limit of out of order packets and receive workqueue size
[cor_2_6_31.git] / arch / s390 / kernel / kprobes.c
blob86783efa24eebd95af298fc488d08ac8f30bb009
1 /*
2 * Kernel Probes (KProbes)
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 * Copyright (C) IBM Corporation, 2002, 2006
20 * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com>
23 #include <linux/kprobes.h>
24 #include <linux/ptrace.h>
25 #include <linux/preempt.h>
26 #include <linux/stop_machine.h>
27 #include <linux/kdebug.h>
28 #include <linux/uaccess.h>
29 #include <asm/cacheflush.h>
30 #include <asm/sections.h>
31 #include <linux/module.h>
33 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
34 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
36 struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}};
38 int __kprobes arch_prepare_kprobe(struct kprobe *p)
40 /* Make sure the probe isn't going on a difficult instruction */
41 if (is_prohibited_opcode((kprobe_opcode_t *) p->addr))
42 return -EINVAL;
44 if ((unsigned long)p->addr & 0x01)
45 return -EINVAL;
47 /* Use the get_insn_slot() facility for correctness */
48 if (!(p->ainsn.insn = get_insn_slot()))
49 return -ENOMEM;
51 memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
53 get_instruction_type(&p->ainsn);
54 p->opcode = *p->addr;
55 return 0;
58 int __kprobes is_prohibited_opcode(kprobe_opcode_t *instruction)
60 switch (*(__u8 *) instruction) {
61 case 0x0c: /* bassm */
62 case 0x0b: /* bsm */
63 case 0x83: /* diag */
64 case 0x44: /* ex */
65 return -EINVAL;
67 switch (*(__u16 *) instruction) {
68 case 0x0101: /* pr */
69 case 0xb25a: /* bsa */
70 case 0xb240: /* bakr */
71 case 0xb258: /* bsg */
72 case 0xb218: /* pc */
73 case 0xb228: /* pt */
74 return -EINVAL;
76 return 0;
79 void __kprobes get_instruction_type(struct arch_specific_insn *ainsn)
81 /* default fixup method */
82 ainsn->fixup = FIXUP_PSW_NORMAL;
84 /* save r1 operand */
85 ainsn->reg = (*ainsn->insn & 0xf0) >> 4;
87 /* save the instruction length (pop 5-5) in bytes */
88 switch (*(__u8 *) (ainsn->insn) >> 6) {
89 case 0:
90 ainsn->ilen = 2;
91 break;
92 case 1:
93 case 2:
94 ainsn->ilen = 4;
95 break;
96 case 3:
97 ainsn->ilen = 6;
98 break;
101 switch (*(__u8 *) ainsn->insn) {
102 case 0x05: /* balr */
103 case 0x0d: /* basr */
104 ainsn->fixup = FIXUP_RETURN_REGISTER;
105 /* if r2 = 0, no branch will be taken */
106 if ((*ainsn->insn & 0x0f) == 0)
107 ainsn->fixup |= FIXUP_BRANCH_NOT_TAKEN;
108 break;
109 case 0x06: /* bctr */
110 case 0x07: /* bcr */
111 ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN;
112 break;
113 case 0x45: /* bal */
114 case 0x4d: /* bas */
115 ainsn->fixup = FIXUP_RETURN_REGISTER;
116 break;
117 case 0x47: /* bc */
118 case 0x46: /* bct */
119 case 0x86: /* bxh */
120 case 0x87: /* bxle */
121 ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN;
122 break;
123 case 0x82: /* lpsw */
124 ainsn->fixup = FIXUP_NOT_REQUIRED;
125 break;
126 case 0xb2: /* lpswe */
127 if (*(((__u8 *) ainsn->insn) + 1) == 0xb2) {
128 ainsn->fixup = FIXUP_NOT_REQUIRED;
130 break;
131 case 0xa7: /* bras */
132 if ((*ainsn->insn & 0x0f) == 0x05) {
133 ainsn->fixup |= FIXUP_RETURN_REGISTER;
135 break;
136 case 0xc0:
137 if ((*ainsn->insn & 0x0f) == 0x00 /* larl */
138 || (*ainsn->insn & 0x0f) == 0x05) /* brasl */
139 ainsn->fixup |= FIXUP_RETURN_REGISTER;
140 break;
141 case 0xeb:
142 if (*(((__u8 *) ainsn->insn) + 5 ) == 0x44 || /* bxhg */
143 *(((__u8 *) ainsn->insn) + 5) == 0x45) {/* bxleg */
144 ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN;
146 break;
147 case 0xe3: /* bctg */
148 if (*(((__u8 *) ainsn->insn) + 5) == 0x46) {
149 ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN;
151 break;
155 static int __kprobes swap_instruction(void *aref)
157 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
158 unsigned long status = kcb->kprobe_status;
159 struct ins_replace_args *args = aref;
160 int rc;
162 kcb->kprobe_status = KPROBE_SWAP_INST;
163 rc = probe_kernel_write(args->ptr, &args->new, sizeof(args->new));
164 kcb->kprobe_status = status;
165 return rc;
168 void __kprobes arch_arm_kprobe(struct kprobe *p)
170 struct ins_replace_args args;
172 args.ptr = p->addr;
173 args.old = p->opcode;
174 args.new = BREAKPOINT_INSTRUCTION;
175 stop_machine(swap_instruction, &args, NULL);
178 void __kprobes arch_disarm_kprobe(struct kprobe *p)
180 struct ins_replace_args args;
182 args.ptr = p->addr;
183 args.old = BREAKPOINT_INSTRUCTION;
184 args.new = p->opcode;
185 stop_machine(swap_instruction, &args, NULL);
188 void __kprobes arch_remove_kprobe(struct kprobe *p)
190 if (p->ainsn.insn) {
191 free_insn_slot(p->ainsn.insn, 0);
192 p->ainsn.insn = NULL;
196 static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
198 per_cr_bits kprobe_per_regs[1];
200 memset(kprobe_per_regs, 0, sizeof(per_cr_bits));
201 regs->psw.addr = (unsigned long)p->ainsn.insn | PSW_ADDR_AMODE;
203 /* Set up the per control reg info, will pass to lctl */
204 kprobe_per_regs[0].em_instruction_fetch = 1;
205 kprobe_per_regs[0].starting_addr = (unsigned long)p->ainsn.insn;
206 kprobe_per_regs[0].ending_addr = (unsigned long)p->ainsn.insn + 1;
208 /* Set the PER control regs, turns on single step for this address */
209 __ctl_load(kprobe_per_regs, 9, 11);
210 regs->psw.mask |= PSW_MASK_PER;
211 regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT | PSW_MASK_MCHECK);
214 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
216 kcb->prev_kprobe.kp = kprobe_running();
217 kcb->prev_kprobe.status = kcb->kprobe_status;
218 kcb->prev_kprobe.kprobe_saved_imask = kcb->kprobe_saved_imask;
219 memcpy(kcb->prev_kprobe.kprobe_saved_ctl, kcb->kprobe_saved_ctl,
220 sizeof(kcb->kprobe_saved_ctl));
223 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
225 __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
226 kcb->kprobe_status = kcb->prev_kprobe.status;
227 kcb->kprobe_saved_imask = kcb->prev_kprobe.kprobe_saved_imask;
228 memcpy(kcb->kprobe_saved_ctl, kcb->prev_kprobe.kprobe_saved_ctl,
229 sizeof(kcb->kprobe_saved_ctl));
232 static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
233 struct kprobe_ctlblk *kcb)
235 __get_cpu_var(current_kprobe) = p;
236 /* Save the interrupt and per flags */
237 kcb->kprobe_saved_imask = regs->psw.mask &
238 (PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT | PSW_MASK_MCHECK);
239 /* Save the control regs that govern PER */
240 __ctl_store(kcb->kprobe_saved_ctl, 9, 11);
243 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
244 struct pt_regs *regs)
246 ri->ret_addr = (kprobe_opcode_t *) regs->gprs[14];
248 /* Replace the return addr with trampoline addr */
249 regs->gprs[14] = (unsigned long)&kretprobe_trampoline;
252 static int __kprobes kprobe_handler(struct pt_regs *regs)
254 struct kprobe *p;
255 int ret = 0;
256 unsigned long *addr = (unsigned long *)
257 ((regs->psw.addr & PSW_ADDR_INSN) - 2);
258 struct kprobe_ctlblk *kcb;
261 * We don't want to be preempted for the entire
262 * duration of kprobe processing
264 preempt_disable();
265 kcb = get_kprobe_ctlblk();
267 /* Check we're not actually recursing */
268 if (kprobe_running()) {
269 p = get_kprobe(addr);
270 if (p) {
271 if (kcb->kprobe_status == KPROBE_HIT_SS &&
272 *p->ainsn.insn == BREAKPOINT_INSTRUCTION) {
273 regs->psw.mask &= ~PSW_MASK_PER;
274 regs->psw.mask |= kcb->kprobe_saved_imask;
275 goto no_kprobe;
277 /* We have reentered the kprobe_handler(), since
278 * another probe was hit while within the handler.
279 * We here save the original kprobes variables and
280 * just single step on the instruction of the new probe
281 * without calling any user handlers.
283 save_previous_kprobe(kcb);
284 set_current_kprobe(p, regs, kcb);
285 kprobes_inc_nmissed_count(p);
286 prepare_singlestep(p, regs);
287 kcb->kprobe_status = KPROBE_REENTER;
288 return 1;
289 } else {
290 p = __get_cpu_var(current_kprobe);
291 if (p->break_handler && p->break_handler(p, regs)) {
292 goto ss_probe;
295 goto no_kprobe;
298 p = get_kprobe(addr);
299 if (!p)
301 * No kprobe at this address. The fault has not been
302 * caused by a kprobe breakpoint. The race of breakpoint
303 * vs. kprobe remove does not exist because on s390 we
304 * use stop_machine to arm/disarm the breakpoints.
306 goto no_kprobe;
308 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
309 set_current_kprobe(p, regs, kcb);
310 if (p->pre_handler && p->pre_handler(p, regs))
311 /* handler has already set things up, so skip ss setup */
312 return 1;
314 ss_probe:
315 prepare_singlestep(p, regs);
316 kcb->kprobe_status = KPROBE_HIT_SS;
317 return 1;
319 no_kprobe:
320 preempt_enable_no_resched();
321 return ret;
325 * Function return probe trampoline:
326 * - init_kprobes() establishes a probepoint here
327 * - When the probed function returns, this probe
328 * causes the handlers to fire
330 static void __used kretprobe_trampoline_holder(void)
332 asm volatile(".global kretprobe_trampoline\n"
333 "kretprobe_trampoline: bcr 0,0\n");
337 * Called when the probe at kretprobe trampoline is hit
339 static int __kprobes trampoline_probe_handler(struct kprobe *p,
340 struct pt_regs *regs)
342 struct kretprobe_instance *ri = NULL;
343 struct hlist_head *head, empty_rp;
344 struct hlist_node *node, *tmp;
345 unsigned long flags, orig_ret_address = 0;
346 unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
348 INIT_HLIST_HEAD(&empty_rp);
349 kretprobe_hash_lock(current, &head, &flags);
352 * It is possible to have multiple instances associated with a given
353 * task either because an multiple functions in the call path
354 * have a return probe installed on them, and/or more than one return
355 * return probe was registered for a target function.
357 * We can handle this because:
358 * - instances are always inserted at the head of the list
359 * - when multiple return probes are registered for the same
360 * function, the first instance's ret_addr will point to the
361 * real return address, and all the rest will point to
362 * kretprobe_trampoline
364 hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
365 if (ri->task != current)
366 /* another task is sharing our hash bucket */
367 continue;
369 if (ri->rp && ri->rp->handler)
370 ri->rp->handler(ri, regs);
372 orig_ret_address = (unsigned long)ri->ret_addr;
373 recycle_rp_inst(ri, &empty_rp);
375 if (orig_ret_address != trampoline_address) {
377 * This is the real return address. Any other
378 * instances associated with this task are for
379 * other calls deeper on the call stack
381 break;
384 kretprobe_assert(ri, orig_ret_address, trampoline_address);
385 regs->psw.addr = orig_ret_address | PSW_ADDR_AMODE;
387 reset_current_kprobe();
388 kretprobe_hash_unlock(current, &flags);
389 preempt_enable_no_resched();
391 hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
392 hlist_del(&ri->hlist);
393 kfree(ri);
396 * By returning a non-zero value, we are telling
397 * kprobe_handler() that we don't want the post_handler
398 * to run (and have re-enabled preemption)
400 return 1;
404 * Called after single-stepping. p->addr is the address of the
405 * instruction whose first byte has been replaced by the "breakpoint"
406 * instruction. To avoid the SMP problems that can occur when we
407 * temporarily put back the original opcode to single-step, we
408 * single-stepped a copy of the instruction. The address of this
409 * copy is p->ainsn.insn.
411 static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs)
413 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
415 regs->psw.addr &= PSW_ADDR_INSN;
417 if (p->ainsn.fixup & FIXUP_PSW_NORMAL)
418 regs->psw.addr = (unsigned long)p->addr +
419 ((unsigned long)regs->psw.addr -
420 (unsigned long)p->ainsn.insn);
422 if (p->ainsn.fixup & FIXUP_BRANCH_NOT_TAKEN)
423 if ((unsigned long)regs->psw.addr -
424 (unsigned long)p->ainsn.insn == p->ainsn.ilen)
425 regs->psw.addr = (unsigned long)p->addr + p->ainsn.ilen;
427 if (p->ainsn.fixup & FIXUP_RETURN_REGISTER)
428 regs->gprs[p->ainsn.reg] = ((unsigned long)p->addr +
429 (regs->gprs[p->ainsn.reg] -
430 (unsigned long)p->ainsn.insn))
431 | PSW_ADDR_AMODE;
433 regs->psw.addr |= PSW_ADDR_AMODE;
434 /* turn off PER mode */
435 regs->psw.mask &= ~PSW_MASK_PER;
436 /* Restore the original per control regs */
437 __ctl_load(kcb->kprobe_saved_ctl, 9, 11);
438 regs->psw.mask |= kcb->kprobe_saved_imask;
441 static int __kprobes post_kprobe_handler(struct pt_regs *regs)
443 struct kprobe *cur = kprobe_running();
444 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
446 if (!cur)
447 return 0;
449 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
450 kcb->kprobe_status = KPROBE_HIT_SSDONE;
451 cur->post_handler(cur, regs, 0);
454 resume_execution(cur, regs);
456 /*Restore back the original saved kprobes variables and continue. */
457 if (kcb->kprobe_status == KPROBE_REENTER) {
458 restore_previous_kprobe(kcb);
459 goto out;
461 reset_current_kprobe();
462 out:
463 preempt_enable_no_resched();
466 * if somebody else is singlestepping across a probe point, psw mask
467 * will have PER set, in which case, continue the remaining processing
468 * of do_single_step, as if this is not a probe hit.
470 if (regs->psw.mask & PSW_MASK_PER) {
471 return 0;
474 return 1;
477 int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
479 struct kprobe *cur = kprobe_running();
480 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
481 const struct exception_table_entry *entry;
483 switch(kcb->kprobe_status) {
484 case KPROBE_SWAP_INST:
485 /* We are here because the instruction replacement failed */
486 return 0;
487 case KPROBE_HIT_SS:
488 case KPROBE_REENTER:
490 * We are here because the instruction being single
491 * stepped caused a page fault. We reset the current
492 * kprobe and the nip points back to the probe address
493 * and allow the page fault handler to continue as a
494 * normal page fault.
496 regs->psw.addr = (unsigned long)cur->addr | PSW_ADDR_AMODE;
497 regs->psw.mask &= ~PSW_MASK_PER;
498 regs->psw.mask |= kcb->kprobe_saved_imask;
499 if (kcb->kprobe_status == KPROBE_REENTER)
500 restore_previous_kprobe(kcb);
501 else
502 reset_current_kprobe();
503 preempt_enable_no_resched();
504 break;
505 case KPROBE_HIT_ACTIVE:
506 case KPROBE_HIT_SSDONE:
508 * We increment the nmissed count for accounting,
509 * we can also use npre/npostfault count for accouting
510 * these specific fault cases.
512 kprobes_inc_nmissed_count(cur);
515 * We come here because instructions in the pre/post
516 * handler caused the page_fault, this could happen
517 * if handler tries to access user space by
518 * copy_from_user(), get_user() etc. Let the
519 * user-specified handler try to fix it first.
521 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
522 return 1;
525 * In case the user-specified fault handler returned
526 * zero, try to fix up.
528 entry = search_exception_tables(regs->psw.addr & PSW_ADDR_INSN);
529 if (entry) {
530 regs->psw.addr = entry->fixup | PSW_ADDR_AMODE;
531 return 1;
535 * fixup_exception() could not handle it,
536 * Let do_page_fault() fix it.
538 break;
539 default:
540 break;
542 return 0;
546 * Wrapper routine to for handling exceptions.
548 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
549 unsigned long val, void *data)
551 struct die_args *args = (struct die_args *)data;
552 int ret = NOTIFY_DONE;
554 switch (val) {
555 case DIE_BPT:
556 if (kprobe_handler(args->regs))
557 ret = NOTIFY_STOP;
558 break;
559 case DIE_SSTEP:
560 if (post_kprobe_handler(args->regs))
561 ret = NOTIFY_STOP;
562 break;
563 case DIE_TRAP:
564 /* kprobe_running() needs smp_processor_id() */
565 preempt_disable();
566 if (kprobe_running() &&
567 kprobe_fault_handler(args->regs, args->trapnr))
568 ret = NOTIFY_STOP;
569 preempt_enable();
570 break;
571 default:
572 break;
574 return ret;
577 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
579 struct jprobe *jp = container_of(p, struct jprobe, kp);
580 unsigned long addr;
581 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
583 memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs));
585 /* setup return addr to the jprobe handler routine */
586 regs->psw.addr = (unsigned long)(jp->entry) | PSW_ADDR_AMODE;
588 /* r14 is the function return address */
589 kcb->jprobe_saved_r14 = (unsigned long)regs->gprs[14];
590 /* r15 is the stack pointer */
591 kcb->jprobe_saved_r15 = (unsigned long)regs->gprs[15];
592 addr = (unsigned long)kcb->jprobe_saved_r15;
594 memcpy(kcb->jprobes_stack, (kprobe_opcode_t *) addr,
595 MIN_STACK_SIZE(addr));
596 return 1;
599 void __kprobes jprobe_return(void)
601 asm volatile(".word 0x0002");
604 void __kprobes jprobe_return_end(void)
606 asm volatile("bcr 0,0");
609 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
611 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
612 unsigned long stack_addr = (unsigned long)(kcb->jprobe_saved_r15);
614 /* Put the regs back */
615 memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs));
616 /* put the stack back */
617 memcpy((kprobe_opcode_t *) stack_addr, kcb->jprobes_stack,
618 MIN_STACK_SIZE(stack_addr));
619 preempt_enable_no_resched();
620 return 1;
623 static struct kprobe trampoline_p = {
624 .addr = (kprobe_opcode_t *) & kretprobe_trampoline,
625 .pre_handler = trampoline_probe_handler
628 int __init arch_init_kprobes(void)
630 return register_kprobe(&trampoline_p);
633 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
635 if (p->addr == (kprobe_opcode_t *) & kretprobe_trampoline)
636 return 1;
637 return 0;