1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * NET An implementation of the SOCKET network access protocol.
5 * Version: @(#)socket.c 1.1.93 18/02/95
7 * Authors: Orest Zborowski, <obz@Kodak.COM>
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
14 * Alan Cox : verify_area() fixes
15 * Alan Cox : Removed DDI
16 * Jonathan Kamens : SOCK_DGRAM reconnect bug
17 * Alan Cox : Moved a load of checks to the very
19 * Alan Cox : Move address structures to/from user
20 * mode above the protocol layers.
21 * Rob Janssen : Allow 0 length sends.
22 * Alan Cox : Asynchronous I/O support (cribbed from the
24 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
25 * Jeff Uphoff : Made max number of sockets command-line
27 * Matti Aarnio : Made the number of sockets dynamic,
28 * to be allocated when needed, and mr.
29 * Uphoff's max is used as max to be
30 * allowed to allocate.
31 * Linus : Argh. removed all the socket allocation
32 * altogether: it's in the inode now.
33 * Alan Cox : Made sock_alloc()/sock_release() public
34 * for NetROM and future kernel nfsd type
36 * Alan Cox : sendmsg/recvmsg basics.
37 * Tom Dyas : Export net symbols.
38 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
39 * Alan Cox : Added thread locking to sys_* calls
40 * for sockets. May have errors at the
42 * Kevin Buhr : Fixed the dumb errors in the above.
43 * Andi Kleen : Some small cleanups, optimizations,
44 * and fixed a copy_from_user() bug.
45 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
46 * Tigran Aivazian : Made listen(2) backlog sanity checks
47 * protocol-independent
49 * This module is effectively the top level interface to the BSD socket
52 * Based upon Swansea University Computer Society NET3.039
56 #include <linux/socket.h>
57 #include <linux/file.h>
58 #include <linux/net.h>
59 #include <linux/interrupt.h>
60 #include <linux/thread_info.h>
61 #include <linux/rcupdate.h>
62 #include <linux/netdevice.h>
63 #include <linux/proc_fs.h>
64 #include <linux/seq_file.h>
65 #include <linux/mutex.h>
66 #include <linux/if_bridge.h>
67 #include <linux/if_frad.h>
68 #include <linux/if_vlan.h>
69 #include <linux/ptp_classify.h>
70 #include <linux/init.h>
71 #include <linux/poll.h>
72 #include <linux/cache.h>
73 #include <linux/module.h>
74 #include <linux/highmem.h>
75 #include <linux/mount.h>
76 #include <linux/pseudo_fs.h>
77 #include <linux/security.h>
78 #include <linux/syscalls.h>
79 #include <linux/compat.h>
80 #include <linux/kmod.h>
81 #include <linux/audit.h>
82 #include <linux/wireless.h>
83 #include <linux/nsproxy.h>
84 #include <linux/magic.h>
85 #include <linux/slab.h>
86 #include <linux/xattr.h>
87 #include <linux/nospec.h>
88 #include <linux/indirect_call_wrapper.h>
90 #include <linux/uaccess.h>
91 #include <asm/unistd.h>
93 #include <net/compat.h>
95 #include <net/cls_cgroup.h>
98 #include <linux/netfilter.h>
100 #include <linux/if_tun.h>
101 #include <linux/ipv6_route.h>
102 #include <linux/route.h>
103 #include <linux/termios.h>
104 #include <linux/sockios.h>
105 #include <net/busy_poll.h>
106 #include <linux/errqueue.h>
108 #ifdef CONFIG_NET_RX_BUSY_POLL
109 unsigned int sysctl_net_busy_read __read_mostly
;
110 unsigned int sysctl_net_busy_poll __read_mostly
;
113 static ssize_t
sock_read_iter(struct kiocb
*iocb
, struct iov_iter
*to
);
114 static ssize_t
sock_write_iter(struct kiocb
*iocb
, struct iov_iter
*from
);
115 static int sock_mmap(struct file
*file
, struct vm_area_struct
*vma
);
117 static int sock_close(struct inode
*inode
, struct file
*file
);
118 static __poll_t
sock_poll(struct file
*file
,
119 struct poll_table_struct
*wait
);
120 static long sock_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
);
122 static long compat_sock_ioctl(struct file
*file
,
123 unsigned int cmd
, unsigned long arg
);
125 static int sock_fasync(int fd
, struct file
*filp
, int on
);
126 static ssize_t
sock_sendpage(struct file
*file
, struct page
*page
,
127 int offset
, size_t size
, loff_t
*ppos
, int more
);
128 static ssize_t
sock_splice_read(struct file
*file
, loff_t
*ppos
,
129 struct pipe_inode_info
*pipe
, size_t len
,
133 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
134 * in the operation structures but are done directly via the socketcall() multiplexor.
137 static const struct file_operations socket_file_ops
= {
138 .owner
= THIS_MODULE
,
140 .read_iter
= sock_read_iter
,
141 .write_iter
= sock_write_iter
,
143 .unlocked_ioctl
= sock_ioctl
,
145 .compat_ioctl
= compat_sock_ioctl
,
148 .release
= sock_close
,
149 .fasync
= sock_fasync
,
150 .sendpage
= sock_sendpage
,
151 .splice_write
= generic_splice_sendpage
,
152 .splice_read
= sock_splice_read
,
156 * The protocol list. Each protocol is registered in here.
159 static DEFINE_SPINLOCK(net_family_lock
);
160 static const struct net_proto_family __rcu
*net_families
[NPROTO
] __read_mostly
;
164 * Move socket addresses back and forth across the kernel/user
165 * divide and look after the messy bits.
169 * move_addr_to_kernel - copy a socket address into kernel space
170 * @uaddr: Address in user space
171 * @kaddr: Address in kernel space
172 * @ulen: Length in user space
174 * The address is copied into kernel space. If the provided address is
175 * too long an error code of -EINVAL is returned. If the copy gives
176 * invalid addresses -EFAULT is returned. On a success 0 is returned.
179 int move_addr_to_kernel(void __user
*uaddr
, int ulen
, struct sockaddr_storage
*kaddr
)
181 if (ulen
< 0 || ulen
> sizeof(struct sockaddr_storage
))
185 if (copy_from_user(kaddr
, uaddr
, ulen
))
187 return audit_sockaddr(ulen
, kaddr
);
191 * move_addr_to_user - copy an address to user space
192 * @kaddr: kernel space address
193 * @klen: length of address in kernel
194 * @uaddr: user space address
195 * @ulen: pointer to user length field
197 * The value pointed to by ulen on entry is the buffer length available.
198 * This is overwritten with the buffer space used. -EINVAL is returned
199 * if an overlong buffer is specified or a negative buffer size. -EFAULT
200 * is returned if either the buffer or the length field are not
202 * After copying the data up to the limit the user specifies, the true
203 * length of the data is written over the length limit the user
204 * specified. Zero is returned for a success.
207 static int move_addr_to_user(struct sockaddr_storage
*kaddr
, int klen
,
208 void __user
*uaddr
, int __user
*ulen
)
213 BUG_ON(klen
> sizeof(struct sockaddr_storage
));
214 err
= get_user(len
, ulen
);
222 if (audit_sockaddr(klen
, kaddr
))
224 if (copy_to_user(uaddr
, kaddr
, len
))
228 * "fromlen shall refer to the value before truncation.."
231 return __put_user(klen
, ulen
);
234 static struct kmem_cache
*sock_inode_cachep __ro_after_init
;
236 static struct inode
*sock_alloc_inode(struct super_block
*sb
)
238 struct socket_alloc
*ei
;
240 ei
= kmem_cache_alloc(sock_inode_cachep
, GFP_KERNEL
);
243 init_waitqueue_head(&ei
->socket
.wq
.wait
);
244 ei
->socket
.wq
.fasync_list
= NULL
;
245 ei
->socket
.wq
.flags
= 0;
247 ei
->socket
.state
= SS_UNCONNECTED
;
248 ei
->socket
.flags
= 0;
249 ei
->socket
.ops
= NULL
;
250 ei
->socket
.sk
= NULL
;
251 ei
->socket
.file
= NULL
;
253 return &ei
->vfs_inode
;
256 static void sock_free_inode(struct inode
*inode
)
258 struct socket_alloc
*ei
;
260 ei
= container_of(inode
, struct socket_alloc
, vfs_inode
);
261 kmem_cache_free(sock_inode_cachep
, ei
);
264 static void init_once(void *foo
)
266 struct socket_alloc
*ei
= (struct socket_alloc
*)foo
;
268 inode_init_once(&ei
->vfs_inode
);
271 static void init_inodecache(void)
273 sock_inode_cachep
= kmem_cache_create("sock_inode_cache",
274 sizeof(struct socket_alloc
),
276 (SLAB_HWCACHE_ALIGN
|
277 SLAB_RECLAIM_ACCOUNT
|
278 SLAB_MEM_SPREAD
| SLAB_ACCOUNT
),
280 BUG_ON(sock_inode_cachep
== NULL
);
283 static const struct super_operations sockfs_ops
= {
284 .alloc_inode
= sock_alloc_inode
,
285 .free_inode
= sock_free_inode
,
286 .statfs
= simple_statfs
,
290 * sockfs_dname() is called from d_path().
292 static char *sockfs_dname(struct dentry
*dentry
, char *buffer
, int buflen
)
294 return dynamic_dname(dentry
, buffer
, buflen
, "socket:[%lu]",
295 d_inode(dentry
)->i_ino
);
298 static const struct dentry_operations sockfs_dentry_operations
= {
299 .d_dname
= sockfs_dname
,
302 static int sockfs_xattr_get(const struct xattr_handler
*handler
,
303 struct dentry
*dentry
, struct inode
*inode
,
304 const char *suffix
, void *value
, size_t size
)
307 if (dentry
->d_name
.len
+ 1 > size
)
309 memcpy(value
, dentry
->d_name
.name
, dentry
->d_name
.len
+ 1);
311 return dentry
->d_name
.len
+ 1;
314 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
315 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
316 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
318 static const struct xattr_handler sockfs_xattr_handler
= {
319 .name
= XATTR_NAME_SOCKPROTONAME
,
320 .get
= sockfs_xattr_get
,
323 static int sockfs_security_xattr_set(const struct xattr_handler
*handler
,
324 struct dentry
*dentry
, struct inode
*inode
,
325 const char *suffix
, const void *value
,
326 size_t size
, int flags
)
328 /* Handled by LSM. */
332 static const struct xattr_handler sockfs_security_xattr_handler
= {
333 .prefix
= XATTR_SECURITY_PREFIX
,
334 .set
= sockfs_security_xattr_set
,
337 static const struct xattr_handler
*sockfs_xattr_handlers
[] = {
338 &sockfs_xattr_handler
,
339 &sockfs_security_xattr_handler
,
343 static int sockfs_init_fs_context(struct fs_context
*fc
)
345 struct pseudo_fs_context
*ctx
= init_pseudo(fc
, SOCKFS_MAGIC
);
348 ctx
->ops
= &sockfs_ops
;
349 ctx
->dops
= &sockfs_dentry_operations
;
350 ctx
->xattr
= sockfs_xattr_handlers
;
354 static struct vfsmount
*sock_mnt __read_mostly
;
356 static struct file_system_type sock_fs_type
= {
358 .init_fs_context
= sockfs_init_fs_context
,
359 .kill_sb
= kill_anon_super
,
363 * Obtains the first available file descriptor and sets it up for use.
365 * These functions create file structures and maps them to fd space
366 * of the current process. On success it returns file descriptor
367 * and file struct implicitly stored in sock->file.
368 * Note that another thread may close file descriptor before we return
369 * from this function. We use the fact that now we do not refer
370 * to socket after mapping. If one day we will need it, this
371 * function will increment ref. count on file by 1.
373 * In any case returned fd MAY BE not valid!
374 * This race condition is unavoidable
375 * with shared fd spaces, we cannot solve it inside kernel,
376 * but we take care of internal coherence yet.
380 * sock_alloc_file - Bind a &socket to a &file
382 * @flags: file status flags
383 * @dname: protocol name
385 * Returns the &file bound with @sock, implicitly storing it
386 * in sock->file. If dname is %NULL, sets to "".
387 * On failure the return is a ERR pointer (see linux/err.h).
388 * This function uses GFP_KERNEL internally.
391 struct file
*sock_alloc_file(struct socket
*sock
, int flags
, const char *dname
)
396 dname
= sock
->sk
? sock
->sk
->sk_prot_creator
->name
: "";
398 file
= alloc_file_pseudo(SOCK_INODE(sock
), sock_mnt
, dname
,
399 O_RDWR
| (flags
& O_NONBLOCK
),
407 file
->private_data
= sock
;
408 stream_open(SOCK_INODE(sock
), file
);
411 EXPORT_SYMBOL(sock_alloc_file
);
413 static int sock_map_fd(struct socket
*sock
, int flags
)
415 struct file
*newfile
;
416 int fd
= get_unused_fd_flags(flags
);
417 if (unlikely(fd
< 0)) {
422 newfile
= sock_alloc_file(sock
, flags
, NULL
);
423 if (!IS_ERR(newfile
)) {
424 fd_install(fd
, newfile
);
429 return PTR_ERR(newfile
);
433 * sock_from_file - Return the &socket bounded to @file.
435 * @err: pointer to an error code return
437 * On failure returns %NULL and assigns -ENOTSOCK to @err.
440 struct socket
*sock_from_file(struct file
*file
, int *err
)
442 if (file
->f_op
== &socket_file_ops
)
443 return file
->private_data
; /* set in sock_map_fd */
448 EXPORT_SYMBOL(sock_from_file
);
451 * sockfd_lookup - Go from a file number to its socket slot
453 * @err: pointer to an error code return
455 * The file handle passed in is locked and the socket it is bound
456 * to is returned. If an error occurs the err pointer is overwritten
457 * with a negative errno code and NULL is returned. The function checks
458 * for both invalid handles and passing a handle which is not a socket.
460 * On a success the socket object pointer is returned.
463 struct socket
*sockfd_lookup(int fd
, int *err
)
474 sock
= sock_from_file(file
, err
);
479 EXPORT_SYMBOL(sockfd_lookup
);
481 static struct socket
*sockfd_lookup_light(int fd
, int *err
, int *fput_needed
)
483 struct fd f
= fdget(fd
);
488 sock
= sock_from_file(f
.file
, err
);
490 *fput_needed
= f
.flags
;
498 static ssize_t
sockfs_listxattr(struct dentry
*dentry
, char *buffer
,
504 len
= security_inode_listsecurity(d_inode(dentry
), buffer
, size
);
514 len
= (XATTR_NAME_SOCKPROTONAME_LEN
+ 1);
519 memcpy(buffer
, XATTR_NAME_SOCKPROTONAME
, len
);
526 static int sockfs_setattr(struct dentry
*dentry
, struct iattr
*iattr
)
528 int err
= simple_setattr(dentry
, iattr
);
530 if (!err
&& (iattr
->ia_valid
& ATTR_UID
)) {
531 struct socket
*sock
= SOCKET_I(d_inode(dentry
));
534 sock
->sk
->sk_uid
= iattr
->ia_uid
;
542 static const struct inode_operations sockfs_inode_ops
= {
543 .listxattr
= sockfs_listxattr
,
544 .setattr
= sockfs_setattr
,
548 * sock_alloc - allocate a socket
550 * Allocate a new inode and socket object. The two are bound together
551 * and initialised. The socket is then returned. If we are out of inodes
552 * NULL is returned. This functions uses GFP_KERNEL internally.
555 struct socket
*sock_alloc(void)
560 inode
= new_inode_pseudo(sock_mnt
->mnt_sb
);
564 sock
= SOCKET_I(inode
);
566 inode
->i_ino
= get_next_ino();
567 inode
->i_mode
= S_IFSOCK
| S_IRWXUGO
;
568 inode
->i_uid
= current_fsuid();
569 inode
->i_gid
= current_fsgid();
570 inode
->i_op
= &sockfs_inode_ops
;
574 EXPORT_SYMBOL(sock_alloc
);
577 * sock_release - close a socket
578 * @sock: socket to close
580 * The socket is released from the protocol stack if it has a release
581 * callback, and the inode is then released if the socket is bound to
582 * an inode not a file.
585 static void __sock_release(struct socket
*sock
, struct inode
*inode
)
588 struct module
*owner
= sock
->ops
->owner
;
592 sock
->ops
->release(sock
);
600 if (sock
->wq
.fasync_list
)
601 pr_err("%s: fasync list not empty!\n", __func__
);
604 iput(SOCK_INODE(sock
));
610 void sock_release(struct socket
*sock
)
612 __sock_release(sock
, NULL
);
614 EXPORT_SYMBOL(sock_release
);
616 void __sock_tx_timestamp(__u16 tsflags
, __u8
*tx_flags
)
618 u8 flags
= *tx_flags
;
620 if (tsflags
& SOF_TIMESTAMPING_TX_HARDWARE
)
621 flags
|= SKBTX_HW_TSTAMP
;
623 if (tsflags
& SOF_TIMESTAMPING_TX_SOFTWARE
)
624 flags
|= SKBTX_SW_TSTAMP
;
626 if (tsflags
& SOF_TIMESTAMPING_TX_SCHED
)
627 flags
|= SKBTX_SCHED_TSTAMP
;
631 EXPORT_SYMBOL(__sock_tx_timestamp
);
633 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket
*, struct msghdr
*,
635 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket
*, struct msghdr
*,
637 static inline int sock_sendmsg_nosec(struct socket
*sock
, struct msghdr
*msg
)
639 int ret
= INDIRECT_CALL_INET(sock
->ops
->sendmsg
, inet6_sendmsg
,
640 inet_sendmsg
, sock
, msg
,
642 BUG_ON(ret
== -EIOCBQUEUED
);
647 * sock_sendmsg - send a message through @sock
649 * @msg: message to send
651 * Sends @msg through @sock, passing through LSM.
652 * Returns the number of bytes sent, or an error code.
654 int sock_sendmsg(struct socket
*sock
, struct msghdr
*msg
)
656 int err
= security_socket_sendmsg(sock
, msg
,
659 return err
?: sock_sendmsg_nosec(sock
, msg
);
661 EXPORT_SYMBOL(sock_sendmsg
);
664 * kernel_sendmsg - send a message through @sock (kernel-space)
666 * @msg: message header
668 * @num: vec array length
669 * @size: total message data size
671 * Builds the message data with @vec and sends it through @sock.
672 * Returns the number of bytes sent, or an error code.
675 int kernel_sendmsg(struct socket
*sock
, struct msghdr
*msg
,
676 struct kvec
*vec
, size_t num
, size_t size
)
678 iov_iter_kvec(&msg
->msg_iter
, WRITE
, vec
, num
, size
);
679 return sock_sendmsg(sock
, msg
);
681 EXPORT_SYMBOL(kernel_sendmsg
);
684 * kernel_sendmsg_locked - send a message through @sock (kernel-space)
686 * @msg: message header
687 * @vec: output s/g array
688 * @num: output s/g array length
689 * @size: total message data size
691 * Builds the message data with @vec and sends it through @sock.
692 * Returns the number of bytes sent, or an error code.
693 * Caller must hold @sk.
696 int kernel_sendmsg_locked(struct sock
*sk
, struct msghdr
*msg
,
697 struct kvec
*vec
, size_t num
, size_t size
)
699 struct socket
*sock
= sk
->sk_socket
;
701 if (!sock
->ops
->sendmsg_locked
)
702 return sock_no_sendmsg_locked(sk
, msg
, size
);
704 iov_iter_kvec(&msg
->msg_iter
, WRITE
, vec
, num
, size
);
706 return sock
->ops
->sendmsg_locked(sk
, msg
, msg_data_left(msg
));
708 EXPORT_SYMBOL(kernel_sendmsg_locked
);
710 static bool skb_is_err_queue(const struct sk_buff
*skb
)
712 /* pkt_type of skbs enqueued on the error queue are set to
713 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
714 * in recvmsg, since skbs received on a local socket will never
715 * have a pkt_type of PACKET_OUTGOING.
717 return skb
->pkt_type
== PACKET_OUTGOING
;
720 /* On transmit, software and hardware timestamps are returned independently.
721 * As the two skb clones share the hardware timestamp, which may be updated
722 * before the software timestamp is received, a hardware TX timestamp may be
723 * returned only if there is no software TX timestamp. Ignore false software
724 * timestamps, which may be made in the __sock_recv_timestamp() call when the
725 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
726 * hardware timestamp.
728 static bool skb_is_swtx_tstamp(const struct sk_buff
*skb
, int false_tstamp
)
730 return skb
->tstamp
&& !false_tstamp
&& skb_is_err_queue(skb
);
733 static void put_ts_pktinfo(struct msghdr
*msg
, struct sk_buff
*skb
)
735 struct scm_ts_pktinfo ts_pktinfo
;
736 struct net_device
*orig_dev
;
738 if (!skb_mac_header_was_set(skb
))
741 memset(&ts_pktinfo
, 0, sizeof(ts_pktinfo
));
744 orig_dev
= dev_get_by_napi_id(skb_napi_id(skb
));
746 ts_pktinfo
.if_index
= orig_dev
->ifindex
;
749 ts_pktinfo
.pkt_length
= skb
->len
- skb_mac_offset(skb
);
750 put_cmsg(msg
, SOL_SOCKET
, SCM_TIMESTAMPING_PKTINFO
,
751 sizeof(ts_pktinfo
), &ts_pktinfo
);
755 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
757 void __sock_recv_timestamp(struct msghdr
*msg
, struct sock
*sk
,
760 int need_software_tstamp
= sock_flag(sk
, SOCK_RCVTSTAMP
);
761 int new_tstamp
= sock_flag(sk
, SOCK_TSTAMP_NEW
);
762 struct scm_timestamping_internal tss
;
764 int empty
= 1, false_tstamp
= 0;
765 struct skb_shared_hwtstamps
*shhwtstamps
=
768 /* Race occurred between timestamp enabling and packet
769 receiving. Fill in the current time for now. */
770 if (need_software_tstamp
&& skb
->tstamp
== 0) {
771 __net_timestamp(skb
);
775 if (need_software_tstamp
) {
776 if (!sock_flag(sk
, SOCK_RCVTSTAMPNS
)) {
778 struct __kernel_sock_timeval tv
;
780 skb_get_new_timestamp(skb
, &tv
);
781 put_cmsg(msg
, SOL_SOCKET
, SO_TIMESTAMP_NEW
,
784 struct __kernel_old_timeval tv
;
786 skb_get_timestamp(skb
, &tv
);
787 put_cmsg(msg
, SOL_SOCKET
, SO_TIMESTAMP_OLD
,
792 struct __kernel_timespec ts
;
794 skb_get_new_timestampns(skb
, &ts
);
795 put_cmsg(msg
, SOL_SOCKET
, SO_TIMESTAMPNS_NEW
,
798 struct __kernel_old_timespec ts
;
800 skb_get_timestampns(skb
, &ts
);
801 put_cmsg(msg
, SOL_SOCKET
, SO_TIMESTAMPNS_OLD
,
807 memset(&tss
, 0, sizeof(tss
));
808 if ((sk
->sk_tsflags
& SOF_TIMESTAMPING_SOFTWARE
) &&
809 ktime_to_timespec64_cond(skb
->tstamp
, tss
.ts
+ 0))
812 (sk
->sk_tsflags
& SOF_TIMESTAMPING_RAW_HARDWARE
) &&
813 !skb_is_swtx_tstamp(skb
, false_tstamp
) &&
814 ktime_to_timespec64_cond(shhwtstamps
->hwtstamp
, tss
.ts
+ 2)) {
816 if ((sk
->sk_tsflags
& SOF_TIMESTAMPING_OPT_PKTINFO
) &&
817 !skb_is_err_queue(skb
))
818 put_ts_pktinfo(msg
, skb
);
821 if (sock_flag(sk
, SOCK_TSTAMP_NEW
))
822 put_cmsg_scm_timestamping64(msg
, &tss
);
824 put_cmsg_scm_timestamping(msg
, &tss
);
826 if (skb_is_err_queue(skb
) && skb
->len
&&
827 SKB_EXT_ERR(skb
)->opt_stats
)
828 put_cmsg(msg
, SOL_SOCKET
, SCM_TIMESTAMPING_OPT_STATS
,
829 skb
->len
, skb
->data
);
832 EXPORT_SYMBOL_GPL(__sock_recv_timestamp
);
834 void __sock_recv_wifi_status(struct msghdr
*msg
, struct sock
*sk
,
839 if (!sock_flag(sk
, SOCK_WIFI_STATUS
))
841 if (!skb
->wifi_acked_valid
)
844 ack
= skb
->wifi_acked
;
846 put_cmsg(msg
, SOL_SOCKET
, SCM_WIFI_STATUS
, sizeof(ack
), &ack
);
848 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status
);
850 static inline void sock_recv_drops(struct msghdr
*msg
, struct sock
*sk
,
853 if (sock_flag(sk
, SOCK_RXQ_OVFL
) && skb
&& SOCK_SKB_CB(skb
)->dropcount
)
854 put_cmsg(msg
, SOL_SOCKET
, SO_RXQ_OVFL
,
855 sizeof(__u32
), &SOCK_SKB_CB(skb
)->dropcount
);
858 void __sock_recv_ts_and_drops(struct msghdr
*msg
, struct sock
*sk
,
861 sock_recv_timestamp(msg
, sk
, skb
);
862 sock_recv_drops(msg
, sk
, skb
);
864 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops
);
866 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket
*, struct msghdr
*,
868 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket
*, struct msghdr
*,
870 static inline int sock_recvmsg_nosec(struct socket
*sock
, struct msghdr
*msg
,
873 return INDIRECT_CALL_INET(sock
->ops
->recvmsg
, inet6_recvmsg
,
874 inet_recvmsg
, sock
, msg
, msg_data_left(msg
),
879 * sock_recvmsg - receive a message from @sock
881 * @msg: message to receive
882 * @flags: message flags
884 * Receives @msg from @sock, passing through LSM. Returns the total number
885 * of bytes received, or an error.
887 int sock_recvmsg(struct socket
*sock
, struct msghdr
*msg
, int flags
)
889 int err
= security_socket_recvmsg(sock
, msg
, msg_data_left(msg
), flags
);
891 return err
?: sock_recvmsg_nosec(sock
, msg
, flags
);
893 EXPORT_SYMBOL(sock_recvmsg
);
896 * kernel_recvmsg - Receive a message from a socket (kernel space)
897 * @sock: The socket to receive the message from
898 * @msg: Received message
899 * @vec: Input s/g array for message data
900 * @num: Size of input s/g array
901 * @size: Number of bytes to read
902 * @flags: Message flags (MSG_DONTWAIT, etc...)
904 * On return the msg structure contains the scatter/gather array passed in the
905 * vec argument. The array is modified so that it consists of the unfilled
906 * portion of the original array.
908 * The returned value is the total number of bytes received, or an error.
911 int kernel_recvmsg(struct socket
*sock
, struct msghdr
*msg
,
912 struct kvec
*vec
, size_t num
, size_t size
, int flags
)
914 mm_segment_t oldfs
= get_fs();
917 iov_iter_kvec(&msg
->msg_iter
, READ
, vec
, num
, size
);
919 result
= sock_recvmsg(sock
, msg
, flags
);
923 EXPORT_SYMBOL(kernel_recvmsg
);
925 static ssize_t
sock_sendpage(struct file
*file
, struct page
*page
,
926 int offset
, size_t size
, loff_t
*ppos
, int more
)
931 sock
= file
->private_data
;
933 flags
= (file
->f_flags
& O_NONBLOCK
) ? MSG_DONTWAIT
: 0;
934 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
937 return kernel_sendpage(sock
, page
, offset
, size
, flags
);
940 static ssize_t
sock_splice_read(struct file
*file
, loff_t
*ppos
,
941 struct pipe_inode_info
*pipe
, size_t len
,
944 struct socket
*sock
= file
->private_data
;
946 if (unlikely(!sock
->ops
->splice_read
))
947 return generic_file_splice_read(file
, ppos
, pipe
, len
, flags
);
949 return sock
->ops
->splice_read(sock
, ppos
, pipe
, len
, flags
);
952 static ssize_t
sock_read_iter(struct kiocb
*iocb
, struct iov_iter
*to
)
954 struct file
*file
= iocb
->ki_filp
;
955 struct socket
*sock
= file
->private_data
;
956 struct msghdr msg
= {.msg_iter
= *to
,
960 if (file
->f_flags
& O_NONBLOCK
)
961 msg
.msg_flags
= MSG_DONTWAIT
;
963 if (iocb
->ki_pos
!= 0)
966 if (!iov_iter_count(to
)) /* Match SYS5 behaviour */
969 res
= sock_recvmsg(sock
, &msg
, msg
.msg_flags
);
974 static ssize_t
sock_write_iter(struct kiocb
*iocb
, struct iov_iter
*from
)
976 struct file
*file
= iocb
->ki_filp
;
977 struct socket
*sock
= file
->private_data
;
978 struct msghdr msg
= {.msg_iter
= *from
,
982 if (iocb
->ki_pos
!= 0)
985 if (file
->f_flags
& O_NONBLOCK
)
986 msg
.msg_flags
= MSG_DONTWAIT
;
988 if (sock
->type
== SOCK_SEQPACKET
)
989 msg
.msg_flags
|= MSG_EOR
;
991 res
= sock_sendmsg(sock
, &msg
);
992 *from
= msg
.msg_iter
;
997 * Atomic setting of ioctl hooks to avoid race
998 * with module unload.
1001 static DEFINE_MUTEX(br_ioctl_mutex
);
1002 static int (*br_ioctl_hook
) (struct net
*, unsigned int cmd
, void __user
*arg
);
1004 void brioctl_set(int (*hook
) (struct net
*, unsigned int, void __user
*))
1006 mutex_lock(&br_ioctl_mutex
);
1007 br_ioctl_hook
= hook
;
1008 mutex_unlock(&br_ioctl_mutex
);
1010 EXPORT_SYMBOL(brioctl_set
);
1012 static DEFINE_MUTEX(vlan_ioctl_mutex
);
1013 static int (*vlan_ioctl_hook
) (struct net
*, void __user
*arg
);
1015 void vlan_ioctl_set(int (*hook
) (struct net
*, void __user
*))
1017 mutex_lock(&vlan_ioctl_mutex
);
1018 vlan_ioctl_hook
= hook
;
1019 mutex_unlock(&vlan_ioctl_mutex
);
1021 EXPORT_SYMBOL(vlan_ioctl_set
);
1023 static DEFINE_MUTEX(dlci_ioctl_mutex
);
1024 static int (*dlci_ioctl_hook
) (unsigned int, void __user
*);
1026 void dlci_ioctl_set(int (*hook
) (unsigned int, void __user
*))
1028 mutex_lock(&dlci_ioctl_mutex
);
1029 dlci_ioctl_hook
= hook
;
1030 mutex_unlock(&dlci_ioctl_mutex
);
1032 EXPORT_SYMBOL(dlci_ioctl_set
);
1034 static long sock_do_ioctl(struct net
*net
, struct socket
*sock
,
1035 unsigned int cmd
, unsigned long arg
)
1038 void __user
*argp
= (void __user
*)arg
;
1040 err
= sock
->ops
->ioctl(sock
, cmd
, arg
);
1043 * If this ioctl is unknown try to hand it down
1044 * to the NIC driver.
1046 if (err
!= -ENOIOCTLCMD
)
1049 if (cmd
== SIOCGIFCONF
) {
1051 if (copy_from_user(&ifc
, argp
, sizeof(struct ifconf
)))
1054 err
= dev_ifconf(net
, &ifc
, sizeof(struct ifreq
));
1056 if (!err
&& copy_to_user(argp
, &ifc
, sizeof(struct ifconf
)))
1061 if (copy_from_user(&ifr
, argp
, sizeof(struct ifreq
)))
1063 err
= dev_ioctl(net
, cmd
, &ifr
, &need_copyout
);
1064 if (!err
&& need_copyout
)
1065 if (copy_to_user(argp
, &ifr
, sizeof(struct ifreq
)))
1072 * With an ioctl, arg may well be a user mode pointer, but we don't know
1073 * what to do with it - that's up to the protocol still.
1077 * get_net_ns - increment the refcount of the network namespace
1078 * @ns: common namespace (net)
1080 * Returns the net's common namespace.
1083 struct ns_common
*get_net_ns(struct ns_common
*ns
)
1085 return &get_net(container_of(ns
, struct net
, ns
))->ns
;
1087 EXPORT_SYMBOL_GPL(get_net_ns
);
1089 static long sock_ioctl(struct file
*file
, unsigned cmd
, unsigned long arg
)
1091 struct socket
*sock
;
1093 void __user
*argp
= (void __user
*)arg
;
1097 sock
= file
->private_data
;
1100 if (unlikely(cmd
>= SIOCDEVPRIVATE
&& cmd
<= (SIOCDEVPRIVATE
+ 15))) {
1103 if (copy_from_user(&ifr
, argp
, sizeof(struct ifreq
)))
1105 err
= dev_ioctl(net
, cmd
, &ifr
, &need_copyout
);
1106 if (!err
&& need_copyout
)
1107 if (copy_to_user(argp
, &ifr
, sizeof(struct ifreq
)))
1110 #ifdef CONFIG_WEXT_CORE
1111 if (cmd
>= SIOCIWFIRST
&& cmd
<= SIOCIWLAST
) {
1112 err
= wext_handle_ioctl(net
, cmd
, argp
);
1119 if (get_user(pid
, (int __user
*)argp
))
1121 err
= f_setown(sock
->file
, pid
, 1);
1125 err
= put_user(f_getown(sock
->file
),
1126 (int __user
*)argp
);
1134 request_module("bridge");
1136 mutex_lock(&br_ioctl_mutex
);
1138 err
= br_ioctl_hook(net
, cmd
, argp
);
1139 mutex_unlock(&br_ioctl_mutex
);
1144 if (!vlan_ioctl_hook
)
1145 request_module("8021q");
1147 mutex_lock(&vlan_ioctl_mutex
);
1148 if (vlan_ioctl_hook
)
1149 err
= vlan_ioctl_hook(net
, argp
);
1150 mutex_unlock(&vlan_ioctl_mutex
);
1155 if (!dlci_ioctl_hook
)
1156 request_module("dlci");
1158 mutex_lock(&dlci_ioctl_mutex
);
1159 if (dlci_ioctl_hook
)
1160 err
= dlci_ioctl_hook(cmd
, argp
);
1161 mutex_unlock(&dlci_ioctl_mutex
);
1165 if (!ns_capable(net
->user_ns
, CAP_NET_ADMIN
))
1168 err
= open_related_ns(&net
->ns
, get_net_ns
);
1170 case SIOCGSTAMP_OLD
:
1171 case SIOCGSTAMPNS_OLD
:
1172 if (!sock
->ops
->gettstamp
) {
1176 err
= sock
->ops
->gettstamp(sock
, argp
,
1177 cmd
== SIOCGSTAMP_OLD
,
1178 !IS_ENABLED(CONFIG_64BIT
));
1180 case SIOCGSTAMP_NEW
:
1181 case SIOCGSTAMPNS_NEW
:
1182 if (!sock
->ops
->gettstamp
) {
1186 err
= sock
->ops
->gettstamp(sock
, argp
,
1187 cmd
== SIOCGSTAMP_NEW
,
1191 err
= sock_do_ioctl(net
, sock
, cmd
, arg
);
1198 * sock_create_lite - creates a socket
1199 * @family: protocol family (AF_INET, ...)
1200 * @type: communication type (SOCK_STREAM, ...)
1201 * @protocol: protocol (0, ...)
1204 * Creates a new socket and assigns it to @res, passing through LSM.
1205 * The new socket initialization is not complete, see kernel_accept().
1206 * Returns 0 or an error. On failure @res is set to %NULL.
1207 * This function internally uses GFP_KERNEL.
1210 int sock_create_lite(int family
, int type
, int protocol
, struct socket
**res
)
1213 struct socket
*sock
= NULL
;
1215 err
= security_socket_create(family
, type
, protocol
, 1);
1219 sock
= sock_alloc();
1226 err
= security_socket_post_create(sock
, family
, type
, protocol
, 1);
1238 EXPORT_SYMBOL(sock_create_lite
);
1240 /* No kernel lock held - perfect */
1241 static __poll_t
sock_poll(struct file
*file
, poll_table
*wait
)
1243 struct socket
*sock
= file
->private_data
;
1244 __poll_t events
= poll_requested_events(wait
), flag
= 0;
1246 if (!sock
->ops
->poll
)
1249 if (sk_can_busy_loop(sock
->sk
)) {
1250 /* poll once if requested by the syscall */
1251 if (events
& POLL_BUSY_LOOP
)
1252 sk_busy_loop(sock
->sk
, 1);
1254 /* if this socket can poll_ll, tell the system call */
1255 flag
= POLL_BUSY_LOOP
;
1258 return sock
->ops
->poll(file
, sock
, wait
) | flag
;
1261 static int sock_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1263 struct socket
*sock
= file
->private_data
;
1265 return sock
->ops
->mmap(file
, sock
, vma
);
1268 static int sock_close(struct inode
*inode
, struct file
*filp
)
1270 __sock_release(SOCKET_I(inode
), inode
);
1275 * Update the socket async list
1277 * Fasync_list locking strategy.
1279 * 1. fasync_list is modified only under process context socket lock
1280 * i.e. under semaphore.
1281 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1282 * or under socket lock
1285 static int sock_fasync(int fd
, struct file
*filp
, int on
)
1287 struct socket
*sock
= filp
->private_data
;
1288 struct sock
*sk
= sock
->sk
;
1289 struct socket_wq
*wq
= &sock
->wq
;
1295 fasync_helper(fd
, filp
, on
, &wq
->fasync_list
);
1297 if (!wq
->fasync_list
)
1298 sock_reset_flag(sk
, SOCK_FASYNC
);
1300 sock_set_flag(sk
, SOCK_FASYNC
);
1306 /* This function may be called only under rcu_lock */
1308 int sock_wake_async(struct socket_wq
*wq
, int how
, int band
)
1310 if (!wq
|| !wq
->fasync_list
)
1314 case SOCK_WAKE_WAITD
:
1315 if (test_bit(SOCKWQ_ASYNC_WAITDATA
, &wq
->flags
))
1318 case SOCK_WAKE_SPACE
:
1319 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE
, &wq
->flags
))
1324 kill_fasync(&wq
->fasync_list
, SIGIO
, band
);
1327 kill_fasync(&wq
->fasync_list
, SIGURG
, band
);
1332 EXPORT_SYMBOL(sock_wake_async
);
1335 * __sock_create - creates a socket
1336 * @net: net namespace
1337 * @family: protocol family (AF_INET, ...)
1338 * @type: communication type (SOCK_STREAM, ...)
1339 * @protocol: protocol (0, ...)
1341 * @kern: boolean for kernel space sockets
1343 * Creates a new socket and assigns it to @res, passing through LSM.
1344 * Returns 0 or an error. On failure @res is set to %NULL. @kern must
1345 * be set to true if the socket resides in kernel space.
1346 * This function internally uses GFP_KERNEL.
1349 int __sock_create(struct net
*net
, int family
, int type
, int protocol
,
1350 struct socket
**res
, int kern
)
1353 struct socket
*sock
;
1354 const struct net_proto_family
*pf
;
1357 * Check protocol is in range
1359 if (family
< 0 || family
>= NPROTO
)
1360 return -EAFNOSUPPORT
;
1361 if (type
< 0 || type
>= SOCK_MAX
)
1366 This uglymoron is moved from INET layer to here to avoid
1367 deadlock in module load.
1369 if (family
== PF_INET
&& type
== SOCK_PACKET
) {
1370 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1375 err
= security_socket_create(family
, type
, protocol
, kern
);
1380 * Allocate the socket and allow the family to set things up. if
1381 * the protocol is 0, the family is instructed to select an appropriate
1384 sock
= sock_alloc();
1386 net_warn_ratelimited("socket: no more sockets\n");
1387 return -ENFILE
; /* Not exactly a match, but its the
1388 closest posix thing */
1393 #ifdef CONFIG_MODULES
1394 /* Attempt to load a protocol module if the find failed.
1396 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1397 * requested real, full-featured networking support upon configuration.
1398 * Otherwise module support will break!
1400 if (rcu_access_pointer(net_families
[family
]) == NULL
)
1401 request_module("net-pf-%d", family
);
1405 pf
= rcu_dereference(net_families
[family
]);
1406 err
= -EAFNOSUPPORT
;
1411 * We will call the ->create function, that possibly is in a loadable
1412 * module, so we have to bump that loadable module refcnt first.
1414 if (!try_module_get(pf
->owner
))
1417 /* Now protected by module ref count */
1420 err
= pf
->create(net
, sock
, protocol
, kern
);
1422 goto out_module_put
;
1425 * Now to bump the refcnt of the [loadable] module that owns this
1426 * socket at sock_release time we decrement its refcnt.
1428 if (!try_module_get(sock
->ops
->owner
))
1429 goto out_module_busy
;
1432 * Now that we're done with the ->create function, the [loadable]
1433 * module can have its refcnt decremented
1435 module_put(pf
->owner
);
1436 err
= security_socket_post_create(sock
, family
, type
, protocol
, kern
);
1438 goto out_sock_release
;
1444 err
= -EAFNOSUPPORT
;
1447 module_put(pf
->owner
);
1454 goto out_sock_release
;
1456 EXPORT_SYMBOL(__sock_create
);
1459 * sock_create - creates a socket
1460 * @family: protocol family (AF_INET, ...)
1461 * @type: communication type (SOCK_STREAM, ...)
1462 * @protocol: protocol (0, ...)
1465 * A wrapper around __sock_create().
1466 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1469 int sock_create(int family
, int type
, int protocol
, struct socket
**res
)
1471 return __sock_create(current
->nsproxy
->net_ns
, family
, type
, protocol
, res
, 0);
1473 EXPORT_SYMBOL(sock_create
);
1476 * sock_create_kern - creates a socket (kernel space)
1477 * @net: net namespace
1478 * @family: protocol family (AF_INET, ...)
1479 * @type: communication type (SOCK_STREAM, ...)
1480 * @protocol: protocol (0, ...)
1483 * A wrapper around __sock_create().
1484 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1487 int sock_create_kern(struct net
*net
, int family
, int type
, int protocol
, struct socket
**res
)
1489 return __sock_create(net
, family
, type
, protocol
, res
, 1);
1491 EXPORT_SYMBOL(sock_create_kern
);
1493 int __sys_socket(int family
, int type
, int protocol
)
1496 struct socket
*sock
;
1499 /* Check the SOCK_* constants for consistency. */
1500 BUILD_BUG_ON(SOCK_CLOEXEC
!= O_CLOEXEC
);
1501 BUILD_BUG_ON((SOCK_MAX
| SOCK_TYPE_MASK
) != SOCK_TYPE_MASK
);
1502 BUILD_BUG_ON(SOCK_CLOEXEC
& SOCK_TYPE_MASK
);
1503 BUILD_BUG_ON(SOCK_NONBLOCK
& SOCK_TYPE_MASK
);
1505 flags
= type
& ~SOCK_TYPE_MASK
;
1506 if (flags
& ~(SOCK_CLOEXEC
| SOCK_NONBLOCK
))
1508 type
&= SOCK_TYPE_MASK
;
1510 if (SOCK_NONBLOCK
!= O_NONBLOCK
&& (flags
& SOCK_NONBLOCK
))
1511 flags
= (flags
& ~SOCK_NONBLOCK
) | O_NONBLOCK
;
1513 retval
= sock_create(family
, type
, protocol
, &sock
);
1517 return sock_map_fd(sock
, flags
& (O_CLOEXEC
| O_NONBLOCK
));
1520 SYSCALL_DEFINE3(socket
, int, family
, int, type
, int, protocol
)
1522 return __sys_socket(family
, type
, protocol
);
1526 * Create a pair of connected sockets.
1529 int __sys_socketpair(int family
, int type
, int protocol
, int __user
*usockvec
)
1531 struct socket
*sock1
, *sock2
;
1533 struct file
*newfile1
, *newfile2
;
1536 flags
= type
& ~SOCK_TYPE_MASK
;
1537 if (flags
& ~(SOCK_CLOEXEC
| SOCK_NONBLOCK
))
1539 type
&= SOCK_TYPE_MASK
;
1541 if (SOCK_NONBLOCK
!= O_NONBLOCK
&& (flags
& SOCK_NONBLOCK
))
1542 flags
= (flags
& ~SOCK_NONBLOCK
) | O_NONBLOCK
;
1545 * reserve descriptors and make sure we won't fail
1546 * to return them to userland.
1548 fd1
= get_unused_fd_flags(flags
);
1549 if (unlikely(fd1
< 0))
1552 fd2
= get_unused_fd_flags(flags
);
1553 if (unlikely(fd2
< 0)) {
1558 err
= put_user(fd1
, &usockvec
[0]);
1562 err
= put_user(fd2
, &usockvec
[1]);
1567 * Obtain the first socket and check if the underlying protocol
1568 * supports the socketpair call.
1571 err
= sock_create(family
, type
, protocol
, &sock1
);
1572 if (unlikely(err
< 0))
1575 err
= sock_create(family
, type
, protocol
, &sock2
);
1576 if (unlikely(err
< 0)) {
1577 sock_release(sock1
);
1581 err
= security_socket_socketpair(sock1
, sock2
);
1582 if (unlikely(err
)) {
1583 sock_release(sock2
);
1584 sock_release(sock1
);
1588 err
= sock1
->ops
->socketpair(sock1
, sock2
);
1589 if (unlikely(err
< 0)) {
1590 sock_release(sock2
);
1591 sock_release(sock1
);
1595 newfile1
= sock_alloc_file(sock1
, flags
, NULL
);
1596 if (IS_ERR(newfile1
)) {
1597 err
= PTR_ERR(newfile1
);
1598 sock_release(sock2
);
1602 newfile2
= sock_alloc_file(sock2
, flags
, NULL
);
1603 if (IS_ERR(newfile2
)) {
1604 err
= PTR_ERR(newfile2
);
1609 audit_fd_pair(fd1
, fd2
);
1611 fd_install(fd1
, newfile1
);
1612 fd_install(fd2
, newfile2
);
1621 SYSCALL_DEFINE4(socketpair
, int, family
, int, type
, int, protocol
,
1622 int __user
*, usockvec
)
1624 return __sys_socketpair(family
, type
, protocol
, usockvec
);
1628 * Bind a name to a socket. Nothing much to do here since it's
1629 * the protocol's responsibility to handle the local address.
1631 * We move the socket address to kernel space before we call
1632 * the protocol layer (having also checked the address is ok).
1635 int __sys_bind(int fd
, struct sockaddr __user
*umyaddr
, int addrlen
)
1637 struct socket
*sock
;
1638 struct sockaddr_storage address
;
1639 int err
, fput_needed
;
1641 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1643 err
= move_addr_to_kernel(umyaddr
, addrlen
, &address
);
1645 err
= security_socket_bind(sock
,
1646 (struct sockaddr
*)&address
,
1649 err
= sock
->ops
->bind(sock
,
1653 fput_light(sock
->file
, fput_needed
);
1658 SYSCALL_DEFINE3(bind
, int, fd
, struct sockaddr __user
*, umyaddr
, int, addrlen
)
1660 return __sys_bind(fd
, umyaddr
, addrlen
);
1664 * Perform a listen. Basically, we allow the protocol to do anything
1665 * necessary for a listen, and if that works, we mark the socket as
1666 * ready for listening.
1669 int __sys_listen(int fd
, int backlog
)
1671 struct socket
*sock
;
1672 int err
, fput_needed
;
1675 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1677 somaxconn
= sock_net(sock
->sk
)->core
.sysctl_somaxconn
;
1678 if ((unsigned int)backlog
> somaxconn
)
1679 backlog
= somaxconn
;
1681 err
= security_socket_listen(sock
, backlog
);
1683 err
= sock
->ops
->listen(sock
, backlog
);
1685 fput_light(sock
->file
, fput_needed
);
1690 SYSCALL_DEFINE2(listen
, int, fd
, int, backlog
)
1692 return __sys_listen(fd
, backlog
);
1695 int __sys_accept4_file(struct file
*file
, unsigned file_flags
,
1696 struct sockaddr __user
*upeer_sockaddr
,
1697 int __user
*upeer_addrlen
, int flags
)
1699 struct socket
*sock
, *newsock
;
1700 struct file
*newfile
;
1701 int err
, len
, newfd
;
1702 struct sockaddr_storage address
;
1704 if (flags
& ~(SOCK_CLOEXEC
| SOCK_NONBLOCK
))
1707 if (SOCK_NONBLOCK
!= O_NONBLOCK
&& (flags
& SOCK_NONBLOCK
))
1708 flags
= (flags
& ~SOCK_NONBLOCK
) | O_NONBLOCK
;
1710 sock
= sock_from_file(file
, &err
);
1715 newsock
= sock_alloc();
1719 newsock
->type
= sock
->type
;
1720 newsock
->ops
= sock
->ops
;
1723 * We don't need try_module_get here, as the listening socket (sock)
1724 * has the protocol module (sock->ops->owner) held.
1726 __module_get(newsock
->ops
->owner
);
1728 newfd
= get_unused_fd_flags(flags
);
1729 if (unlikely(newfd
< 0)) {
1731 sock_release(newsock
);
1734 newfile
= sock_alloc_file(newsock
, flags
, sock
->sk
->sk_prot_creator
->name
);
1735 if (IS_ERR(newfile
)) {
1736 err
= PTR_ERR(newfile
);
1737 put_unused_fd(newfd
);
1741 err
= security_socket_accept(sock
, newsock
);
1745 err
= sock
->ops
->accept(sock
, newsock
, sock
->file
->f_flags
| file_flags
,
1750 if (upeer_sockaddr
) {
1751 len
= newsock
->ops
->getname(newsock
,
1752 (struct sockaddr
*)&address
, 2);
1754 err
= -ECONNABORTED
;
1757 err
= move_addr_to_user(&address
,
1758 len
, upeer_sockaddr
, upeer_addrlen
);
1763 /* File flags are not inherited via accept() unlike another OSes. */
1765 fd_install(newfd
, newfile
);
1771 put_unused_fd(newfd
);
1777 * For accept, we attempt to create a new socket, set up the link
1778 * with the client, wake up the client, then return the new
1779 * connected fd. We collect the address of the connector in kernel
1780 * space and move it to user at the very end. This is unclean because
1781 * we open the socket then return an error.
1783 * 1003.1g adds the ability to recvmsg() to query connection pending
1784 * status to recvmsg. We need to add that support in a way thats
1785 * clean when we restructure accept also.
1788 int __sys_accept4(int fd
, struct sockaddr __user
*upeer_sockaddr
,
1789 int __user
*upeer_addrlen
, int flags
)
1796 ret
= __sys_accept4_file(f
.file
, 0, upeer_sockaddr
,
1797 upeer_addrlen
, flags
);
1805 SYSCALL_DEFINE4(accept4
, int, fd
, struct sockaddr __user
*, upeer_sockaddr
,
1806 int __user
*, upeer_addrlen
, int, flags
)
1808 return __sys_accept4(fd
, upeer_sockaddr
, upeer_addrlen
, flags
);
1811 SYSCALL_DEFINE3(accept
, int, fd
, struct sockaddr __user
*, upeer_sockaddr
,
1812 int __user
*, upeer_addrlen
)
1814 return __sys_accept4(fd
, upeer_sockaddr
, upeer_addrlen
, 0);
1818 * Attempt to connect to a socket with the server address. The address
1819 * is in user space so we verify it is OK and move it to kernel space.
1821 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1824 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1825 * other SEQPACKET protocols that take time to connect() as it doesn't
1826 * include the -EINPROGRESS status for such sockets.
1829 int __sys_connect_file(struct file
*file
, struct sockaddr_storage
*address
,
1830 int addrlen
, int file_flags
)
1832 struct socket
*sock
;
1835 sock
= sock_from_file(file
, &err
);
1840 security_socket_connect(sock
, (struct sockaddr
*)address
, addrlen
);
1844 err
= sock
->ops
->connect(sock
, (struct sockaddr
*)address
, addrlen
,
1845 sock
->file
->f_flags
| file_flags
);
1850 int __sys_connect(int fd
, struct sockaddr __user
*uservaddr
, int addrlen
)
1857 struct sockaddr_storage address
;
1859 ret
= move_addr_to_kernel(uservaddr
, addrlen
, &address
);
1861 ret
= __sys_connect_file(f
.file
, &address
, addrlen
, 0);
1869 SYSCALL_DEFINE3(connect
, int, fd
, struct sockaddr __user
*, uservaddr
,
1872 return __sys_connect(fd
, uservaddr
, addrlen
);
1876 * Get the local address ('name') of a socket object. Move the obtained
1877 * name to user space.
1880 int __sys_getsockname(int fd
, struct sockaddr __user
*usockaddr
,
1881 int __user
*usockaddr_len
)
1883 struct socket
*sock
;
1884 struct sockaddr_storage address
;
1885 int err
, fput_needed
;
1887 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1891 err
= security_socket_getsockname(sock
);
1895 err
= sock
->ops
->getname(sock
, (struct sockaddr
*)&address
, 0);
1898 /* "err" is actually length in this case */
1899 err
= move_addr_to_user(&address
, err
, usockaddr
, usockaddr_len
);
1902 fput_light(sock
->file
, fput_needed
);
1907 SYSCALL_DEFINE3(getsockname
, int, fd
, struct sockaddr __user
*, usockaddr
,
1908 int __user
*, usockaddr_len
)
1910 return __sys_getsockname(fd
, usockaddr
, usockaddr_len
);
1914 * Get the remote address ('name') of a socket object. Move the obtained
1915 * name to user space.
1918 int __sys_getpeername(int fd
, struct sockaddr __user
*usockaddr
,
1919 int __user
*usockaddr_len
)
1921 struct socket
*sock
;
1922 struct sockaddr_storage address
;
1923 int err
, fput_needed
;
1925 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1927 err
= security_socket_getpeername(sock
);
1929 fput_light(sock
->file
, fput_needed
);
1933 err
= sock
->ops
->getname(sock
, (struct sockaddr
*)&address
, 1);
1935 /* "err" is actually length in this case */
1936 err
= move_addr_to_user(&address
, err
, usockaddr
,
1938 fput_light(sock
->file
, fput_needed
);
1943 SYSCALL_DEFINE3(getpeername
, int, fd
, struct sockaddr __user
*, usockaddr
,
1944 int __user
*, usockaddr_len
)
1946 return __sys_getpeername(fd
, usockaddr
, usockaddr_len
);
1950 * Send a datagram to a given address. We move the address into kernel
1951 * space and check the user space data area is readable before invoking
1954 int __sys_sendto(int fd
, void __user
*buff
, size_t len
, unsigned int flags
,
1955 struct sockaddr __user
*addr
, int addr_len
)
1957 struct socket
*sock
;
1958 struct sockaddr_storage address
;
1964 err
= import_single_range(WRITE
, buff
, len
, &iov
, &msg
.msg_iter
);
1967 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1971 msg
.msg_name
= NULL
;
1972 msg
.msg_control
= NULL
;
1973 msg
.msg_controllen
= 0;
1974 msg
.msg_namelen
= 0;
1976 err
= move_addr_to_kernel(addr
, addr_len
, &address
);
1979 msg
.msg_name
= (struct sockaddr
*)&address
;
1980 msg
.msg_namelen
= addr_len
;
1982 if (sock
->file
->f_flags
& O_NONBLOCK
)
1983 flags
|= MSG_DONTWAIT
;
1984 msg
.msg_flags
= flags
;
1985 err
= sock_sendmsg(sock
, &msg
);
1988 fput_light(sock
->file
, fput_needed
);
1993 SYSCALL_DEFINE6(sendto
, int, fd
, void __user
*, buff
, size_t, len
,
1994 unsigned int, flags
, struct sockaddr __user
*, addr
,
1997 return __sys_sendto(fd
, buff
, len
, flags
, addr
, addr_len
);
2001 * Send a datagram down a socket.
2004 SYSCALL_DEFINE4(send
, int, fd
, void __user
*, buff
, size_t, len
,
2005 unsigned int, flags
)
2007 return __sys_sendto(fd
, buff
, len
, flags
, NULL
, 0);
2011 * Receive a frame from the socket and optionally record the address of the
2012 * sender. We verify the buffers are writable and if needed move the
2013 * sender address from kernel to user space.
2015 int __sys_recvfrom(int fd
, void __user
*ubuf
, size_t size
, unsigned int flags
,
2016 struct sockaddr __user
*addr
, int __user
*addr_len
)
2018 struct socket
*sock
;
2021 struct sockaddr_storage address
;
2025 err
= import_single_range(READ
, ubuf
, size
, &iov
, &msg
.msg_iter
);
2028 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2032 msg
.msg_control
= NULL
;
2033 msg
.msg_controllen
= 0;
2034 /* Save some cycles and don't copy the address if not needed */
2035 msg
.msg_name
= addr
? (struct sockaddr
*)&address
: NULL
;
2036 /* We assume all kernel code knows the size of sockaddr_storage */
2037 msg
.msg_namelen
= 0;
2038 msg
.msg_iocb
= NULL
;
2040 if (sock
->file
->f_flags
& O_NONBLOCK
)
2041 flags
|= MSG_DONTWAIT
;
2042 err
= sock_recvmsg(sock
, &msg
, flags
);
2044 if (err
>= 0 && addr
!= NULL
) {
2045 err2
= move_addr_to_user(&address
,
2046 msg
.msg_namelen
, addr
, addr_len
);
2051 fput_light(sock
->file
, fput_needed
);
2056 SYSCALL_DEFINE6(recvfrom
, int, fd
, void __user
*, ubuf
, size_t, size
,
2057 unsigned int, flags
, struct sockaddr __user
*, addr
,
2058 int __user
*, addr_len
)
2060 return __sys_recvfrom(fd
, ubuf
, size
, flags
, addr
, addr_len
);
2064 * Receive a datagram from a socket.
2067 SYSCALL_DEFINE4(recv
, int, fd
, void __user
*, ubuf
, size_t, size
,
2068 unsigned int, flags
)
2070 return __sys_recvfrom(fd
, ubuf
, size
, flags
, NULL
, NULL
);
2074 * Set a socket option. Because we don't know the option lengths we have
2075 * to pass the user mode parameter for the protocols to sort out.
2078 static int __sys_setsockopt(int fd
, int level
, int optname
,
2079 char __user
*optval
, int optlen
)
2081 mm_segment_t oldfs
= get_fs();
2082 char *kernel_optval
= NULL
;
2083 int err
, fput_needed
;
2084 struct socket
*sock
;
2089 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2091 err
= security_socket_setsockopt(sock
, level
, optname
);
2095 err
= BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock
->sk
, &level
,
2096 &optname
, optval
, &optlen
,
2101 } else if (err
> 0) {
2106 if (kernel_optval
) {
2108 optval
= (char __user __force
*)kernel_optval
;
2111 if (level
== SOL_SOCKET
)
2113 sock_setsockopt(sock
, level
, optname
, optval
,
2117 sock
->ops
->setsockopt(sock
, level
, optname
, optval
,
2120 if (kernel_optval
) {
2122 kfree(kernel_optval
);
2125 fput_light(sock
->file
, fput_needed
);
2130 SYSCALL_DEFINE5(setsockopt
, int, fd
, int, level
, int, optname
,
2131 char __user
*, optval
, int, optlen
)
2133 return __sys_setsockopt(fd
, level
, optname
, optval
, optlen
);
2137 * Get a socket option. Because we don't know the option lengths we have
2138 * to pass a user mode parameter for the protocols to sort out.
2141 static int __sys_getsockopt(int fd
, int level
, int optname
,
2142 char __user
*optval
, int __user
*optlen
)
2144 int err
, fput_needed
;
2145 struct socket
*sock
;
2148 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2150 err
= security_socket_getsockopt(sock
, level
, optname
);
2154 max_optlen
= BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen
);
2156 if (level
== SOL_SOCKET
)
2158 sock_getsockopt(sock
, level
, optname
, optval
,
2162 sock
->ops
->getsockopt(sock
, level
, optname
, optval
,
2165 err
= BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock
->sk
, level
, optname
,
2169 fput_light(sock
->file
, fput_needed
);
2174 SYSCALL_DEFINE5(getsockopt
, int, fd
, int, level
, int, optname
,
2175 char __user
*, optval
, int __user
*, optlen
)
2177 return __sys_getsockopt(fd
, level
, optname
, optval
, optlen
);
2181 * Shutdown a socket.
2184 int __sys_shutdown(int fd
, int how
)
2186 int err
, fput_needed
;
2187 struct socket
*sock
;
2189 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2191 err
= security_socket_shutdown(sock
, how
);
2193 err
= sock
->ops
->shutdown(sock
, how
);
2194 fput_light(sock
->file
, fput_needed
);
2199 SYSCALL_DEFINE2(shutdown
, int, fd
, int, how
)
2201 return __sys_shutdown(fd
, how
);
2204 /* A couple of helpful macros for getting the address of the 32/64 bit
2205 * fields which are the same type (int / unsigned) on our platforms.
2207 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2208 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
2209 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
2211 struct used_address
{
2212 struct sockaddr_storage name
;
2213 unsigned int name_len
;
2216 static int copy_msghdr_from_user(struct msghdr
*kmsg
,
2217 struct user_msghdr __user
*umsg
,
2218 struct sockaddr __user
**save_addr
,
2221 struct user_msghdr msg
;
2224 if (copy_from_user(&msg
, umsg
, sizeof(*umsg
)))
2227 kmsg
->msg_control
= (void __force
*)msg
.msg_control
;
2228 kmsg
->msg_controllen
= msg
.msg_controllen
;
2229 kmsg
->msg_flags
= msg
.msg_flags
;
2231 kmsg
->msg_namelen
= msg
.msg_namelen
;
2233 kmsg
->msg_namelen
= 0;
2235 if (kmsg
->msg_namelen
< 0)
2238 if (kmsg
->msg_namelen
> sizeof(struct sockaddr_storage
))
2239 kmsg
->msg_namelen
= sizeof(struct sockaddr_storage
);
2242 *save_addr
= msg
.msg_name
;
2244 if (msg
.msg_name
&& kmsg
->msg_namelen
) {
2246 err
= move_addr_to_kernel(msg
.msg_name
,
2253 kmsg
->msg_name
= NULL
;
2254 kmsg
->msg_namelen
= 0;
2257 if (msg
.msg_iovlen
> UIO_MAXIOV
)
2260 kmsg
->msg_iocb
= NULL
;
2262 err
= import_iovec(save_addr
? READ
: WRITE
,
2263 msg
.msg_iov
, msg
.msg_iovlen
,
2264 UIO_FASTIOV
, iov
, &kmsg
->msg_iter
);
2265 return err
< 0 ? err
: 0;
2268 static int ____sys_sendmsg(struct socket
*sock
, struct msghdr
*msg_sys
,
2269 unsigned int flags
, struct used_address
*used_address
,
2270 unsigned int allowed_msghdr_flags
)
2272 unsigned char ctl
[sizeof(struct cmsghdr
) + 20]
2273 __aligned(sizeof(__kernel_size_t
));
2274 /* 20 is size of ipv6_pktinfo */
2275 unsigned char *ctl_buf
= ctl
;
2281 if (msg_sys
->msg_controllen
> INT_MAX
)
2283 flags
|= (msg_sys
->msg_flags
& allowed_msghdr_flags
);
2284 ctl_len
= msg_sys
->msg_controllen
;
2285 if ((MSG_CMSG_COMPAT
& flags
) && ctl_len
) {
2287 cmsghdr_from_user_compat_to_kern(msg_sys
, sock
->sk
, ctl
,
2291 ctl_buf
= msg_sys
->msg_control
;
2292 ctl_len
= msg_sys
->msg_controllen
;
2293 } else if (ctl_len
) {
2294 BUILD_BUG_ON(sizeof(struct cmsghdr
) !=
2295 CMSG_ALIGN(sizeof(struct cmsghdr
)));
2296 if (ctl_len
> sizeof(ctl
)) {
2297 ctl_buf
= sock_kmalloc(sock
->sk
, ctl_len
, GFP_KERNEL
);
2298 if (ctl_buf
== NULL
)
2303 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2304 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2305 * checking falls down on this.
2307 if (copy_from_user(ctl_buf
,
2308 (void __user __force
*)msg_sys
->msg_control
,
2311 msg_sys
->msg_control
= ctl_buf
;
2313 msg_sys
->msg_flags
= flags
;
2315 if (sock
->file
->f_flags
& O_NONBLOCK
)
2316 msg_sys
->msg_flags
|= MSG_DONTWAIT
;
2318 * If this is sendmmsg() and current destination address is same as
2319 * previously succeeded address, omit asking LSM's decision.
2320 * used_address->name_len is initialized to UINT_MAX so that the first
2321 * destination address never matches.
2323 if (used_address
&& msg_sys
->msg_name
&&
2324 used_address
->name_len
== msg_sys
->msg_namelen
&&
2325 !memcmp(&used_address
->name
, msg_sys
->msg_name
,
2326 used_address
->name_len
)) {
2327 err
= sock_sendmsg_nosec(sock
, msg_sys
);
2330 err
= sock_sendmsg(sock
, msg_sys
);
2332 * If this is sendmmsg() and sending to current destination address was
2333 * successful, remember it.
2335 if (used_address
&& err
>= 0) {
2336 used_address
->name_len
= msg_sys
->msg_namelen
;
2337 if (msg_sys
->msg_name
)
2338 memcpy(&used_address
->name
, msg_sys
->msg_name
,
2339 used_address
->name_len
);
2344 sock_kfree_s(sock
->sk
, ctl_buf
, ctl_len
);
2349 int sendmsg_copy_msghdr(struct msghdr
*msg
,
2350 struct user_msghdr __user
*umsg
, unsigned flags
,
2355 if (flags
& MSG_CMSG_COMPAT
) {
2356 struct compat_msghdr __user
*msg_compat
;
2358 msg_compat
= (struct compat_msghdr __user
*) umsg
;
2359 err
= get_compat_msghdr(msg
, msg_compat
, NULL
, iov
);
2361 err
= copy_msghdr_from_user(msg
, umsg
, NULL
, iov
);
2369 static int ___sys_sendmsg(struct socket
*sock
, struct user_msghdr __user
*msg
,
2370 struct msghdr
*msg_sys
, unsigned int flags
,
2371 struct used_address
*used_address
,
2372 unsigned int allowed_msghdr_flags
)
2374 struct sockaddr_storage address
;
2375 struct iovec iovstack
[UIO_FASTIOV
], *iov
= iovstack
;
2378 msg_sys
->msg_name
= &address
;
2380 err
= sendmsg_copy_msghdr(msg_sys
, msg
, flags
, &iov
);
2384 err
= ____sys_sendmsg(sock
, msg_sys
, flags
, used_address
,
2385 allowed_msghdr_flags
);
2391 * BSD sendmsg interface
2393 long __sys_sendmsg_sock(struct socket
*sock
, struct msghdr
*msg
,
2396 /* disallow ancillary data requests from this path */
2397 if (msg
->msg_control
|| msg
->msg_controllen
)
2400 return ____sys_sendmsg(sock
, msg
, flags
, NULL
, 0);
2403 long __sys_sendmsg(int fd
, struct user_msghdr __user
*msg
, unsigned int flags
,
2404 bool forbid_cmsg_compat
)
2406 int fput_needed
, err
;
2407 struct msghdr msg_sys
;
2408 struct socket
*sock
;
2410 if (forbid_cmsg_compat
&& (flags
& MSG_CMSG_COMPAT
))
2413 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2417 err
= ___sys_sendmsg(sock
, msg
, &msg_sys
, flags
, NULL
, 0);
2419 fput_light(sock
->file
, fput_needed
);
2424 SYSCALL_DEFINE3(sendmsg
, int, fd
, struct user_msghdr __user
*, msg
, unsigned int, flags
)
2426 return __sys_sendmsg(fd
, msg
, flags
, true);
2430 * Linux sendmmsg interface
2433 int __sys_sendmmsg(int fd
, struct mmsghdr __user
*mmsg
, unsigned int vlen
,
2434 unsigned int flags
, bool forbid_cmsg_compat
)
2436 int fput_needed
, err
, datagrams
;
2437 struct socket
*sock
;
2438 struct mmsghdr __user
*entry
;
2439 struct compat_mmsghdr __user
*compat_entry
;
2440 struct msghdr msg_sys
;
2441 struct used_address used_address
;
2442 unsigned int oflags
= flags
;
2444 if (forbid_cmsg_compat
&& (flags
& MSG_CMSG_COMPAT
))
2447 if (vlen
> UIO_MAXIOV
)
2452 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2456 used_address
.name_len
= UINT_MAX
;
2458 compat_entry
= (struct compat_mmsghdr __user
*)mmsg
;
2462 while (datagrams
< vlen
) {
2463 if (datagrams
== vlen
- 1)
2466 if (MSG_CMSG_COMPAT
& flags
) {
2467 err
= ___sys_sendmsg(sock
, (struct user_msghdr __user
*)compat_entry
,
2468 &msg_sys
, flags
, &used_address
, MSG_EOR
);
2471 err
= __put_user(err
, &compat_entry
->msg_len
);
2474 err
= ___sys_sendmsg(sock
,
2475 (struct user_msghdr __user
*)entry
,
2476 &msg_sys
, flags
, &used_address
, MSG_EOR
);
2479 err
= put_user(err
, &entry
->msg_len
);
2486 if (msg_data_left(&msg_sys
))
2491 fput_light(sock
->file
, fput_needed
);
2493 /* We only return an error if no datagrams were able to be sent */
2500 SYSCALL_DEFINE4(sendmmsg
, int, fd
, struct mmsghdr __user
*, mmsg
,
2501 unsigned int, vlen
, unsigned int, flags
)
2503 return __sys_sendmmsg(fd
, mmsg
, vlen
, flags
, true);
2506 int recvmsg_copy_msghdr(struct msghdr
*msg
,
2507 struct user_msghdr __user
*umsg
, unsigned flags
,
2508 struct sockaddr __user
**uaddr
,
2513 if (MSG_CMSG_COMPAT
& flags
) {
2514 struct compat_msghdr __user
*msg_compat
;
2516 msg_compat
= (struct compat_msghdr __user
*) umsg
;
2517 err
= get_compat_msghdr(msg
, msg_compat
, uaddr
, iov
);
2519 err
= copy_msghdr_from_user(msg
, umsg
, uaddr
, iov
);
2527 static int ____sys_recvmsg(struct socket
*sock
, struct msghdr
*msg_sys
,
2528 struct user_msghdr __user
*msg
,
2529 struct sockaddr __user
*uaddr
,
2530 unsigned int flags
, int nosec
)
2532 struct compat_msghdr __user
*msg_compat
=
2533 (struct compat_msghdr __user
*) msg
;
2534 int __user
*uaddr_len
= COMPAT_NAMELEN(msg
);
2535 struct sockaddr_storage addr
;
2536 unsigned long cmsg_ptr
;
2540 msg_sys
->msg_name
= &addr
;
2541 cmsg_ptr
= (unsigned long)msg_sys
->msg_control
;
2542 msg_sys
->msg_flags
= flags
& (MSG_CMSG_CLOEXEC
|MSG_CMSG_COMPAT
);
2544 /* We assume all kernel code knows the size of sockaddr_storage */
2545 msg_sys
->msg_namelen
= 0;
2547 if (sock
->file
->f_flags
& O_NONBLOCK
)
2548 flags
|= MSG_DONTWAIT
;
2549 err
= (nosec
? sock_recvmsg_nosec
: sock_recvmsg
)(sock
, msg_sys
, flags
);
2554 if (uaddr
!= NULL
) {
2555 err
= move_addr_to_user(&addr
,
2556 msg_sys
->msg_namelen
, uaddr
,
2561 err
= __put_user((msg_sys
->msg_flags
& ~MSG_CMSG_COMPAT
),
2565 if (MSG_CMSG_COMPAT
& flags
)
2566 err
= __put_user((unsigned long)msg_sys
->msg_control
- cmsg_ptr
,
2567 &msg_compat
->msg_controllen
);
2569 err
= __put_user((unsigned long)msg_sys
->msg_control
- cmsg_ptr
,
2570 &msg
->msg_controllen
);
2578 static int ___sys_recvmsg(struct socket
*sock
, struct user_msghdr __user
*msg
,
2579 struct msghdr
*msg_sys
, unsigned int flags
, int nosec
)
2581 struct iovec iovstack
[UIO_FASTIOV
], *iov
= iovstack
;
2582 /* user mode address pointers */
2583 struct sockaddr __user
*uaddr
;
2586 err
= recvmsg_copy_msghdr(msg_sys
, msg
, flags
, &uaddr
, &iov
);
2590 err
= ____sys_recvmsg(sock
, msg_sys
, msg
, uaddr
, flags
, nosec
);
2596 * BSD recvmsg interface
2599 long __sys_recvmsg_sock(struct socket
*sock
, struct msghdr
*msg
,
2600 struct user_msghdr __user
*umsg
,
2601 struct sockaddr __user
*uaddr
, unsigned int flags
)
2603 /* disallow ancillary data requests from this path */
2604 if (msg
->msg_control
|| msg
->msg_controllen
)
2607 return ____sys_recvmsg(sock
, msg
, umsg
, uaddr
, flags
, 0);
2610 long __sys_recvmsg(int fd
, struct user_msghdr __user
*msg
, unsigned int flags
,
2611 bool forbid_cmsg_compat
)
2613 int fput_needed
, err
;
2614 struct msghdr msg_sys
;
2615 struct socket
*sock
;
2617 if (forbid_cmsg_compat
&& (flags
& MSG_CMSG_COMPAT
))
2620 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2624 err
= ___sys_recvmsg(sock
, msg
, &msg_sys
, flags
, 0);
2626 fput_light(sock
->file
, fput_needed
);
2631 SYSCALL_DEFINE3(recvmsg
, int, fd
, struct user_msghdr __user
*, msg
,
2632 unsigned int, flags
)
2634 return __sys_recvmsg(fd
, msg
, flags
, true);
2638 * Linux recvmmsg interface
2641 static int do_recvmmsg(int fd
, struct mmsghdr __user
*mmsg
,
2642 unsigned int vlen
, unsigned int flags
,
2643 struct timespec64
*timeout
)
2645 int fput_needed
, err
, datagrams
;
2646 struct socket
*sock
;
2647 struct mmsghdr __user
*entry
;
2648 struct compat_mmsghdr __user
*compat_entry
;
2649 struct msghdr msg_sys
;
2650 struct timespec64 end_time
;
2651 struct timespec64 timeout64
;
2654 poll_select_set_timeout(&end_time
, timeout
->tv_sec
,
2660 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2664 if (likely(!(flags
& MSG_ERRQUEUE
))) {
2665 err
= sock_error(sock
->sk
);
2673 compat_entry
= (struct compat_mmsghdr __user
*)mmsg
;
2675 while (datagrams
< vlen
) {
2677 * No need to ask LSM for more than the first datagram.
2679 if (MSG_CMSG_COMPAT
& flags
) {
2680 err
= ___sys_recvmsg(sock
, (struct user_msghdr __user
*)compat_entry
,
2681 &msg_sys
, flags
& ~MSG_WAITFORONE
,
2685 err
= __put_user(err
, &compat_entry
->msg_len
);
2688 err
= ___sys_recvmsg(sock
,
2689 (struct user_msghdr __user
*)entry
,
2690 &msg_sys
, flags
& ~MSG_WAITFORONE
,
2694 err
= put_user(err
, &entry
->msg_len
);
2702 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2703 if (flags
& MSG_WAITFORONE
)
2704 flags
|= MSG_DONTWAIT
;
2707 ktime_get_ts64(&timeout64
);
2708 *timeout
= timespec64_sub(end_time
, timeout64
);
2709 if (timeout
->tv_sec
< 0) {
2710 timeout
->tv_sec
= timeout
->tv_nsec
= 0;
2714 /* Timeout, return less than vlen datagrams */
2715 if (timeout
->tv_nsec
== 0 && timeout
->tv_sec
== 0)
2719 /* Out of band data, return right away */
2720 if (msg_sys
.msg_flags
& MSG_OOB
)
2728 if (datagrams
== 0) {
2734 * We may return less entries than requested (vlen) if the
2735 * sock is non block and there aren't enough datagrams...
2737 if (err
!= -EAGAIN
) {
2739 * ... or if recvmsg returns an error after we
2740 * received some datagrams, where we record the
2741 * error to return on the next call or if the
2742 * app asks about it using getsockopt(SO_ERROR).
2744 sock
->sk
->sk_err
= -err
;
2747 fput_light(sock
->file
, fput_needed
);
2752 int __sys_recvmmsg(int fd
, struct mmsghdr __user
*mmsg
,
2753 unsigned int vlen
, unsigned int flags
,
2754 struct __kernel_timespec __user
*timeout
,
2755 struct old_timespec32 __user
*timeout32
)
2758 struct timespec64 timeout_sys
;
2760 if (timeout
&& get_timespec64(&timeout_sys
, timeout
))
2763 if (timeout32
&& get_old_timespec32(&timeout_sys
, timeout32
))
2766 if (!timeout
&& !timeout32
)
2767 return do_recvmmsg(fd
, mmsg
, vlen
, flags
, NULL
);
2769 datagrams
= do_recvmmsg(fd
, mmsg
, vlen
, flags
, &timeout_sys
);
2774 if (timeout
&& put_timespec64(&timeout_sys
, timeout
))
2775 datagrams
= -EFAULT
;
2777 if (timeout32
&& put_old_timespec32(&timeout_sys
, timeout32
))
2778 datagrams
= -EFAULT
;
2783 SYSCALL_DEFINE5(recvmmsg
, int, fd
, struct mmsghdr __user
*, mmsg
,
2784 unsigned int, vlen
, unsigned int, flags
,
2785 struct __kernel_timespec __user
*, timeout
)
2787 if (flags
& MSG_CMSG_COMPAT
)
2790 return __sys_recvmmsg(fd
, mmsg
, vlen
, flags
, timeout
, NULL
);
2793 #ifdef CONFIG_COMPAT_32BIT_TIME
2794 SYSCALL_DEFINE5(recvmmsg_time32
, int, fd
, struct mmsghdr __user
*, mmsg
,
2795 unsigned int, vlen
, unsigned int, flags
,
2796 struct old_timespec32 __user
*, timeout
)
2798 if (flags
& MSG_CMSG_COMPAT
)
2801 return __sys_recvmmsg(fd
, mmsg
, vlen
, flags
, NULL
, timeout
);
2805 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2806 /* Argument list sizes for sys_socketcall */
2807 #define AL(x) ((x) * sizeof(unsigned long))
2808 static const unsigned char nargs
[21] = {
2809 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2810 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2811 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2818 * System call vectors.
2820 * Argument checking cleaned up. Saved 20% in size.
2821 * This function doesn't need to set the kernel lock because
2822 * it is set by the callees.
2825 SYSCALL_DEFINE2(socketcall
, int, call
, unsigned long __user
*, args
)
2827 unsigned long a
[AUDITSC_ARGS
];
2828 unsigned long a0
, a1
;
2832 if (call
< 1 || call
> SYS_SENDMMSG
)
2834 call
= array_index_nospec(call
, SYS_SENDMMSG
+ 1);
2837 if (len
> sizeof(a
))
2840 /* copy_from_user should be SMP safe. */
2841 if (copy_from_user(a
, args
, len
))
2844 err
= audit_socketcall(nargs
[call
] / sizeof(unsigned long), a
);
2853 err
= __sys_socket(a0
, a1
, a
[2]);
2856 err
= __sys_bind(a0
, (struct sockaddr __user
*)a1
, a
[2]);
2859 err
= __sys_connect(a0
, (struct sockaddr __user
*)a1
, a
[2]);
2862 err
= __sys_listen(a0
, a1
);
2865 err
= __sys_accept4(a0
, (struct sockaddr __user
*)a1
,
2866 (int __user
*)a
[2], 0);
2868 case SYS_GETSOCKNAME
:
2870 __sys_getsockname(a0
, (struct sockaddr __user
*)a1
,
2871 (int __user
*)a
[2]);
2873 case SYS_GETPEERNAME
:
2875 __sys_getpeername(a0
, (struct sockaddr __user
*)a1
,
2876 (int __user
*)a
[2]);
2878 case SYS_SOCKETPAIR
:
2879 err
= __sys_socketpair(a0
, a1
, a
[2], (int __user
*)a
[3]);
2882 err
= __sys_sendto(a0
, (void __user
*)a1
, a
[2], a
[3],
2886 err
= __sys_sendto(a0
, (void __user
*)a1
, a
[2], a
[3],
2887 (struct sockaddr __user
*)a
[4], a
[5]);
2890 err
= __sys_recvfrom(a0
, (void __user
*)a1
, a
[2], a
[3],
2894 err
= __sys_recvfrom(a0
, (void __user
*)a1
, a
[2], a
[3],
2895 (struct sockaddr __user
*)a
[4],
2896 (int __user
*)a
[5]);
2899 err
= __sys_shutdown(a0
, a1
);
2901 case SYS_SETSOCKOPT
:
2902 err
= __sys_setsockopt(a0
, a1
, a
[2], (char __user
*)a
[3],
2905 case SYS_GETSOCKOPT
:
2907 __sys_getsockopt(a0
, a1
, a
[2], (char __user
*)a
[3],
2908 (int __user
*)a
[4]);
2911 err
= __sys_sendmsg(a0
, (struct user_msghdr __user
*)a1
,
2915 err
= __sys_sendmmsg(a0
, (struct mmsghdr __user
*)a1
, a
[2],
2919 err
= __sys_recvmsg(a0
, (struct user_msghdr __user
*)a1
,
2923 if (IS_ENABLED(CONFIG_64BIT
))
2924 err
= __sys_recvmmsg(a0
, (struct mmsghdr __user
*)a1
,
2926 (struct __kernel_timespec __user
*)a
[4],
2929 err
= __sys_recvmmsg(a0
, (struct mmsghdr __user
*)a1
,
2931 (struct old_timespec32 __user
*)a
[4]);
2934 err
= __sys_accept4(a0
, (struct sockaddr __user
*)a1
,
2935 (int __user
*)a
[2], a
[3]);
2944 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2947 * sock_register - add a socket protocol handler
2948 * @ops: description of protocol
2950 * This function is called by a protocol handler that wants to
2951 * advertise its address family, and have it linked into the
2952 * socket interface. The value ops->family corresponds to the
2953 * socket system call protocol family.
2955 int sock_register(const struct net_proto_family
*ops
)
2959 if (ops
->family
>= NPROTO
) {
2960 pr_crit("protocol %d >= NPROTO(%d)\n", ops
->family
, NPROTO
);
2964 spin_lock(&net_family_lock
);
2965 if (rcu_dereference_protected(net_families
[ops
->family
],
2966 lockdep_is_held(&net_family_lock
)))
2969 rcu_assign_pointer(net_families
[ops
->family
], ops
);
2972 spin_unlock(&net_family_lock
);
2974 pr_info("NET: Registered protocol family %d\n", ops
->family
);
2977 EXPORT_SYMBOL(sock_register
);
2980 * sock_unregister - remove a protocol handler
2981 * @family: protocol family to remove
2983 * This function is called by a protocol handler that wants to
2984 * remove its address family, and have it unlinked from the
2985 * new socket creation.
2987 * If protocol handler is a module, then it can use module reference
2988 * counts to protect against new references. If protocol handler is not
2989 * a module then it needs to provide its own protection in
2990 * the ops->create routine.
2992 void sock_unregister(int family
)
2994 BUG_ON(family
< 0 || family
>= NPROTO
);
2996 spin_lock(&net_family_lock
);
2997 RCU_INIT_POINTER(net_families
[family
], NULL
);
2998 spin_unlock(&net_family_lock
);
3002 pr_info("NET: Unregistered protocol family %d\n", family
);
3004 EXPORT_SYMBOL(sock_unregister
);
3006 bool sock_is_registered(int family
)
3008 return family
< NPROTO
&& rcu_access_pointer(net_families
[family
]);
3011 static int __init
sock_init(void)
3015 * Initialize the network sysctl infrastructure.
3017 err
= net_sysctl_init();
3022 * Initialize skbuff SLAB cache
3027 * Initialize the protocols module.
3032 err
= register_filesystem(&sock_fs_type
);
3035 sock_mnt
= kern_mount(&sock_fs_type
);
3036 if (IS_ERR(sock_mnt
)) {
3037 err
= PTR_ERR(sock_mnt
);
3041 /* The real protocol initialization is performed in later initcalls.
3044 #ifdef CONFIG_NETFILTER
3045 err
= netfilter_init();
3050 ptp_classifier_init();
3056 unregister_filesystem(&sock_fs_type
);
3061 core_initcall(sock_init
); /* early initcall */
3063 #ifdef CONFIG_PROC_FS
3064 void socket_seq_show(struct seq_file
*seq
)
3066 seq_printf(seq
, "sockets: used %d\n",
3067 sock_inuse_get(seq
->private));
3069 #endif /* CONFIG_PROC_FS */
3071 #ifdef CONFIG_COMPAT
3072 static int compat_dev_ifconf(struct net
*net
, struct compat_ifconf __user
*uifc32
)
3074 struct compat_ifconf ifc32
;
3078 if (copy_from_user(&ifc32
, uifc32
, sizeof(struct compat_ifconf
)))
3081 ifc
.ifc_len
= ifc32
.ifc_len
;
3082 ifc
.ifc_req
= compat_ptr(ifc32
.ifcbuf
);
3085 err
= dev_ifconf(net
, &ifc
, sizeof(struct compat_ifreq
));
3090 ifc32
.ifc_len
= ifc
.ifc_len
;
3091 if (copy_to_user(uifc32
, &ifc32
, sizeof(struct compat_ifconf
)))
3097 static int ethtool_ioctl(struct net
*net
, struct compat_ifreq __user
*ifr32
)
3099 struct compat_ethtool_rxnfc __user
*compat_rxnfc
;
3100 bool convert_in
= false, convert_out
= false;
3101 size_t buf_size
= 0;
3102 struct ethtool_rxnfc __user
*rxnfc
= NULL
;
3104 u32 rule_cnt
= 0, actual_rule_cnt
;
3109 if (get_user(data
, &ifr32
->ifr_ifru
.ifru_data
))
3112 compat_rxnfc
= compat_ptr(data
);
3114 if (get_user(ethcmd
, &compat_rxnfc
->cmd
))
3117 /* Most ethtool structures are defined without padding.
3118 * Unfortunately struct ethtool_rxnfc is an exception.
3123 case ETHTOOL_GRXCLSRLALL
:
3124 /* Buffer size is variable */
3125 if (get_user(rule_cnt
, &compat_rxnfc
->rule_cnt
))
3127 if (rule_cnt
> KMALLOC_MAX_SIZE
/ sizeof(u32
))
3129 buf_size
+= rule_cnt
* sizeof(u32
);
3131 case ETHTOOL_GRXRINGS
:
3132 case ETHTOOL_GRXCLSRLCNT
:
3133 case ETHTOOL_GRXCLSRULE
:
3134 case ETHTOOL_SRXCLSRLINS
:
3137 case ETHTOOL_SRXCLSRLDEL
:
3138 buf_size
+= sizeof(struct ethtool_rxnfc
);
3140 rxnfc
= compat_alloc_user_space(buf_size
);
3144 if (copy_from_user(&ifr
.ifr_name
, &ifr32
->ifr_name
, IFNAMSIZ
))
3147 ifr
.ifr_data
= convert_in
? rxnfc
: (void __user
*)compat_rxnfc
;
3150 /* We expect there to be holes between fs.m_ext and
3151 * fs.ring_cookie and at the end of fs, but nowhere else.
3153 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc
, fs
.m_ext
) +
3154 sizeof(compat_rxnfc
->fs
.m_ext
) !=
3155 offsetof(struct ethtool_rxnfc
, fs
.m_ext
) +
3156 sizeof(rxnfc
->fs
.m_ext
));
3158 offsetof(struct compat_ethtool_rxnfc
, fs
.location
) -
3159 offsetof(struct compat_ethtool_rxnfc
, fs
.ring_cookie
) !=
3160 offsetof(struct ethtool_rxnfc
, fs
.location
) -
3161 offsetof(struct ethtool_rxnfc
, fs
.ring_cookie
));
3163 if (copy_in_user(rxnfc
, compat_rxnfc
,
3164 (void __user
*)(&rxnfc
->fs
.m_ext
+ 1) -
3165 (void __user
*)rxnfc
) ||
3166 copy_in_user(&rxnfc
->fs
.ring_cookie
,
3167 &compat_rxnfc
->fs
.ring_cookie
,
3168 (void __user
*)(&rxnfc
->fs
.location
+ 1) -
3169 (void __user
*)&rxnfc
->fs
.ring_cookie
))
3171 if (ethcmd
== ETHTOOL_GRXCLSRLALL
) {
3172 if (put_user(rule_cnt
, &rxnfc
->rule_cnt
))
3174 } else if (copy_in_user(&rxnfc
->rule_cnt
,
3175 &compat_rxnfc
->rule_cnt
,
3176 sizeof(rxnfc
->rule_cnt
)))
3180 ret
= dev_ioctl(net
, SIOCETHTOOL
, &ifr
, NULL
);
3185 if (copy_in_user(compat_rxnfc
, rxnfc
,
3186 (const void __user
*)(&rxnfc
->fs
.m_ext
+ 1) -
3187 (const void __user
*)rxnfc
) ||
3188 copy_in_user(&compat_rxnfc
->fs
.ring_cookie
,
3189 &rxnfc
->fs
.ring_cookie
,
3190 (const void __user
*)(&rxnfc
->fs
.location
+ 1) -
3191 (const void __user
*)&rxnfc
->fs
.ring_cookie
) ||
3192 copy_in_user(&compat_rxnfc
->rule_cnt
, &rxnfc
->rule_cnt
,
3193 sizeof(rxnfc
->rule_cnt
)))
3196 if (ethcmd
== ETHTOOL_GRXCLSRLALL
) {
3197 /* As an optimisation, we only copy the actual
3198 * number of rules that the underlying
3199 * function returned. Since Mallory might
3200 * change the rule count in user memory, we
3201 * check that it is less than the rule count
3202 * originally given (as the user buffer size),
3203 * which has been range-checked.
3205 if (get_user(actual_rule_cnt
, &rxnfc
->rule_cnt
))
3207 if (actual_rule_cnt
< rule_cnt
)
3208 rule_cnt
= actual_rule_cnt
;
3209 if (copy_in_user(&compat_rxnfc
->rule_locs
[0],
3210 &rxnfc
->rule_locs
[0],
3211 rule_cnt
* sizeof(u32
)))
3219 static int compat_siocwandev(struct net
*net
, struct compat_ifreq __user
*uifr32
)
3221 compat_uptr_t uptr32
;
3226 if (copy_from_user(&ifr
, uifr32
, sizeof(struct compat_ifreq
)))
3229 if (get_user(uptr32
, &uifr32
->ifr_settings
.ifs_ifsu
))
3232 saved
= ifr
.ifr_settings
.ifs_ifsu
.raw_hdlc
;
3233 ifr
.ifr_settings
.ifs_ifsu
.raw_hdlc
= compat_ptr(uptr32
);
3235 err
= dev_ioctl(net
, SIOCWANDEV
, &ifr
, NULL
);
3237 ifr
.ifr_settings
.ifs_ifsu
.raw_hdlc
= saved
;
3238 if (copy_to_user(uifr32
, &ifr
, sizeof(struct compat_ifreq
)))
3244 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3245 static int compat_ifr_data_ioctl(struct net
*net
, unsigned int cmd
,
3246 struct compat_ifreq __user
*u_ifreq32
)
3251 if (copy_from_user(ifreq
.ifr_name
, u_ifreq32
->ifr_name
, IFNAMSIZ
))
3253 if (get_user(data32
, &u_ifreq32
->ifr_data
))
3255 ifreq
.ifr_data
= compat_ptr(data32
);
3257 return dev_ioctl(net
, cmd
, &ifreq
, NULL
);
3260 static int compat_ifreq_ioctl(struct net
*net
, struct socket
*sock
,
3262 struct compat_ifreq __user
*uifr32
)
3264 struct ifreq __user
*uifr
;
3267 /* Handle the fact that while struct ifreq has the same *layout* on
3268 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3269 * which are handled elsewhere, it still has different *size* due to
3270 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3271 * resulting in struct ifreq being 32 and 40 bytes respectively).
3272 * As a result, if the struct happens to be at the end of a page and
3273 * the next page isn't readable/writable, we get a fault. To prevent
3274 * that, copy back and forth to the full size.
3277 uifr
= compat_alloc_user_space(sizeof(*uifr
));
3278 if (copy_in_user(uifr
, uifr32
, sizeof(*uifr32
)))
3281 err
= sock_do_ioctl(net
, sock
, cmd
, (unsigned long)uifr
);
3292 case SIOCGIFBRDADDR
:
3293 case SIOCGIFDSTADDR
:
3294 case SIOCGIFNETMASK
:
3300 if (copy_in_user(uifr32
, uifr
, sizeof(*uifr32
)))
3308 static int compat_sioc_ifmap(struct net
*net
, unsigned int cmd
,
3309 struct compat_ifreq __user
*uifr32
)
3312 struct compat_ifmap __user
*uifmap32
;
3315 uifmap32
= &uifr32
->ifr_ifru
.ifru_map
;
3316 err
= copy_from_user(&ifr
, uifr32
, sizeof(ifr
.ifr_name
));
3317 err
|= get_user(ifr
.ifr_map
.mem_start
, &uifmap32
->mem_start
);
3318 err
|= get_user(ifr
.ifr_map
.mem_end
, &uifmap32
->mem_end
);
3319 err
|= get_user(ifr
.ifr_map
.base_addr
, &uifmap32
->base_addr
);
3320 err
|= get_user(ifr
.ifr_map
.irq
, &uifmap32
->irq
);
3321 err
|= get_user(ifr
.ifr_map
.dma
, &uifmap32
->dma
);
3322 err
|= get_user(ifr
.ifr_map
.port
, &uifmap32
->port
);
3326 err
= dev_ioctl(net
, cmd
, &ifr
, NULL
);
3328 if (cmd
== SIOCGIFMAP
&& !err
) {
3329 err
= copy_to_user(uifr32
, &ifr
, sizeof(ifr
.ifr_name
));
3330 err
|= put_user(ifr
.ifr_map
.mem_start
, &uifmap32
->mem_start
);
3331 err
|= put_user(ifr
.ifr_map
.mem_end
, &uifmap32
->mem_end
);
3332 err
|= put_user(ifr
.ifr_map
.base_addr
, &uifmap32
->base_addr
);
3333 err
|= put_user(ifr
.ifr_map
.irq
, &uifmap32
->irq
);
3334 err
|= put_user(ifr
.ifr_map
.dma
, &uifmap32
->dma
);
3335 err
|= put_user(ifr
.ifr_map
.port
, &uifmap32
->port
);
3344 struct sockaddr rt_dst
; /* target address */
3345 struct sockaddr rt_gateway
; /* gateway addr (RTF_GATEWAY) */
3346 struct sockaddr rt_genmask
; /* target network mask (IP) */
3347 unsigned short rt_flags
;
3350 unsigned char rt_tos
;
3351 unsigned char rt_class
;
3353 short rt_metric
; /* +1 for binary compatibility! */
3354 /* char * */ u32 rt_dev
; /* forcing the device at add */
3355 u32 rt_mtu
; /* per route MTU/Window */
3356 u32 rt_window
; /* Window clamping */
3357 unsigned short rt_irtt
; /* Initial RTT */
3360 struct in6_rtmsg32
{
3361 struct in6_addr rtmsg_dst
;
3362 struct in6_addr rtmsg_src
;
3363 struct in6_addr rtmsg_gateway
;
3373 static int routing_ioctl(struct net
*net
, struct socket
*sock
,
3374 unsigned int cmd
, void __user
*argp
)
3378 struct in6_rtmsg r6
;
3382 mm_segment_t old_fs
= get_fs();
3384 if (sock
&& sock
->sk
&& sock
->sk
->sk_family
== AF_INET6
) { /* ipv6 */
3385 struct in6_rtmsg32 __user
*ur6
= argp
;
3386 ret
= copy_from_user(&r6
.rtmsg_dst
, &(ur6
->rtmsg_dst
),
3387 3 * sizeof(struct in6_addr
));
3388 ret
|= get_user(r6
.rtmsg_type
, &(ur6
->rtmsg_type
));
3389 ret
|= get_user(r6
.rtmsg_dst_len
, &(ur6
->rtmsg_dst_len
));
3390 ret
|= get_user(r6
.rtmsg_src_len
, &(ur6
->rtmsg_src_len
));
3391 ret
|= get_user(r6
.rtmsg_metric
, &(ur6
->rtmsg_metric
));
3392 ret
|= get_user(r6
.rtmsg_info
, &(ur6
->rtmsg_info
));
3393 ret
|= get_user(r6
.rtmsg_flags
, &(ur6
->rtmsg_flags
));
3394 ret
|= get_user(r6
.rtmsg_ifindex
, &(ur6
->rtmsg_ifindex
));
3398 struct rtentry32 __user
*ur4
= argp
;
3399 ret
= copy_from_user(&r4
.rt_dst
, &(ur4
->rt_dst
),
3400 3 * sizeof(struct sockaddr
));
3401 ret
|= get_user(r4
.rt_flags
, &(ur4
->rt_flags
));
3402 ret
|= get_user(r4
.rt_metric
, &(ur4
->rt_metric
));
3403 ret
|= get_user(r4
.rt_mtu
, &(ur4
->rt_mtu
));
3404 ret
|= get_user(r4
.rt_window
, &(ur4
->rt_window
));
3405 ret
|= get_user(r4
.rt_irtt
, &(ur4
->rt_irtt
));
3406 ret
|= get_user(rtdev
, &(ur4
->rt_dev
));
3408 ret
|= copy_from_user(devname
, compat_ptr(rtdev
), 15);
3409 r4
.rt_dev
= (char __user __force
*)devname
;
3423 ret
= sock_do_ioctl(net
, sock
, cmd
, (unsigned long) r
);
3430 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3431 * for some operations; this forces use of the newer bridge-utils that
3432 * use compatible ioctls
3434 static int old_bridge_ioctl(compat_ulong_t __user
*argp
)
3438 if (get_user(tmp
, argp
))
3440 if (tmp
== BRCTL_GET_VERSION
)
3441 return BRCTL_VERSION
+ 1;
3445 static int compat_sock_ioctl_trans(struct file
*file
, struct socket
*sock
,
3446 unsigned int cmd
, unsigned long arg
)
3448 void __user
*argp
= compat_ptr(arg
);
3449 struct sock
*sk
= sock
->sk
;
3450 struct net
*net
= sock_net(sk
);
3452 if (cmd
>= SIOCDEVPRIVATE
&& cmd
<= (SIOCDEVPRIVATE
+ 15))
3453 return compat_ifr_data_ioctl(net
, cmd
, argp
);
3458 return old_bridge_ioctl(argp
);
3460 return compat_dev_ifconf(net
, argp
);
3462 return ethtool_ioctl(net
, argp
);
3464 return compat_siocwandev(net
, argp
);
3467 return compat_sioc_ifmap(net
, cmd
, argp
);
3470 return routing_ioctl(net
, sock
, cmd
, argp
);
3471 case SIOCGSTAMP_OLD
:
3472 case SIOCGSTAMPNS_OLD
:
3473 if (!sock
->ops
->gettstamp
)
3474 return -ENOIOCTLCMD
;
3475 return sock
->ops
->gettstamp(sock
, argp
, cmd
== SIOCGSTAMP_OLD
,
3476 !COMPAT_USE_64BIT_TIME
);
3478 case SIOCBONDSLAVEINFOQUERY
:
3479 case SIOCBONDINFOQUERY
:
3482 return compat_ifr_data_ioctl(net
, cmd
, argp
);
3495 case SIOCGSTAMP_NEW
:
3496 case SIOCGSTAMPNS_NEW
:
3497 return sock_ioctl(file
, cmd
, arg
);
3514 case SIOCSIFHWBROADCAST
:
3516 case SIOCGIFBRDADDR
:
3517 case SIOCSIFBRDADDR
:
3518 case SIOCGIFDSTADDR
:
3519 case SIOCSIFDSTADDR
:
3520 case SIOCGIFNETMASK
:
3521 case SIOCSIFNETMASK
:
3533 case SIOCBONDENSLAVE
:
3534 case SIOCBONDRELEASE
:
3535 case SIOCBONDSETHWADDR
:
3536 case SIOCBONDCHANGEACTIVE
:
3537 return compat_ifreq_ioctl(net
, sock
, cmd
, argp
);
3545 return sock_do_ioctl(net
, sock
, cmd
, arg
);
3548 return -ENOIOCTLCMD
;
3551 static long compat_sock_ioctl(struct file
*file
, unsigned int cmd
,
3554 struct socket
*sock
= file
->private_data
;
3555 int ret
= -ENOIOCTLCMD
;
3562 if (sock
->ops
->compat_ioctl
)
3563 ret
= sock
->ops
->compat_ioctl(sock
, cmd
, arg
);
3565 if (ret
== -ENOIOCTLCMD
&&
3566 (cmd
>= SIOCIWFIRST
&& cmd
<= SIOCIWLAST
))
3567 ret
= compat_wext_handle_ioctl(net
, cmd
, arg
);
3569 if (ret
== -ENOIOCTLCMD
)
3570 ret
= compat_sock_ioctl_trans(file
, sock
, cmd
, arg
);
3577 * kernel_bind - bind an address to a socket (kernel space)
3580 * @addrlen: length of address
3582 * Returns 0 or an error.
3585 int kernel_bind(struct socket
*sock
, struct sockaddr
*addr
, int addrlen
)
3587 return sock
->ops
->bind(sock
, addr
, addrlen
);
3589 EXPORT_SYMBOL(kernel_bind
);
3592 * kernel_listen - move socket to listening state (kernel space)
3594 * @backlog: pending connections queue size
3596 * Returns 0 or an error.
3599 int kernel_listen(struct socket
*sock
, int backlog
)
3601 return sock
->ops
->listen(sock
, backlog
);
3603 EXPORT_SYMBOL(kernel_listen
);
3606 * kernel_accept - accept a connection (kernel space)
3607 * @sock: listening socket
3608 * @newsock: new connected socket
3611 * @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3612 * If it fails, @newsock is guaranteed to be %NULL.
3613 * Returns 0 or an error.
3616 int kernel_accept(struct socket
*sock
, struct socket
**newsock
, int flags
)
3618 struct sock
*sk
= sock
->sk
;
3621 err
= sock_create_lite(sk
->sk_family
, sk
->sk_type
, sk
->sk_protocol
,
3626 err
= sock
->ops
->accept(sock
, *newsock
, flags
, true);
3628 sock_release(*newsock
);
3633 (*newsock
)->ops
= sock
->ops
;
3634 __module_get((*newsock
)->ops
->owner
);
3639 EXPORT_SYMBOL(kernel_accept
);
3642 * kernel_connect - connect a socket (kernel space)
3645 * @addrlen: address length
3646 * @flags: flags (O_NONBLOCK, ...)
3648 * For datagram sockets, @addr is the addres to which datagrams are sent
3649 * by default, and the only address from which datagrams are received.
3650 * For stream sockets, attempts to connect to @addr.
3651 * Returns 0 or an error code.
3654 int kernel_connect(struct socket
*sock
, struct sockaddr
*addr
, int addrlen
,
3657 return sock
->ops
->connect(sock
, addr
, addrlen
, flags
);
3659 EXPORT_SYMBOL(kernel_connect
);
3662 * kernel_getsockname - get the address which the socket is bound (kernel space)
3664 * @addr: address holder
3666 * Fills the @addr pointer with the address which the socket is bound.
3667 * Returns 0 or an error code.
3670 int kernel_getsockname(struct socket
*sock
, struct sockaddr
*addr
)
3672 return sock
->ops
->getname(sock
, addr
, 0);
3674 EXPORT_SYMBOL(kernel_getsockname
);
3677 * kernel_peername - get the address which the socket is connected (kernel space)
3679 * @addr: address holder
3681 * Fills the @addr pointer with the address which the socket is connected.
3682 * Returns 0 or an error code.
3685 int kernel_getpeername(struct socket
*sock
, struct sockaddr
*addr
)
3687 return sock
->ops
->getname(sock
, addr
, 1);
3689 EXPORT_SYMBOL(kernel_getpeername
);
3692 * kernel_getsockopt - get a socket option (kernel space)
3694 * @level: API level (SOL_SOCKET, ...)
3695 * @optname: option tag
3696 * @optval: option value
3697 * @optlen: option length
3699 * Assigns the option length to @optlen.
3700 * Returns 0 or an error.
3703 int kernel_getsockopt(struct socket
*sock
, int level
, int optname
,
3704 char *optval
, int *optlen
)
3706 mm_segment_t oldfs
= get_fs();
3707 char __user
*uoptval
;
3708 int __user
*uoptlen
;
3711 uoptval
= (char __user __force
*) optval
;
3712 uoptlen
= (int __user __force
*) optlen
;
3715 if (level
== SOL_SOCKET
)
3716 err
= sock_getsockopt(sock
, level
, optname
, uoptval
, uoptlen
);
3718 err
= sock
->ops
->getsockopt(sock
, level
, optname
, uoptval
,
3723 EXPORT_SYMBOL(kernel_getsockopt
);
3726 * kernel_setsockopt - set a socket option (kernel space)
3728 * @level: API level (SOL_SOCKET, ...)
3729 * @optname: option tag
3730 * @optval: option value
3731 * @optlen: option length
3733 * Returns 0 or an error.
3736 int kernel_setsockopt(struct socket
*sock
, int level
, int optname
,
3737 char *optval
, unsigned int optlen
)
3739 mm_segment_t oldfs
= get_fs();
3740 char __user
*uoptval
;
3743 uoptval
= (char __user __force
*) optval
;
3746 if (level
== SOL_SOCKET
)
3747 err
= sock_setsockopt(sock
, level
, optname
, uoptval
, optlen
);
3749 err
= sock
->ops
->setsockopt(sock
, level
, optname
, uoptval
,
3754 EXPORT_SYMBOL(kernel_setsockopt
);
3757 * kernel_sendpage - send a &page through a socket (kernel space)
3760 * @offset: page offset
3761 * @size: total size in bytes
3762 * @flags: flags (MSG_DONTWAIT, ...)
3764 * Returns the total amount sent in bytes or an error.
3767 int kernel_sendpage(struct socket
*sock
, struct page
*page
, int offset
,
3768 size_t size
, int flags
)
3770 if (sock
->ops
->sendpage
)
3771 return sock
->ops
->sendpage(sock
, page
, offset
, size
, flags
);
3773 return sock_no_sendpage(sock
, page
, offset
, size
, flags
);
3775 EXPORT_SYMBOL(kernel_sendpage
);
3778 * kernel_sendpage_locked - send a &page through the locked sock (kernel space)
3781 * @offset: page offset
3782 * @size: total size in bytes
3783 * @flags: flags (MSG_DONTWAIT, ...)
3785 * Returns the total amount sent in bytes or an error.
3786 * Caller must hold @sk.
3789 int kernel_sendpage_locked(struct sock
*sk
, struct page
*page
, int offset
,
3790 size_t size
, int flags
)
3792 struct socket
*sock
= sk
->sk_socket
;
3794 if (sock
->ops
->sendpage_locked
)
3795 return sock
->ops
->sendpage_locked(sk
, page
, offset
, size
,
3798 return sock_no_sendpage_locked(sk
, page
, offset
, size
, flags
);
3800 EXPORT_SYMBOL(kernel_sendpage_locked
);
3803 * kernel_shutdown - shut down part of a full-duplex connection (kernel space)
3805 * @how: connection part
3807 * Returns 0 or an error.
3810 int kernel_sock_shutdown(struct socket
*sock
, enum sock_shutdown_cmd how
)
3812 return sock
->ops
->shutdown(sock
, how
);
3814 EXPORT_SYMBOL(kernel_sock_shutdown
);
3817 * kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3820 * This routine returns the IP overhead imposed by a socket i.e.
3821 * the length of the underlying IP header, depending on whether
3822 * this is an IPv4 or IPv6 socket and the length from IP options turned
3823 * on at the socket. Assumes that the caller has a lock on the socket.
3826 u32
kernel_sock_ip_overhead(struct sock
*sk
)
3828 struct inet_sock
*inet
;
3829 struct ip_options_rcu
*opt
;
3831 #if IS_ENABLED(CONFIG_IPV6)
3832 struct ipv6_pinfo
*np
;
3833 struct ipv6_txoptions
*optv6
= NULL
;
3834 #endif /* IS_ENABLED(CONFIG_IPV6) */
3839 switch (sk
->sk_family
) {
3842 overhead
+= sizeof(struct iphdr
);
3843 opt
= rcu_dereference_protected(inet
->inet_opt
,
3844 sock_owned_by_user(sk
));
3846 overhead
+= opt
->opt
.optlen
;
3848 #if IS_ENABLED(CONFIG_IPV6)
3851 overhead
+= sizeof(struct ipv6hdr
);
3853 optv6
= rcu_dereference_protected(np
->opt
,
3854 sock_owned_by_user(sk
));
3856 overhead
+= (optv6
->opt_flen
+ optv6
->opt_nflen
);
3858 #endif /* IS_ENABLED(CONFIG_IPV6) */
3859 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3863 EXPORT_SYMBOL(kernel_sock_ip_overhead
);