new, more flexible list_neighbor (breaks, if you do not update corutils, too)
[cor_2_6_31.git] / drivers / rtc / rtc-sh.c
blobd7310adb7152f2f7f67742c1a7556f1c496b3630
1 /*
2 * SuperH On-Chip RTC Support
4 * Copyright (C) 2006 - 2009 Paul Mundt
5 * Copyright (C) 2006 Jamie Lenehan
6 * Copyright (C) 2008 Angelo Castello
8 * Based on the old arch/sh/kernel/cpu/rtc.c by:
10 * Copyright (C) 2000 Philipp Rumpf <prumpf@tux.org>
11 * Copyright (C) 1999 Tetsuya Okada & Niibe Yutaka
13 * This file is subject to the terms and conditions of the GNU General Public
14 * License. See the file "COPYING" in the main directory of this archive
15 * for more details.
17 #include <linux/module.h>
18 #include <linux/kernel.h>
19 #include <linux/bcd.h>
20 #include <linux/rtc.h>
21 #include <linux/init.h>
22 #include <linux/platform_device.h>
23 #include <linux/seq_file.h>
24 #include <linux/interrupt.h>
25 #include <linux/spinlock.h>
26 #include <linux/io.h>
27 #include <linux/log2.h>
28 #include <linux/clk.h>
29 #include <asm/rtc.h>
31 #define DRV_NAME "sh-rtc"
32 #define DRV_VERSION "0.2.2"
34 #define RTC_REG(r) ((r) * rtc_reg_size)
36 #define R64CNT RTC_REG(0)
38 #define RSECCNT RTC_REG(1) /* RTC sec */
39 #define RMINCNT RTC_REG(2) /* RTC min */
40 #define RHRCNT RTC_REG(3) /* RTC hour */
41 #define RWKCNT RTC_REG(4) /* RTC week */
42 #define RDAYCNT RTC_REG(5) /* RTC day */
43 #define RMONCNT RTC_REG(6) /* RTC month */
44 #define RYRCNT RTC_REG(7) /* RTC year */
45 #define RSECAR RTC_REG(8) /* ALARM sec */
46 #define RMINAR RTC_REG(9) /* ALARM min */
47 #define RHRAR RTC_REG(10) /* ALARM hour */
48 #define RWKAR RTC_REG(11) /* ALARM week */
49 #define RDAYAR RTC_REG(12) /* ALARM day */
50 #define RMONAR RTC_REG(13) /* ALARM month */
51 #define RCR1 RTC_REG(14) /* Control */
52 #define RCR2 RTC_REG(15) /* Control */
55 * Note on RYRAR and RCR3: Up until this point most of the register
56 * definitions are consistent across all of the available parts. However,
57 * the placement of the optional RYRAR and RCR3 (the RYRAR control
58 * register used to control RYRCNT/RYRAR compare) varies considerably
59 * across various parts, occasionally being mapped in to a completely
60 * unrelated address space. For proper RYRAR support a separate resource
61 * would have to be handed off, but as this is purely optional in
62 * practice, we simply opt not to support it, thereby keeping the code
63 * quite a bit more simplified.
66 /* ALARM Bits - or with BCD encoded value */
67 #define AR_ENB 0x80 /* Enable for alarm cmp */
69 /* Period Bits */
70 #define PF_HP 0x100 /* Enable Half Period to support 8,32,128Hz */
71 #define PF_COUNT 0x200 /* Half periodic counter */
72 #define PF_OXS 0x400 /* Periodic One x Second */
73 #define PF_KOU 0x800 /* Kernel or User periodic request 1=kernel */
74 #define PF_MASK 0xf00
76 /* RCR1 Bits */
77 #define RCR1_CF 0x80 /* Carry Flag */
78 #define RCR1_CIE 0x10 /* Carry Interrupt Enable */
79 #define RCR1_AIE 0x08 /* Alarm Interrupt Enable */
80 #define RCR1_AF 0x01 /* Alarm Flag */
82 /* RCR2 Bits */
83 #define RCR2_PEF 0x80 /* PEriodic interrupt Flag */
84 #define RCR2_PESMASK 0x70 /* Periodic interrupt Set */
85 #define RCR2_RTCEN 0x08 /* ENable RTC */
86 #define RCR2_ADJ 0x04 /* ADJustment (30-second) */
87 #define RCR2_RESET 0x02 /* Reset bit */
88 #define RCR2_START 0x01 /* Start bit */
90 struct sh_rtc {
91 void __iomem *regbase;
92 unsigned long regsize;
93 struct resource *res;
94 int alarm_irq;
95 int periodic_irq;
96 int carry_irq;
97 struct clk *clk;
98 struct rtc_device *rtc_dev;
99 spinlock_t lock;
100 unsigned long capabilities; /* See asm/rtc.h for cap bits */
101 unsigned short periodic_freq;
104 static int __sh_rtc_interrupt(struct sh_rtc *rtc)
106 unsigned int tmp, pending;
108 tmp = readb(rtc->regbase + RCR1);
109 pending = tmp & RCR1_CF;
110 tmp &= ~RCR1_CF;
111 writeb(tmp, rtc->regbase + RCR1);
113 /* Users have requested One x Second IRQ */
114 if (pending && rtc->periodic_freq & PF_OXS)
115 rtc_update_irq(rtc->rtc_dev, 1, RTC_UF | RTC_IRQF);
117 return pending;
120 static int __sh_rtc_alarm(struct sh_rtc *rtc)
122 unsigned int tmp, pending;
124 tmp = readb(rtc->regbase + RCR1);
125 pending = tmp & RCR1_AF;
126 tmp &= ~(RCR1_AF | RCR1_AIE);
127 writeb(tmp, rtc->regbase + RCR1);
129 if (pending)
130 rtc_update_irq(rtc->rtc_dev, 1, RTC_AF | RTC_IRQF);
132 return pending;
135 static int __sh_rtc_periodic(struct sh_rtc *rtc)
137 struct rtc_device *rtc_dev = rtc->rtc_dev;
138 struct rtc_task *irq_task;
139 unsigned int tmp, pending;
141 tmp = readb(rtc->regbase + RCR2);
142 pending = tmp & RCR2_PEF;
143 tmp &= ~RCR2_PEF;
144 writeb(tmp, rtc->regbase + RCR2);
146 if (!pending)
147 return 0;
149 /* Half period enabled than one skipped and the next notified */
150 if ((rtc->periodic_freq & PF_HP) && (rtc->periodic_freq & PF_COUNT))
151 rtc->periodic_freq &= ~PF_COUNT;
152 else {
153 if (rtc->periodic_freq & PF_HP)
154 rtc->periodic_freq |= PF_COUNT;
155 if (rtc->periodic_freq & PF_KOU) {
156 spin_lock(&rtc_dev->irq_task_lock);
157 irq_task = rtc_dev->irq_task;
158 if (irq_task)
159 irq_task->func(irq_task->private_data);
160 spin_unlock(&rtc_dev->irq_task_lock);
161 } else
162 rtc_update_irq(rtc->rtc_dev, 1, RTC_PF | RTC_IRQF);
165 return pending;
168 static irqreturn_t sh_rtc_interrupt(int irq, void *dev_id)
170 struct sh_rtc *rtc = dev_id;
171 int ret;
173 spin_lock(&rtc->lock);
174 ret = __sh_rtc_interrupt(rtc);
175 spin_unlock(&rtc->lock);
177 return IRQ_RETVAL(ret);
180 static irqreturn_t sh_rtc_alarm(int irq, void *dev_id)
182 struct sh_rtc *rtc = dev_id;
183 int ret;
185 spin_lock(&rtc->lock);
186 ret = __sh_rtc_alarm(rtc);
187 spin_unlock(&rtc->lock);
189 return IRQ_RETVAL(ret);
192 static irqreturn_t sh_rtc_periodic(int irq, void *dev_id)
194 struct sh_rtc *rtc = dev_id;
195 int ret;
197 spin_lock(&rtc->lock);
198 ret = __sh_rtc_periodic(rtc);
199 spin_unlock(&rtc->lock);
201 return IRQ_RETVAL(ret);
204 static irqreturn_t sh_rtc_shared(int irq, void *dev_id)
206 struct sh_rtc *rtc = dev_id;
207 int ret;
209 spin_lock(&rtc->lock);
210 ret = __sh_rtc_interrupt(rtc);
211 ret |= __sh_rtc_alarm(rtc);
212 ret |= __sh_rtc_periodic(rtc);
213 spin_unlock(&rtc->lock);
215 return IRQ_RETVAL(ret);
218 static inline void sh_rtc_setpie(struct device *dev, unsigned int enable)
220 struct sh_rtc *rtc = dev_get_drvdata(dev);
221 unsigned int tmp;
223 spin_lock_irq(&rtc->lock);
225 tmp = readb(rtc->regbase + RCR2);
227 if (enable) {
228 tmp &= ~RCR2_PEF; /* Clear PES bit */
229 tmp |= (rtc->periodic_freq & ~PF_HP); /* Set PES2-0 */
230 } else
231 tmp &= ~(RCR2_PESMASK | RCR2_PEF);
233 writeb(tmp, rtc->regbase + RCR2);
235 spin_unlock_irq(&rtc->lock);
238 static inline int sh_rtc_setfreq(struct device *dev, unsigned int freq)
240 struct sh_rtc *rtc = dev_get_drvdata(dev);
241 int tmp, ret = 0;
243 spin_lock_irq(&rtc->lock);
244 tmp = rtc->periodic_freq & PF_MASK;
246 switch (freq) {
247 case 0:
248 rtc->periodic_freq = 0x00;
249 break;
250 case 1:
251 rtc->periodic_freq = 0x60;
252 break;
253 case 2:
254 rtc->periodic_freq = 0x50;
255 break;
256 case 4:
257 rtc->periodic_freq = 0x40;
258 break;
259 case 8:
260 rtc->periodic_freq = 0x30 | PF_HP;
261 break;
262 case 16:
263 rtc->periodic_freq = 0x30;
264 break;
265 case 32:
266 rtc->periodic_freq = 0x20 | PF_HP;
267 break;
268 case 64:
269 rtc->periodic_freq = 0x20;
270 break;
271 case 128:
272 rtc->periodic_freq = 0x10 | PF_HP;
273 break;
274 case 256:
275 rtc->periodic_freq = 0x10;
276 break;
277 default:
278 ret = -ENOTSUPP;
281 if (ret == 0) {
282 rtc->periodic_freq |= tmp;
283 rtc->rtc_dev->irq_freq = freq;
286 spin_unlock_irq(&rtc->lock);
287 return ret;
290 static inline void sh_rtc_setaie(struct device *dev, unsigned int enable)
292 struct sh_rtc *rtc = dev_get_drvdata(dev);
293 unsigned int tmp;
295 spin_lock_irq(&rtc->lock);
297 tmp = readb(rtc->regbase + RCR1);
299 if (enable)
300 tmp |= RCR1_AIE;
301 else
302 tmp &= ~RCR1_AIE;
304 writeb(tmp, rtc->regbase + RCR1);
306 spin_unlock_irq(&rtc->lock);
309 static int sh_rtc_proc(struct device *dev, struct seq_file *seq)
311 struct sh_rtc *rtc = dev_get_drvdata(dev);
312 unsigned int tmp;
314 tmp = readb(rtc->regbase + RCR1);
315 seq_printf(seq, "carry_IRQ\t: %s\n", (tmp & RCR1_CIE) ? "yes" : "no");
317 tmp = readb(rtc->regbase + RCR2);
318 seq_printf(seq, "periodic_IRQ\t: %s\n",
319 (tmp & RCR2_PESMASK) ? "yes" : "no");
321 return 0;
324 static inline void sh_rtc_setcie(struct device *dev, unsigned int enable)
326 struct sh_rtc *rtc = dev_get_drvdata(dev);
327 unsigned int tmp;
329 spin_lock_irq(&rtc->lock);
331 tmp = readb(rtc->regbase + RCR1);
333 if (!enable)
334 tmp &= ~RCR1_CIE;
335 else
336 tmp |= RCR1_CIE;
338 writeb(tmp, rtc->regbase + RCR1);
340 spin_unlock_irq(&rtc->lock);
343 static int sh_rtc_ioctl(struct device *dev, unsigned int cmd, unsigned long arg)
345 struct sh_rtc *rtc = dev_get_drvdata(dev);
346 unsigned int ret = 0;
348 switch (cmd) {
349 case RTC_PIE_OFF:
350 case RTC_PIE_ON:
351 sh_rtc_setpie(dev, cmd == RTC_PIE_ON);
352 break;
353 case RTC_AIE_OFF:
354 case RTC_AIE_ON:
355 sh_rtc_setaie(dev, cmd == RTC_AIE_ON);
356 break;
357 case RTC_UIE_OFF:
358 rtc->periodic_freq &= ~PF_OXS;
359 sh_rtc_setcie(dev, 0);
360 break;
361 case RTC_UIE_ON:
362 rtc->periodic_freq |= PF_OXS;
363 sh_rtc_setcie(dev, 1);
364 break;
365 case RTC_IRQP_READ:
366 ret = put_user(rtc->rtc_dev->irq_freq,
367 (unsigned long __user *)arg);
368 break;
369 case RTC_IRQP_SET:
370 ret = sh_rtc_setfreq(dev, arg);
371 break;
372 default:
373 ret = -ENOIOCTLCMD;
376 return ret;
379 static int sh_rtc_read_time(struct device *dev, struct rtc_time *tm)
381 struct platform_device *pdev = to_platform_device(dev);
382 struct sh_rtc *rtc = platform_get_drvdata(pdev);
383 unsigned int sec128, sec2, yr, yr100, cf_bit;
385 do {
386 unsigned int tmp;
388 spin_lock_irq(&rtc->lock);
390 tmp = readb(rtc->regbase + RCR1);
391 tmp &= ~RCR1_CF; /* Clear CF-bit */
392 tmp |= RCR1_CIE;
393 writeb(tmp, rtc->regbase + RCR1);
395 sec128 = readb(rtc->regbase + R64CNT);
397 tm->tm_sec = bcd2bin(readb(rtc->regbase + RSECCNT));
398 tm->tm_min = bcd2bin(readb(rtc->regbase + RMINCNT));
399 tm->tm_hour = bcd2bin(readb(rtc->regbase + RHRCNT));
400 tm->tm_wday = bcd2bin(readb(rtc->regbase + RWKCNT));
401 tm->tm_mday = bcd2bin(readb(rtc->regbase + RDAYCNT));
402 tm->tm_mon = bcd2bin(readb(rtc->regbase + RMONCNT)) - 1;
404 if (rtc->capabilities & RTC_CAP_4_DIGIT_YEAR) {
405 yr = readw(rtc->regbase + RYRCNT);
406 yr100 = bcd2bin(yr >> 8);
407 yr &= 0xff;
408 } else {
409 yr = readb(rtc->regbase + RYRCNT);
410 yr100 = bcd2bin((yr == 0x99) ? 0x19 : 0x20);
413 tm->tm_year = (yr100 * 100 + bcd2bin(yr)) - 1900;
415 sec2 = readb(rtc->regbase + R64CNT);
416 cf_bit = readb(rtc->regbase + RCR1) & RCR1_CF;
418 spin_unlock_irq(&rtc->lock);
419 } while (cf_bit != 0 || ((sec128 ^ sec2) & RTC_BIT_INVERTED) != 0);
421 #if RTC_BIT_INVERTED != 0
422 if ((sec128 & RTC_BIT_INVERTED))
423 tm->tm_sec--;
424 #endif
426 /* only keep the carry interrupt enabled if UIE is on */
427 if (!(rtc->periodic_freq & PF_OXS))
428 sh_rtc_setcie(dev, 0);
430 dev_dbg(dev, "%s: tm is secs=%d, mins=%d, hours=%d, "
431 "mday=%d, mon=%d, year=%d, wday=%d\n",
432 __func__,
433 tm->tm_sec, tm->tm_min, tm->tm_hour,
434 tm->tm_mday, tm->tm_mon + 1, tm->tm_year, tm->tm_wday);
436 return rtc_valid_tm(tm);
439 static int sh_rtc_set_time(struct device *dev, struct rtc_time *tm)
441 struct platform_device *pdev = to_platform_device(dev);
442 struct sh_rtc *rtc = platform_get_drvdata(pdev);
443 unsigned int tmp;
444 int year;
446 spin_lock_irq(&rtc->lock);
448 /* Reset pre-scaler & stop RTC */
449 tmp = readb(rtc->regbase + RCR2);
450 tmp |= RCR2_RESET;
451 tmp &= ~RCR2_START;
452 writeb(tmp, rtc->regbase + RCR2);
454 writeb(bin2bcd(tm->tm_sec), rtc->regbase + RSECCNT);
455 writeb(bin2bcd(tm->tm_min), rtc->regbase + RMINCNT);
456 writeb(bin2bcd(tm->tm_hour), rtc->regbase + RHRCNT);
457 writeb(bin2bcd(tm->tm_wday), rtc->regbase + RWKCNT);
458 writeb(bin2bcd(tm->tm_mday), rtc->regbase + RDAYCNT);
459 writeb(bin2bcd(tm->tm_mon + 1), rtc->regbase + RMONCNT);
461 if (rtc->capabilities & RTC_CAP_4_DIGIT_YEAR) {
462 year = (bin2bcd((tm->tm_year + 1900) / 100) << 8) |
463 bin2bcd(tm->tm_year % 100);
464 writew(year, rtc->regbase + RYRCNT);
465 } else {
466 year = tm->tm_year % 100;
467 writeb(bin2bcd(year), rtc->regbase + RYRCNT);
470 /* Start RTC */
471 tmp = readb(rtc->regbase + RCR2);
472 tmp &= ~RCR2_RESET;
473 tmp |= RCR2_RTCEN | RCR2_START;
474 writeb(tmp, rtc->regbase + RCR2);
476 spin_unlock_irq(&rtc->lock);
478 return 0;
481 static inline int sh_rtc_read_alarm_value(struct sh_rtc *rtc, int reg_off)
483 unsigned int byte;
484 int value = 0xff; /* return 0xff for ignored values */
486 byte = readb(rtc->regbase + reg_off);
487 if (byte & AR_ENB) {
488 byte &= ~AR_ENB; /* strip the enable bit */
489 value = bcd2bin(byte);
492 return value;
495 static int sh_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *wkalrm)
497 struct platform_device *pdev = to_platform_device(dev);
498 struct sh_rtc *rtc = platform_get_drvdata(pdev);
499 struct rtc_time *tm = &wkalrm->time;
501 spin_lock_irq(&rtc->lock);
503 tm->tm_sec = sh_rtc_read_alarm_value(rtc, RSECAR);
504 tm->tm_min = sh_rtc_read_alarm_value(rtc, RMINAR);
505 tm->tm_hour = sh_rtc_read_alarm_value(rtc, RHRAR);
506 tm->tm_wday = sh_rtc_read_alarm_value(rtc, RWKAR);
507 tm->tm_mday = sh_rtc_read_alarm_value(rtc, RDAYAR);
508 tm->tm_mon = sh_rtc_read_alarm_value(rtc, RMONAR);
509 if (tm->tm_mon > 0)
510 tm->tm_mon -= 1; /* RTC is 1-12, tm_mon is 0-11 */
511 tm->tm_year = 0xffff;
513 wkalrm->enabled = (readb(rtc->regbase + RCR1) & RCR1_AIE) ? 1 : 0;
515 spin_unlock_irq(&rtc->lock);
517 return 0;
520 static inline void sh_rtc_write_alarm_value(struct sh_rtc *rtc,
521 int value, int reg_off)
523 /* < 0 for a value that is ignored */
524 if (value < 0)
525 writeb(0, rtc->regbase + reg_off);
526 else
527 writeb(bin2bcd(value) | AR_ENB, rtc->regbase + reg_off);
530 static int sh_rtc_check_alarm(struct rtc_time *tm)
533 * The original rtc says anything > 0xc0 is "don't care" or "match
534 * all" - most users use 0xff but rtc-dev uses -1 for the same thing.
535 * The original rtc doesn't support years - some things use -1 and
536 * some 0xffff. We use -1 to make out tests easier.
538 if (tm->tm_year == 0xffff)
539 tm->tm_year = -1;
540 if (tm->tm_mon >= 0xff)
541 tm->tm_mon = -1;
542 if (tm->tm_mday >= 0xff)
543 tm->tm_mday = -1;
544 if (tm->tm_wday >= 0xff)
545 tm->tm_wday = -1;
546 if (tm->tm_hour >= 0xff)
547 tm->tm_hour = -1;
548 if (tm->tm_min >= 0xff)
549 tm->tm_min = -1;
550 if (tm->tm_sec >= 0xff)
551 tm->tm_sec = -1;
553 if (tm->tm_year > 9999 ||
554 tm->tm_mon >= 12 ||
555 tm->tm_mday == 0 || tm->tm_mday >= 32 ||
556 tm->tm_wday >= 7 ||
557 tm->tm_hour >= 24 ||
558 tm->tm_min >= 60 ||
559 tm->tm_sec >= 60)
560 return -EINVAL;
562 return 0;
565 static int sh_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *wkalrm)
567 struct platform_device *pdev = to_platform_device(dev);
568 struct sh_rtc *rtc = platform_get_drvdata(pdev);
569 unsigned int rcr1;
570 struct rtc_time *tm = &wkalrm->time;
571 int mon, err;
573 err = sh_rtc_check_alarm(tm);
574 if (unlikely(err < 0))
575 return err;
577 spin_lock_irq(&rtc->lock);
579 /* disable alarm interrupt and clear the alarm flag */
580 rcr1 = readb(rtc->regbase + RCR1);
581 rcr1 &= ~(RCR1_AF | RCR1_AIE);
582 writeb(rcr1, rtc->regbase + RCR1);
584 /* set alarm time */
585 sh_rtc_write_alarm_value(rtc, tm->tm_sec, RSECAR);
586 sh_rtc_write_alarm_value(rtc, tm->tm_min, RMINAR);
587 sh_rtc_write_alarm_value(rtc, tm->tm_hour, RHRAR);
588 sh_rtc_write_alarm_value(rtc, tm->tm_wday, RWKAR);
589 sh_rtc_write_alarm_value(rtc, tm->tm_mday, RDAYAR);
590 mon = tm->tm_mon;
591 if (mon >= 0)
592 mon += 1;
593 sh_rtc_write_alarm_value(rtc, mon, RMONAR);
595 if (wkalrm->enabled) {
596 rcr1 |= RCR1_AIE;
597 writeb(rcr1, rtc->regbase + RCR1);
600 spin_unlock_irq(&rtc->lock);
602 return 0;
605 static int sh_rtc_irq_set_state(struct device *dev, int enabled)
607 struct platform_device *pdev = to_platform_device(dev);
608 struct sh_rtc *rtc = platform_get_drvdata(pdev);
610 if (enabled) {
611 rtc->periodic_freq |= PF_KOU;
612 return sh_rtc_ioctl(dev, RTC_PIE_ON, 0);
613 } else {
614 rtc->periodic_freq &= ~PF_KOU;
615 return sh_rtc_ioctl(dev, RTC_PIE_OFF, 0);
619 static int sh_rtc_irq_set_freq(struct device *dev, int freq)
621 if (!is_power_of_2(freq))
622 return -EINVAL;
624 return sh_rtc_ioctl(dev, RTC_IRQP_SET, freq);
627 static struct rtc_class_ops sh_rtc_ops = {
628 .ioctl = sh_rtc_ioctl,
629 .read_time = sh_rtc_read_time,
630 .set_time = sh_rtc_set_time,
631 .read_alarm = sh_rtc_read_alarm,
632 .set_alarm = sh_rtc_set_alarm,
633 .irq_set_state = sh_rtc_irq_set_state,
634 .irq_set_freq = sh_rtc_irq_set_freq,
635 .proc = sh_rtc_proc,
638 static int __devinit sh_rtc_probe(struct platform_device *pdev)
640 struct sh_rtc *rtc;
641 struct resource *res;
642 struct rtc_time r;
643 char clk_name[6];
644 int clk_id, ret;
646 rtc = kzalloc(sizeof(struct sh_rtc), GFP_KERNEL);
647 if (unlikely(!rtc))
648 return -ENOMEM;
650 spin_lock_init(&rtc->lock);
652 /* get periodic/carry/alarm irqs */
653 ret = platform_get_irq(pdev, 0);
654 if (unlikely(ret <= 0)) {
655 ret = -ENOENT;
656 dev_err(&pdev->dev, "No IRQ resource\n");
657 goto err_badres;
660 rtc->periodic_irq = ret;
661 rtc->carry_irq = platform_get_irq(pdev, 1);
662 rtc->alarm_irq = platform_get_irq(pdev, 2);
664 res = platform_get_resource(pdev, IORESOURCE_IO, 0);
665 if (unlikely(res == NULL)) {
666 ret = -ENOENT;
667 dev_err(&pdev->dev, "No IO resource\n");
668 goto err_badres;
671 rtc->regsize = resource_size(res);
673 rtc->res = request_mem_region(res->start, rtc->regsize, pdev->name);
674 if (unlikely(!rtc->res)) {
675 ret = -EBUSY;
676 goto err_badres;
679 rtc->regbase = ioremap_nocache(rtc->res->start, rtc->regsize);
680 if (unlikely(!rtc->regbase)) {
681 ret = -EINVAL;
682 goto err_badmap;
685 clk_id = pdev->id;
686 /* With a single device, the clock id is still "rtc0" */
687 if (clk_id < 0)
688 clk_id = 0;
690 snprintf(clk_name, sizeof(clk_name), "rtc%d", clk_id);
692 rtc->clk = clk_get(&pdev->dev, clk_name);
693 if (IS_ERR(rtc->clk)) {
695 * No error handling for rtc->clk intentionally, not all
696 * platforms will have a unique clock for the RTC, and
697 * the clk API can handle the struct clk pointer being
698 * NULL.
700 rtc->clk = NULL;
703 clk_enable(rtc->clk);
705 rtc->rtc_dev = rtc_device_register("sh", &pdev->dev,
706 &sh_rtc_ops, THIS_MODULE);
707 if (IS_ERR(rtc->rtc_dev)) {
708 ret = PTR_ERR(rtc->rtc_dev);
709 goto err_unmap;
712 rtc->capabilities = RTC_DEF_CAPABILITIES;
713 if (pdev->dev.platform_data) {
714 struct sh_rtc_platform_info *pinfo = pdev->dev.platform_data;
717 * Some CPUs have special capabilities in addition to the
718 * default set. Add those in here.
720 rtc->capabilities |= pinfo->capabilities;
723 rtc->rtc_dev->max_user_freq = 256;
725 platform_set_drvdata(pdev, rtc);
727 if (rtc->carry_irq <= 0) {
728 /* register shared periodic/carry/alarm irq */
729 ret = request_irq(rtc->periodic_irq, sh_rtc_shared,
730 IRQF_DISABLED, "sh-rtc", rtc);
731 if (unlikely(ret)) {
732 dev_err(&pdev->dev,
733 "request IRQ failed with %d, IRQ %d\n", ret,
734 rtc->periodic_irq);
735 goto err_unmap;
737 } else {
738 /* register periodic/carry/alarm irqs */
739 ret = request_irq(rtc->periodic_irq, sh_rtc_periodic,
740 IRQF_DISABLED, "sh-rtc period", rtc);
741 if (unlikely(ret)) {
742 dev_err(&pdev->dev,
743 "request period IRQ failed with %d, IRQ %d\n",
744 ret, rtc->periodic_irq);
745 goto err_unmap;
748 ret = request_irq(rtc->carry_irq, sh_rtc_interrupt,
749 IRQF_DISABLED, "sh-rtc carry", rtc);
750 if (unlikely(ret)) {
751 dev_err(&pdev->dev,
752 "request carry IRQ failed with %d, IRQ %d\n",
753 ret, rtc->carry_irq);
754 free_irq(rtc->periodic_irq, rtc);
755 goto err_unmap;
758 ret = request_irq(rtc->alarm_irq, sh_rtc_alarm,
759 IRQF_DISABLED, "sh-rtc alarm", rtc);
760 if (unlikely(ret)) {
761 dev_err(&pdev->dev,
762 "request alarm IRQ failed with %d, IRQ %d\n",
763 ret, rtc->alarm_irq);
764 free_irq(rtc->carry_irq, rtc);
765 free_irq(rtc->periodic_irq, rtc);
766 goto err_unmap;
770 /* everything disabled by default */
771 rtc->periodic_freq = 0;
772 rtc->rtc_dev->irq_freq = 0;
773 sh_rtc_setpie(&pdev->dev, 0);
774 sh_rtc_setaie(&pdev->dev, 0);
775 sh_rtc_setcie(&pdev->dev, 0);
777 /* reset rtc to epoch 0 if time is invalid */
778 if (rtc_read_time(rtc->rtc_dev, &r) < 0) {
779 rtc_time_to_tm(0, &r);
780 rtc_set_time(rtc->rtc_dev, &r);
783 device_init_wakeup(&pdev->dev, 1);
784 return 0;
786 err_unmap:
787 clk_disable(rtc->clk);
788 clk_put(rtc->clk);
789 iounmap(rtc->regbase);
790 err_badmap:
791 release_resource(rtc->res);
792 err_badres:
793 kfree(rtc);
795 return ret;
798 static int __devexit sh_rtc_remove(struct platform_device *pdev)
800 struct sh_rtc *rtc = platform_get_drvdata(pdev);
802 if (likely(rtc->rtc_dev))
803 rtc_device_unregister(rtc->rtc_dev);
805 sh_rtc_setpie(&pdev->dev, 0);
806 sh_rtc_setaie(&pdev->dev, 0);
807 sh_rtc_setcie(&pdev->dev, 0);
809 free_irq(rtc->periodic_irq, rtc);
811 if (rtc->carry_irq > 0) {
812 free_irq(rtc->carry_irq, rtc);
813 free_irq(rtc->alarm_irq, rtc);
816 release_resource(rtc->res);
818 iounmap(rtc->regbase);
820 clk_disable(rtc->clk);
821 clk_put(rtc->clk);
823 platform_set_drvdata(pdev, NULL);
825 kfree(rtc);
827 return 0;
830 static void sh_rtc_set_irq_wake(struct device *dev, int enabled)
832 struct platform_device *pdev = to_platform_device(dev);
833 struct sh_rtc *rtc = platform_get_drvdata(pdev);
835 set_irq_wake(rtc->periodic_irq, enabled);
837 if (rtc->carry_irq > 0) {
838 set_irq_wake(rtc->carry_irq, enabled);
839 set_irq_wake(rtc->alarm_irq, enabled);
843 static int sh_rtc_suspend(struct device *dev)
845 if (device_may_wakeup(dev))
846 sh_rtc_set_irq_wake(dev, 1);
848 return 0;
851 static int sh_rtc_resume(struct device *dev)
853 if (device_may_wakeup(dev))
854 sh_rtc_set_irq_wake(dev, 0);
856 return 0;
859 static struct dev_pm_ops sh_rtc_dev_pm_ops = {
860 .suspend = sh_rtc_suspend,
861 .resume = sh_rtc_resume,
864 static struct platform_driver sh_rtc_platform_driver = {
865 .driver = {
866 .name = DRV_NAME,
867 .owner = THIS_MODULE,
868 .pm = &sh_rtc_dev_pm_ops,
870 .probe = sh_rtc_probe,
871 .remove = __devexit_p(sh_rtc_remove),
874 static int __init sh_rtc_init(void)
876 return platform_driver_register(&sh_rtc_platform_driver);
879 static void __exit sh_rtc_exit(void)
881 platform_driver_unregister(&sh_rtc_platform_driver);
884 module_init(sh_rtc_init);
885 module_exit(sh_rtc_exit);
887 MODULE_DESCRIPTION("SuperH on-chip RTC driver");
888 MODULE_VERSION(DRV_VERSION);
889 MODULE_AUTHOR("Paul Mundt <lethal@linux-sh.org>, "
890 "Jamie Lenehan <lenehan@twibble.org>, "
891 "Angelo Castello <angelo.castello@st.com>");
892 MODULE_LICENSE("GPL");
893 MODULE_ALIAS("platform:" DRV_NAME);