_struct
*napi
;
6422 napi
= container_of(timer
, struct napi_struct
, timer
);
6424 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6425 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6427 if (napi
->gro_bitmask
&& !napi_disable_pending(napi
) &&
6428 !test_and_set_bit(NAPI_STATE_SCHED
, &napi
->state
))
6429 __napi_schedule_irqoff(napi
);
6431 return HRTIMER_NORESTART
;
6434 static void init_gro_hash(struct napi_struct
*napi
)
6438 for (i
= 0; i
< GRO_HASH_BUCKETS
; i
++) {
6439 INIT_LIST_HEAD(&napi
->gro_hash
[i
].list
);
6440 napi
->gro_hash
[i
].count
= 0;
6442 napi
->gro_bitmask
= 0;
6445 void netif_napi_add(struct net_device
*dev
, struct napi_struct
*napi
,
6446 int (*poll
)(struct napi_struct
*, int), int weight
)
6448 INIT_LIST_HEAD(&napi
->poll_list
);
6449 hrtimer_init(&napi
->timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL_PINNED
);
6450 napi
->timer
.function
= napi_watchdog
;
6451 init_gro_hash(napi
);
6453 INIT_LIST_HEAD(&napi
->rx_list
);
6456 if (weight
> NAPI_POLL_WEIGHT
)
6457 netdev_err_once(dev
, "%s() called with weight %d\n", __func__
,
6459 napi
->weight
= weight
;
6460 list_add(&napi
->dev_list
, &dev
->napi_list
);
6462 #ifdef CONFIG_NETPOLL
6463 napi
->poll_owner
= -1;
6465 set_bit(NAPI_STATE_SCHED
, &napi
->state
);
6466 napi_hash_add(napi
);
6468 EXPORT_SYMBOL(netif_napi_add
);
6470 void napi_disable(struct napi_struct
*n
)
6473 set_bit(NAPI_STATE_DISABLE
, &n
->state
);
6475 while (test_and_set_bit(NAPI_STATE_SCHED
, &n
->state
))
6477 while (test_and_set_bit(NAPI_STATE_NPSVC
, &n
->state
))
6480 hrtimer_cancel(&n
->timer
);
6482 clear_bit(NAPI_STATE_DISABLE
, &n
->state
);
6484 EXPORT_SYMBOL(napi_disable
);
6486 static void flush_gro_hash(struct napi_struct
*napi
)
6490 for (i
= 0; i
< GRO_HASH_BUCKETS
; i
++) {
6491 struct sk_buff
*skb
, *n
;
6493 list_for_each_entry_safe(skb
, n
, &napi
->gro_hash
[i
].list
, list
)
6495 napi
->gro_hash
[i
].count
= 0;
6499 /* Must be called in process context */
6500 void netif_napi_del(struct napi_struct
*napi
)
6503 if (napi_hash_del(napi
))
6505 list_del_init(&napi
->dev_list
);
6506 napi_free_frags(napi
);
6508 flush_gro_hash(napi
);
6509 napi
->gro_bitmask
= 0;
6511 EXPORT_SYMBOL(netif_napi_del
);
6513 static int napi_poll(struct napi_struct
*n
, struct list_head
*repoll
)
6518 list_del_init(&n
->poll_list
);
6520 have
= netpoll_poll_lock(n
);
6524 /* This NAPI_STATE_SCHED test is for avoiding a race
6525 * with netpoll's poll_napi(). Only the entity which
6526 * obtains the lock and sees NAPI_STATE_SCHED set will
6527 * actually make the ->poll() call. Therefore we avoid
6528 * accidentally calling ->poll() when NAPI is not scheduled.
6531 if (test_bit(NAPI_STATE_SCHED
, &n
->state
)) {
6532 work
= n
->poll(n
, weight
);
6533 trace_napi_poll(n
, work
, weight
);
6536 WARN_ON_ONCE(work
> weight
);
6538 if (likely(work
< weight
))
6541 /* Drivers must not modify the NAPI state if they
6542 * consume the entire weight. In such cases this code
6543 * still "owns" the NAPI instance and therefore can
6544 * move the instance around on the list at-will.
6546 if (unlikely(napi_disable_pending(n
))) {
6553 if (n
->gro_bitmask
) {
6554 /* flush too old packets
6555 * If HZ < 1000, flush all packets.
6557 napi_gro_flush(n
, HZ
>= 1000);
6560 /* Some drivers may have called napi_schedule
6561 * prior to exhausting their budget.
6563 if (unlikely(!list_empty(&n
->poll_list
))) {
6564 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6565 n
->dev
? n
->dev
->name
: "backlog");
6569 list_add_tail(&n
->poll_list
, repoll
);
6572 netpoll_poll_unlock(have
);
6577 static __latent_entropy
void net_rx_action(struct softirq_action
*h
)
6579 struct softnet_data
*sd
= this_cpu_ptr(&softnet_data
);
6580 unsigned long time_limit
= jiffies
+
6581 usecs_to_jiffies(netdev_budget_usecs
);
6582 int budget
= netdev_budget
;
6586 local_irq_disable();
6587 list_splice_init(&sd
->poll_list
, &list
);
6591 struct napi_struct
*n
;
6593 if (list_empty(&list
)) {
6594 if (!sd_has_rps_ipi_waiting(sd
) && list_empty(&repoll
))
6599 n
= list_first_entry(&list
, struct napi_struct
, poll_list
);
6600 budget
-= napi_poll(n
, &repoll
);
6602 /* If softirq window is exhausted then punt.
6603 * Allow this to run for 2 jiffies since which will allow
6604 * an average latency of 1.5/HZ.
6606 if (unlikely(budget
<= 0 ||
6607 time_after_eq(jiffies
, time_limit
))) {
6613 local_irq_disable();
6615 list_splice_tail_init(&sd
->poll_list
, &list
);
6616 list_splice_tail(&repoll
, &list
);
6617 list_splice(&list
, &sd
->poll_list
);
6618 if (!list_empty(&sd
->poll_list
))
6619 __raise_softirq_irqoff(NET_RX_SOFTIRQ
);
6621 net_rps_action_and_irq_enable(sd
);
6623 __kfree_skb_flush();
6626 struct netdev_adjacent
{
6627 struct net_device
*dev
;
6629 /* upper master flag, there can only be one master device per list */
6632 /* lookup ignore flag */
6635 /* counter for the number of times this device was added to us */
6638 /* private field for the users */
6641 struct list_head list
;
6642 struct rcu_head rcu
;
6645 static struct netdev_adjacent
*__netdev_find_adj(struct net_device
*adj_dev
,
6646 struct list_head
*adj_list
)
6648 struct netdev_adjacent
*adj
;
6650 list_for_each_entry(adj
, adj_list
, list
) {
6651 if (adj
->dev
== adj_dev
)
6657 static int ____netdev_has_upper_dev(struct net_device
*upper_dev
, void *data
)
6659 struct net_device
*dev
= data
;
6661 return upper_dev
== dev
;
6665 * netdev_has_upper_dev - Check if device is linked to an upper device
6667 * @upper_dev: upper device to check
6669 * Find out if a device is linked to specified upper device and return true
6670 * in case it is. Note that this checks only immediate upper device,
6671 * not through a complete stack of devices. The caller must hold the RTNL lock.
6673 bool netdev_has_upper_dev(struct net_device
*dev
,
6674 struct net_device
*upper_dev
)
6678 return netdev_walk_all_upper_dev_rcu(dev
, ____netdev_has_upper_dev
,
6681 EXPORT_SYMBOL(netdev_has_upper_dev
);
6684 * netdev_has_upper_dev_all - Check if device is linked to an upper device
6686 * @upper_dev: upper device to check
6688 * Find out if a device is linked to specified upper device and return true
6689 * in case it is. Note that this checks the entire upper device chain.
6690 * The caller must hold rcu lock.
6693 bool netdev_has_upper_dev_all_rcu(struct net_device
*dev
,
6694 struct net_device
*upper_dev
)
6696 return !!netdev_walk_all_upper_dev_rcu(dev
, ____netdev_has_upper_dev
,
6699 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu
);
6702 * netdev_has_any_upper_dev - Check if device is linked to some device
6705 * Find out if a device is linked to an upper device and return true in case
6706 * it is. The caller must hold the RTNL lock.
6708 bool netdev_has_any_upper_dev(struct net_device
*dev
)
6712 return !list_empty(&dev
->adj_list
.upper
);
6714 EXPORT_SYMBOL(netdev_has_any_upper_dev
);
6717 * netdev_master_upper_dev_get - Get master upper device
6720 * Find a master upper device and return pointer to it or NULL in case
6721 * it's not there. The caller must hold the RTNL lock.
6723 struct net_device
*netdev_master_upper_dev_get(struct net_device
*dev
)
6725 struct netdev_adjacent
*upper
;
6729 if (list_empty(&dev
->adj_list
.upper
))
6732 upper
= list_first_entry(&dev
->adj_list
.upper
,
6733 struct netdev_adjacent
, list
);
6734 if (likely(upper
->master
))
6738 EXPORT_SYMBOL(netdev_master_upper_dev_get
);
6740 static struct net_device
*__netdev_master_upper_dev_get(struct net_device
*dev
)
6742 struct netdev_adjacent
*upper
;
6746 if (list_empty(&dev
->adj_list
.upper
))
6749 upper
= list_first_entry(&dev
->adj_list
.upper
,
6750 struct netdev_adjacent
, list
);
6751 if (likely(upper
->master
) && !upper
->ignore
)
6757 * netdev_has_any_lower_dev - Check if device is linked to some device
6760 * Find out if a device is linked to a lower device and return true in case
6761 * it is. The caller must hold the RTNL lock.
6763 static bool netdev_has_any_lower_dev(struct net_device
*dev
)
6767 return !list_empty(&dev
->adj_list
.lower
);
6770 void *netdev_adjacent_get_private(struct list_head
*adj_list
)
6772 struct netdev_adjacent
*adj
;
6774 adj
= list_entry(adj_list
, struct netdev_adjacent
, list
);
6776 return adj
->private;
6778 EXPORT_SYMBOL(netdev_adjacent_get_private
);
6781 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6783 * @iter: list_head ** of the current position
6785 * Gets the next device from the dev's upper list, starting from iter
6786 * position. The caller must hold RCU read lock.
6788 struct net_device
*netdev_upper_get_next_dev_rcu(struct net_device
*dev
,
6789 struct list_head
**iter
)
6791 struct netdev_adjacent
*upper
;
6793 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6795 upper
= list_entry_rcu((*iter
)->next
, struct netdev_adjacent
, list
);
6797 if (&upper
->list
== &dev
->adj_list
.upper
)
6800 *iter
= &upper
->list
;
6804 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu
);
6806 static struct net_device
*__netdev_next_upper_dev(struct net_device
*dev
,
6807 struct list_head
**iter
,
6810 struct netdev_adjacent
*upper
;
6812 upper
= list_entry((*iter
)->next
, struct netdev_adjacent
, list
);
6814 if (&upper
->list
== &dev
->adj_list
.upper
)
6817 *iter
= &upper
->list
;
6818 *ignore
= upper
->ignore
;
6823 static struct net_device
*netdev_next_upper_dev_rcu(struct net_device
*dev
,
6824 struct list_head
**iter
)
6826 struct netdev_adjacent
*upper
;
6828 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6830 upper
= list_entry_rcu((*iter
)->next
, struct netdev_adjacent
, list
);
6832 if (&upper
->list
== &dev
->adj_list
.upper
)
6835 *iter
= &upper
->list
;
6840 static int __netdev_walk_all_upper_dev(struct net_device
*dev
,
6841 int (*fn
)(struct net_device
*dev
,
6845 struct net_device
*udev
, *next
, *now
, *dev_stack
[MAX_NEST_DEV
+ 1];
6846 struct list_head
*niter
, *iter
, *iter_stack
[MAX_NEST_DEV
+ 1];
6851 iter
= &dev
->adj_list
.upper
;
6855 ret
= fn(now
, data
);
6862 udev
= __netdev_next_upper_dev(now
, &iter
, &ignore
);
6869 niter
= &udev
->adj_list
.upper
;
6870 dev_stack
[cur
] = now
;
6871 iter_stack
[cur
++] = iter
;
6878 next
= dev_stack
[--cur
];
6879 niter
= iter_stack
[cur
];
6889 int netdev_walk_all_upper_dev_rcu(struct net_device
*dev
,
6890 int (*fn
)(struct net_device
*dev
,
6894 struct net_device
*udev
, *next
, *now
, *dev_stack
[MAX_NEST_DEV
+ 1];
6895 struct list_head
*niter
, *iter
, *iter_stack
[MAX_NEST_DEV
+ 1];
6899 iter
= &dev
->adj_list
.upper
;
6903 ret
= fn(now
, data
);
6910 udev
= netdev_next_upper_dev_rcu(now
, &iter
);
6915 niter
= &udev
->adj_list
.upper
;
6916 dev_stack
[cur
] = now
;
6917 iter_stack
[cur
++] = iter
;
6924 next
= dev_stack
[--cur
];
6925 niter
= iter_stack
[cur
];
6934 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu
);
6936 static bool __netdev_has_upper_dev(struct net_device
*dev
,
6937 struct net_device
*upper_dev
)
6941 return __netdev_walk_all_upper_dev(dev
, ____netdev_has_upper_dev
,
6946 * netdev_lower_get_next_private - Get the next ->private from the
6947 * lower neighbour list
6949 * @iter: list_head ** of the current position
6951 * Gets the next netdev_adjacent->private from the dev's lower neighbour
6952 * list, starting from iter position. The caller must hold either hold the
6953 * RTNL lock or its own locking that guarantees that the neighbour lower
6954 * list will remain unchanged.
6956 void *netdev_lower_get_next_private(struct net_device
*dev
,
6957 struct list_head
**iter
)
6959 struct netdev_adjacent
*lower
;
6961 lower
= list_entry(*iter
, struct netdev_adjacent
, list
);
6963 if (&lower
->list
== &dev
->adj_list
.lower
)
6966 *iter
= lower
->list
.next
;
6968 return lower
->private;
6970 EXPORT_SYMBOL(netdev_lower_get_next_private
);
6973 * netdev_lower_get_next_private_rcu - Get the next ->private from the
6974 * lower neighbour list, RCU
6977 * @iter: list_head ** of the current position
6979 * Gets the next netdev_adjacent->private from the dev's lower neighbour
6980 * list, starting from iter position. The caller must hold RCU read lock.
6982 void *netdev_lower_get_next_private_rcu(struct net_device
*dev
,
6983 struct list_head
**iter
)
6985 struct netdev_adjacent
*lower
;
6987 WARN_ON_ONCE(!rcu_read_lock_held());
6989 lower
= list_entry_rcu((*iter
)->next
, struct netdev_adjacent
, list
);
6991 if (&lower
->list
== &dev
->adj_list
.lower
)
6994 *iter
= &lower
->list
;
6996 return lower
->private;
6998 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu
);
7001 * netdev_lower_get_next - Get the next device from the lower neighbour
7004 * @iter: list_head ** of the current position
7006 * Gets the next netdev_adjacent from the dev's lower neighbour
7007 * list, starting from iter position. The caller must hold RTNL lock or
7008 * its own locking that guarantees that the neighbour lower
7009 * list will remain unchanged.
7011 void *netdev_lower_get_next(struct net_device
*dev
, struct list_head
**iter
)
7013 struct netdev_adjacent
*lower
;
7015 lower
= list_entry(*iter
, struct netdev_adjacent
, list
);
7017 if (&lower
->list
== &dev
->adj_list
.lower
)
7020 *iter
= lower
->list
.next
;
7024 EXPORT_SYMBOL(netdev_lower_get_next
);
7026 static struct net_device
*netdev_next_lower_dev(struct net_device
*dev
,
7027 struct list_head
**iter
)
7029 struct netdev_adjacent
*lower
;
7031 lower
= list_entry((*iter
)->next
, struct netdev_adjacent
, list
);
7033 if (&lower
->list
== &dev
->adj_list
.lower
)
7036 *iter
= &lower
->list
;
7041 static struct net_device
*__netdev_next_lower_dev(struct net_device
*dev
,
7042 struct list_head
**iter
,
7045 struct netdev_adjacent
*lower
;
7047 lower
= list_entry((*iter
)->next
, struct netdev_adjacent
, list
);
7049 if (&lower
->list
== &dev
->adj_list
.lower
)
7052 *iter
= &lower
->list
;
7053 *ignore
= lower
->ignore
;
7058 int netdev_walk_all_lower_dev(struct net_device
*dev
,
7059 int (*fn
)(struct net_device
*dev
,
7063 struct net_device
*ldev
, *next
, *now
, *dev_stack
[MAX_NEST_DEV
+ 1];
7064 struct list_head
*niter
, *iter
, *iter_stack
[MAX_NEST_DEV
+ 1];
7068 iter
= &dev
->adj_list
.lower
;
7072 ret
= fn(now
, data
);
7079 ldev
= netdev_next_lower_dev(now
, &iter
);
7084 niter
= &ldev
->adj_list
.lower
;
7085 dev_stack
[cur
] = now
;
7086 iter_stack
[cur
++] = iter
;
7093 next
= dev_stack
[--cur
];
7094 niter
= iter_stack
[cur
];
7103 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev
);
7105 static int __netdev_walk_all_lower_dev(struct net_device
*dev
,
7106 int (*fn
)(struct net_device
*dev
,
7110 struct net_device
*ldev
, *next
, *now
, *dev_stack
[MAX_NEST_DEV
+ 1];
7111 struct list_head
*niter
, *iter
, *iter_stack
[MAX_NEST_DEV
+ 1];
7116 iter
= &dev
->adj_list
.lower
;
7120 ret
= fn(now
, data
);
7127 ldev
= __netdev_next_lower_dev(now
, &iter
, &ignore
);
7134 niter
= &ldev
->adj_list
.lower
;
7135 dev_stack
[cur
] = now
;
7136 iter_stack
[cur
++] = iter
;
7143 next
= dev_stack
[--cur
];
7144 niter
= iter_stack
[cur
];
7154 static struct net_device
*netdev_next_lower_dev_rcu(struct net_device
*dev
,
7155 struct list_head
**iter
)
7157 struct netdev_adjacent
*lower
;
7159 lower
= list_entry_rcu((*iter
)->next
, struct netdev_adjacent
, list
);
7160 if (&lower
->list
== &dev
->adj_list
.lower
)
7163 *iter
= &lower
->list
;
7168 static u8
__netdev_upper_depth(struct net_device
*dev
)
7170 struct net_device
*udev
;
7171 struct list_head
*iter
;
7175 for (iter
= &dev
->adj_list
.upper
,
7176 udev
= __netdev_next_upper_dev(dev
, &iter
, &ignore
);
7178 udev
= __netdev_next_upper_dev(dev
, &iter
, &ignore
)) {
7181 if (max_depth
< udev
->upper_level
)
7182 max_depth
= udev
->upper_level
;
7188 static u8
__netdev_lower_depth(struct net_device
*dev
)
7190 struct net_device
*ldev
;
7191 struct list_head
*iter
;
7195 for (iter
= &dev
->adj_list
.lower
,
7196 ldev
= __netdev_next_lower_dev(dev
, &iter
, &ignore
);
7198 ldev
= __netdev_next_lower_dev(dev
, &iter
, &ignore
)) {
7201 if (max_depth
< ldev
->lower_level
)
7202 max_depth
= ldev
->lower_level
;
7208 static int __netdev_update_upper_level(struct net_device
*dev
, void *data
)
7210 dev
->upper_level
= __netdev_upper_depth(dev
) + 1;
7214 static int __netdev_update_lower_level(struct net_device
*dev
, void *data
)
7216 dev
->lower_level
= __netdev_lower_depth(dev
) + 1;
7220 int netdev_walk_all_lower_dev_rcu(struct net_device
*dev
,
7221 int (*fn
)(struct net_device
*dev
,
7225 struct net_device
*ldev
, *next
, *now
, *dev_stack
[MAX_NEST_DEV
+ 1];
7226 struct list_head
*niter
, *iter
, *iter_stack
[MAX_NEST_DEV
+ 1];
7230 iter
= &dev
->adj_list
.lower
;
7234 ret
= fn(now
, data
);
7241 ldev
= netdev_next_lower_dev_rcu(now
, &iter
);
7246 niter
= &ldev
->adj_list
.lower
;
7247 dev_stack
[cur
] = now
;
7248 iter_stack
[cur
++] = iter
;
7255 next
= dev_stack
[--cur
];
7256 niter
= iter_stack
[cur
];
7265 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu
);
7268 * netdev_lower_get_first_private_rcu - Get the first ->private from the
7269 * lower neighbour list, RCU
7273 * Gets the first netdev_adjacent->private from the dev's lower neighbour
7274 * list. The caller must hold RCU read lock.
7276 void *netdev_lower_get_first_private_rcu(struct net_device
*dev
)
7278 struct netdev_adjacent
*lower
;
7280 lower
= list_first_or_null_rcu(&dev
->adj_list
.lower
,
7281 struct netdev_adjacent
, list
);
7283 return lower
->private;
7286 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu
);
7289 * netdev_master_upper_dev_get_rcu - Get master upper device
7292 * Find a master upper device and return pointer to it or NULL in case
7293 * it's not there. The caller must hold the RCU read lock.
7295 struct net_device
*netdev_master_upper_dev_get_rcu(struct net_device
*dev
)
7297 struct netdev_adjacent
*upper
;
7299 upper
= list_first_or_null_rcu(&dev
->adj_list
.upper
,
7300 struct netdev_adjacent
, list
);
7301 if (upper
&& likely(upper
->master
))
7305 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu
);
7307 static int netdev_adjacent_sysfs_add(struct net_device
*dev
,
7308 struct net_device
*adj_dev
,
7309 struct list_head
*dev_list
)
7311 char linkname
[IFNAMSIZ
+7];
7313 sprintf(linkname
, dev_list
== &dev
->adj_list
.upper
?
7314 "upper_%s" : "lower_%s", adj_dev
->name
);
7315 return sysfs_create_link(&(dev
->dev
.kobj
), &(adj_dev
->dev
.kobj
),
7318 static void netdev_adjacent_sysfs_del(struct net_device
*dev
,
7320 struct list_head
*dev_list
)
7322 char linkname
[IFNAMSIZ
+7];
7324 sprintf(linkname
, dev_list
== &dev
->adj_list
.upper
?
7325 "upper_%s" : "lower_%s", name
);
7326 sysfs_remove_link(&(dev
->dev
.kobj
), linkname
);
7329 static inline bool netdev_adjacent_is_neigh_list(struct net_device
*dev
,
7330 struct net_device
*adj_dev
,
7331 struct list_head
*dev_list
)
7333 return (dev_list
== &dev
->adj_list
.upper
||
7334 dev_list
== &dev
->adj_list
.lower
) &&
7335 net_eq(dev_net(dev
), dev_net(adj_dev
));
7338 static int __netdev_adjacent_dev_insert(struct net_device
*dev
,
7339 struct net_device
*adj_dev
,
7340 struct list_head
*dev_list
,
7341 void *private, bool master
)
7343 struct netdev_adjacent
*adj
;
7346 adj
= __netdev_find_adj(adj_dev
, dev_list
);
7350 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7351 dev
->name
, adj_dev
->name
, adj
->ref_nr
);
7356 adj
= kmalloc(sizeof(*adj
), GFP_KERNEL
);
7361 adj
->master
= master
;
7363 adj
->private = private;
7364 adj
->ignore
= false;
7367 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7368 dev
->name
, adj_dev
->name
, adj
->ref_nr
, adj_dev
->name
);
7370 if (netdev_adjacent_is_neigh_list(dev
, adj_dev
, dev_list
)) {
7371 ret
= netdev_adjacent_sysfs_add(dev
, adj_dev
, dev_list
);
7376 /* Ensure that master link is always the first item in list. */
7378 ret
= sysfs_create_link(&(dev
->dev
.kobj
),
7379 &(adj_dev
->dev
.kobj
), "master");
7381 goto remove_symlinks
;
7383 list_add_rcu(&adj
->list
, dev_list
);
7385 list_add_tail_rcu(&adj
->list
, dev_list
);
7391 if (netdev_adjacent_is_neigh_list(dev
, adj_dev
, dev_list
))
7392 netdev_adjacent_sysfs_del(dev
, adj_dev
->name
, dev_list
);
7400 static void __netdev_adjacent_dev_remove(struct net_device
*dev
,
7401 struct net_device
*adj_dev
,
7403 struct list_head
*dev_list
)
7405 struct netdev_adjacent
*adj
;
7407 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7408 dev
->name
, adj_dev
->name
, ref_nr
);
7410 adj
= __netdev_find_adj(adj_dev
, dev_list
);
7413 pr_err("Adjacency does not exist for device %s from %s\n",
7414 dev
->name
, adj_dev
->name
);
7419 if (adj
->ref_nr
> ref_nr
) {
7420 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7421 dev
->name
, adj_dev
->name
, ref_nr
,
7422 adj
->ref_nr
- ref_nr
);
7423 adj
->ref_nr
-= ref_nr
;
7428 sysfs_remove_link(&(dev
->dev
.kobj
), "master");
7430 if (netdev_adjacent_is_neigh_list(dev
, adj_dev
, dev_list
))
7431 netdev_adjacent_sysfs_del(dev
, adj_dev
->name
, dev_list
);
7433 list_del_rcu(&adj
->list
);
7434 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7435 adj_dev
->name
, dev
->name
, adj_dev
->name
);
7437 kfree_rcu(adj
, rcu
);
7440 static int __netdev_adjacent_dev_link_lists(struct net_device
*dev
,
7441 struct net_device
*upper_dev
,
7442 struct list_head
*up_list
,
7443 struct list_head
*down_list
,
7444 void *private, bool master
)
7448 ret
= __netdev_adjacent_dev_insert(dev
, upper_dev
, up_list
,
7453 ret
= __netdev_adjacent_dev_insert(upper_dev
, dev
, down_list
,
7456 __netdev_adjacent_dev_remove(dev
, upper_dev
, 1, up_list
);
7463 static void __netdev_adjacent_dev_unlink_lists(struct net_device
*dev
,
7464 struct net_device
*upper_dev
,
7466 struct list_head
*up_list
,
7467 struct list_head
*down_list
)
7469 __netdev_adjacent_dev_remove(dev
, upper_dev
, ref_nr
, up_list
);
7470 __netdev_adjacent_dev_remove(upper_dev
, dev
, ref_nr
, down_list
);
7473 static int __netdev_adjacent_dev_link_neighbour(struct net_device
*dev
,
7474 struct net_device
*upper_dev
,
7475 void *private, bool master
)
7477 return __netdev_adjacent_dev_link_lists(dev
, upper_dev
,
7478 &dev
->adj_list
.upper
,
7479 &upper_dev
->adj_list
.lower
,
7483 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device
*dev
,
7484 struct net_device
*upper_dev
)
7486 __netdev_adjacent_dev_unlink_lists(dev
, upper_dev
, 1,
7487 &dev
->adj_list
.upper
,
7488 &upper_dev
->adj_list
.lower
);
7491 static int __netdev_upper_dev_link(struct net_device
*dev
,
7492 struct net_device
*upper_dev
, bool master
,
7493 void *upper_priv
, void *upper_info
,
7494 struct netlink_ext_ack
*extack
)
7496 struct netdev_notifier_changeupper_info changeupper_info
= {
7501 .upper_dev
= upper_dev
,
7504 .upper_info
= upper_info
,
7506 struct net_device
*master_dev
;
7511 if (dev
== upper_dev
)
7514 /* To prevent loops, check if dev is not upper device to upper_dev. */
7515 if (__netdev_has_upper_dev(upper_dev
, dev
))
7518 if ((dev
->lower_level
+ upper_dev
->upper_level
) > MAX_NEST_DEV
)
7522 if (__netdev_has_upper_dev(dev
, upper_dev
))
7525 master_dev
= __netdev_master_upper_dev_get(dev
);
7527 return master_dev
== upper_dev
? -EEXIST
: -EBUSY
;
7530 ret
= call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER
,
7531 &changeupper_info
.info
);
7532 ret
= notifier_to_errno(ret
);
7536 ret
= __netdev_adjacent_dev_link_neighbour(dev
, upper_dev
, upper_priv
,
7541 ret
= call_netdevice_notifiers_info(NETDEV_CHANGEUPPER
,
7542 &changeupper_info
.info
);
7543 ret
= notifier_to_errno(ret
);
7547 __netdev_update_upper_level(dev
, NULL
);
7548 __netdev_walk_all_lower_dev(dev
, __netdev_update_upper_level
, NULL
);
7550 __netdev_update_lower_level(upper_dev
, NULL
);
7551 __netdev_walk_all_upper_dev(upper_dev
, __netdev_update_lower_level
,
7557 __netdev_adjacent_dev_unlink_neighbour(dev
, upper_dev
);
7563 * netdev_upper_dev_link - Add a link to the upper device
7565 * @upper_dev: new upper device
7566 * @extack: netlink extended ack
7568 * Adds a link to device which is upper to this one. The caller must hold
7569 * the RTNL lock. On a failure a negative errno code is returned.
7570 * On success the reference counts are adjusted and the function
7573 int netdev_upper_dev_link(struct net_device
*dev
,
7574 struct net_device
*upper_dev
,
7575 struct netlink_ext_ack
*extack
)
7577 return __netdev_upper_dev_link(dev
, upper_dev
, false,
7578 NULL
, NULL
, extack
);
7580 EXPORT_SYMBOL(netdev_upper_dev_link
);
7583 * netdev_master_upper_dev_link - Add a master link to the upper device
7585 * @upper_dev: new upper device
7586 * @upper_priv: upper device private
7587 * @upper_info: upper info to be passed down via notifier
7588 * @extack: netlink extended ack
7590 * Adds a link to device which is upper to this one. In this case, only
7591 * one master upper device can be linked, although other non-master devices
7592 * might be linked as well. The caller must hold the RTNL lock.
7593 * On a failure a negative errno code is returned. On success the reference
7594 * counts are adjusted and the function returns zero.
7596 int netdev_master_upper_dev_link(struct net_device
*dev
,
7597 struct net_device
*upper_dev
,
7598 void *upper_priv
, void *upper_info
,
7599 struct netlink_ext_ack
*extack
)
7601 return __netdev_upper_dev_link(dev
, upper_dev
, true,
7602 upper_priv
, upper_info
, extack
);
7604 EXPORT_SYMBOL(netdev_master_upper_dev_link
);
7607 * netdev_upper_dev_unlink - Removes a link to upper device
7609 * @upper_dev: new upper device
7611 * Removes a link to device which is upper to this one. The caller must hold
7614 void netdev_upper_dev_unlink(struct net_device
*dev
,
7615 struct net_device
*upper_dev
)
7617 struct netdev_notifier_changeupper_info changeupper_info
= {
7621 .upper_dev
= upper_dev
,
7627 changeupper_info
.master
= netdev_master_upper_dev_get(dev
) == upper_dev
;
7629 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER
,
7630 &changeupper_info
.info
);
7632 __netdev_adjacent_dev_unlink_neighbour(dev
, upper_dev
);
7634 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER
,
7635 &changeupper_info
.info
);
7637 __netdev_update_upper_level(dev
, NULL
);
7638 __netdev_walk_all_lower_dev(dev
, __netdev_update_upper_level
, NULL
);
7640 __netdev_update_lower_level(upper_dev
, NULL
);
7641 __netdev_walk_all_upper_dev(upper_dev
, __netdev_update_lower_level
,
7644 EXPORT_SYMBOL(netdev_upper_dev_unlink
);
7646 static void __netdev_adjacent_dev_set(struct net_device
*upper_dev
,
7647 struct net_device
*lower_dev
,
7650 struct netdev_adjacent
*adj
;
7652 adj
= __netdev_find_adj(lower_dev
, &upper_dev
->adj_list
.lower
);
7656 adj
= __netdev_find_adj(upper_dev
, &lower_dev
->adj_list
.upper
);
7661 static void netdev_adjacent_dev_disable(struct net_device
*upper_dev
,
7662 struct net_device
*lower_dev
)
7664 __netdev_adjacent_dev_set(upper_dev
, lower_dev
, true);
7667 static void netdev_adjacent_dev_enable(struct net_device
*upper_dev
,
7668 struct net_device
*lower_dev
)
7670 __netdev_adjacent_dev_set(upper_dev
, lower_dev
, false);
7673 int netdev_adjacent_change_prepare(struct net_device
*old_dev
,
7674 struct net_device
*new_dev
,
7675 struct net_device
*dev
,
7676 struct netlink_ext_ack
*extack
)
7683 if (old_dev
&& new_dev
!= old_dev
)
7684 netdev_adjacent_dev_disable(dev
, old_dev
);
7686 err
= netdev_upper_dev_link(new_dev
, dev
, extack
);
7688 if (old_dev
&& new_dev
!= old_dev
)
7689 netdev_adjacent_dev_enable(dev
, old_dev
);
7695 EXPORT_SYMBOL(netdev_adjacent_change_prepare
);
7697 void netdev_adjacent_change_commit(struct net_device
*old_dev
,
7698 struct net_device
*new_dev
,
7699 struct net_device
*dev
)
7701 if (!new_dev
|| !old_dev
)
7704 if (new_dev
== old_dev
)
7707 netdev_adjacent_dev_enable(dev
, old_dev
);
7708 netdev_upper_dev_unlink(old_dev
, dev
);
7710 EXPORT_SYMBOL(netdev_adjacent_change_commit
);
7712 void netdev_adjacent_change_abort(struct net_device
*old_dev
,
7713 struct net_device
*new_dev
,
7714 struct net_device
*dev
)
7719 if (old_dev
&& new_dev
!= old_dev
)
7720 netdev_adjacent_dev_enable(dev
, old_dev
);
7722 netdev_upper_dev_unlink(new_dev
, dev
);
7724 EXPORT_SYMBOL(netdev_adjacent_change_abort
);
7727 * netdev_bonding_info_change - Dispatch event about slave change
7729 * @bonding_info: info to dispatch
7731 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7732 * The caller must hold the RTNL lock.
7734 void netdev_bonding_info_change(struct net_device
*dev
,
7735 struct netdev_bonding_info
*bonding_info
)
7737 struct netdev_notifier_bonding_info info
= {
7741 memcpy(&info
.bonding_info
, bonding_info
,
7742 sizeof(struct netdev_bonding_info
));
7743 call_netdevice_notifiers_info(NETDEV_BONDING_INFO
,
7746 EXPORT_SYMBOL(netdev_bonding_info_change
);
7748 static void netdev_adjacent_add_links(struct net_device
*dev
)
7750 struct netdev_adjacent
*iter
;
7752 struct net
*net
= dev_net(dev
);
7754 list_for_each_entry(iter
, &dev
->adj_list
.upper
, list
) {
7755 if (!net_eq(net
, dev_net(iter
->dev
)))
7757 netdev_adjacent_sysfs_add(iter
->dev
, dev
,
7758 &iter
->dev
->adj_list
.lower
);
7759 netdev_adjacent_sysfs_add(dev
, iter
->dev
,
7760 &dev
->adj_list
.upper
);
7763 list_for_each_entry(iter
, &dev
->adj_list
.lower
, list
) {
7764 if (!net_eq(net
, dev_net(iter
->dev
)))
7766 netdev_adjacent_sysfs_add(iter
->dev
, dev
,
7767 &iter
->dev
->adj_list
.upper
);
7768 netdev_adjacent_sysfs_add(dev
, iter
->dev
,
7769 &dev
->adj_list
.lower
);
7773 static void netdev_adjacent_del_links(struct net_device
*dev
)
7775 struct netdev_adjacent
*iter
;
7777 struct net
*net
= dev_net(dev
);
7779 list_for_each_entry(iter
, &dev
->adj_list
.upper
, list
) {
7780 if (!net_eq(net
, dev_net(iter
->dev
)))
7782 netdev_adjacent_sysfs_del(iter
->dev
, dev
->name
,
7783 &iter
->dev
->adj_list
.lower
);
7784 netdev_adjacent_sysfs_del(dev
, iter
->dev
->name
,
7785 &dev
->adj_list
.upper
);
7788 list_for_each_entry(iter
, &dev
->adj_list
.lower
, list
) {
7789 if (!net_eq(net
, dev_net(iter
->dev
)))
7791 netdev_adjacent_sysfs_del(iter
->dev
, dev
->name
,
7792 &iter
->dev
->adj_list
.upper
);
7793 netdev_adjacent_sysfs_del(dev
, iter
->dev
->name
,
7794 &dev
->adj_list
.lower
);
7798 void netdev_adjacent_rename_links(struct net_device
*dev
, char *oldname
)
7800 struct netdev_adjacent
*iter
;
7802 struct net
*net
= dev_net(dev
);
7804 list_for_each_entry(iter
, &dev
->adj_list
.upper
, list
) {
7805 if (!net_eq(net
, dev_net(iter
->dev
)))
7807 netdev_adjacent_sysfs_del(iter
->dev
, oldname
,
7808 &iter
->dev
->adj_list
.lower
);
7809 netdev_adjacent_sysfs_add(iter
->dev
, dev
,
7810 &iter
->dev
->adj_list
.lower
);
7813 list_for_each_entry(iter
, &dev
->adj_list
.lower
, list
) {
7814 if (!net_eq(net
, dev_net(iter
->dev
)))
7816 netdev_adjacent_sysfs_del(iter
->dev
, oldname
,
7817 &iter
->dev
->adj_list
.upper
);
7818 netdev_adjacent_sysfs_add(iter
->dev
, dev
,
7819 &iter
->dev
->adj_list
.upper
);
7823 void *netdev_lower_dev_get_private(struct net_device
*dev
,
7824 struct net_device
*lower_dev
)
7826 struct netdev_adjacent
*lower
;
7830 lower
= __netdev_find_adj(lower_dev
, &dev
->adj_list
.lower
);
7834 return lower
->private;
7836 EXPORT_SYMBOL(netdev_lower_dev_get_private
);
7840 * netdev_lower_change - Dispatch event about lower device state change
7841 * @lower_dev: device
7842 * @lower_state_info: state to dispatch
7844 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
7845 * The caller must hold the RTNL lock.
7847 void netdev_lower_state_changed(struct net_device
*lower_dev
,
7848 void *lower_state_info
)
7850 struct netdev_notifier_changelowerstate_info changelowerstate_info
= {
7851 .info
.dev
= lower_dev
,
7855 changelowerstate_info
.lower_state_info
= lower_state_info
;
7856 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE
,
7857 &changelowerstate_info
.info
);
7859 EXPORT_SYMBOL(netdev_lower_state_changed
);
7861 static void dev_change_rx_flags(struct net_device
*dev
, int flags
)
7863 const struct net_device_ops
*ops
= dev
->netdev_ops
;
7865 if (ops
->ndo_change_rx_flags
)
7866 ops
->ndo_change_rx_flags(dev
, flags
);
7869 static int __dev_set_promiscuity(struct net_device
*dev
, int inc
, bool notify
)
7871 unsigned int old_flags
= dev
->flags
;
7877 dev
->flags
|= IFF_PROMISC
;
7878 dev
->promiscuity
+= inc
;
7879 if (dev
->promiscuity
== 0) {
7882 * If inc causes overflow, untouch promisc and return error.
7885 dev
->flags
&= ~IFF_PROMISC
;
7887 dev
->promiscuity
-= inc
;
7888 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
7893 if (dev
->flags
!= old_flags
) {
7894 pr_info("device %s %s promiscuous mode\n",
7896 dev
->flags
& IFF_PROMISC
? "entered" : "left");
7897 if (audit_enabled
) {
7898 current_uid_gid(&uid
, &gid
);
7899 audit_log(audit_context(), GFP_ATOMIC
,
7900 AUDIT_ANOM_PROMISCUOUS
,
7901 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
7902 dev
->name
, (dev
->flags
& IFF_PROMISC
),
7903 (old_flags
& IFF_PROMISC
),
7904 from_kuid(&init_user_ns
, audit_get_loginuid(current
)),
7905 from_kuid(&init_user_ns
, uid
),
7906 from_kgid(&init_user_ns
, gid
),
7907 audit_get_sessionid(current
));
7910 dev_change_rx_flags(dev
, IFF_PROMISC
);
7913 __dev_notify_flags(dev
, old_flags
, IFF_PROMISC
);
7918 * dev_set_promiscuity - update promiscuity count on a device
7922 * Add or remove promiscuity from a device. While the count in the device
7923 * remains above zero the interface remains promiscuous. Once it hits zero
7924 * the device reverts back to normal filtering operation. A negative inc
7925 * value is used to drop promiscuity on the device.
7926 * Return 0 if successful or a negative errno code on error.
7928 int dev_set_promiscuity(struct net_device
*dev
, int inc
)
7930 unsigned int old_flags
= dev
->flags
;
7933 err
= __dev_set_promiscuity(dev
, inc
, true);
7936 if (dev
->flags
!= old_flags
)
7937 dev_set_rx_mode(dev
);
7940 EXPORT_SYMBOL(dev_set_promiscuity
);
7942 static int __dev_set_allmulti(struct net_device
*dev
, int inc
, bool notify
)
7944 unsigned int old_flags
= dev
->flags
, old_gflags
= dev
->gflags
;
7948 dev
->flags
|= IFF_ALLMULTI
;
7949 dev
->allmulti
+= inc
;
7950 if (dev
->allmulti
== 0) {
7953 * If inc causes overflow, untouch allmulti and return error.
7956 dev
->flags
&= ~IFF_ALLMULTI
;
7958 dev
->allmulti
-= inc
;
7959 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
7964 if (dev
->flags
^ old_flags
) {
7965 dev_change_rx_flags(dev
, IFF_ALLMULTI
);
7966 dev_set_rx_mode(dev
);
7968 __dev_notify_flags(dev
, old_flags
,
7969 dev
->gflags
^ old_gflags
);
7975 * dev_set_allmulti - update allmulti count on a device
7979 * Add or remove reception of all multicast frames to a device. While the
7980 * count in the device remains above zero the interface remains listening
7981 * to all interfaces. Once it hits zero the device reverts back to normal
7982 * filtering operation. A negative @inc value is used to drop the counter
7983 * when releasing a resource needing all multicasts.
7984 * Return 0 if successful or a negative errno code on error.
7987 int dev_set_allmulti(struct net_device
*dev
, int inc
)
7989 return __dev_set_allmulti(dev
, inc
, true);
7991 EXPORT_SYMBOL(dev_set_allmulti
);
7994 * Upload unicast and multicast address lists to device and
7995 * configure RX filtering. When the device doesn't support unicast
7996 * filtering it is put in promiscuous mode while unicast addresses
7999 void __dev_set_rx_mode(struct net_device
*dev
)
8001 const struct net_device_ops
*ops
= dev
->netdev_ops
;
8003 /* dev_open will call this function so the list will stay sane. */
8004 if (!(dev
->flags
&IFF_UP
))
8007 if (!netif_device_present(dev
))
8010 if (!(dev
->priv_flags
& IFF_UNICAST_FLT
)) {
8011 /* Unicast addresses changes may only happen under the rtnl,
8012 * therefore calling __dev_set_promiscuity here is safe.
8014 if (!netdev_uc_empty(dev
) && !dev
->uc_promisc
) {
8015 __dev_set_promiscuity(dev
, 1, false);
8016 dev
->uc_promisc
= true;
8017 } else if (netdev_uc_empty(dev
) && dev
->uc_promisc
) {
8018 __dev_set_promiscuity(dev
, -1, false);
8019 dev
->uc_promisc
= false;
8023 if (ops
->ndo_set_rx_mode
)
8024 ops
->ndo_set_rx_mode(dev
);
8027 void dev_set_rx_mode(struct net_device
*dev
)
8029 netif_addr_lock_bh(dev
);
8030 __dev_set_rx_mode(dev
);
8031 netif_addr_unlock_bh(dev
);
8035 * dev_get_flags - get flags reported to userspace
8038 * Get the combination of flag bits exported through APIs to userspace.
8040 unsigned int dev_get_flags(const struct net_device
*dev
)
8044 flags
= (dev
->flags
& ~(IFF_PROMISC
|
8049 (dev
->gflags
& (IFF_PROMISC
|
8052 if (netif_running(dev
)) {
8053 if (netif_oper_up(dev
))
8054 flags
|= IFF_RUNNING
;
8055 if (netif_carrier_ok(dev
))
8056 flags
|= IFF_LOWER_UP
;
8057 if (netif_dormant(dev
))
8058 flags
|= IFF_DORMANT
;
8063 EXPORT_SYMBOL(dev_get_flags
);
8065 int __dev_change_flags(struct net_device
*dev
, unsigned int flags
,
8066 struct netlink_ext_ack
*extack
)
8068 unsigned int old_flags
= dev
->flags
;
8074 * Set the flags on our device.
8077 dev
->flags
= (flags
& (IFF_DEBUG
| IFF_NOTRAILERS
| IFF_NOARP
|
8078 IFF_DYNAMIC
| IFF_MULTICAST
| IFF_PORTSEL
|
8080 (dev
->flags
& (IFF_UP
| IFF_VOLATILE
| IFF_PROMISC
|
8084 * Load in the correct multicast list now the flags have changed.
8087 if ((old_flags
^ flags
) & IFF_MULTICAST
)
8088 dev_change_rx_flags(dev
, IFF_MULTICAST
);
8090 dev_set_rx_mode(dev
);
8093 * Have we downed the interface. We handle IFF_UP ourselves
8094 * according to user attempts to set it, rather than blindly
8099 if ((old_flags
^ flags
) & IFF_UP
) {
8100 if (old_flags
& IFF_UP
)
8103 ret
= __dev_open(dev
, extack
);
8106 if ((flags
^ dev
->gflags
) & IFF_PROMISC
) {
8107 int inc
= (flags
& IFF_PROMISC
) ? 1 : -1;
8108 unsigned int old_flags
= dev
->flags
;
8110 dev
->gflags
^= IFF_PROMISC
;
8112 if (__dev_set_promiscuity(dev
, inc
, false) >= 0)
8113 if (dev
->flags
!= old_flags
)
8114 dev_set_rx_mode(dev
);
8117 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8118 * is important. Some (broken) drivers set IFF_PROMISC, when
8119 * IFF_ALLMULTI is requested not asking us and not reporting.
8121 if ((flags
^ dev
->gflags
) & IFF_ALLMULTI
) {
8122 int inc
= (flags
& IFF_ALLMULTI
) ? 1 : -1;
8124 dev
->gflags
^= IFF_ALLMULTI
;
8125 __dev_set_allmulti(dev
, inc
, false);
8131 void __dev_notify_flags(struct net_device
*dev
, unsigned int old_flags
,
8132 unsigned int gchanges
)
8134 unsigned int changes
= dev
->flags
^ old_flags
;
8137 rtmsg_ifinfo(RTM_NEWLINK
, dev
, gchanges
, GFP_ATOMIC
);
8139 if (changes
& IFF_UP
) {
8140 if (dev
->flags
& IFF_UP
)
8141 call_netdevice_notifiers(NETDEV_UP
, dev
);
8143 call_netdevice_notifiers(NETDEV_DOWN
, dev
);
8146 if (dev
->flags
& IFF_UP
&&
8147 (changes
& ~(IFF_UP
| IFF_PROMISC
| IFF_ALLMULTI
| IFF_VOLATILE
))) {
8148 struct netdev_notifier_change_info change_info
= {
8152 .flags_changed
= changes
,
8155 call_netdevice_notifiers_info(NETDEV_CHANGE
, &change_info
.info
);
8160 * dev_change_flags - change device settings
8162 * @flags: device state flags
8163 * @extack: netlink extended ack
8165 * Change settings on device based state flags. The flags are
8166 * in the userspace exported format.
8168 int dev_change_flags(struct net_device
*dev
, unsigned int flags
,
8169 struct netlink_ext_ack
*extack
)
8172 unsigned int changes
, old_flags
= dev
->flags
, old_gflags
= dev
->gflags
;
8174 ret
= __dev_change_flags(dev
, flags
, extack
);
8178 changes
= (old_flags
^ dev
->flags
) | (old_gflags
^ dev
->gflags
);
8179 __dev_notify_flags(dev
, old_flags
, changes
);
8182 EXPORT_SYMBOL(dev_change_flags
);
8184 int __dev_set_mtu(struct net_device
*dev
, int new_mtu
)
8186 const struct net_device_ops
*ops
= dev
->netdev_ops
;
8188 if (ops
->ndo_change_mtu
)
8189 return ops
->ndo_change_mtu(dev
, new_mtu
);
8194 EXPORT_SYMBOL(__dev_set_mtu
);
8197 * dev_set_mtu_ext - Change maximum transfer unit
8199 * @new_mtu: new transfer unit
8200 * @extack: netlink extended ack
8202 * Change the maximum transfer size of the network device.
8204 int dev_set_mtu_ext(struct net_device
*dev
, int new_mtu
,
8205 struct netlink_ext_ack
*extack
)
8209 if (new_mtu
== dev
->mtu
)
8212 /* MTU must be positive, and in range */
8213 if (new_mtu
< 0 || new_mtu
< dev
->min_mtu
) {
8214 NL_SET_ERR_MSG(extack
, "mtu less than device minimum");
8218 if (dev
->max_mtu
> 0 && new_mtu
> dev
->max_mtu
) {
8219 NL_SET_ERR_MSG(extack
, "mtu greater than device maximum");
8223 if (!netif_device_present(dev
))
8226 err
= call_netdevice_notifiers(NETDEV_PRECHANGEMTU
, dev
);
8227 err
= notifier_to_errno(err
);
8231 orig_mtu
= dev
->mtu
;
8232 err
= __dev_set_mtu(dev
, new_mtu
);
8235 err
= call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU
, dev
,
8237 err
= notifier_to_errno(err
);
8239 /* setting mtu back and notifying everyone again,
8240 * so that they have a chance to revert changes.
8242 __dev_set_mtu(dev
, orig_mtu
);
8243 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU
, dev
,
8250 int dev_set_mtu(struct net_device
*dev
, int new_mtu
)
8252 struct netlink_ext_ack extack
;
8255 memset(&extack
, 0, sizeof(extack
));
8256 err
= dev_set_mtu_ext(dev
, new_mtu
, &extack
);
8257 if (err
&& extack
._msg
)
8258 net_err_ratelimited("%s: %s\n", dev
->name
, extack
._msg
);
8261 EXPORT_SYMBOL(dev_set_mtu
);
8264 * dev_change_tx_queue_len - Change TX queue length of a netdevice
8266 * @new_len: new tx queue length
8268 int dev_change_tx_queue_len(struct net_device
*dev
, unsigned long new_len
)
8270 unsigned int orig_len
= dev
->tx_queue_len
;
8273 if (new_len
!= (unsigned int)new_len
)
8276 if (new_len
!= orig_len
) {
8277 dev
->tx_queue_len
= new_len
;
8278 res
= call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN
, dev
);
8279 res
= notifier_to_errno(res
);
8282 res
= dev_qdisc_change_tx_queue_len(dev
);
8290 netdev_err(dev
, "refused to change device tx_queue_len\n");
8291 dev
->tx_queue_len
= orig_len
;
8296 * dev_set_group - Change group this device belongs to
8298 * @new_group: group this device should belong to
8300 void dev_set_group(struct net_device
*dev
, int new_group
)
8302 dev
->group
= new_group
;
8304 EXPORT_SYMBOL(dev_set_group
);
8307 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8309 * @addr: new address
8310 * @extack: netlink extended ack
8312 int dev_pre_changeaddr_notify(struct net_device
*dev
, const char *addr
,
8313 struct netlink_ext_ack
*extack
)
8315 struct netdev_notifier_pre_changeaddr_info info
= {
8317 .info
.extack
= extack
,
8322 rc
= call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR
, &info
.info
);
8323 return notifier_to_errno(rc
);
8325 EXPORT_SYMBOL(dev_pre_changeaddr_notify
);
8328 * dev_set_mac_address - Change Media Access Control Address
8331 * @extack: netlink extended ack
8333 * Change the hardware (MAC) address of the device
8335 int dev_set_mac_address(struct net_device
*dev
, struct sockaddr
*sa
,
8336 struct netlink_ext_ack
*extack
)
8338 const struct net_device_ops
*ops
= dev
->netdev_ops
;
8341 if (!ops
->ndo_set_mac_address
)
8343 if (sa
->sa_family
!= dev
->type
)
8345 if (!netif_device_present(dev
))
8347 err
= dev_pre_changeaddr_notify(dev
, sa
->sa_data
, extack
);
8350 err
= ops
->ndo_set_mac_address(dev
, sa
);
8353 dev
->addr_assign_type
= NET_ADDR_SET
;
8354 call_netdevice_notifiers(NETDEV_CHANGEADDR
, dev
);
8355 add_device_randomness(dev
->dev_addr
, dev
->addr_len
);
8358 EXPORT_SYMBOL(dev_set_mac_address
);
8361 * dev_change_carrier - Change device carrier
8363 * @new_carrier: new value
8365 * Change device carrier
8367 int dev_change_carrier(struct net_device
*dev
, bool new_carrier
)
8369 const struct net_device_ops
*ops
= dev
->netdev_ops
;
8371 if (!ops
->ndo_change_carrier
)
8373 if (!netif_device_present(dev
))
8375 return ops
->ndo_change_carrier(dev
, new_carrier
);
8377 EXPORT_SYMBOL(dev_change_carrier
);
8380 * dev_get_phys_port_id - Get device physical port ID
8384 * Get device physical port ID
8386 int dev_get_phys_port_id(struct net_device
*dev
,
8387 struct netdev_phys_item_id
*ppid
)
8389 const struct net_device_ops
*ops
= dev
->netdev_ops
;
8391 if (!ops
->ndo_get_phys_port_id
)
8393 return ops
->ndo_get_phys_port_id(dev
, ppid
);
8395 EXPORT_SYMBOL(dev_get_phys_port_id
);
8398 * dev_get_phys_port_name - Get device physical port name
8401 * @len: limit of bytes to copy to name
8403 * Get device physical port name
8405 int dev_get_phys_port_name(struct net_device
*dev
,
8406 char *name
, size_t len
)
8408 const struct net_device_ops
*ops
= dev
->netdev_ops
;
8411 if (ops
->ndo_get_phys_port_name
) {
8412 err
= ops
->ndo_get_phys_port_name(dev
, name
, len
);
8413 if (err
!= -EOPNOTSUPP
)
8416 return devlink_compat_phys_port_name_get(dev
, name
, len
);
8418 EXPORT_SYMBOL(dev_get_phys_port_name
);
8421 * dev_get_port_parent_id - Get the device's port parent identifier
8422 * @dev: network device
8423 * @ppid: pointer to a storage for the port's parent identifier
8424 * @recurse: allow/disallow recursion to lower devices
8426 * Get the devices's port parent identifier
8428 int dev_get_port_parent_id(struct net_device
*dev
,
8429 struct netdev_phys_item_id
*ppid
,
8432 const struct net_device_ops
*ops
= dev
->netdev_ops
;
8433 struct netdev_phys_item_id first
= { };
8434 struct net_device
*lower_dev
;
8435 struct list_head
*iter
;
8438 if (ops
->ndo_get_port_parent_id
) {
8439 err
= ops
->ndo_get_port_parent_id(dev
, ppid
);
8440 if (err
!= -EOPNOTSUPP
)
8444 err
= devlink_compat_switch_id_get(dev
, ppid
);
8445 if (!err
|| err
!= -EOPNOTSUPP
)
8451 netdev_for_each_lower_dev(dev
, lower_dev
, iter
) {
8452 err
= dev_get_port_parent_id(lower_dev
, ppid
, recurse
);
8457 else if (memcmp(&first
, ppid
, sizeof(*ppid
)))
8463 EXPORT_SYMBOL(dev_get_port_parent_id
);
8466 * netdev_port_same_parent_id - Indicate if two network devices have
8467 * the same port parent identifier
8468 * @a: first network device
8469 * @b: second network device
8471 bool netdev_port_same_parent_id(struct net_device
*a
, struct net_device
*b
)
8473 struct netdev_phys_item_id a_id
= { };
8474 struct netdev_phys_item_id b_id
= { };
8476 if (dev_get_port_parent_id(a
, &a_id
, true) ||
8477 dev_get_port_parent_id(b
, &b_id
, true))
8480 return netdev_phys_item_id_same(&a_id
, &b_id
);
8482 EXPORT_SYMBOL(netdev_port_same_parent_id
);
8485 * dev_change_proto_down - update protocol port state information
8487 * @proto_down: new value
8489 * This info can be used by switch drivers to set the phys state of the
8492 int dev_change_proto_down(struct net_device
*dev
, bool proto_down
)
8494 const struct net_device_ops
*ops
= dev
->netdev_ops
;
8496 if (!ops
->ndo_change_proto_down
)
8498 if (!netif_device_present(dev
))
8500 return ops
->ndo_change_proto_down(dev
, proto_down
);
8502 EXPORT_SYMBOL(dev_change_proto_down
);
8505 * dev_change_proto_down_generic - generic implementation for
8506 * ndo_change_proto_down that sets carrier according to
8510 * @proto_down: new value
8512 int dev_change_proto_down_generic(struct net_device
*dev
, bool proto_down
)
8515 netif_carrier_off(dev
);
8517 netif_carrier_on(dev
);
8518 dev
->proto_down
= proto_down
;
8521 EXPORT_SYMBOL(dev_change_proto_down_generic
);
8523 u32
__dev_xdp_query(struct net_device
*dev
, bpf_op_t bpf_op
,
8524 enum bpf_netdev_command cmd
)
8526 struct netdev_bpf xdp
;
8531 memset(&xdp
, 0, sizeof(xdp
));
8534 /* Query must always succeed. */
8535 WARN_ON(bpf_op(dev
, &xdp
) < 0 && cmd
== XDP_QUERY_PROG
);
8540 static int dev_xdp_install(struct net_device
*dev
, bpf_op_t bpf_op
,
8541 struct netlink_ext_ack
*extack
, u32 flags
,
8542 struct bpf_prog
*prog
)
8544 struct netdev_bpf xdp
;
8546 memset(&xdp
, 0, sizeof(xdp
));
8547 if (flags
& XDP_FLAGS_HW_MODE
)
8548 xdp
.command
= XDP_SETUP_PROG_HW
;
8550 xdp
.command
= XDP_SETUP_PROG
;
8551 xdp
.extack
= extack
;
8555 return bpf_op(dev
, &xdp
);
8558 static void dev_xdp_uninstall(struct net_device
*dev
)
8560 struct netdev_bpf xdp
;
8563 /* Remove generic XDP */
8564 WARN_ON(dev_xdp_install(dev
, generic_xdp_install
, NULL
, 0, NULL
));
8566 /* Remove from the driver */
8567 ndo_bpf
= dev
->netdev_ops
->ndo_bpf
;
8571 memset(&xdp
, 0, sizeof(xdp
));
8572 xdp
.command
= XDP_QUERY_PROG
;
8573 WARN_ON(ndo_bpf(dev
, &xdp
));
8575 WARN_ON(dev_xdp_install(dev
, ndo_bpf
, NULL
, xdp
.prog_flags
,
8578 /* Remove HW offload */
8579 memset(&xdp
, 0, sizeof(xdp
));
8580 xdp
.command
= XDP_QUERY_PROG_HW
;
8581 if (!ndo_bpf(dev
, &xdp
) && xdp
.prog_id
)
8582 WARN_ON(dev_xdp_install(dev
, ndo_bpf
, NULL
, xdp
.prog_flags
,
8587 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
8589 * @extack: netlink extended ack
8590 * @fd: new program fd or negative value to clear
8591 * @flags: xdp-related flags
8593 * Set or clear a bpf program for a device
8595 int dev_change_xdp_fd(struct net_device
*dev
, struct netlink_ext_ack
*extack
,
8598 const struct net_device_ops
*ops
= dev
->netdev_ops
;
8599 enum bpf_netdev_command query
;
8600 struct bpf_prog
*prog
= NULL
;
8601 bpf_op_t bpf_op
, bpf_chk
;
8607 offload
= flags
& XDP_FLAGS_HW_MODE
;
8608 query
= offload
? XDP_QUERY_PROG_HW
: XDP_QUERY_PROG
;
8610 bpf_op
= bpf_chk
= ops
->ndo_bpf
;
8611 if (!bpf_op
&& (flags
& (XDP_FLAGS_DRV_MODE
| XDP_FLAGS_HW_MODE
))) {
8612 NL_SET_ERR_MSG(extack
, "underlying driver does not support XDP in native mode");
8615 if (!bpf_op
|| (flags
& XDP_FLAGS_SKB_MODE
))
8616 bpf_op
= generic_xdp_install
;
8617 if (bpf_op
== bpf_chk
)
8618 bpf_chk
= generic_xdp_install
;
8623 if (!offload
&& __dev_xdp_query(dev
, bpf_chk
, XDP_QUERY_PROG
)) {
8624 NL_SET_ERR_MSG(extack
, "native and generic XDP can't be active at the same time");
8628 prog_id
= __dev_xdp_query(dev
, bpf_op
, query
);
8629 if ((flags
& XDP_FLAGS_UPDATE_IF_NOEXIST
) && prog_id
) {
8630 NL_SET_ERR_MSG(extack
, "XDP program already attached");
8634 prog
= bpf_prog_get_type_dev(fd
, BPF_PROG_TYPE_XDP
,
8635 bpf_op
== ops
->ndo_bpf
);
8637 return PTR_ERR(prog
);
8639 if (!offload
&& bpf_prog_is_dev_bound(prog
->aux
)) {
8640 NL_SET_ERR_MSG(extack
, "using device-bound program without HW_MODE flag is not supported");
8645 /* prog->aux->id may be 0 for orphaned device-bound progs */
8646 if (prog
->aux
->id
&& prog
->aux
->id
== prog_id
) {
8651 if (!__dev_xdp_query(dev
, bpf_op
, query
))
8655 err
= dev_xdp_install(dev
, bpf_op
, extack
, flags
, prog
);
8656 if (err
< 0 && prog
)
8663 * dev_new_index - allocate an ifindex
8664 * @net: the applicable net namespace
8666 * Returns a suitable unique value for a new device interface
8667 * number. The caller must hold the rtnl semaphore or the
8668 * dev_base_lock to be sure it remains unique.
8670 static int dev_new_index(struct net
*net
)
8672 int ifindex
= net
->ifindex
;
8677 if (!__dev_get_by_index(net
, ifindex
))
8678 return net
->ifindex
= ifindex
;
8682 /* Delayed registration/unregisteration */
8683 static LIST_HEAD(net_todo_list
);
8684 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq
);
8686 static void net_set_todo(struct net_device
*dev
)
8688 list_add_tail(&dev
->todo_list
, &net_todo_list
);
8689 dev_net(dev
)->dev_unreg_count
++;
8692 static void rollback_registered_many(struct list_head
*head
)
8694 struct net_device
*dev
, *tmp
;
8695 LIST_HEAD(close_head
);
8697 BUG_ON(dev_boot_phase
);
8700 list_for_each_entry_safe(dev
, tmp
, head
, unreg_list
) {
8701 /* Some devices call without registering
8702 * for initialization unwind. Remove those
8703 * devices and proceed with the remaining.
8705 if (dev
->reg_state
== NETREG_UNINITIALIZED
) {
8706 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
8710 list_del(&dev
->unreg_list
);
8713 dev
->dismantle
= true;
8714 BUG_ON(dev
->reg_state
!= NETREG_REGISTERED
);
8717 /* If device is running, close it first. */
8718 list_for_each_entry(dev
, head
, unreg_list
)
8719 list_add_tail(&dev
->close_list
, &close_head
);
8720 dev_close_many(&close_head
, true);
8722 list_for_each_entry(dev
, head
, unreg_list
) {
8723 /* And unlink it from device chain. */
8724 unlist_netdevice(dev
);
8726 dev
->reg_state
= NETREG_UNREGISTERING
;
8728 flush_all_backlogs();
8732 list_for_each_entry(dev
, head
, unreg_list
) {
8733 struct sk_buff
*skb
= NULL
;
8735 /* Shutdown queueing discipline. */
8738 dev_xdp_uninstall(dev
);
8740 /* Notify protocols, that we are about to destroy
8741 * this device. They should clean all the things.
8743 call_netdevice_notifiers(NETDEV_UNREGISTER
, dev
);
8745 if (!dev
->rtnl_link_ops
||
8746 dev
->rtnl_link_state
== RTNL_LINK_INITIALIZED
)
8747 skb
= rtmsg_ifinfo_build_skb(RTM_DELLINK
, dev
, ~0U, 0,
8748 GFP_KERNEL
, NULL
, 0);
8751 * Flush the unicast and multicast chains
8756 netdev_name_node_alt_flush(dev
);
8757 netdev_name_node_free(dev
->name_node
);
8759 if (dev
->netdev_ops
->ndo_uninit
)
8760 dev
->netdev_ops
->ndo_uninit(dev
);
8763 rtmsg_ifinfo_send(skb
, dev
, GFP_KERNEL
);
8765 /* Notifier chain MUST detach us all upper devices. */
8766 WARN_ON(netdev_has_any_upper_dev(dev
));
8767 WARN_ON(netdev_has_any_lower_dev(dev
));
8769 /* Remove entries from kobject tree */
8770 netdev_unregister_kobject(dev
);
8772 /* Remove XPS queueing entries */
8773 netif_reset_xps_queues_gt(dev
, 0);
8779 list_for_each_entry(dev
, head
, unreg_list
)
8783 static void rollback_registered(struct net_device
*dev
)
8787 list_add(&dev
->unreg_list
, &single
);
8788 rollback_registered_many(&single
);
8792 static netdev_features_t
netdev_sync_upper_features(struct net_device
*lower
,
8793 struct net_device
*upper
, netdev_features_t features
)
8795 netdev_features_t upper_disables
= NETIF_F_UPPER_DISABLES
;
8796 netdev_features_t feature
;
8799 for_each_netdev_feature(upper_disables
, feature_bit
) {
8800 feature
= __NETIF_F_BIT(feature_bit
);
8801 if (!(upper
->wanted_features
& feature
)
8802 && (features
& feature
)) {
8803 netdev_dbg(lower
, "Dropping feature %pNF, upper dev %s has it off.\n",
8804 &feature
, upper
->name
);
8805 features
&= ~feature
;
8812 static void netdev_sync_lower_features(struct net_device
*upper
,
8813 struct net_device
*lower
, netdev_features_t features
)
8815 netdev_features_t upper_disables
= NETIF_F_UPPER_DISABLES
;
8816 netdev_features_t feature
;
8819 for_each_netdev_feature(upper_disables
, feature_bit
) {
8820 feature
= __NETIF_F_BIT(feature_bit
);
8821 if (!(features
& feature
) && (lower
->features
& feature
)) {
8822 netdev_dbg(upper
, "Disabling feature %pNF on lower dev %s.\n",
8823 &feature
, lower
->name
);
8824 lower
->wanted_features
&= ~feature
;
8825 netdev_update_features(lower
);
8827 if (unlikely(lower
->features
& feature
))
8828 netdev_WARN(upper
, "failed to disable %pNF on %s!\n",
8829 &feature
, lower
->name
);
8834 static netdev_features_t
netdev_fix_features(struct net_device
*dev
,
8835 netdev_features_t features
)
8837 /* Fix illegal checksum combinations */
8838 if ((features
& NETIF_F_HW_CSUM
) &&
8839 (features
& (NETIF_F_IP_CSUM
|NETIF_F_IPV6_CSUM
))) {
8840 netdev_warn(dev
, "mixed HW and IP checksum settings.\n");
8841 features
&= ~(NETIF_F_IP_CSUM
|NETIF_F_IPV6_CSUM
);
8844 /* TSO requires that SG is present as well. */
8845 if ((features
& NETIF_F_ALL_TSO
) && !(features
& NETIF_F_SG
)) {
8846 netdev_dbg(dev
, "Dropping TSO features since no SG feature.\n");
8847 features
&= ~NETIF_F_ALL_TSO
;
8850 if ((features
& NETIF_F_TSO
) && !(features
& NETIF_F_HW_CSUM
) &&
8851 !(features
& NETIF_F_IP_CSUM
)) {
8852 netdev_dbg(dev
, "Dropping TSO features since no CSUM feature.\n");
8853 features
&= ~NETIF_F_TSO
;
8854 features
&= ~NETIF_F_TSO_ECN
;
8857 if ((features
& NETIF_F_TSO6
) && !(features
& NETIF_F_HW_CSUM
) &&
8858 !(features
& NETIF_F_IPV6_CSUM
)) {
8859 netdev_dbg(dev
, "Dropping TSO6 features since no CSUM feature.\n");
8860 features
&= ~NETIF_F_TSO6
;
8863 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
8864 if ((features
& NETIF_F_TSO_MANGLEID
) && !(features
& NETIF_F_TSO
))
8865 features
&= ~NETIF_F_TSO_MANGLEID
;
8867 /* TSO ECN requires that TSO is present as well. */
8868 if ((features
& NETIF_F_ALL_TSO
) == NETIF_F_TSO_ECN
)
8869 features
&= ~NETIF_F_TSO_ECN
;
8871 /* Software GSO depends on SG. */
8872 if ((features
& NETIF_F_GSO
) && !(features
& NETIF_F_SG
)) {
8873 netdev_dbg(dev
, "Dropping NETIF_F_GSO since no SG feature.\n");
8874 features
&= ~NETIF_F_GSO
;
8877 /* GSO partial features require GSO partial be set */
8878 if ((features
& dev
->gso_partial_features
) &&
8879 !(features
& NETIF_F_GSO_PARTIAL
)) {
8881 "Dropping partially supported GSO features since no GSO partial.\n");
8882 features
&= ~dev
->gso_partial_features
;
8885 if (!(features
& NETIF_F_RXCSUM
)) {
8886 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
8887 * successfully merged by hardware must also have the
8888 * checksum verified by hardware. If the user does not
8889 * want to enable RXCSUM, logically, we should disable GRO_HW.
8891 if (features
& NETIF_F_GRO_HW
) {
8892 netdev_dbg(dev
, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
8893 features
&= ~NETIF_F_GRO_HW
;
8897 /* LRO/HW-GRO features cannot be combined with RX-FCS */
8898 if (features
& NETIF_F_RXFCS
) {
8899 if (features
& NETIF_F_LRO
) {
8900 netdev_dbg(dev
, "Dropping LRO feature since RX-FCS is requested.\n");
8901 features
&= ~NETIF_F_LRO
;
8904 if (features
& NETIF_F_GRO_HW
) {
8905 netdev_dbg(dev
, "Dropping HW-GRO feature since RX-FCS is requested.\n");
8906 features
&= ~NETIF_F_GRO_HW
;
8913 int __netdev_update_features(struct net_device
*dev
)
8915 struct net_device
*upper
, *lower
;
8916 netdev_features_t features
;
8917 struct list_head
*iter
;
8922 features
= netdev_get_wanted_features(dev
);
8924 if (dev
->netdev_ops
->ndo_fix_features
)
8925 features
= dev
->netdev_ops
->ndo_fix_features(dev
, features
);
8927 /* driver might be less strict about feature dependencies */
8928 features
= netdev_fix_features(dev
, features
);
8930 /* some features can't be enabled if they're off an an upper device */
8931 netdev_for_each_upper_dev_rcu(dev
, upper
, iter
)
8932 features
= netdev_sync_upper_features(dev
, upper
, features
);
8934 if (dev
->features
== features
)
8937 netdev_dbg(dev
, "Features changed: %pNF -> %pNF\n",
8938 &dev
->features
, &features
);
8940 if (dev
->netdev_ops
->ndo_set_features
)
8941 err
= dev
->netdev_ops
->ndo_set_features(dev
, features
);
8945 if (unlikely(err
< 0)) {
8947 "set_features() failed (%d); wanted %pNF, left %pNF\n",
8948 err
, &features
, &dev
->features
);
8949 /* return non-0 since some features might have changed and
8950 * it's better to fire a spurious notification than miss it
8956 /* some features must be disabled on lower devices when disabled
8957 * on an upper device (think: bonding master or bridge)
8959 netdev_for_each_lower_dev(dev
, lower
, iter
)
8960 netdev_sync_lower_features(dev
, lower
, features
);
8963 netdev_features_t diff
= features
^ dev
->features
;
8965 if (diff
& NETIF_F_RX_UDP_TUNNEL_PORT
) {
8966 /* udp_tunnel_{get,drop}_rx_info both need
8967 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
8968 * device, or they won't do anything.
8969 * Thus we need to update dev->features
8970 * *before* calling udp_tunnel_get_rx_info,
8971 * but *after* calling udp_tunnel_drop_rx_info.
8973 if (features
& NETIF_F_RX_UDP_TUNNEL_PORT
) {
8974 dev
->features
= features
;
8975 udp_tunnel_get_rx_info(dev
);
8977 udp_tunnel_drop_rx_info(dev
);
8981 if (diff
& NETIF_F_HW_VLAN_CTAG_FILTER
) {
8982 if (features
& NETIF_F_HW_VLAN_CTAG_FILTER
) {
8983 dev
->features
= features
;
8984 err
|= vlan_get_rx_ctag_filter_info(dev
);
8986 vlan_drop_rx_ctag_filter_info(dev
);
8990 if (diff
& NETIF_F_HW_VLAN_STAG_FILTER
) {
8991 if (features
& NETIF_F_HW_VLAN_STAG_FILTER
) {
8992 dev
->features
= features
;
8993 err
|= vlan_get_rx_stag_filter_info(dev
);
8995 vlan_drop_rx_stag_filter_info(dev
);
8999 dev
->features
= features
;
9002 return err
< 0 ? 0 : 1;
9006 * netdev_update_features - recalculate device features
9007 * @dev: the device to check
9009 * Recalculate dev->features set and send notifications if it
9010 * has changed. Should be called after driver or hardware dependent
9011 * conditions might have changed that influence the features.
9013 void netdev_update_features(struct net_device
*dev
)
9015 if (__netdev_update_features(dev
))
9016 netdev_features_change(dev
);
9018 EXPORT_SYMBOL(netdev_update_features
);
9021 * netdev_change_features - recalculate device features
9022 * @dev: the device to check
9024 * Recalculate dev->features set and send notifications even
9025 * if they have not changed. Should be called instead of
9026 * netdev_update_features() if also dev->vlan_features might
9027 * have changed to allow the changes to be propagated to stacked
9030 void netdev_change_features(struct net_device
*dev
)
9032 __netdev_update_features(dev
);
9033 netdev_features_change(dev
);
9035 EXPORT_SYMBOL(netdev_change_features
);
9038 * netif_stacked_transfer_operstate - transfer operstate
9039 * @rootdev: the root or lower level device to transfer state from
9040 * @dev: the device to transfer operstate to
9042 * Transfer operational state from root to device. This is normally
9043 * called when a stacking relationship exists between the root
9044 * device and the device(a leaf device).
9046 void netif_stacked_transfer_operstate(const struct net_device
*rootdev
,
9047 struct net_device
*dev
)
9049 if (rootdev
->operstate
== IF_OPER_DORMANT
)
9050 netif_dormant_on(dev
);
9052 netif_dormant_off(dev
);
9054 if (netif_carrier_ok(rootdev
))
9055 netif_carrier_on(dev
);
9057 netif_carrier_off(dev
);
9059 EXPORT_SYMBOL(netif_stacked_transfer_operstate
);
9061 static int netif_alloc_rx_queues(struct net_device
*dev
)
9063 unsigned int i
, count
= dev
->num_rx_queues
;
9064 struct netdev_rx_queue
*rx
;
9065 size_t sz
= count
* sizeof(*rx
);
9070 rx
= kvzalloc(sz
, GFP_KERNEL
| __GFP_RETRY_MAYFAIL
);
9076 for (i
= 0; i
< count
; i
++) {
9079 /* XDP RX-queue setup */
9080 err
= xdp_rxq_info_reg(&rx
[i
].xdp_rxq
, dev
, i
);
9087 /* Rollback successful reg's and free other resources */
9089 xdp_rxq_info_unreg(&rx
[i
].xdp_rxq
);
9095 static void netif_free_rx_queues(struct net_device
*dev
)
9097 unsigned int i
, count
= dev
->num_rx_queues
;
9099 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9103 for (i
= 0; i
< count
; i
++)
9104 xdp_rxq_info_unreg(&dev
->_rx
[i
].xdp_rxq
);
9109 static void netdev_init_one_queue(struct net_device
*dev
,
9110 struct netdev_queue
*queue
, void *_unused
)
9112 /* Initialize queue lock */
9113 spin_lock_init(&queue
->_xmit_lock
);
9114 lockdep_set_class(&queue
->_xmit_lock
, &dev
->qdisc_xmit_lock_key
);
9115 queue
->xmit_lock_owner
= -1;
9116 netdev_queue_numa_node_write(queue
, NUMA_NO_NODE
);
9119 dql_init(&queue
->dql
, HZ
);
9123 static void netif_free_tx_queues(struct net_device
*dev
)
9128 static int netif_alloc_netdev_queues(struct net_device
*dev
)
9130 unsigned int count
= dev
->num_tx_queues
;
9131 struct netdev_queue
*tx
;
9132 size_t sz
= count
* sizeof(*tx
);
9134 if (count
< 1 || count
> 0xffff)
9137 tx
= kvzalloc(sz
, GFP_KERNEL
| __GFP_RETRY_MAYFAIL
);
9143 netdev_for_each_tx_queue(dev
, netdev_init_one_queue
, NULL
);
9144 spin_lock_init(&dev
->tx_global_lock
);
9149 void netif_tx_stop_all_queues(struct net_device
*dev
)
9153 for (i
= 0; i
< dev
->num_tx_queues
; i
++) {
9154 struct netdev_queue
*txq
= netdev_get_tx_queue(dev
, i
);
9156 netif_tx_stop_queue(txq
);
9159 EXPORT_SYMBOL(netif_tx_stop_all_queues
);
9161 static void netdev_register_lockdep_key(struct net_device
*dev
)
9163 lockdep_register_key(&dev
->qdisc_tx_busylock_key
);
9164 lockdep_register_key(&dev
->qdisc_running_key
);
9165 lockdep_register_key(&dev
->qdisc_xmit_lock_key
);
9166 lockdep_register_key(&dev
->addr_list_lock_key
);
9169 static void netdev_unregister_lockdep_key(struct net_device
*dev
)
9171 lockdep_unregister_key(&dev
->qdisc_tx_busylock_key
);
9172 lockdep_unregister_key(&dev
->qdisc_running_key
);
9173 lockdep_unregister_key(&dev
->qdisc_xmit_lock_key
);
9174 lockdep_unregister_key(&dev
->addr_list_lock_key
);
9177 void netdev_update_lockdep_key(struct net_device
*dev
)
9179 struct netdev_queue
*queue
;
9182 lockdep_unregister_key(&dev
->qdisc_xmit_lock_key
);
9183 lockdep_unregister_key(&dev
->addr_list_lock_key
);
9185 lockdep_register_key(&dev
->qdisc_xmit_lock_key
);
9186 lockdep_register_key(&dev
->addr_list_lock_key
);
9188 lockdep_set_class(&dev
->addr_list_lock
, &dev
->addr_list_lock_key
);
9189 for (i
= 0; i
< dev
->num_tx_queues
; i
++) {
9190 queue
= netdev_get_tx_queue(dev
, i
);
9192 lockdep_set_class(&queue
->_xmit_lock
,
9193 &dev
->qdisc_xmit_lock_key
);
9196 EXPORT_SYMBOL(netdev_update_lockdep_key
);
9199 * register_netdevice - register a network device
9200 * @dev: device to register
9202 * Take a completed network device structure and add it to the kernel
9203 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9204 * chain. 0 is returned on success. A negative errno code is returned
9205 * on a failure to set up the device, or if the name is a duplicate.
9207 * Callers must hold the rtnl semaphore. You may want
9208 * register_netdev() instead of this.
9211 * The locking appears insufficient to guarantee two parallel registers
9212 * will not get the same name.
9215 int register_netdevice(struct net_device
*dev
)
9218 struct net
*net
= dev_net(dev
);
9220 BUILD_BUG_ON(sizeof(netdev_features_t
) * BITS_PER_BYTE
<
9221 NETDEV_FEATURE_COUNT
);
9222 BUG_ON(dev_boot_phase
);
9227 /* When net_device's are persistent, this will be fatal. */
9228 BUG_ON(dev
->reg_state
!= NETREG_UNINITIALIZED
);
9231 spin_lock_init(&dev
->addr_list_lock
);
9232 lockdep_set_class(&dev
->addr_list_lock
, &dev
->addr_list_lock_key
);
9234 ret
= dev_get_valid_name(net
, dev
, dev
->name
);
9239 dev
->name_node
= netdev_name_node_head_alloc(dev
);
9240 if (!dev
->name_node
)
9243 /* Init, if this function is available */
9244 if (dev
->netdev_ops
->ndo_init
) {
9245 ret
= dev
->netdev_ops
->ndo_init(dev
);
9253 if (((dev
->hw_features
| dev
->features
) &
9254 NETIF_F_HW_VLAN_CTAG_FILTER
) &&
9255 (!dev
->netdev_ops
->ndo_vlan_rx_add_vid
||
9256 !dev
->netdev_ops
->ndo_vlan_rx_kill_vid
)) {
9257 netdev_WARN(dev
, "Buggy VLAN acceleration in driver!\n");
9264 dev
->ifindex
= dev_new_index(net
);
9265 else if (__dev_get_by_index(net
, dev
->ifindex
))
9268 /* Transfer changeable features to wanted_features and enable
9269 * software offloads (GSO and GRO).
9271 dev
->hw_features
|= NETIF_F_SOFT_FEATURES
;
9272 dev
->features
|= NETIF_F_SOFT_FEATURES
;
9274 if (dev
->netdev_ops
->ndo_udp_tunnel_add
) {
9275 dev
->features
|= NETIF_F_RX_UDP_TUNNEL_PORT
;
9276 dev
->hw_features
|= NETIF_F_RX_UDP_TUNNEL_PORT
;
9279 dev
->wanted_features
= dev
->features
& dev
->hw_features
;
9281 if (!(dev
->flags
& IFF_LOOPBACK
))
9282 dev
->hw_features
|= NETIF_F_NOCACHE_COPY
;
9284 /* If IPv4 TCP segmentation offload is supported we should also
9285 * allow the device to enable segmenting the frame with the option
9286 * of ignoring a static IP ID value. This doesn't enable the
9287 * feature itself but allows the user to enable it later.
9289 if (dev
->hw_features
& NETIF_F_TSO
)
9290 dev
->hw_features
|= NETIF_F_TSO_MANGLEID
;
9291 if (dev
->vlan_features
& NETIF_F_TSO
)
9292 dev
->vlan_features
|= NETIF_F_TSO_MANGLEID
;
9293 if (dev
->mpls_features
& NETIF_F_TSO
)
9294 dev
->mpls_features
|= NETIF_F_TSO_MANGLEID
;
9295 if (dev
->hw_enc_features
& NETIF_F_TSO
)
9296 dev
->hw_enc_features
|= NETIF_F_TSO_MANGLEID
;
9298 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
9300 dev
->vlan_features
|= NETIF_F_HIGHDMA
;
9302 /* Make NETIF_F_SG inheritable to tunnel devices.
9304 dev
->hw_enc_features
|= NETIF_F_SG
| NETIF_F_GSO_PARTIAL
;
9306 /* Make NETIF_F_SG inheritable to MPLS.
9308 dev
->mpls_features
|= NETIF_F_SG
;
9310 ret
= call_netdevice_notifiers(NETDEV_POST_INIT
, dev
);
9311 ret
= notifier_to_errno(ret
);
9315 ret
= netdev_register_kobject(dev
);
9318 dev
->reg_state
= NETREG_REGISTERED
;
9320 __netdev_update_features(dev
);
9323 * Default initial state at registry is that the
9324 * device is present.
9327 set_bit(__LINK_STATE_PRESENT
, &dev
->state
);
9329 linkwatch_init_dev(dev
);
9331 dev_init_scheduler(dev
);
9333 list_netdevice(dev
);
9334 add_device_randomness(dev
->dev_addr
, dev
->addr_len
);
9336 /* If the device has permanent device address, driver should
9337 * set dev_addr and also addr_assign_type should be set to
9338 * NET_ADDR_PERM (default value).
9340 if (dev
->addr_assign_type
== NET_ADDR_PERM
)
9341 memcpy(dev
->perm_addr
, dev
->dev_addr
, dev
->addr_len
);
9343 /* Notify protocols, that a new device appeared. */
9344 ret
= call_netdevice_notifiers(NETDEV_REGISTER
, dev
);
9345 ret
= notifier_to_errno(ret
);
9347 rollback_registered(dev
);
9350 dev
->reg_state
= NETREG_UNREGISTERED
;
9353 * Prevent userspace races by waiting until the network
9354 * device is fully setup before sending notifications.
9356 if (!dev
->rtnl_link_ops
||
9357 dev
->rtnl_link_state
== RTNL_LINK_INITIALIZED
)
9358 rtmsg_ifinfo(RTM_NEWLINK
, dev
, ~0U, GFP_KERNEL
);
9365 netdev_name_node_free(dev
->name_node
);
9366 if (dev
->netdev_ops
->ndo_uninit
)
9367 dev
->netdev_ops
->ndo_uninit(dev
);
9368 if (dev
->priv_destructor
)
9369 dev
->priv_destructor(dev
);
9372 EXPORT_SYMBOL(register_netdevice
);
9375 * init_dummy_netdev - init a dummy network device for NAPI
9376 * @dev: device to init
9378 * This takes a network device structure and initialize the minimum
9379 * amount of fields so it can be used to schedule NAPI polls without
9380 * registering a full blown interface. This is to be used by drivers
9381 * that need to tie several hardware interfaces to a single NAPI
9382 * poll scheduler due to HW limitations.
9384 int init_dummy_netdev(struct net_device
*dev
)
9386 /* Clear everything. Note we don't initialize spinlocks
9387 * are they aren't supposed to be taken by any of the
9388 * NAPI code and this dummy netdev is supposed to be
9389 * only ever used for NAPI polls
9391 memset(dev
, 0, sizeof(struct net_device
));
9393 /* make sure we BUG if trying to hit standard
9394 * register/unregister code path
9396 dev
->reg_state
= NETREG_DUMMY
;
9398 /* NAPI wants this */
9399 INIT_LIST_HEAD(&dev
->napi_list
);
9401 /* a dummy interface is started by default */
9402 set_bit(__LINK_STATE_PRESENT
, &dev
->state
);
9403 set_bit(__LINK_STATE_START
, &dev
->state
);
9405 /* napi_busy_loop stats accounting wants this */
9406 dev_net_set(dev
, &init_net
);
9408 /* Note : We dont allocate pcpu_refcnt for dummy devices,
9409 * because users of this 'device' dont need to change
9415 EXPORT_SYMBOL_GPL(init_dummy_netdev
);
9419 * register_netdev - register a network device
9420 * @dev: device to register
9422 * Take a completed network device structure and add it to the kernel
9423 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9424 * chain. 0 is returned on success. A negative errno code is returned
9425 * on a failure to set up the device, or if the name is a duplicate.
9427 * This is a wrapper around register_netdevice that takes the rtnl semaphore
9428 * and expands the device name if you passed a format string to
9431 int register_netdev(struct net_device
*dev
)
9435 if (rtnl_lock_killable())
9437 err
= register_netdevice(dev
);
9441 EXPORT_SYMBOL(register_netdev
);
9443 int netdev_refcnt_read(const struct net_device
*dev
)
9447 for_each_possible_cpu(i
)
9448 refcnt
+= *per_cpu_ptr(dev
->pcpu_refcnt
, i
);
9451 EXPORT_SYMBOL(netdev_refcnt_read
);
9454 * netdev_wait_allrefs - wait until all references are gone.
9455 * @dev: target net_device
9457 * This is called when unregistering network devices.
9459 * Any protocol or device that holds a reference should register
9460 * for netdevice notification, and cleanup and put back the
9461 * reference if they receive an UNREGISTER event.
9462 * We can get stuck here if buggy protocols don't correctly
9465 static void netdev_wait_allrefs(struct net_device
*dev
)
9467 unsigned long rebroadcast_time
, warning_time
;
9470 linkwatch_forget_dev(dev
);
9472 rebroadcast_time
= warning_time
= jiffies
;
9473 refcnt
= netdev_refcnt_read(dev
);
9475 while (refcnt
!= 0) {
9476 if (time_after(jiffies
, rebroadcast_time
+ 1 * HZ
)) {
9479 /* Rebroadcast unregister notification */
9480 call_netdevice_notifiers(NETDEV_UNREGISTER
, dev
);
9486 if (test_bit(__LINK_STATE_LINKWATCH_PENDING
,
9488 /* We must not have linkwatch events
9489 * pending on unregister. If this
9490 * happens, we simply run the queue
9491 * unscheduled, resulting in a noop
9494 linkwatch_run_queue();
9499 rebroadcast_time
= jiffies
;
9504 refcnt
= netdev_refcnt_read(dev
);
9506 if (refcnt
&& time_after(jiffies
, warning_time
+ 10 * HZ
)) {
9507 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
9509 warning_time
= jiffies
;
9518 * register_netdevice(x1);
9519 * register_netdevice(x2);
9521 * unregister_netdevice(y1);
9522 * unregister_netdevice(y2);
9528 * We are invoked by rtnl_unlock().
9529 * This allows us to deal with problems:
9530 * 1) We can delete sysfs objects which invoke hotplug
9531 * without deadlocking with linkwatch via keventd.
9532 * 2) Since we run with the RTNL semaphore not held, we can sleep
9533 * safely in order to wait for the netdev refcnt to drop to zero.
9535 * We must not return until all unregister events added during
9536 * the interval the lock was held have been completed.
9538 void netdev_run_todo(void)
9540 struct list_head list
;
9542 /* Snapshot list, allow later requests */
9543 list_replace_init(&net_todo_list
, &list
);
9548 /* Wait for rcu callbacks to finish before next phase */
9549 if (!list_empty(&list
))
9552 while (!list_empty(&list
)) {
9553 struct net_device
*dev
9554 = list_first_entry(&list
, struct net_device
, todo_list
);
9555 list_del(&dev
->todo_list
);
9557 if (unlikely(dev
->reg_state
!= NETREG_UNREGISTERING
)) {
9558 pr_err("network todo '%s' but state %d\n",
9559 dev
->name
, dev
->reg_state
);
9564 dev
->reg_state
= NETREG_UNREGISTERED
;
9566 netdev_wait_allrefs(dev
);
9569 BUG_ON(netdev_refcnt_read(dev
));
9570 BUG_ON(!list_empty(&dev
->ptype_all
));
9571 BUG_ON(!list_empty(&dev
->ptype_specific
));
9572 WARN_ON(rcu_access_pointer(dev
->ip_ptr
));
9573 WARN_ON(rcu_access_pointer(dev
->ip6_ptr
));
9574 #if IS_ENABLED(CONFIG_DECNET)
9575 WARN_ON(dev
->dn_ptr
);
9577 if (dev
->priv_destructor
)
9578 dev
->priv_destructor(dev
);
9579 if (dev
->needs_free_netdev
)
9582 /* Report a network device has been unregistered */
9584 dev_net(dev
)->dev_unreg_count
--;
9586 wake_up(&netdev_unregistering_wq
);
9588 /* Free network device */
9589 kobject_put(&dev
->dev
.kobj
);
9593 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
9594 * all the same fields in the same order as net_device_stats, with only
9595 * the type differing, but rtnl_link_stats64 may have additional fields
9596 * at the end for newer counters.
9598 void netdev_stats_to_stats64(struct rtnl_link_stats64
*stats64
,
9599 const struct net_device_stats
*netdev_stats
)
9601 #if BITS_PER_LONG == 64
9602 BUILD_BUG_ON(sizeof(*stats64
) < sizeof(*netdev_stats
));
9603 memcpy(stats64
, netdev_stats
, sizeof(*netdev_stats
));
9604 /* zero out counters that only exist in rtnl_link_stats64 */
9605 memset((char *)stats64
+ sizeof(*netdev_stats
), 0,
9606 sizeof(*stats64
) - sizeof(*netdev_stats
));
9608 size_t i
, n
= sizeof(*netdev_stats
) / sizeof(unsigned long);
9609 const unsigned long *src
= (const unsigned long *)netdev_stats
;
9610 u64
*dst
= (u64
*)stats64
;
9612 BUILD_BUG_ON(n
> sizeof(*stats64
) / sizeof(u64
));
9613 for (i
= 0; i
< n
; i
++)
9615 /* zero out counters that only exist in rtnl_link_stats64 */
9616 memset((char *)stats64
+ n
* sizeof(u64
), 0,
9617 sizeof(*stats64
) - n
* sizeof(u64
));
9620 EXPORT_SYMBOL(netdev_stats_to_stats64
);
9623 * dev_get_stats - get network device statistics
9624 * @dev: device to get statistics from
9625 * @storage: place to store stats
9627 * Get network statistics from device. Return @storage.
9628 * The device driver may provide its own method by setting
9629 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
9630 * otherwise the internal statistics structure is used.
9632 struct rtnl_link_stats64
*dev_get_stats(struct net_device
*dev
,
9633 struct rtnl_link_stats64
*storage
)
9635 const struct net_device_ops
*ops
= dev
->netdev_ops
;
9637 if (ops
->ndo_get_stats64
) {
9638 memset(storage
, 0, sizeof(*storage
));
9639 ops
->ndo_get_stats64(dev
, storage
);
9640 } else if (ops
->ndo_get_stats
) {
9641 netdev_stats_to_stats64(storage
, ops
->ndo_get_stats(dev
));
9643 netdev_stats_to_stats64(storage
, &dev
->stats
);
9645 storage
->rx_dropped
+= (unsigned long)atomic_long_read(&dev
->rx_dropped
);
9646 storage
->tx_dropped
+= (unsigned long)atomic_long_read(&dev
->tx_dropped
);
9647 storage
->rx_nohandler
+= (unsigned long)atomic_long_read(&dev
->rx_nohandler
);
9650 EXPORT_SYMBOL(dev_get_stats
);
9652 struct netdev_queue
*dev_ingress_queue_create(struct net_device
*dev
)
9654 struct netdev_queue
*queue
= dev_ingress_queue(dev
);
9656 #ifdef CONFIG_NET_CLS_ACT
9659 queue
= kzalloc(sizeof(*queue
), GFP_KERNEL
);
9662 netdev_init_one_queue(dev
, queue
, NULL
);
9663 RCU_INIT_POINTER(queue
->qdisc
, &noop_qdisc
);
9664 queue
->qdisc_sleeping
= &noop_qdisc
;
9665 rcu_assign_pointer(dev
->ingress_queue
, queue
);
9670 static const struct ethtool_ops default_ethtool_ops
;
9672 void netdev_set_default_ethtool_ops(struct net_device
*dev
,
9673 const struct ethtool_ops
*ops
)
9675 if (dev
->ethtool_ops
== &default_ethtool_ops
)
9676 dev
->ethtool_ops
= ops
;
9678 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops
);
9680 void netdev_freemem(struct net_device
*dev
)
9682 char *addr
= (char *)dev
- dev
->padded
;
9688 * alloc_netdev_mqs - allocate network device
9689 * @sizeof_priv: size of private data to allocate space for
9690 * @name: device name format string
9691 * @name_assign_type: origin of device name
9692 * @setup: callback to initialize device
9693 * @txqs: the number of TX subqueues to allocate
9694 * @rxqs: the number of RX subqueues to allocate
9696 * Allocates a struct net_device with private data area for driver use
9697 * and performs basic initialization. Also allocates subqueue structs
9698 * for each queue on the device.
9700 struct net_device
*alloc_netdev_mqs(int sizeof_priv
, const char *name
,
9701 unsigned char name_assign_type
,
9702 void (*setup
)(struct net_device
*),
9703 unsigned int txqs
, unsigned int rxqs
)
9705 struct net_device
*dev
;
9706 unsigned int alloc_size
;
9707 struct net_device
*p
;
9709 BUG_ON(strlen(name
) >= sizeof(dev
->name
));
9712 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
9717 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
9721 alloc_size
= sizeof(struct net_device
);
9723 /* ensure 32-byte alignment of private area */
9724 alloc_size
= ALIGN(alloc_size
, NETDEV_ALIGN
);
9725 alloc_size
+= sizeof_priv
;
9727 /* ensure 32-byte alignment of whole construct */
9728 alloc_size
+= NETDEV_ALIGN
- 1;
9730 p
= kvzalloc(alloc_size
, GFP_KERNEL
| __GFP_RETRY_MAYFAIL
);
9734 dev
= PTR_ALIGN(p
, NETDEV_ALIGN
);
9735 dev
->padded
= (char *)dev
- (char *)p
;
9737 dev
->pcpu_refcnt
= alloc_percpu(int);
9738 if (!dev
->pcpu_refcnt
)
9741 if (dev_addr_init(dev
))
9747 dev_net_set(dev
, &init_net
);
9749 netdev_register_lockdep_key(dev
);
9751 dev
->gso_max_size
= GSO_MAX_SIZE
;
9752 dev
->gso_max_segs
= GSO_MAX_SEGS
;
9753 dev
->upper_level
= 1;
9754 dev
->lower_level
= 1;
9756 INIT_LIST_HEAD(&dev
->napi_list
);
9757 INIT_LIST_HEAD(&dev
->unreg_list
);
9758 INIT_LIST_HEAD(&dev
->close_list
);
9759 INIT_LIST_HEAD(&dev
->link_watch_list
);
9760 INIT_LIST_HEAD(&dev
->adj_list
.upper
);
9761 INIT_LIST_HEAD(&dev
->adj_list
.lower
);
9762 INIT_LIST_HEAD(&dev
->ptype_all
);
9763 INIT_LIST_HEAD(&dev
->ptype_specific
);
9764 #ifdef CONFIG_NET_SCHED
9765 hash_init(dev
->qdisc_hash
);
9767 dev
->priv_flags
= IFF_XMIT_DST_RELEASE
| IFF_XMIT_DST_RELEASE_PERM
;
9770 if (!dev
->tx_queue_len
) {
9771 dev
->priv_flags
|= IFF_NO_QUEUE
;
9772 dev
->tx_queue_len
= DEFAULT_TX_QUEUE_LEN
;
9775 dev
->num_tx_queues
= txqs
;
9776 dev
->real_num_tx_queues
= txqs
;
9777 if (netif_alloc_netdev_queues(dev
))
9780 dev
->num_rx_queues
= rxqs
;
9781 dev
->real_num_rx_queues
= rxqs
;
9782 if (netif_alloc_rx_queues(dev
))
9785 strcpy(dev
->name
, name
);
9786 dev
->name_assign_type
= name_assign_type
;
9787 dev
->group
= INIT_NETDEV_GROUP
;
9788 if (!dev
->ethtool_ops
)
9789 dev
->ethtool_ops
= &default_ethtool_ops
;
9791 nf_hook_ingress_init(dev
);
9800 free_percpu(dev
->pcpu_refcnt
);
9802 netdev_freemem(dev
);
9805 EXPORT_SYMBOL(alloc_netdev_mqs
);
9808 * free_netdev - free network device
9811 * This function does the last stage of destroying an allocated device
9812 * interface. The reference to the device object is released. If this
9813 * is the last reference then it will be freed.Must be called in process
9816 void free_netdev(struct net_device
*dev
)
9818 struct napi_struct
*p
, *n
;
9821 netif_free_tx_queues(dev
);
9822 netif_free_rx_queues(dev
);
9824 kfree(rcu_dereference_protected(dev
->ingress_queue
, 1));
9826 /* Flush device addresses */
9827 dev_addr_flush(dev
);
9829 list_for_each_entry_safe(p
, n
, &dev
->napi_list
, dev_list
)
9832 free_percpu(dev
->pcpu_refcnt
);
9833 dev
->pcpu_refcnt
= NULL
;
9835 netdev_unregister_lockdep_key(dev
);
9837 /* Compatibility with error handling in drivers */
9838 if (dev
->reg_state
== NETREG_UNINITIALIZED
) {
9839 netdev_freemem(dev
);
9843 BUG_ON(dev
->reg_state
!= NETREG_UNREGISTERED
);
9844 dev
->reg_state
= NETREG_RELEASED
;
9846 /* will free via device release */
9847 put_device(&dev
->dev
);
9849 EXPORT_SYMBOL(free_netdev
);
9852 * synchronize_net - Synchronize with packet receive processing
9854 * Wait for packets currently being received to be done.
9855 * Does not block later packets from starting.
9857 void synchronize_net(void)
9860 if (rtnl_is_locked())
9861 synchronize_rcu_expedited();
9865 EXPORT_SYMBOL(synchronize_net
);
9868 * unregister_netdevice_queue - remove device from the kernel
9872 * This function shuts down a device interface and removes it
9873 * from the kernel tables.
9874 * If head not NULL, device is queued to be unregistered later.
9876 * Callers must hold the rtnl semaphore. You may want
9877 * unregister_netdev() instead of this.
9880 void unregister_netdevice_queue(struct net_device
*dev
, struct list_head
*head
)
9885 list_move_tail(&dev
->unreg_list
, head
);
9887 rollback_registered(dev
);
9888 /* Finish processing unregister after unlock */
9892 EXPORT_SYMBOL(unregister_netdevice_queue
);
9895 * unregister_netdevice_many - unregister many devices
9896 * @head: list of devices
9898 * Note: As most callers use a stack allocated list_head,
9899 * we force a list_del() to make sure stack wont be corrupted later.
9901 void unregister_netdevice_many(struct list_head
*head
)
9903 struct net_device
*dev
;
9905 if (!list_empty(head
)) {
9906 rollback_registered_many(head
);
9907 list_for_each_entry(dev
, head
, unreg_list
)
9912 EXPORT_SYMBOL(unregister_netdevice_many
);
9915 * unregister_netdev - remove device from the kernel
9918 * This function shuts down a device interface and removes it
9919 * from the kernel tables.
9921 * This is just a wrapper for unregister_netdevice that takes
9922 * the rtnl semaphore. In general you want to use this and not
9923 * unregister_netdevice.
9925 void unregister_netdev(struct net_device
*dev
)
9928 unregister_netdevice(dev
);
9931 EXPORT_SYMBOL(unregister_netdev
);
9934 * dev_change_net_namespace - move device to different nethost namespace
9936 * @net: network namespace
9937 * @pat: If not NULL name pattern to try if the current device name
9938 * is already taken in the destination network namespace.
9940 * This function shuts down a device interface and moves it
9941 * to a new network namespace. On success 0 is returned, on
9942 * a failure a netagive errno code is returned.
9944 * Callers must hold the rtnl semaphore.
9947 int dev_change_net_namespace(struct net_device
*dev
, struct net
*net
, const char *pat
)
9949 int err
, new_nsid
, new_ifindex
;
9953 /* Don't allow namespace local devices to be moved. */
9955 if (dev
->features
& NETIF_F_NETNS_LOCAL
)
9958 /* Ensure the device has been registrered */
9959 if (dev
->reg_state
!= NETREG_REGISTERED
)
9962 /* Get out if there is nothing todo */
9964 if (net_eq(dev_net(dev
), net
))
9967 /* Pick the destination device name, and ensure
9968 * we can use it in the destination network namespace.
9971 if (__dev_get_by_name(net
, dev
->name
)) {
9972 /* We get here if we can't use the current device name */
9975 err
= dev_get_valid_name(net
, dev
, pat
);
9981 * And now a mini version of register_netdevice unregister_netdevice.
9984 /* If device is running close it first. */
9987 /* And unlink it from device chain */
9988 unlist_netdevice(dev
);
9992 /* Shutdown queueing discipline. */
9995 /* Notify protocols, that we are about to destroy
9996 * this device. They should clean all the things.
9998 * Note that dev->reg_state stays at NETREG_REGISTERED.
9999 * This is wanted because this way 8021q and macvlan know
10000 * the device is just moving and can keep their slaves up.
10002 call_netdevice_notifiers(NETDEV_UNREGISTER
, dev
);
10005 new_nsid
= peernet2id_alloc(dev_net(dev
), net
, GFP_KERNEL
);
10006 /* If there is an ifindex conflict assign a new one */
10007 if (__dev_get_by_index(net
, dev
->ifindex
))
10008 new_ifindex
= dev_new_index(net
);
10010 new_ifindex
= dev
->ifindex
;
10012 rtmsg_ifinfo_newnet(RTM_DELLINK
, dev
, ~0U, GFP_KERNEL
, &new_nsid
,
10016 * Flush the unicast and multicast chains
10021 /* Send a netdev-removed uevent to the old namespace */
10022 kobject_uevent(&dev
->dev
.kobj
, KOBJ_REMOVE
);
10023 netdev_adjacent_del_links(dev
);
10025 /* Actually switch the network namespace */
10026 dev_net_set(dev
, net
);
10027 dev
->ifindex
= new_ifindex
;
10029 /* Send a netdev-add uevent to the new namespace */
10030 kobject_uevent(&dev
->dev
.kobj
, KOBJ_ADD
);
10031 netdev_adjacent_add_links(dev
);
10033 /* Fixup kobjects */
10034 err
= device_rename(&dev
->dev
, dev
->name
);
10037 /* Add the device back in the hashes */
10038 list_netdevice(dev
);
10040 /* Notify protocols, that a new device appeared. */
10041 call_netdevice_notifiers(NETDEV_REGISTER
, dev
);
10044 * Prevent userspace races by waiting until the network
10045 * device is fully setup before sending notifications.
10047 rtmsg_ifinfo(RTM_NEWLINK
, dev
, ~0U, GFP_KERNEL
);
10054 EXPORT_SYMBOL_GPL(dev_change_net_namespace
);
10056 static int dev_cpu_dead(unsigned int oldcpu
)
10058 struct sk_buff
**list_skb
;
10059 struct sk_buff
*skb
;
10061 struct softnet_data
*sd
, *oldsd
, *remsd
= NULL
;
10063 local_irq_disable();
10064 cpu
= smp_processor_id();
10065 sd
= &per_cpu(softnet_data
, cpu
);
10066 oldsd
= &per_cpu(softnet_data
, oldcpu
);
10068 /* Find end of our completion_queue. */
10069 list_skb
= &sd
->completion_queue
;
10071 list_skb
= &(*list_skb
)->next
;
10072 /* Append completion queue from offline CPU. */
10073 *list_skb
= oldsd
->completion_queue
;
10074 oldsd
->completion_queue
= NULL
;
10076 /* Append output queue from offline CPU. */
10077 if (oldsd
->output_queue
) {
10078 *sd
->output_queue_tailp
= oldsd
->output_queue
;
10079 sd
->output_queue_tailp
= oldsd
->output_queue_tailp
;
10080 oldsd
->output_queue
= NULL
;
10081 oldsd
->output_queue_tailp
= &oldsd
->output_queue
;
10083 /* Append NAPI poll list from offline CPU, with one exception :
10084 * process_backlog() must be called by cpu owning percpu backlog.
10085 * We properly handle process_queue & input_pkt_queue later.
10087 while (!list_empty(&oldsd
->poll_list
)) {
10088 struct napi_struct
*napi
= list_first_entry(&oldsd
->poll_list
,
10089 struct napi_struct
,
10092 list_del_init(&napi
->poll_list
);
10093 if (napi
->poll
== process_backlog
)
10096 ____napi_schedule(sd
, napi
);
10099 raise_softirq_irqoff(NET_TX_SOFTIRQ
);
10100 local_irq_enable();
10103 remsd
= oldsd
->rps_ipi_list
;
10104 oldsd
->rps_ipi_list
= NULL
;
10106 /* send out pending IPI's on offline CPU */
10107 net_rps_send_ipi(remsd
);
10109 /* Process offline CPU's input_pkt_queue */
10110 while ((skb
= __skb_dequeue(&oldsd
->process_queue
))) {
10112 input_queue_head_incr(oldsd
);
10114 while ((skb
= skb_dequeue(&oldsd
->input_pkt_queue
))) {
10116 input_queue_head_incr(oldsd
);
10123 * netdev_increment_features - increment feature set by one
10124 * @all: current feature set
10125 * @one: new feature set
10126 * @mask: mask feature set
10128 * Computes a new feature set after adding a device with feature set
10129 * @one to the master device with current feature set @all. Will not
10130 * enable anything that is off in @mask. Returns the new feature set.
10132 netdev_features_t
netdev_increment_features(netdev_features_t all
,
10133 netdev_features_t one
, netdev_features_t mask
)
10135 if (mask
& NETIF_F_HW_CSUM
)
10136 mask
|= NETIF_F_CSUM_MASK
;
10137 mask
|= NETIF_F_VLAN_CHALLENGED
;
10139 all
|= one
& (NETIF_F_ONE_FOR_ALL
| NETIF_F_CSUM_MASK
) & mask
;
10140 all
&= one
| ~NETIF_F_ALL_FOR_ALL
;
10142 /* If one device supports hw checksumming, set for all. */
10143 if (all
& NETIF_F_HW_CSUM
)
10144 all
&= ~(NETIF_F_CSUM_MASK
& ~NETIF_F_HW_CSUM
);
10148 EXPORT_SYMBOL(netdev_increment_features
);
10150 static struct hlist_head
* __net_init
netdev_create_hash(void)
10153 struct hlist_head
*hash
;
10155 hash
= kmalloc_array(NETDEV_HASHENTRIES
, sizeof(*hash
), GFP_KERNEL
);
10157 for (i
= 0; i
< NETDEV_HASHENTRIES
; i
++)
10158 INIT_HLIST_HEAD(&hash
[i
]);
10163 /* Initialize per network namespace state */
10164 static int __net_init
netdev_init(struct net
*net
)
10166 BUILD_BUG_ON(GRO_HASH_BUCKETS
>
10167 8 * FIELD_SIZEOF(struct napi_struct
, gro_bitmask
));
10169 if (net
!= &init_net
)
10170 INIT_LIST_HEAD(&net
->dev_base_head
);
10172 net
->dev_name_head
= netdev_create_hash();
10173 if (net
->dev_name_head
== NULL
)
10176 net
->dev_index_head
= netdev_create_hash();
10177 if (net
->dev_index_head
== NULL
)
10180 RAW_INIT_NOTIFIER_HEAD(&net
->netdev_chain
);
10185 kfree(net
->dev_name_head
);
10191 * netdev_drivername - network driver for the device
10192 * @dev: network device
10194 * Determine network driver for device.
10196 const char *netdev_drivername(const struct net_device
*dev
)
10198 const struct device_driver
*driver
;
10199 const struct device
*parent
;
10200 const char *empty
= "";
10202 parent
= dev
->dev
.parent
;
10206 driver
= parent
->driver
;
10207 if (driver
&& driver
->name
)
10208 return driver
->name
;
10212 static void __netdev_printk(const char *level
, const struct net_device
*dev
,
10213 struct va_format
*vaf
)
10215 if (dev
&& dev
->dev
.parent
) {
10216 dev_printk_emit(level
[1] - '0',
10219 dev_driver_string(dev
->dev
.parent
),
10220 dev_name(dev
->dev
.parent
),
10221 netdev_name(dev
), netdev_reg_state(dev
),
10224 printk("%s%s%s: %pV",
10225 level
, netdev_name(dev
), netdev_reg_state(dev
), vaf
);
10227 printk("%s(NULL net_device): %pV", level
, vaf
);
10231 void netdev_printk(const char *level
, const struct net_device
*dev
,
10232 const char *format
, ...)
10234 struct va_format vaf
;
10237 va_start(args
, format
);
10242 __netdev_printk(level
, dev
, &vaf
);
10246 EXPORT_SYMBOL(netdev_printk
);
10248 #define define_netdev_printk_level(func, level) \
10249 void func(const struct net_device *dev, const char *fmt, ...) \
10251 struct va_format vaf; \
10254 va_start(args, fmt); \
10259 __netdev_printk(level, dev, &vaf); \
10263 EXPORT_SYMBOL(func);
10265 define_netdev_printk_level(netdev_emerg
, KERN_EMERG
);
10266 define_netdev_printk_level(netdev_alert
, KERN_ALERT
);
10267 define_netdev_printk_level(netdev_crit
, KERN_CRIT
);
10268 define_netdev_printk_level(netdev_err
, KERN_ERR
);
10269 define_netdev_printk_level(netdev_warn
, KERN_WARNING
);
10270 define_netdev_printk_level(netdev_notice
, KERN_NOTICE
);
10271 define_netdev_printk_level(netdev_info
, KERN_INFO
);
10273 static void __net_exit
netdev_exit(struct net
*net
)
10275 kfree(net
->dev_name_head
);
10276 kfree(net
->dev_index_head
);
10277 if (net
!= &init_net
)
10278 WARN_ON_ONCE(!list_empty(&net
->dev_base_head
));
10281 static struct pernet_operations __net_initdata netdev_net_ops
= {
10282 .init
= netdev_init
,
10283 .exit
= netdev_exit
,
10286 static void __net_exit
default_device_exit(struct net
*net
)
10288 struct net_device
*dev
, *aux
;
10290 * Push all migratable network devices back to the
10291 * initial network namespace
10294 for_each_netdev_safe(net
, dev
, aux
) {
10296 char fb_name
[IFNAMSIZ
];
10298 /* Ignore unmoveable devices (i.e. loopback) */
10299 if (dev
->features
& NETIF_F_NETNS_LOCAL
)
10302 /* Leave virtual devices for the generic cleanup */
10303 if (dev
->rtnl_link_ops
)
10306 /* Push remaining network devices to init_net */
10307 snprintf(fb_name
, IFNAMSIZ
, "dev%d", dev
->ifindex
);
10308 if (__dev_get_by_name(&init_net
, fb_name
))
10309 snprintf(fb_name
, IFNAMSIZ
, "dev%%d");
10310 err
= dev_change_net_namespace(dev
, &init_net
, fb_name
);
10312 pr_emerg("%s: failed to move %s to init_net: %d\n",
10313 __func__
, dev
->name
, err
);
10320 static void __net_exit
rtnl_lock_unregistering(struct list_head
*net_list
)
10322 /* Return with the rtnl_lock held when there are no network
10323 * devices unregistering in any network namespace in net_list.
10326 bool unregistering
;
10327 DEFINE_WAIT_FUNC(wait
, woken_wake_function
);
10329 add_wait_queue(&netdev_unregistering_wq
, &wait
);
10331 unregistering
= false;
10333 list_for_each_entry(net
, net_list
, exit_list
) {
10334 if (net
->dev_unreg_count
> 0) {
10335 unregistering
= true;
10339 if (!unregistering
)
10343 wait_woken(&wait
, TASK_UNINTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
10345 remove_wait_queue(&netdev_unregistering_wq
, &wait
);
10348 static void __net_exit
default_device_exit_batch(struct list_head
*net_list
)
10350 /* At exit all network devices most be removed from a network
10351 * namespace. Do this in the reverse order of registration.
10352 * Do this across as many network namespaces as possible to
10353 * improve batching efficiency.
10355 struct net_device
*dev
;
10357 LIST_HEAD(dev_kill_list
);
10359 /* To prevent network device cleanup code from dereferencing
10360 * loopback devices or network devices that have been freed
10361 * wait here for all pending unregistrations to complete,
10362 * before unregistring the loopback device and allowing the
10363 * network namespace be freed.
10365 * The netdev todo list containing all network devices
10366 * unregistrations that happen in default_device_exit_batch
10367 * will run in the rtnl_unlock() at the end of
10368 * default_device_exit_batch.
10370 rtnl_lock_unregistering(net_list
);
10371 list_for_each_entry(net
, net_list
, exit_list
) {
10372 for_each_netdev_reverse(net
, dev
) {
10373 if (dev
->rtnl_link_ops
&& dev
->rtnl_link_ops
->dellink
)
10374 dev
->rtnl_link_ops
->dellink(dev
, &dev_kill_list
);
10376 unregister_netdevice_queue(dev
, &dev_kill_list
);
10379 unregister_netdevice_many(&dev_kill_list
);
10383 static struct pernet_operations __net_initdata default_device_ops
= {
10384 .exit
= default_device_exit
,
10385 .exit_batch
= default_device_exit_batch
,
10389 * Initialize the DEV module. At boot time this walks the device list and
10390 * unhooks any devices that fail to initialise (normally hardware not
10391 * present) and leaves us with a valid list of present and active devices.
10396 * This is called single threaded during boot, so no need
10397 * to take the rtnl semaphore.
10399 static int __init
net_dev_init(void)
10401 int i
, rc
= -ENOMEM
;
10403 BUG_ON(!dev_boot_phase
);
10405 if (dev_proc_init())
10408 if (netdev_kobject_init())
10411 INIT_LIST_HEAD(&ptype_all
);
10412 for (i
= 0; i
< PTYPE_HASH_SIZE
; i
++)
10413 INIT_LIST_HEAD(&ptype_base
[i
]);
10415 INIT_LIST_HEAD(&offload_base
);
10417 if (register_pernet_subsys(&netdev_net_ops
))
10421 * Initialise the packet receive queues.
10424 for_each_possible_cpu(i
) {
10425 struct work_struct
*flush
= per_cpu_ptr(&flush_works
, i
);
10426 struct softnet_data
*sd
= &per_cpu(softnet_data
, i
);
10428 INIT_WORK(flush
, flush_backlog
);
10430 skb_queue_head_init(&sd
->input_pkt_queue
);
10431 skb_queue_head_init(&sd
->process_queue
);
10432 #ifdef CONFIG_XFRM_OFFLOAD
10433 skb_queue_head_init(&sd
->xfrm_backlog
);
10435 INIT_LIST_HEAD(&sd
->poll_list
);
10436 sd
->output_queue_tailp
= &sd
->output_queue
;
10438 sd
->csd
.func
= rps_trigger_softirq
;
10443 init_gro_hash(&sd
->backlog
);
10444 sd
->backlog
.poll
= process_backlog
;
10445 sd
->backlog
.weight
= weight_p
;
10448 dev_boot_phase
= 0;
10450 /* The loopback device is special if any other network devices
10451 * is present in a network namespace the loopback device must
10452 * be present. Since we now dynamically allocate and free the
10453 * loopback device ensure this invariant is maintained by
10454 * keeping the loopback device as the first device on the
10455 * list of network devices. Ensuring the loopback devices
10456 * is the first device that appears and the last network device
10459 if (register_pernet_device(&loopback_net_ops
))
10462 if (register_pernet_device(&default_device_ops
))
10465 open_softirq(NET_TX_SOFTIRQ
, net_tx_action
);
10466 open_softirq(NET_RX_SOFTIRQ
, net_rx_action
);
10468 rc
= cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD
, "net/dev:dead",
10469 NULL
, dev_cpu_dead
);
10476 subsys_initcall(net_dev_init
);