neighbor free after disconnect
[cor_2_6_31.git] / net / can / af_can.c
blobe733725b11d4cdbc1010e65bc441fa2723bdb132
1 /*
2 * af_can.c - Protocol family CAN core module
3 * (used by different CAN protocol modules)
5 * Copyright (c) 2002-2007 Volkswagen Group Electronic Research
6 * All rights reserved.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of Volkswagen nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
20 * Alternatively, provided that this notice is retained in full, this
21 * software may be distributed under the terms of the GNU General
22 * Public License ("GPL") version 2, in which case the provisions of the
23 * GPL apply INSTEAD OF those given above.
25 * The provided data structures and external interfaces from this code
26 * are not restricted to be used by modules with a GPL compatible license.
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
39 * DAMAGE.
41 * Send feedback to <socketcan-users@lists.berlios.de>
45 #include <linux/module.h>
46 #include <linux/init.h>
47 #include <linux/kmod.h>
48 #include <linux/slab.h>
49 #include <linux/list.h>
50 #include <linux/spinlock.h>
51 #include <linux/rcupdate.h>
52 #include <linux/uaccess.h>
53 #include <linux/net.h>
54 #include <linux/netdevice.h>
55 #include <linux/socket.h>
56 #include <linux/if_ether.h>
57 #include <linux/if_arp.h>
58 #include <linux/skbuff.h>
59 #include <linux/can.h>
60 #include <linux/can/core.h>
61 #include <net/net_namespace.h>
62 #include <net/sock.h>
64 #include "af_can.h"
66 static __initdata const char banner[] = KERN_INFO
67 "can: controller area network core (" CAN_VERSION_STRING ")\n";
69 MODULE_DESCRIPTION("Controller Area Network PF_CAN core");
70 MODULE_LICENSE("Dual BSD/GPL");
71 MODULE_AUTHOR("Urs Thuermann <urs.thuermann@volkswagen.de>, "
72 "Oliver Hartkopp <oliver.hartkopp@volkswagen.de>");
74 MODULE_ALIAS_NETPROTO(PF_CAN);
76 static int stats_timer __read_mostly = 1;
77 module_param(stats_timer, int, S_IRUGO);
78 MODULE_PARM_DESC(stats_timer, "enable timer for statistics (default:on)");
80 HLIST_HEAD(can_rx_dev_list);
81 static struct dev_rcv_lists can_rx_alldev_list;
82 static DEFINE_SPINLOCK(can_rcvlists_lock);
84 static struct kmem_cache *rcv_cache __read_mostly;
86 /* table of registered CAN protocols */
87 static struct can_proto *proto_tab[CAN_NPROTO] __read_mostly;
88 static DEFINE_SPINLOCK(proto_tab_lock);
90 struct timer_list can_stattimer; /* timer for statistics update */
91 struct s_stats can_stats; /* packet statistics */
92 struct s_pstats can_pstats; /* receive list statistics */
95 * af_can socket functions
98 static int can_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
100 struct sock *sk = sock->sk;
102 switch (cmd) {
104 case SIOCGSTAMP:
105 return sock_get_timestamp(sk, (struct timeval __user *)arg);
107 default:
108 return -ENOIOCTLCMD;
112 static void can_sock_destruct(struct sock *sk)
114 skb_queue_purge(&sk->sk_receive_queue);
117 static int can_create(struct net *net, struct socket *sock, int protocol)
119 struct sock *sk;
120 struct can_proto *cp;
121 int err = 0;
123 sock->state = SS_UNCONNECTED;
125 if (protocol < 0 || protocol >= CAN_NPROTO)
126 return -EINVAL;
128 if (net != &init_net)
129 return -EAFNOSUPPORT;
131 #ifdef CONFIG_MODULES
132 /* try to load protocol module kernel is modular */
133 if (!proto_tab[protocol]) {
134 err = request_module("can-proto-%d", protocol);
137 * In case of error we only print a message but don't
138 * return the error code immediately. Below we will
139 * return -EPROTONOSUPPORT
141 if (err && printk_ratelimit())
142 printk(KERN_ERR "can: request_module "
143 "(can-proto-%d) failed.\n", protocol);
145 #endif
147 spin_lock(&proto_tab_lock);
148 cp = proto_tab[protocol];
149 if (cp && !try_module_get(cp->prot->owner))
150 cp = NULL;
151 spin_unlock(&proto_tab_lock);
153 /* check for available protocol and correct usage */
155 if (!cp)
156 return -EPROTONOSUPPORT;
158 if (cp->type != sock->type) {
159 err = -EPROTONOSUPPORT;
160 goto errout;
163 if (cp->capability >= 0 && !capable(cp->capability)) {
164 err = -EPERM;
165 goto errout;
168 sock->ops = cp->ops;
170 sk = sk_alloc(net, PF_CAN, GFP_KERNEL, cp->prot);
171 if (!sk) {
172 err = -ENOMEM;
173 goto errout;
176 sock_init_data(sock, sk);
177 sk->sk_destruct = can_sock_destruct;
179 if (sk->sk_prot->init)
180 err = sk->sk_prot->init(sk);
182 if (err) {
183 /* release sk on errors */
184 sock_orphan(sk);
185 sock_put(sk);
188 errout:
189 module_put(cp->prot->owner);
190 return err;
194 * af_can tx path
198 * can_send - transmit a CAN frame (optional with local loopback)
199 * @skb: pointer to socket buffer with CAN frame in data section
200 * @loop: loopback for listeners on local CAN sockets (recommended default!)
202 * Return:
203 * 0 on success
204 * -ENETDOWN when the selected interface is down
205 * -ENOBUFS on full driver queue (see net_xmit_errno())
206 * -ENOMEM when local loopback failed at calling skb_clone()
207 * -EPERM when trying to send on a non-CAN interface
208 * -EINVAL when the skb->data does not contain a valid CAN frame
210 int can_send(struct sk_buff *skb, int loop)
212 struct sk_buff *newskb = NULL;
213 struct can_frame *cf = (struct can_frame *)skb->data;
214 int err;
216 if (skb->len != sizeof(struct can_frame) || cf->can_dlc > 8) {
217 kfree_skb(skb);
218 return -EINVAL;
221 if (skb->dev->type != ARPHRD_CAN) {
222 kfree_skb(skb);
223 return -EPERM;
226 if (!(skb->dev->flags & IFF_UP)) {
227 kfree_skb(skb);
228 return -ENETDOWN;
231 skb->protocol = htons(ETH_P_CAN);
232 skb_reset_network_header(skb);
233 skb_reset_transport_header(skb);
235 if (loop) {
236 /* local loopback of sent CAN frames */
238 /* indication for the CAN driver: do loopback */
239 skb->pkt_type = PACKET_LOOPBACK;
242 * The reference to the originating sock may be required
243 * by the receiving socket to check whether the frame is
244 * its own. Example: can_raw sockopt CAN_RAW_RECV_OWN_MSGS
245 * Therefore we have to ensure that skb->sk remains the
246 * reference to the originating sock by restoring skb->sk
247 * after each skb_clone() or skb_orphan() usage.
250 if (!(skb->dev->flags & IFF_ECHO)) {
252 * If the interface is not capable to do loopback
253 * itself, we do it here.
255 newskb = skb_clone(skb, GFP_ATOMIC);
256 if (!newskb) {
257 kfree_skb(skb);
258 return -ENOMEM;
261 newskb->sk = skb->sk;
262 newskb->ip_summed = CHECKSUM_UNNECESSARY;
263 newskb->pkt_type = PACKET_BROADCAST;
265 } else {
266 /* indication for the CAN driver: no loopback required */
267 skb->pkt_type = PACKET_HOST;
270 /* send to netdevice */
271 err = dev_queue_xmit(skb);
272 if (err > 0)
273 err = net_xmit_errno(err);
275 if (err) {
276 kfree_skb(newskb);
277 return err;
280 if (newskb)
281 netif_rx(newskb);
283 /* update statistics */
284 can_stats.tx_frames++;
285 can_stats.tx_frames_delta++;
287 return 0;
289 EXPORT_SYMBOL(can_send);
292 * af_can rx path
295 static struct dev_rcv_lists *find_dev_rcv_lists(struct net_device *dev)
297 struct dev_rcv_lists *d = NULL;
298 struct hlist_node *n;
301 * find receive list for this device
303 * The hlist_for_each_entry*() macros curse through the list
304 * using the pointer variable n and set d to the containing
305 * struct in each list iteration. Therefore, after list
306 * iteration, d is unmodified when the list is empty, and it
307 * points to last list element, when the list is non-empty
308 * but no match in the loop body is found. I.e. d is *not*
309 * NULL when no match is found. We can, however, use the
310 * cursor variable n to decide if a match was found.
313 hlist_for_each_entry_rcu(d, n, &can_rx_dev_list, list) {
314 if (d->dev == dev)
315 break;
318 return n ? d : NULL;
322 * find_rcv_list - determine optimal filterlist inside device filter struct
323 * @can_id: pointer to CAN identifier of a given can_filter
324 * @mask: pointer to CAN mask of a given can_filter
325 * @d: pointer to the device filter struct
327 * Description:
328 * Returns the optimal filterlist to reduce the filter handling in the
329 * receive path. This function is called by service functions that need
330 * to register or unregister a can_filter in the filter lists.
332 * A filter matches in general, when
334 * <received_can_id> & mask == can_id & mask
336 * so every bit set in the mask (even CAN_EFF_FLAG, CAN_RTR_FLAG) describe
337 * relevant bits for the filter.
339 * The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can
340 * filter for error frames (CAN_ERR_FLAG bit set in mask). For error frames
341 * there is a special filterlist and a special rx path filter handling.
343 * Return:
344 * Pointer to optimal filterlist for the given can_id/mask pair.
345 * Constistency checked mask.
346 * Reduced can_id to have a preprocessed filter compare value.
348 static struct hlist_head *find_rcv_list(canid_t *can_id, canid_t *mask,
349 struct dev_rcv_lists *d)
351 canid_t inv = *can_id & CAN_INV_FILTER; /* save flag before masking */
353 /* filter for error frames in extra filterlist */
354 if (*mask & CAN_ERR_FLAG) {
355 /* clear CAN_ERR_FLAG in filter entry */
356 *mask &= CAN_ERR_MASK;
357 return &d->rx[RX_ERR];
360 /* with cleared CAN_ERR_FLAG we have a simple mask/value filterpair */
362 #define CAN_EFF_RTR_FLAGS (CAN_EFF_FLAG | CAN_RTR_FLAG)
364 /* ensure valid values in can_mask for 'SFF only' frame filtering */
365 if ((*mask & CAN_EFF_FLAG) && !(*can_id & CAN_EFF_FLAG))
366 *mask &= (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS);
368 /* reduce condition testing at receive time */
369 *can_id &= *mask;
371 /* inverse can_id/can_mask filter */
372 if (inv)
373 return &d->rx[RX_INV];
375 /* mask == 0 => no condition testing at receive time */
376 if (!(*mask))
377 return &d->rx[RX_ALL];
379 /* extra filterlists for the subscription of a single non-RTR can_id */
380 if (((*mask & CAN_EFF_RTR_FLAGS) == CAN_EFF_RTR_FLAGS)
381 && !(*can_id & CAN_RTR_FLAG)) {
383 if (*can_id & CAN_EFF_FLAG) {
384 if (*mask == (CAN_EFF_MASK | CAN_EFF_RTR_FLAGS)) {
385 /* RFC: a future use-case for hash-tables? */
386 return &d->rx[RX_EFF];
388 } else {
389 if (*mask == (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS))
390 return &d->rx_sff[*can_id];
394 /* default: filter via can_id/can_mask */
395 return &d->rx[RX_FIL];
399 * can_rx_register - subscribe CAN frames from a specific interface
400 * @dev: pointer to netdevice (NULL => subcribe from 'all' CAN devices list)
401 * @can_id: CAN identifier (see description)
402 * @mask: CAN mask (see description)
403 * @func: callback function on filter match
404 * @data: returned parameter for callback function
405 * @ident: string for calling module indentification
407 * Description:
408 * Invokes the callback function with the received sk_buff and the given
409 * parameter 'data' on a matching receive filter. A filter matches, when
411 * <received_can_id> & mask == can_id & mask
413 * The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can
414 * filter for error frames (CAN_ERR_FLAG bit set in mask).
416 * The provided pointer to the sk_buff is guaranteed to be valid as long as
417 * the callback function is running. The callback function must *not* free
418 * the given sk_buff while processing it's task. When the given sk_buff is
419 * needed after the end of the callback function it must be cloned inside
420 * the callback function with skb_clone().
422 * Return:
423 * 0 on success
424 * -ENOMEM on missing cache mem to create subscription entry
425 * -ENODEV unknown device
427 int can_rx_register(struct net_device *dev, canid_t can_id, canid_t mask,
428 void (*func)(struct sk_buff *, void *), void *data,
429 char *ident)
431 struct receiver *r;
432 struct hlist_head *rl;
433 struct dev_rcv_lists *d;
434 int err = 0;
436 /* insert new receiver (dev,canid,mask) -> (func,data) */
438 r = kmem_cache_alloc(rcv_cache, GFP_KERNEL);
439 if (!r)
440 return -ENOMEM;
442 spin_lock(&can_rcvlists_lock);
444 d = find_dev_rcv_lists(dev);
445 if (d) {
446 rl = find_rcv_list(&can_id, &mask, d);
448 r->can_id = can_id;
449 r->mask = mask;
450 r->matches = 0;
451 r->func = func;
452 r->data = data;
453 r->ident = ident;
455 hlist_add_head_rcu(&r->list, rl);
456 d->entries++;
458 can_pstats.rcv_entries++;
459 if (can_pstats.rcv_entries_max < can_pstats.rcv_entries)
460 can_pstats.rcv_entries_max = can_pstats.rcv_entries;
461 } else {
462 kmem_cache_free(rcv_cache, r);
463 err = -ENODEV;
466 spin_unlock(&can_rcvlists_lock);
468 return err;
470 EXPORT_SYMBOL(can_rx_register);
473 * can_rx_delete_device - rcu callback for dev_rcv_lists structure removal
475 static void can_rx_delete_device(struct rcu_head *rp)
477 struct dev_rcv_lists *d = container_of(rp, struct dev_rcv_lists, rcu);
479 kfree(d);
483 * can_rx_delete_receiver - rcu callback for single receiver entry removal
485 static void can_rx_delete_receiver(struct rcu_head *rp)
487 struct receiver *r = container_of(rp, struct receiver, rcu);
489 kmem_cache_free(rcv_cache, r);
493 * can_rx_unregister - unsubscribe CAN frames from a specific interface
494 * @dev: pointer to netdevice (NULL => unsubcribe from 'all' CAN devices list)
495 * @can_id: CAN identifier
496 * @mask: CAN mask
497 * @func: callback function on filter match
498 * @data: returned parameter for callback function
500 * Description:
501 * Removes subscription entry depending on given (subscription) values.
503 void can_rx_unregister(struct net_device *dev, canid_t can_id, canid_t mask,
504 void (*func)(struct sk_buff *, void *), void *data)
506 struct receiver *r = NULL;
507 struct hlist_head *rl;
508 struct hlist_node *next;
509 struct dev_rcv_lists *d;
511 spin_lock(&can_rcvlists_lock);
513 d = find_dev_rcv_lists(dev);
514 if (!d) {
515 printk(KERN_ERR "BUG: receive list not found for "
516 "dev %s, id %03X, mask %03X\n",
517 DNAME(dev), can_id, mask);
518 goto out;
521 rl = find_rcv_list(&can_id, &mask, d);
524 * Search the receiver list for the item to delete. This should
525 * exist, since no receiver may be unregistered that hasn't
526 * been registered before.
529 hlist_for_each_entry_rcu(r, next, rl, list) {
530 if (r->can_id == can_id && r->mask == mask
531 && r->func == func && r->data == data)
532 break;
536 * Check for bugs in CAN protocol implementations:
537 * If no matching list item was found, the list cursor variable next
538 * will be NULL, while r will point to the last item of the list.
541 if (!next) {
542 printk(KERN_ERR "BUG: receive list entry not found for "
543 "dev %s, id %03X, mask %03X\n",
544 DNAME(dev), can_id, mask);
545 r = NULL;
546 d = NULL;
547 goto out;
550 hlist_del_rcu(&r->list);
551 d->entries--;
553 if (can_pstats.rcv_entries > 0)
554 can_pstats.rcv_entries--;
556 /* remove device structure requested by NETDEV_UNREGISTER */
557 if (d->remove_on_zero_entries && !d->entries)
558 hlist_del_rcu(&d->list);
559 else
560 d = NULL;
562 out:
563 spin_unlock(&can_rcvlists_lock);
565 /* schedule the receiver item for deletion */
566 if (r)
567 call_rcu(&r->rcu, can_rx_delete_receiver);
569 /* schedule the device structure for deletion */
570 if (d)
571 call_rcu(&d->rcu, can_rx_delete_device);
573 EXPORT_SYMBOL(can_rx_unregister);
575 static inline void deliver(struct sk_buff *skb, struct receiver *r)
577 r->func(skb, r->data);
578 r->matches++;
581 static int can_rcv_filter(struct dev_rcv_lists *d, struct sk_buff *skb)
583 struct receiver *r;
584 struct hlist_node *n;
585 int matches = 0;
586 struct can_frame *cf = (struct can_frame *)skb->data;
587 canid_t can_id = cf->can_id;
589 if (d->entries == 0)
590 return 0;
592 if (can_id & CAN_ERR_FLAG) {
593 /* check for error frame entries only */
594 hlist_for_each_entry_rcu(r, n, &d->rx[RX_ERR], list) {
595 if (can_id & r->mask) {
596 deliver(skb, r);
597 matches++;
600 return matches;
603 /* check for unfiltered entries */
604 hlist_for_each_entry_rcu(r, n, &d->rx[RX_ALL], list) {
605 deliver(skb, r);
606 matches++;
609 /* check for can_id/mask entries */
610 hlist_for_each_entry_rcu(r, n, &d->rx[RX_FIL], list) {
611 if ((can_id & r->mask) == r->can_id) {
612 deliver(skb, r);
613 matches++;
617 /* check for inverted can_id/mask entries */
618 hlist_for_each_entry_rcu(r, n, &d->rx[RX_INV], list) {
619 if ((can_id & r->mask) != r->can_id) {
620 deliver(skb, r);
621 matches++;
625 /* check filterlists for single non-RTR can_ids */
626 if (can_id & CAN_RTR_FLAG)
627 return matches;
629 if (can_id & CAN_EFF_FLAG) {
630 hlist_for_each_entry_rcu(r, n, &d->rx[RX_EFF], list) {
631 if (r->can_id == can_id) {
632 deliver(skb, r);
633 matches++;
636 } else {
637 can_id &= CAN_SFF_MASK;
638 hlist_for_each_entry_rcu(r, n, &d->rx_sff[can_id], list) {
639 deliver(skb, r);
640 matches++;
644 return matches;
647 static int can_rcv(struct sk_buff *skb, struct net_device *dev,
648 struct packet_type *pt, struct net_device *orig_dev)
650 struct dev_rcv_lists *d;
651 struct can_frame *cf = (struct can_frame *)skb->data;
652 int matches;
654 if (dev->type != ARPHRD_CAN || !net_eq(dev_net(dev), &init_net)) {
655 kfree_skb(skb);
656 return 0;
659 BUG_ON(skb->len != sizeof(struct can_frame) || cf->can_dlc > 8);
661 /* update statistics */
662 can_stats.rx_frames++;
663 can_stats.rx_frames_delta++;
665 rcu_read_lock();
667 /* deliver the packet to sockets listening on all devices */
668 matches = can_rcv_filter(&can_rx_alldev_list, skb);
670 /* find receive list for this device */
671 d = find_dev_rcv_lists(dev);
672 if (d)
673 matches += can_rcv_filter(d, skb);
675 rcu_read_unlock();
677 /* consume the skbuff allocated by the netdevice driver */
678 consume_skb(skb);
680 if (matches > 0) {
681 can_stats.matches++;
682 can_stats.matches_delta++;
685 return 0;
689 * af_can protocol functions
693 * can_proto_register - register CAN transport protocol
694 * @cp: pointer to CAN protocol structure
696 * Return:
697 * 0 on success
698 * -EINVAL invalid (out of range) protocol number
699 * -EBUSY protocol already in use
700 * -ENOBUF if proto_register() fails
702 int can_proto_register(struct can_proto *cp)
704 int proto = cp->protocol;
705 int err = 0;
707 if (proto < 0 || proto >= CAN_NPROTO) {
708 printk(KERN_ERR "can: protocol number %d out of range\n",
709 proto);
710 return -EINVAL;
713 err = proto_register(cp->prot, 0);
714 if (err < 0)
715 return err;
717 spin_lock(&proto_tab_lock);
718 if (proto_tab[proto]) {
719 printk(KERN_ERR "can: protocol %d already registered\n",
720 proto);
721 err = -EBUSY;
722 } else {
723 proto_tab[proto] = cp;
725 /* use generic ioctl function if not defined by module */
726 if (!cp->ops->ioctl)
727 cp->ops->ioctl = can_ioctl;
729 spin_unlock(&proto_tab_lock);
731 if (err < 0)
732 proto_unregister(cp->prot);
734 return err;
736 EXPORT_SYMBOL(can_proto_register);
739 * can_proto_unregister - unregister CAN transport protocol
740 * @cp: pointer to CAN protocol structure
742 void can_proto_unregister(struct can_proto *cp)
744 int proto = cp->protocol;
746 spin_lock(&proto_tab_lock);
747 if (!proto_tab[proto]) {
748 printk(KERN_ERR "BUG: can: protocol %d is not registered\n",
749 proto);
751 proto_tab[proto] = NULL;
752 spin_unlock(&proto_tab_lock);
754 proto_unregister(cp->prot);
756 EXPORT_SYMBOL(can_proto_unregister);
759 * af_can notifier to create/remove CAN netdevice specific structs
761 static int can_notifier(struct notifier_block *nb, unsigned long msg,
762 void *data)
764 struct net_device *dev = (struct net_device *)data;
765 struct dev_rcv_lists *d;
767 if (!net_eq(dev_net(dev), &init_net))
768 return NOTIFY_DONE;
770 if (dev->type != ARPHRD_CAN)
771 return NOTIFY_DONE;
773 switch (msg) {
775 case NETDEV_REGISTER:
778 * create new dev_rcv_lists for this device
780 * N.B. zeroing the struct is the correct initialization
781 * for the embedded hlist_head structs.
782 * Another list type, e.g. list_head, would require
783 * explicit initialization.
786 d = kzalloc(sizeof(*d), GFP_KERNEL);
787 if (!d) {
788 printk(KERN_ERR
789 "can: allocation of receive list failed\n");
790 return NOTIFY_DONE;
792 d->dev = dev;
794 spin_lock(&can_rcvlists_lock);
795 hlist_add_head_rcu(&d->list, &can_rx_dev_list);
796 spin_unlock(&can_rcvlists_lock);
798 break;
800 case NETDEV_UNREGISTER:
801 spin_lock(&can_rcvlists_lock);
803 d = find_dev_rcv_lists(dev);
804 if (d) {
805 if (d->entries) {
806 d->remove_on_zero_entries = 1;
807 d = NULL;
808 } else
809 hlist_del_rcu(&d->list);
810 } else
811 printk(KERN_ERR "can: notifier: receive list not "
812 "found for dev %s\n", dev->name);
814 spin_unlock(&can_rcvlists_lock);
816 if (d)
817 call_rcu(&d->rcu, can_rx_delete_device);
819 break;
822 return NOTIFY_DONE;
826 * af_can module init/exit functions
829 static struct packet_type can_packet __read_mostly = {
830 .type = cpu_to_be16(ETH_P_CAN),
831 .dev = NULL,
832 .func = can_rcv,
835 static struct net_proto_family can_family_ops __read_mostly = {
836 .family = PF_CAN,
837 .create = can_create,
838 .owner = THIS_MODULE,
841 /* notifier block for netdevice event */
842 static struct notifier_block can_netdev_notifier __read_mostly = {
843 .notifier_call = can_notifier,
846 static __init int can_init(void)
848 printk(banner);
850 rcv_cache = kmem_cache_create("can_receiver", sizeof(struct receiver),
851 0, 0, NULL);
852 if (!rcv_cache)
853 return -ENOMEM;
856 * Insert can_rx_alldev_list for reception on all devices.
857 * This struct is zero initialized which is correct for the
858 * embedded hlist heads, the dev pointer, and the entries counter.
861 spin_lock(&can_rcvlists_lock);
862 hlist_add_head_rcu(&can_rx_alldev_list.list, &can_rx_dev_list);
863 spin_unlock(&can_rcvlists_lock);
865 if (stats_timer) {
866 /* the statistics are updated every second (timer triggered) */
867 setup_timer(&can_stattimer, can_stat_update, 0);
868 mod_timer(&can_stattimer, round_jiffies(jiffies + HZ));
869 } else
870 can_stattimer.function = NULL;
872 can_init_proc();
874 /* protocol register */
875 sock_register(&can_family_ops);
876 register_netdevice_notifier(&can_netdev_notifier);
877 dev_add_pack(&can_packet);
879 return 0;
882 static __exit void can_exit(void)
884 struct dev_rcv_lists *d;
885 struct hlist_node *n, *next;
887 if (stats_timer)
888 del_timer(&can_stattimer);
890 can_remove_proc();
892 /* protocol unregister */
893 dev_remove_pack(&can_packet);
894 unregister_netdevice_notifier(&can_netdev_notifier);
895 sock_unregister(PF_CAN);
897 /* remove can_rx_dev_list */
898 spin_lock(&can_rcvlists_lock);
899 hlist_del(&can_rx_alldev_list.list);
900 hlist_for_each_entry_safe(d, n, next, &can_rx_dev_list, list) {
901 hlist_del(&d->list);
902 kfree(d);
904 spin_unlock(&can_rcvlists_lock);
906 rcu_barrier(); /* Wait for completion of call_rcu()'s */
908 kmem_cache_destroy(rcv_cache);
911 module_init(can_init);
912 module_exit(can_exit);