neighbor state switching
[cor_2_6_31.git] / arch / um / kernel / irq.c
blob454cdb43e351a93fbb6ea50db791f726a8fb2733
1 /*
2 * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
3 * Licensed under the GPL
4 * Derived (i.e. mostly copied) from arch/i386/kernel/irq.c:
5 * Copyright (C) 1992, 1998 Linus Torvalds, Ingo Molnar
6 */
8 #include "linux/cpumask.h"
9 #include "linux/hardirq.h"
10 #include "linux/interrupt.h"
11 #include "linux/kernel_stat.h"
12 #include "linux/module.h"
13 #include "linux/seq_file.h"
14 #include "as-layout.h"
15 #include "kern_util.h"
16 #include "os.h"
19 * Generic, controller-independent functions:
22 int show_interrupts(struct seq_file *p, void *v)
24 int i = *(loff_t *) v, j;
25 struct irqaction * action;
26 unsigned long flags;
28 if (i == 0) {
29 seq_printf(p, " ");
30 for_each_online_cpu(j)
31 seq_printf(p, "CPU%d ",j);
32 seq_putc(p, '\n');
35 if (i < NR_IRQS) {
36 spin_lock_irqsave(&irq_desc[i].lock, flags);
37 action = irq_desc[i].action;
38 if (!action)
39 goto skip;
40 seq_printf(p, "%3d: ",i);
41 #ifndef CONFIG_SMP
42 seq_printf(p, "%10u ", kstat_irqs(i));
43 #else
44 for_each_online_cpu(j)
45 seq_printf(p, "%10u ", kstat_irqs_cpu(i, j));
46 #endif
47 seq_printf(p, " %14s", irq_desc[i].chip->typename);
48 seq_printf(p, " %s", action->name);
50 for (action=action->next; action; action = action->next)
51 seq_printf(p, ", %s", action->name);
53 seq_putc(p, '\n');
54 skip:
55 spin_unlock_irqrestore(&irq_desc[i].lock, flags);
56 } else if (i == NR_IRQS)
57 seq_putc(p, '\n');
59 return 0;
63 * This list is accessed under irq_lock, except in sigio_handler,
64 * where it is safe from being modified. IRQ handlers won't change it -
65 * if an IRQ source has vanished, it will be freed by free_irqs just
66 * before returning from sigio_handler. That will process a separate
67 * list of irqs to free, with its own locking, coming back here to
68 * remove list elements, taking the irq_lock to do so.
70 static struct irq_fd *active_fds = NULL;
71 static struct irq_fd **last_irq_ptr = &active_fds;
73 extern void free_irqs(void);
75 void sigio_handler(int sig, struct uml_pt_regs *regs)
77 struct irq_fd *irq_fd;
78 int n;
80 if (smp_sigio_handler())
81 return;
83 while (1) {
84 n = os_waiting_for_events(active_fds);
85 if (n <= 0) {
86 if (n == -EINTR)
87 continue;
88 else break;
91 for (irq_fd = active_fds; irq_fd != NULL;
92 irq_fd = irq_fd->next) {
93 if (irq_fd->current_events != 0) {
94 irq_fd->current_events = 0;
95 do_IRQ(irq_fd->irq, regs);
100 free_irqs();
103 static DEFINE_SPINLOCK(irq_lock);
105 static int activate_fd(int irq, int fd, int type, void *dev_id)
107 struct pollfd *tmp_pfd;
108 struct irq_fd *new_fd, *irq_fd;
109 unsigned long flags;
110 int events, err, n;
112 err = os_set_fd_async(fd);
113 if (err < 0)
114 goto out;
116 err = -ENOMEM;
117 new_fd = kmalloc(sizeof(struct irq_fd), GFP_KERNEL);
118 if (new_fd == NULL)
119 goto out;
121 if (type == IRQ_READ)
122 events = UM_POLLIN | UM_POLLPRI;
123 else events = UM_POLLOUT;
124 *new_fd = ((struct irq_fd) { .next = NULL,
125 .id = dev_id,
126 .fd = fd,
127 .type = type,
128 .irq = irq,
129 .events = events,
130 .current_events = 0 } );
132 err = -EBUSY;
133 spin_lock_irqsave(&irq_lock, flags);
134 for (irq_fd = active_fds; irq_fd != NULL; irq_fd = irq_fd->next) {
135 if ((irq_fd->fd == fd) && (irq_fd->type == type)) {
136 printk(KERN_ERR "Registering fd %d twice\n", fd);
137 printk(KERN_ERR "Irqs : %d, %d\n", irq_fd->irq, irq);
138 printk(KERN_ERR "Ids : 0x%p, 0x%p\n", irq_fd->id,
139 dev_id);
140 goto out_unlock;
144 if (type == IRQ_WRITE)
145 fd = -1;
147 tmp_pfd = NULL;
148 n = 0;
150 while (1) {
151 n = os_create_pollfd(fd, events, tmp_pfd, n);
152 if (n == 0)
153 break;
156 * n > 0
157 * It means we couldn't put new pollfd to current pollfds
158 * and tmp_fds is NULL or too small for new pollfds array.
159 * Needed size is equal to n as minimum.
161 * Here we have to drop the lock in order to call
162 * kmalloc, which might sleep.
163 * If something else came in and changed the pollfds array
164 * so we will not be able to put new pollfd struct to pollfds
165 * then we free the buffer tmp_fds and try again.
167 spin_unlock_irqrestore(&irq_lock, flags);
168 kfree(tmp_pfd);
170 tmp_pfd = kmalloc(n, GFP_KERNEL);
171 if (tmp_pfd == NULL)
172 goto out_kfree;
174 spin_lock_irqsave(&irq_lock, flags);
177 *last_irq_ptr = new_fd;
178 last_irq_ptr = &new_fd->next;
180 spin_unlock_irqrestore(&irq_lock, flags);
183 * This calls activate_fd, so it has to be outside the critical
184 * section.
186 maybe_sigio_broken(fd, (type == IRQ_READ));
188 return 0;
190 out_unlock:
191 spin_unlock_irqrestore(&irq_lock, flags);
192 out_kfree:
193 kfree(new_fd);
194 out:
195 return err;
198 static void free_irq_by_cb(int (*test)(struct irq_fd *, void *), void *arg)
200 unsigned long flags;
202 spin_lock_irqsave(&irq_lock, flags);
203 os_free_irq_by_cb(test, arg, active_fds, &last_irq_ptr);
204 spin_unlock_irqrestore(&irq_lock, flags);
207 struct irq_and_dev {
208 int irq;
209 void *dev;
212 static int same_irq_and_dev(struct irq_fd *irq, void *d)
214 struct irq_and_dev *data = d;
216 return ((irq->irq == data->irq) && (irq->id == data->dev));
219 static void free_irq_by_irq_and_dev(unsigned int irq, void *dev)
221 struct irq_and_dev data = ((struct irq_and_dev) { .irq = irq,
222 .dev = dev });
224 free_irq_by_cb(same_irq_and_dev, &data);
227 static int same_fd(struct irq_fd *irq, void *fd)
229 return (irq->fd == *((int *)fd));
232 void free_irq_by_fd(int fd)
234 free_irq_by_cb(same_fd, &fd);
237 /* Must be called with irq_lock held */
238 static struct irq_fd *find_irq_by_fd(int fd, int irqnum, int *index_out)
240 struct irq_fd *irq;
241 int i = 0;
242 int fdi;
244 for (irq = active_fds; irq != NULL; irq = irq->next) {
245 if ((irq->fd == fd) && (irq->irq == irqnum))
246 break;
247 i++;
249 if (irq == NULL) {
250 printk(KERN_ERR "find_irq_by_fd doesn't have descriptor %d\n",
251 fd);
252 goto out;
254 fdi = os_get_pollfd(i);
255 if ((fdi != -1) && (fdi != fd)) {
256 printk(KERN_ERR "find_irq_by_fd - mismatch between active_fds "
257 "and pollfds, fd %d vs %d, need %d\n", irq->fd,
258 fdi, fd);
259 irq = NULL;
260 goto out;
262 *index_out = i;
263 out:
264 return irq;
267 void reactivate_fd(int fd, int irqnum)
269 struct irq_fd *irq;
270 unsigned long flags;
271 int i;
273 spin_lock_irqsave(&irq_lock, flags);
274 irq = find_irq_by_fd(fd, irqnum, &i);
275 if (irq == NULL) {
276 spin_unlock_irqrestore(&irq_lock, flags);
277 return;
279 os_set_pollfd(i, irq->fd);
280 spin_unlock_irqrestore(&irq_lock, flags);
282 add_sigio_fd(fd);
285 void deactivate_fd(int fd, int irqnum)
287 struct irq_fd *irq;
288 unsigned long flags;
289 int i;
291 spin_lock_irqsave(&irq_lock, flags);
292 irq = find_irq_by_fd(fd, irqnum, &i);
293 if (irq == NULL) {
294 spin_unlock_irqrestore(&irq_lock, flags);
295 return;
298 os_set_pollfd(i, -1);
299 spin_unlock_irqrestore(&irq_lock, flags);
301 ignore_sigio_fd(fd);
305 * Called just before shutdown in order to provide a clean exec
306 * environment in case the system is rebooting. No locking because
307 * that would cause a pointless shutdown hang if something hadn't
308 * released the lock.
310 int deactivate_all_fds(void)
312 struct irq_fd *irq;
313 int err;
315 for (irq = active_fds; irq != NULL; irq = irq->next) {
316 err = os_clear_fd_async(irq->fd);
317 if (err)
318 return err;
320 /* If there is a signal already queued, after unblocking ignore it */
321 os_set_ioignore();
323 return 0;
327 * do_IRQ handles all normal device IRQs (the special
328 * SMP cross-CPU interrupts have their own specific
329 * handlers).
331 unsigned int do_IRQ(int irq, struct uml_pt_regs *regs)
333 struct pt_regs *old_regs = set_irq_regs((struct pt_regs *)regs);
334 irq_enter();
335 __do_IRQ(irq);
336 irq_exit();
337 set_irq_regs(old_regs);
338 return 1;
341 int um_request_irq(unsigned int irq, int fd, int type,
342 irq_handler_t handler,
343 unsigned long irqflags, const char * devname,
344 void *dev_id)
346 int err;
348 if (fd != -1) {
349 err = activate_fd(irq, fd, type, dev_id);
350 if (err)
351 return err;
354 return request_irq(irq, handler, irqflags, devname, dev_id);
357 EXPORT_SYMBOL(um_request_irq);
358 EXPORT_SYMBOL(reactivate_fd);
361 * irq_chip must define (startup || enable) &&
362 * (shutdown || disable) && end
364 static void dummy(unsigned int irq)
368 /* This is used for everything else than the timer. */
369 static struct irq_chip normal_irq_type = {
370 .typename = "SIGIO",
371 .release = free_irq_by_irq_and_dev,
372 .disable = dummy,
373 .enable = dummy,
374 .ack = dummy,
375 .end = dummy
378 static struct irq_chip SIGVTALRM_irq_type = {
379 .typename = "SIGVTALRM",
380 .release = free_irq_by_irq_and_dev,
381 .shutdown = dummy, /* never called */
382 .disable = dummy,
383 .enable = dummy,
384 .ack = dummy,
385 .end = dummy
388 void __init init_IRQ(void)
390 int i;
392 irq_desc[TIMER_IRQ].status = IRQ_DISABLED;
393 irq_desc[TIMER_IRQ].action = NULL;
394 irq_desc[TIMER_IRQ].depth = 1;
395 irq_desc[TIMER_IRQ].chip = &SIGVTALRM_irq_type;
396 enable_irq(TIMER_IRQ);
397 for (i = 1; i < NR_IRQS; i++) {
398 irq_desc[i].status = IRQ_DISABLED;
399 irq_desc[i].action = NULL;
400 irq_desc[i].depth = 1;
401 irq_desc[i].chip = &normal_irq_type;
402 enable_irq(i);
407 * IRQ stack entry and exit:
409 * Unlike i386, UML doesn't receive IRQs on the normal kernel stack
410 * and switch over to the IRQ stack after some preparation. We use
411 * sigaltstack to receive signals on a separate stack from the start.
412 * These two functions make sure the rest of the kernel won't be too
413 * upset by being on a different stack. The IRQ stack has a
414 * thread_info structure at the bottom so that current et al continue
415 * to work.
417 * to_irq_stack copies the current task's thread_info to the IRQ stack
418 * thread_info and sets the tasks's stack to point to the IRQ stack.
420 * from_irq_stack copies the thread_info struct back (flags may have
421 * been modified) and resets the task's stack pointer.
423 * Tricky bits -
425 * What happens when two signals race each other? UML doesn't block
426 * signals with sigprocmask, SA_DEFER, or sa_mask, so a second signal
427 * could arrive while a previous one is still setting up the
428 * thread_info.
430 * There are three cases -
431 * The first interrupt on the stack - sets up the thread_info and
432 * handles the interrupt
433 * A nested interrupt interrupting the copying of the thread_info -
434 * can't handle the interrupt, as the stack is in an unknown state
435 * A nested interrupt not interrupting the copying of the
436 * thread_info - doesn't do any setup, just handles the interrupt
438 * The first job is to figure out whether we interrupted stack setup.
439 * This is done by xchging the signal mask with thread_info->pending.
440 * If the value that comes back is zero, then there is no setup in
441 * progress, and the interrupt can be handled. If the value is
442 * non-zero, then there is stack setup in progress. In order to have
443 * the interrupt handled, we leave our signal in the mask, and it will
444 * be handled by the upper handler after it has set up the stack.
446 * Next is to figure out whether we are the outer handler or a nested
447 * one. As part of setting up the stack, thread_info->real_thread is
448 * set to non-NULL (and is reset to NULL on exit). This is the
449 * nesting indicator. If it is non-NULL, then the stack is already
450 * set up and the handler can run.
453 static unsigned long pending_mask;
455 unsigned long to_irq_stack(unsigned long *mask_out)
457 struct thread_info *ti;
458 unsigned long mask, old;
459 int nested;
461 mask = xchg(&pending_mask, *mask_out);
462 if (mask != 0) {
464 * If any interrupts come in at this point, we want to
465 * make sure that their bits aren't lost by our
466 * putting our bit in. So, this loop accumulates bits
467 * until xchg returns the same value that we put in.
468 * When that happens, there were no new interrupts,
469 * and pending_mask contains a bit for each interrupt
470 * that came in.
472 old = *mask_out;
473 do {
474 old |= mask;
475 mask = xchg(&pending_mask, old);
476 } while (mask != old);
477 return 1;
480 ti = current_thread_info();
481 nested = (ti->real_thread != NULL);
482 if (!nested) {
483 struct task_struct *task;
484 struct thread_info *tti;
486 task = cpu_tasks[ti->cpu].task;
487 tti = task_thread_info(task);
489 *ti = *tti;
490 ti->real_thread = tti;
491 task->stack = ti;
494 mask = xchg(&pending_mask, 0);
495 *mask_out |= mask | nested;
496 return 0;
499 unsigned long from_irq_stack(int nested)
501 struct thread_info *ti, *to;
502 unsigned long mask;
504 ti = current_thread_info();
506 pending_mask = 1;
508 to = ti->real_thread;
509 current->stack = to;
510 ti->real_thread = NULL;
511 *to = *ti;
513 mask = xchg(&pending_mask, 0);
514 return mask & ~1;