2 * Connection oriented routing
3 * Copyright (C) 2007-2010 Michael Blizek
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License
7 * as published by the Free Software Foundation; either version 2
8 * of the License, or (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
24 * Splited packet data format:
25 * announce proto version [4]
26 * is 0, may be increased if format changes
28 * starts with 0, increments every time the data field changes
30 * total data size of all merged packets
32 * used to determine the order when merging the split packet
35 * commulative checksum [8] (not yet)
36 * chunk 1 contains the checksum of the data in chunk 1
37 * chunk 2 contains the checksum of the data in chunk 1+2
40 * Data format of the announce packet "data" field:
41 * min_announce_proto_version [4]
42 * max_announce_proto_version [4]
43 * min_cor_proto_version [4]
44 * max_cor_proto_version [4]
45 * versions which are understood
49 * commanddata [commandlength]
54 #define NEIGHCMD_ADDADDR 1
59 * addrtype [addrtypelen]
65 DEFINE_MUTEX(neighbor_operation_lock
);
67 char *addrtype
= "id";
73 struct kmem_cache
*nb_slab
;
75 LIST_HEAD(announce_out_list
);
77 struct notifier_block netdev_notify
;
80 #define ADDRTYPE_UNKNOWN 0
83 static int get_addrtype(__u32 addrtypelen
, char *addrtype
)
85 if (addrtypelen
== 2 &&
86 (addrtype
[0] == 'i' || addrtype
[0] == 'I') &&
87 (addrtype
[1] == 'd' || addrtype
[1] == 'D'))
90 return ADDRTYPE_UNKNOWN
;
93 void neighbor_free(struct kref
*ref
)
95 struct neighbor
*nb
= container_of(ref
, struct neighbor
, ref
);
96 printk(KERN_ERR
"neighbor free");
97 BUG_ON(nb
->nb_list
.next
!= LIST_POISON1
);
98 BUG_ON(nb
->nb_list
.prev
!= LIST_POISON2
);
105 kmem_cache_free(nb_slab
, nb
);
108 static struct neighbor
*alloc_neighbor(gfp_t allocflags
)
110 struct neighbor
*nb
= kmem_cache_alloc(nb_slab
, allocflags
);
113 if (unlikely(nb
== 0))
116 memset(nb
, 0, sizeof(struct neighbor
));
118 kref_init(&(nb
->ref
));
119 mutex_init(&(nb
->cmsg_lock
));
120 INIT_LIST_HEAD(&(nb
->control_msgs_out
));
121 INIT_LIST_HEAD(&(nb
->ucontrol_msgs_out
));
122 nb
->last_ping_time
= jiffies
;
123 atomic_set(&(nb
->ooo_packets
), 0);
124 spin_lock_init(&(nb
->credits_lock
));
125 nb
->jiffies_credit_update
= nb
->last_ping_time
;
126 get_random_bytes((char *) &seqno
, sizeof(seqno
));
127 mutex_init(&(nb
->pingcookie_lock
));
128 atomic_set(&(nb
->latency
), 1000000);
129 atomic_set(&(nb
->max_remote_cmsg_delay
), 1000000);
130 spin_lock_init(&(nb
->state_lock
));
131 atomic_set(&(nb
->kpacket_seqno
), seqno
);
132 mutex_init(&(nb
->conn_list_lock
));
133 INIT_LIST_HEAD(&(nb
->rcv_conn_list
));
134 INIT_LIST_HEAD(&(nb
->snd_conn_list
));
135 spin_lock_init(&(nb
->retrans_lock
));
136 INIT_LIST_HEAD(&(nb
->retrans_list
));
137 INIT_LIST_HEAD(&(nb
->retrans_list_conn
));
142 struct neighbor
*get_neigh_by_mac(struct sk_buff
*skb
)
144 struct list_head
*currlh
;
145 struct neighbor
*ret
= 0;
148 char source_hw
[MAX_ADDR_LEN
];
149 memset(source_hw
, 0, MAX_ADDR_LEN
);
150 if (skb
->dev
->header_ops
!= 0 &&
151 skb
->dev
->header_ops
->parse
!= 0)
152 skb
->dev
->header_ops
->parse(skb
, source_hw
);
154 mutex_lock(&(neighbor_operation_lock
));
156 currlh
= nb_list
.next
;
158 while (currlh
!= &nb_list
) {
159 struct neighbor
*curr
= container_of(currlh
, struct neighbor
,
162 if (memcmp(curr
->mac
, source_hw
, MAX_ADDR_LEN
) == 0) {
164 kref_get(&(ret
->ref
));
168 currlh
= currlh
->next
;
171 mutex_unlock(&(neighbor_operation_lock
));
176 struct neighbor
*find_neigh(__u16 addrtypelen
, __u8
*addrtype
,
177 __u16 addrlen
, __u8
*addr
)
179 struct list_head
*currlh
;
180 struct neighbor
*ret
= 0;
182 if (get_addrtype(addrtypelen
, addrtype
) != ADDRTYPE_ID
)
185 mutex_lock(&(neighbor_operation_lock
));
187 currlh
= nb_list
.next
;
189 while (currlh
!= &nb_list
) {
190 struct neighbor
*curr
= container_of(currlh
, struct neighbor
,
193 if (curr
->addrlen
== addrlen
&& memcmp(curr
->addr
, addr
,
196 kref_get(&(ret
->ref
));
201 currlh
= currlh
->next
;
205 mutex_unlock(&(neighbor_operation_lock
));
215 * credit exchange factor + unstable flag
216 * throughput bound conns: throughput,credits/msecs
217 * latency bound conns: latency (ms), credits/byte
220 __u32
generate_neigh_list(char *buf
, __u32 buflen
, __u32 limit
, __u32 offset
)
222 struct list_head
*currlh
;
224 char *p_totalneighs
= buf
;
225 char *p_response_rows
= buf
+ 4;
232 __u32 buf_offset
= 8;
237 mutex_lock(&(neighbor_operation_lock
));
239 currlh
= nb_list
.next
;
241 while (currlh
!= &nb_list
) {
242 struct neighbor
*curr
= container_of(currlh
, struct neighbor
,
246 unsigned long iflags
;
247 /* get_neigh_state not used here because it would deadlock */
248 spin_lock_irqsave( &(curr
->state_lock
), iflags
);
250 spin_unlock_irqrestore( &(curr
->state_lock
), iflags
);
252 if (state
!= NEIGHBOR_STATE_ACTIVE
)
258 if (unlikely(buflen
- buf_offset
- 6 - 2 - curr
->addrlen
< 0))
264 put_u16(buf
+ buf_offset
, 1, 1);/* numaddr */
266 put_u16(buf
+ buf_offset
, 2, 1);/* addrtypelen */
268 put_u16(buf
+ buf_offset
, curr
->addrlen
, 1);/* addren */
270 buf
[buf_offset
] = 'i'; /* addrtype */
272 buf
[buf_offset
] = 'd';
274 memcpy(buf
+ buf_offset
, curr
->addr
, curr
->addrlen
); /* addr */
275 buf_offset
+= curr
->addrlen
;
277 BUG_ON(buf_offset
> buflen
);
284 currlh
= currlh
->next
;
287 mutex_unlock(&(neighbor_operation_lock
));
289 put_u32(p_totalneighs
, total
, 1);
290 put_u32(p_response_rows
, cnt
, 1);
295 void set_last_routdtrip(struct neighbor
*nb
, unsigned long time
)
297 unsigned long iflags
;
301 spin_lock_irqsave( &(nb
->state_lock
), iflags
);
303 if(likely(nb
->state
== NEIGHBOR_STATE_ACTIVE
) && time_after(time
,
304 nb
->state_time
.last_roundtrip
))
305 nb
->state_time
.last_roundtrip
= time
;
307 spin_unlock_irqrestore( &(nb
->state_lock
), iflags
);
310 static void _refresh_initial_debitsrate(struct net_device
*dev
,
314 struct list_head
*currlh
;
316 currlh
= nb_list
.next
;
318 while (currlh
!= &nb_list
) {
319 struct neighbor
*curr
= container_of(currlh
, struct neighbor
,
322 if (curr
->dev
== dev
)
325 currlh
= currlh
->next
;
328 currlh
= nb_list
.next
;
330 while (currlh
!= &nb_list
) {
331 struct neighbor
*curr
= container_of(currlh
, struct neighbor
,
334 if (curr
->dev
== dev
)
335 set_debitrate_initial(curr
,
336 debitsrate
/neighbors
);
338 currlh
= currlh
->next
;
342 /* neighbor operation lock has to be held while calling this */
343 static void refresh_initial_debitsrate(void)
345 struct list_head
*currlh1
;
348 currlh1
= nb_list
.next
;
350 while (currlh1
!= &nb_list
) {
351 struct neighbor
*curr1
= container_of(currlh1
, struct neighbor
,
354 struct list_head
*currlh2
;
355 currlh2
= nb_list
.next
;
356 while (currlh2
!= currlh1
) {
357 struct neighbor
*curr2
= container_of(currlh2
,
358 struct neighbor
, nb_list
);
359 if (curr1
->dev
== curr2
->dev
)
367 currlh1
= currlh1
->next
;
370 currlh1
= nb_list
.next
;
372 while (currlh1
!= &nb_list
) {
373 struct neighbor
*curr1
= container_of(currlh1
, struct neighbor
,
376 struct list_head
*currlh2
;
377 currlh2
= nb_list
.next
;
378 while (currlh2
!= currlh1
) {
379 struct neighbor
*curr2
= container_of(currlh2
,
380 struct neighbor
, nb_list
);
381 if (curr1
->dev
== curr2
->dev
)
385 _refresh_initial_debitsrate(curr1
->dev
,
386 CREDIT_RATE_INITIAL
/ifcnt
);
390 currlh1
= currlh1
->next
;
394 static void reset_stall_conns(struct neighbor
*nb
,
395 int stall_time_ms
, int resetall
)
397 struct list_head
*currlh
;
400 mutex_lock(&(nb
->conn_list_lock
));
401 currlh
= nb
->snd_conn_list
.next
;
403 while (currlh
!= &(nb
->snd_conn_list
)) {
404 struct conn
*sconn
= container_of(currlh
, struct conn
,
406 BUG_ON(sconn
->targettype
!= TARGET_OUT
);
408 if (resetall
|| stall_time_ms
>=
409 sconn
->target
.out
.stall_timeout_ms
) {
411 * reset_conn must not be called with conn_list_lock
414 mutex_unlock(&(nb
->conn_list_lock
));
418 currlh
= currlh
->next
;
421 BUG_ON(list_empty(&(nb
->snd_conn_list
)) && nb
->num_send_conns
!= 0);
422 mutex_unlock(&(nb
->conn_list_lock
));
425 static void stall_timer(struct work_struct
*work
)
427 struct neighbor
*nb
= container_of(to_delayed_work(work
),
428 struct neighbor
, stalltimeout_timer
);
435 unsigned long iflags
;
437 spin_lock_irqsave( &(nb
->state_lock
), iflags
);
438 stall_time_ms
= jiffies_to_msecs(jiffies
-
439 nb
->state_time
.last_roundtrip
);
441 spin_unlock_irqrestore( &(nb
->state_lock
), iflags
);
443 if (unlikely(nbstate
!= NEIGHBOR_STATE_STALLED
)) {
444 nb
->str_timer_pending
= 0;
445 kref_put(&(nb
->ref
), neighbor_free
);
449 resetall
= (stall_time_ms
> NB_KILL_TIME_MS
);
452 printk(KERN_ERR "reset_all");*/
454 reset_stall_conns(nb
, stall_time_ms
, resetall
);
457 spin_lock_irqsave( &(nb
->state_lock
), iflags
);
458 nb
->state
= NEIGHBOR_STATE_KILLED
;
459 spin_unlock_irqrestore( &(nb
->state_lock
), iflags
);
461 mutex_lock(&neighbor_operation_lock
);
462 list_del(&(nb
->nb_list
));
463 refresh_initial_debitsrate();
464 mutex_unlock(&neighbor_operation_lock
);
465 kref_put(&(nb
->ref
), neighbor_free
); /* nb_list */
467 kref_put(&(nb
->ref
), neighbor_free
); /* stall_timer */
470 INIT_DELAYED_WORK(&(nb
->stalltimeout_timer
), stall_timer
);
471 schedule_delayed_work(&(nb
->stalltimeout_timer
),
472 msecs_to_jiffies(STALL_TIMER_INTERVAL_MS
));
476 int get_neigh_state(struct neighbor
*nb
)
479 int switchedtostalled
= 0;
480 unsigned long iflags
;
484 spin_lock_irqsave( &(nb
->state_lock
), iflags
);
486 if (unlikely(likely(nb
->state
== NEIGHBOR_STATE_ACTIVE
) && unlikely(
487 time_after_eq(jiffies
, nb
->state_time
.last_roundtrip
+
488 msecs_to_jiffies(NB_STALL_TIME_MS
)) &&
489 nb
->ping_intransit
>= NB_STALL_MINPINGS_MS
))) {
490 nb
->state
= NEIGHBOR_STATE_STALLED
;
491 switchedtostalled
= 1;
496 spin_unlock_irqrestore( &(nb
->state_lock
), iflags
);
498 if (unlikely(switchedtostalled
)) {
499 /*printk(KERN_ERR "switched to stalled");*/
501 spin_lock_irqsave( &(nb
->state_lock
), iflags
);
502 pending
= nb
->str_timer_pending
;
503 spin_unlock_irqrestore( &(nb
->state_lock
), iflags
);
506 kref_get(&(nb
->ref
));
507 INIT_DELAYED_WORK(&(nb
->stalltimeout_timer
),
509 schedule_delayed_work(&(nb
->stalltimeout_timer
), 1);
516 static struct ping_cookie
*find_cookie(struct neighbor
*nb
, __u32 cookie
)
520 for(i
=0;i
<PING_COOKIES_PER_NEIGH
;i
++) {
521 if (nb
->cookies
[i
].cookie
== cookie
)
522 return &(nb
->cookies
[i
]);
527 void ping_resp(struct neighbor
*nb
, __u32 cookie
, __u32 respdelay
)
529 struct ping_cookie
*c
;
532 unsigned long cookie_sendtime
;
535 unsigned long iflags
;
537 mutex_lock(&(nb
->pingcookie_lock
));
539 c
= find_cookie(nb
, cookie
);
541 if (unlikely(c
== 0))
544 cookie_sendtime
= c
->time
;
546 newlatency
= ((((__s64
) ((__u32
)atomic_read(&(nb
->latency
)))) * 15 +
547 jiffies_to_usecs(jiffies
- c
->time
) - respdelay
) / 16);
548 if (unlikely(newlatency
< 0))
550 if (unlikely(newlatency
> (((__s64
)256)*256*256*256 - 1)))
551 newlatency
= ((__s64
)256)*256*256*256 - 1;
553 atomic_set(&(nb
->latency
), (__u32
) newlatency
);
556 nb
->ping_intransit
--;
558 for(i
=0;i
<PING_COOKIES_PER_NEIGH
;i
++) {
559 if (nb
->cookies
[i
].cookie
!= 0 &&
560 time_before(nb
->cookies
[i
].time
, c
->time
)) {
561 nb
->cookies
[i
].pongs
++;
562 if (nb
->cookies
[i
].pongs
>= PING_PONGLIMIT
) {
563 nb
->cookies
[i
].cookie
= 0;
564 nb
->cookies
[i
].pongs
= 0;
565 nb
->ping_intransit
--;
570 spin_lock_irqsave( &(nb
->state_lock
), iflags
);
572 if (unlikely(nb
->state
== NEIGHBOR_STATE_INITIAL
||
573 nb
->state
== NEIGHBOR_STATE_STALLED
)) {
576 if (nb
->state
== NEIGHBOR_STATE_INITIAL
) {
577 __u64 jiffies64
= get_jiffies_64();
578 if (nb
->state_time
.last_state_change
== 0)
579 nb
->state_time
.last_state_change
= jiffies64
;
580 if (jiffies64
<= (nb
->state_time
.last_state_change
+
581 msecs_to_jiffies(INITIAL_TIME_MS
)))
585 if (nb
->ping_success
>= PING_SUCCESS_CNT
) {
586 /*if (nb->state == NEIGHBOR_STATE_INITIAL)
587 printk(KERN_ERR "switched from initial to active");
589 printk(KERN_ERR "switched from stalled to active");
591 nb
->state
= NEIGHBOR_STATE_ACTIVE
;
592 nb
->ping_success
= 0;
593 nb
->state_time
.last_roundtrip
= jiffies
;
596 nb
->state_time
.last_roundtrip
= cookie_sendtime
;
600 spin_unlock_irqrestore( &(nb
->state_lock
), iflags
);
603 mutex_unlock(&(nb
->pingcookie_lock
));
606 __u32
add_ping_req(struct neighbor
*nb
)
608 struct ping_cookie
*c
;
613 mutex_lock(&(nb
->pingcookie_lock
));
615 for (i
=0;i
<PING_COOKIES_PER_NEIGH
;i
++) {
616 if (nb
->cookies
[i
].cookie
== 0)
620 get_random_bytes((char *) &i
, sizeof(i
));
621 i
= (i
% (PING_COOKIES_PER_NEIGH
- PING_COOKIES_FIFO
)) +
625 c
= &(nb
->cookies
[i
]);
629 if (unlikely(nb
->lastcookie
== 0))
631 c
->cookie
= nb
->lastcookie
;
633 nb
->ping_intransit
++;
637 nb
->last_ping_time
= jiffies
;
639 mutex_unlock(&(nb
->pingcookie_lock
));
644 void unadd_ping_req(struct neighbor
*nb
, __u32 cookie
)
651 mutex_lock(&(nb
->pingcookie_lock
));
653 for (i
=0;i
<PING_COOKIES_PER_NEIGH
;i
++) {
654 if (nb
->cookies
[i
].cookie
== cookie
) {
655 nb
->cookies
[i
].cookie
= 0;
656 nb
->ping_intransit
--;
661 mutex_unlock(&(nb
->pingcookie_lock
));
664 static int neighbor_idle(struct neighbor
*nb
)
667 mutex_lock(&(nb
->conn_list_lock
));
668 ret
= (list_empty(&(nb
->rcv_conn_list
)) &&
669 list_empty(&(nb
->snd_conn_list
)));
670 BUG_ON(list_empty(&(nb
->snd_conn_list
)) && nb
->num_send_conns
!= 0);
671 mutex_unlock(&(nb
->conn_list_lock
));
676 * Check additional to the checks and timings already done in kpacket_gen.c
677 * This is primarily to make sure that we do not invalidate other ping cookies
678 * which might still receive responses. It does this by requiring a certain
679 * mimimum delay between pings, depending on how many pings are already in
682 int time_to_send_ping(struct neighbor
*nb
)
686 int state
= get_neigh_state(nb
);
687 int idle
= (state
!= NEIGHBOR_STATE_ACTIVE
? 0 :
690 mutex_lock(&(nb
->pingcookie_lock
));
691 if (nb
->ping_intransit
>= PING_COOKIES_NOTHROTTLE
) {
692 __u32 mindelay
= (( ((__u32
) atomic_read(&(nb
->latency
))) +
693 ((__u32
) atomic_read(
694 &(nb
->max_remote_cmsg_delay
))) )/1000) <<
695 (nb
->ping_intransit
+ 1 -
696 PING_COOKIES_NOTHROTTLE
);
698 if (mindelay
> PING_THROTTLE_LIMIT_MS
)
699 mindelay
= PING_THROTTLE_LIMIT_MS
;
701 if (jiffies_to_msecs(jiffies
- nb
->last_ping_time
) < mindelay
)
705 if (jiffies_to_msecs(jiffies
- nb
->last_ping_time
) <
711 if (unlikely(state
!= NEIGHBOR_STATE_ACTIVE
) ||
712 nb
->ping_intransit
!= 0)
713 forcetime
= PING_FORCETIME_MS
;
715 forcetime
= PING_FORCETIME_ACTIVEIDLE_MS
;
717 forcetime
= PING_FORCETIME_ACTIVE_MS
;
719 if (jiffies_to_msecs(jiffies
- nb
->last_ping_time
) >= forcetime
)
723 mutex_unlock(&(nb
->pingcookie_lock
));
728 static void add_neighbor(struct neighbor
*nb
)
730 struct list_head
*currlh
= nb_list
.next
;
732 BUG_ON((nb
->addr
== 0) != (nb
->addrlen
== 0));
734 while (currlh
!= &nb_list
) {
735 struct neighbor
*curr
= container_of(currlh
, struct neighbor
,
738 if (curr
->addrlen
== nb
->addrlen
&& memcmp(curr
->addr
, nb
->addr
,
740 goto already_present
;
742 currlh
= currlh
->next
;
745 /* kref_get not needed here, because the caller leaves its ref to us */
746 printk(KERN_ERR
"add_neigh");
748 list_add_tail(&(nb
->nb_list
), &nb_list
);
749 refresh_initial_debitsrate();
750 schedule_controlmsg_timerfunc(nb
);
751 INIT_DELAYED_WORK(&(nb
->retrans_timer
), retransmit_timerfunc
);
752 INIT_DELAYED_WORK(&(nb
->retrans_timer_conn
), retransmit_conn_timerfunc
);
756 kmem_cache_free(nb_slab
, nb
);
760 static __u32
pull_u32(struct sk_buff
*skb
, int convbo
)
762 char *ptr
= cor_pull_skb(skb
, 4);
768 ((char *)&ret
)[0] = ptr
[0];
769 ((char *)&ret
)[1] = ptr
[1];
770 ((char *)&ret
)[2] = ptr
[2];
771 ((char *)&ret
)[3] = ptr
[3];
774 return be32_to_cpu(ret
);
778 static int apply_announce_addaddr(struct neighbor
*nb
, __u32 cmd
, __u32 len
,
786 BUG_ON((nb
->addr
== 0) != (nb
->addrlen
== 0));
794 addrtypelen
= be16_to_cpu(*((__u16
*) cmddata
));
801 addrlen
= be16_to_cpu(*((__u16
*) cmddata
));
806 cmddata
+= addrtypelen
;
816 if (get_addrtype(addrtypelen
, addrtype
) != ADDRTYPE_ID
)
819 nb
->addr
= kmalloc(addrlen
, GFP_KERNEL
);
820 if (unlikely(nb
->addr
== 0))
823 memcpy(nb
->addr
, addr
, addrlen
);
824 nb
->addrlen
= addrlen
;
829 static void apply_announce_cmd(struct neighbor
*nb
, __u32 cmd
, __u32 len
,
832 if (cmd
== NEIGHCMD_ADDADDR
) {
833 apply_announce_addaddr(nb
, cmd
, len
, cmddata
);
835 /* ignore unknown cmds */
839 static void apply_announce_cmds(char *msg
, __u32 len
, struct net_device
*dev
,
842 struct neighbor
*nb
= alloc_neighbor(GFP_KERNEL
);
844 if (unlikely(nb
== 0))
851 cmd
= be32_to_cpu(*((__u32
*) msg
));
854 cmdlen
= be32_to_cpu(*((__u32
*) msg
));
858 BUG_ON(cmdlen
> len
);
860 apply_announce_cmd(nb
, cmd
, cmdlen
, msg
);
868 memcpy(nb
->mac
, source_hw
, MAX_ADDR_LEN
);
875 static int check_announce_cmds(char *msg
, __u32 len
)
881 cmd
= be32_to_cpu(*((__u32
*) msg
));
884 cmdlen
= be32_to_cpu(*((__u32
*) msg
));
888 /* malformated packet */
889 if (unlikely(cmdlen
> len
))
896 if (unlikely(len
!= 0))
902 static void parse_announce(char *msg
, __u32 len
, struct net_device
*dev
,
905 __u32 min_announce_version
;
906 __u32 max_announce_version
;
907 __u32 min_cor_version
;
908 __u32 max_cor_version
;
910 if (unlikely(len
< 16))
913 min_announce_version
= be32_to_cpu(*((__u32
*) msg
));
916 max_announce_version
= be32_to_cpu(*((__u32
*) msg
));
919 min_cor_version
= be32_to_cpu(*((__u32
*) msg
));
922 max_cor_version
= be32_to_cpu(*((__u32
*) msg
));
926 if (min_announce_version
!= 0)
928 if (min_cor_version
!= 0)
930 if (check_announce_cmds(msg
, len
)) {
933 apply_announce_cmds(msg
, len
, dev
, source_hw
);
937 /* lh has to be first */
939 struct sk_buff_head skbs
; /* sorted by offset */
940 struct net_device
*dev
;
941 char source_hw
[MAX_ADDR_LEN
];
942 __u32 announce_proto_version
;
943 __u32 packet_version
;
946 __u64 last_received_packet
;
949 LIST_HEAD(announce_list
);
951 struct kmem_cache
*announce_in_slab
;
953 static void merge_announce(struct announce_in
*ann
)
955 char *msg
= kmalloc(ann
->total_size
, GFP_KERNEL
);
959 /* try again when next packet arrives */
963 while (copy
!= ann
->total_size
) {
967 struct skb_procstate
*ps
;
969 if (unlikely(skb_queue_empty(&(ann
->skbs
)))) {
970 printk(KERN_ERR
"net/cor/neighbor.c: sk_head ran "
971 "empty while merging packets\n");
975 skb
= skb_dequeue(&(ann
->skbs
));
976 ps
= skb_pstate(skb
);
979 if (unlikely(ps
->funcstate
.announce
.offset
> copy
)) {
980 printk(KERN_ERR
"net/cor/neighbor.c: invalid offset"
985 if (unlikely(ps
->funcstate
.announce
.offset
< copy
)) {
986 offset
= copy
- ps
->funcstate
.announce
.offset
;
990 if (unlikely(currcpy
+ copy
> ann
->total_size
))
993 memcpy(msg
+ copy
, skb
->data
+ offset
, currcpy
);
998 parse_announce(msg
, ann
->total_size
, ann
->dev
, ann
->source_hw
);
1005 list_del(&(ann
->lh
));
1006 kmem_cache_free(announce_in_slab
, ann
);
1009 static int _rcv_announce(struct sk_buff
*skb
, struct announce_in
*ann
)
1011 struct skb_procstate
*ps
= skb_pstate(skb
);
1013 __u32 offset
= ps
->funcstate
.announce
.offset
;
1014 __u32 len
= skb
->len
;
1016 __u32 curroffset
= 0;
1017 __u32 prevoffset
= 0;
1020 struct sk_buff
*curr
= ann
->skbs
.next
;
1022 if (unlikely(len
+ offset
> ann
->total_size
)) {
1023 /* invalid header */
1029 * Try to find the right place to insert in the sorted list. This
1030 * means to process the list until we find a skb which has a greater
1031 * offset, so we can insert before it to keep the sort order. However,
1032 * this is complicated by the fact that the new skb must not be inserted
1033 * between 2 skbs if there is no data missing in between. So the loop
1034 * runs has to keep running until there is either a gap to insert or
1035 * we see that this data has already been received.
1037 while ((void *) curr
!= (void *) &(ann
->skbs
)) {
1038 struct skb_procstate
*currps
= skb_pstate(skb
);
1040 curroffset
= currps
->funcstate
.announce
.offset
;
1042 if (curroffset
> offset
&& (prevoffset
+ prevlen
) < curroffset
)
1045 prevoffset
= curroffset
;
1046 prevlen
= curr
->len
;
1049 if ((offset
+len
) <= (prevoffset
+prevlen
)) {
1050 /* we already have this data */
1057 * Calculate how much data was really received, by substracting
1058 * the bytes we already have.
1060 if (unlikely(prevoffset
+ prevlen
> offset
)) {
1061 len
-= (prevoffset
+ prevlen
) - offset
;
1062 offset
= prevoffset
+ prevlen
;
1065 if (unlikely((void *) curr
!= (void *) &(ann
->skbs
) &&
1066 (offset
+ len
) > curroffset
))
1067 len
= curroffset
- offset
;
1069 ann
->received_size
+= len
;
1070 BUG_ON(ann
->received_size
> ann
->total_size
);
1071 __skb_queue_before(&(ann
->skbs
), curr
, skb
);
1072 ann
->last_received_packet
= get_jiffies_64();
1074 if (ann
->received_size
== ann
->total_size
)
1075 merge_announce(ann
);
1076 else if (unlikely(ann
->skbs
.qlen
>= 16))
1082 void rcv_announce(struct sk_buff
*skb
)
1084 struct skb_procstate
*ps
= skb_pstate(skb
);
1085 struct announce_in
*curr
= 0;
1086 struct announce_in
*leastactive
= 0;
1087 __u32 list_size
= 0;
1089 __u32 announce_proto_version
= pull_u32(skb
, 1);
1090 __u32 packet_version
= pull_u32(skb
, 1);
1091 __u32 total_size
= pull_u32(skb
, 1);
1093 char source_hw
[MAX_ADDR_LEN
];
1094 memset(source_hw
, 0, MAX_ADDR_LEN
);
1095 if (skb
->dev
->header_ops
!= 0 &&
1096 skb
->dev
->header_ops
->parse
!= 0)
1097 skb
->dev
->header_ops
->parse(skb
, source_hw
);
1099 ps
->funcstate
.announce
.offset
= pull_u32(skb
, 1);
1101 if (total_size
> 8192)
1104 mutex_lock(&(neighbor_operation_lock
));
1106 if (announce_proto_version
!= 0)
1109 curr
= (struct announce_in
*) announce_list
.next
;
1111 while (((struct list_head
*) curr
) != &(announce_list
)) {
1113 if (curr
->dev
== skb
->dev
&&
1114 memcmp(curr
->source_hw
, source_hw
, MAX_ADDR_LEN
) == 0 &&
1115 curr
->announce_proto_version
== announce_proto_version
&&
1116 curr
->packet_version
== packet_version
&&
1117 curr
->total_size
== total_size
)
1120 if (leastactive
== 0 || curr
->last_received_packet
<
1121 leastactive
->last_received_packet
)
1124 curr
= (struct announce_in
*) curr
->lh
.next
;
1127 if (list_size
>= 128) {
1128 BUG_ON(leastactive
== 0);
1131 curr
->last_received_packet
= get_jiffies_64();
1133 while (!skb_queue_empty(&(curr
->skbs
))) {
1134 struct sk_buff
*skb2
= skb_dequeue(&(curr
->skbs
));
1140 curr
= kmem_cache_alloc(announce_in_slab
,
1145 skb_queue_head_init(&(curr
->skbs
));
1146 list_add_tail((struct list_head
*) curr
, &announce_list
);
1149 curr
->packet_version
= packet_version
;
1150 curr
->total_size
= total_size
;
1151 curr
->received_size
= 0;
1152 curr
->announce_proto_version
= announce_proto_version
;
1153 curr
->dev
= skb
->dev
;
1154 dev_hold(curr
->dev
);
1155 memcpy(curr
->source_hw
, source_hw
, MAX_ADDR_LEN
);
1158 if (_rcv_announce(skb
, curr
)) {
1159 list_del((struct list_head
*) curr
);
1161 kmem_cache_free(announce_in_slab
, curr
);
1169 mutex_unlock(&(neighbor_operation_lock
));
1175 __u32 packet_version
;
1177 __u32 announce_msg_len
;
1180 struct announce
*last_announce
;
1182 static int send_announce_chunk(struct announce_data
*ann
)
1184 struct sk_buff
*skb
;
1185 __u32 packet_size
= 256;
1186 __u32 remainingdata
= ann
->ann
->announce_msg_len
-
1187 ann
->curr_announce_msg_offset
;
1188 __u32 headroom
= LL_ALLOCATED_SPACE(ann
->dev
);
1189 __u32 overhead
= 17 + headroom
;
1194 if (remainingdata
< packet_size
)
1195 packet_size
= remainingdata
;
1197 skb
= alloc_skb(packet_size
+ overhead
, GFP_KERNEL
);
1198 if (unlikely(skb
== 0))
1201 skb
->protocol
= htons(ETH_P_COR
);
1202 skb
->dev
= ann
->dev
;
1203 skb_reserve(skb
, headroom
);
1205 if(unlikely(dev_hard_header(skb
, ann
->dev
, ETH_P_COR
,
1206 ann
->dev
->broadcast
, ann
->dev
->dev_addr
, skb
->len
) < 0))
1209 skb_reset_network_header(skb
);
1211 header
= skb_put(skb
, 17);
1212 if (unlikely(header
== 0))
1215 header
[0] = PACKET_TYPE_ANNOUNCE
;
1217 put_u32(header
+ 1, 0, 1); /* announce proto version */
1218 put_u32(header
+ 5, ann
->ann
->packet_version
, 1); /* packet version */
1219 put_u32(header
+ 9, ann
->ann
->announce_msg_len
, 1); /* total size */
1220 put_u32(header
+ 13, ann
->curr_announce_msg_offset
, 1); /* offset */
1222 ptr
= skb_put(skb
, packet_size
);
1223 if (unlikely(ptr
== 0))
1226 memcpy(ptr
, ann
->ann
->announce_msg
+ ann
->curr_announce_msg_offset
,
1229 rc
= dev_queue_xmit(skb
);
1232 qos_enqueue(ann
->dev
, &(ann
->rb
), QOS_CALLER_ANNOUNCE
);
1234 ann
->curr_announce_msg_offset
+= packet_size
;
1236 if (ann
->curr_announce_msg_offset
== ann
->ann
->announce_msg_len
)
1237 ann
->curr_announce_msg_offset
= 0;
1249 int send_announce_qos(struct announce_data
*ann
)
1252 mutex_lock(&(neighbor_operation_lock
));
1253 rc
= send_announce_chunk(ann
);
1254 mutex_unlock(&(neighbor_operation_lock
));
1258 static void announce_free(struct kref
*ref
)
1260 struct announce
*ann
= container_of(ref
, struct announce
, ref
);
1261 kfree(&(ann
->announce_msg
));
1265 void announce_data_free(struct kref
*ref
)
1267 struct announce_data
*ann
= container_of(ref
, struct announce_data
,
1270 kref_put(&(ann
->ann
->ref
), announce_free
);
1274 static void send_announce(struct work_struct
*work
)
1276 struct announce_data
*ann
= container_of(to_delayed_work(work
),
1277 struct announce_data
, announce_work
);
1280 mutex_lock(&(neighbor_operation_lock
));
1282 if (unlikely(ann
->dev
== 0))
1286 if (unlikely(ann
->ann
== 0 && last_announce
== 0))
1288 if (ann
->curr_announce_msg_offset
== 0 &&
1289 unlikely(ann
->ann
!= last_announce
)) {
1291 kref_put(&(ann
->ann
->ref
), announce_free
);
1292 ann
->ann
= last_announce
;
1293 kref_get(&(ann
->ann
->ref
));
1296 send_announce_chunk(ann
);
1299 mutex_unlock(&(neighbor_operation_lock
));
1302 __u64 jiffies
= get_jiffies_64();
1305 ann
->scheduled_announce_timer
+= msecs_to_jiffies(
1306 ANNOUNCE_SEND_PACKETINTELVAL_MS
);
1308 delay
= ann
->scheduled_announce_timer
- jiffies
;
1312 INIT_DELAYED_WORK(&(ann
->announce_work
), send_announce
);
1313 schedule_delayed_work(&(ann
->announce_work
), delay
);
1317 static struct announce_data
*get_announce_by_netdev(struct net_device
*dev
)
1319 struct list_head
*lh
= announce_out_list
.next
;
1321 while (lh
!= &announce_out_list
) {
1322 struct announce_data
*curr
= (struct announce_data
*)(
1324 offsetof(struct announce_data
, lh
));
1326 if (curr
->dev
== dev
)
1333 static void announce_send_adddev(struct net_device
*dev
)
1335 struct announce_data
*ann
;
1337 ann
= kmalloc(sizeof(struct announce_data
), GFP_KERNEL
);
1339 if (unlikely(ann
== 0)) {
1340 printk(KERN_ERR
"cor cannot allocate memory for sending "
1345 memset(ann
, 0, sizeof(struct announce_data
));
1347 kref_init(&(ann
->ref
));
1352 mutex_lock(&(neighbor_operation_lock
));
1353 list_add_tail(&(ann
->lh
), &announce_out_list
);
1354 mutex_unlock(&(neighbor_operation_lock
));
1356 ann
->scheduled_announce_timer
= get_jiffies_64();
1357 INIT_DELAYED_WORK(&(ann
->announce_work
), send_announce
);
1358 schedule_delayed_work(&(ann
->announce_work
), 1);
1361 static void announce_send_rmdev(struct net_device
*dev
)
1363 struct announce_data
*ann
;
1365 mutex_lock(&(neighbor_operation_lock
));
1367 ann
= get_announce_by_netdev(dev
);
1375 kref_put(&(ann
->ref
), announce_data_free
);
1377 mutex_unlock(&(neighbor_operation_lock
));
1380 int netdev_notify_func(struct notifier_block
*not, unsigned long event
,
1383 struct net_device
*dev
= (struct net_device
*) ptr
;
1388 rc
= create_queue(dev
);
1391 announce_send_adddev(dev
);
1395 announce_send_rmdev(dev
);
1399 case NETDEV_REGISTER
:
1400 case NETDEV_UNREGISTER
:
1401 case NETDEV_CHANGEMTU
:
1402 case NETDEV_CHANGEADDR
:
1403 case NETDEV_GOING_DOWN
:
1404 case NETDEV_CHANGENAME
:
1405 case NETDEV_FEAT_CHANGE
:
1406 case NETDEV_BONDING_FAILOVER
:
1415 static int set_announce(char *msg
, __u32 len
)
1417 struct announce
*ann
= kmalloc(sizeof(struct announce
), GFP_KERNEL
);
1419 if (unlikely(ann
== 0)) {
1424 memset(ann
, 0, sizeof(struct announce
));
1426 ann
->announce_msg
= msg
;
1427 ann
->announce_msg_len
= len
;
1429 kref_init(&(ann
->ref
));
1431 mutex_lock(&(neighbor_operation_lock
));
1433 if (last_announce
!= 0) {
1434 ann
->packet_version
= last_announce
->packet_version
+ 1;
1435 kref_put(&(last_announce
->ref
), announce_free
);
1438 last_announce
= ann
;
1440 mutex_unlock(&(neighbor_operation_lock
));
1445 static int generate_announce(void)
1447 __u32 addrtypelen
= strlen(addrtype
);
1450 __u32 cmd_hdr_len
= 8;
1451 __u32 cmd_len
= 2 + 2 + addrtypelen
+ addrlen
;
1453 __u32 len
= hdr_len
+ cmd_hdr_len
+ cmd_len
;
1456 char *msg
= kmalloc(len
, GFP_KERNEL
);
1457 if (unlikely(msg
== 0))
1460 put_u32(msg
+ offset
, 0, 1); /* min_announce_proto_version */
1462 put_u32(msg
+ offset
, 0, 1); /* max_announce_proto_version */
1464 put_u32(msg
+ offset
, 0, 1); /* min_cor_proto_version */
1466 put_u32(msg
+ offset
, 0, 1); /* max_cor_proto_version */
1470 put_u32(msg
+ offset
, NEIGHCMD_ADDADDR
, 1); /* command */
1472 put_u32(msg
+ offset
, cmd_len
, 1); /* command length */
1475 /* addrtypelen, addrlen */
1476 put_u16(msg
+ offset
, addrtypelen
, 1);
1478 put_u16(msg
+ offset
, addrlen
, 1);
1481 /* addrtype, addr */
1482 memcpy(msg
+ offset
, addrtype
, addrtypelen
);
1483 offset
+= addrtypelen
;
1484 memcpy(msg
+ offset
, addr
, addrlen
);
1487 BUG_ON(offset
!= len
);
1489 return set_announce(msg
, len
);
1492 int __init
cor_neighbor_init(void)
1496 addr
= kmalloc(addrlen
, GFP_KERNEL
);
1497 if (unlikely(addr
== 0))
1500 get_random_bytes(addr
, addrlen
);
1502 nb_slab
= kmem_cache_create("cor_neighbor", sizeof(struct neighbor
), 8,
1504 announce_in_slab
= kmem_cache_create("cor_announce_in",
1505 sizeof(struct announce_in
), 8, 0, 0);
1507 if (unlikely(generate_announce()))
1510 memset(&netdev_notify
, 0, sizeof(netdev_notify
));
1511 netdev_notify
.notifier_call
= netdev_notify_func
;
1512 register_netdevice_notifier(&netdev_notify
);
1523 MODULE_LICENSE("GPL");