2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7 * Copyright (C) 1995, 1996 Paul M. Antoine
8 * Copyright (C) 1998 Ulf Carlsson
9 * Copyright (C) 1999 Silicon Graphics, Inc.
10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11 * Copyright (C) 2000, 01 MIPS Technologies, Inc.
12 * Copyright (C) 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki
14 #include <linux/bug.h>
15 #include <linux/compiler.h>
16 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/sched.h>
20 #include <linux/smp.h>
21 #include <linux/spinlock.h>
22 #include <linux/kallsyms.h>
23 #include <linux/bootmem.h>
24 #include <linux/interrupt.h>
25 #include <linux/ptrace.h>
26 #include <linux/kgdb.h>
27 #include <linux/kdebug.h>
29 #include <asm/bootinfo.h>
30 #include <asm/branch.h>
31 #include <asm/break.h>
35 #include <asm/fpu_emulator.h>
36 #include <asm/mipsregs.h>
37 #include <asm/mipsmtregs.h>
38 #include <asm/module.h>
39 #include <asm/pgtable.h>
40 #include <asm/ptrace.h>
41 #include <asm/sections.h>
42 #include <asm/system.h>
43 #include <asm/tlbdebug.h>
44 #include <asm/traps.h>
45 #include <asm/uaccess.h>
46 #include <asm/watch.h>
47 #include <asm/mmu_context.h>
48 #include <asm/types.h>
49 #include <asm/stacktrace.h>
52 extern void check_wait(void);
53 extern asmlinkage
void r4k_wait(void);
54 extern asmlinkage
void rollback_handle_int(void);
55 extern asmlinkage
void handle_int(void);
56 extern asmlinkage
void handle_tlbm(void);
57 extern asmlinkage
void handle_tlbl(void);
58 extern asmlinkage
void handle_tlbs(void);
59 extern asmlinkage
void handle_adel(void);
60 extern asmlinkage
void handle_ades(void);
61 extern asmlinkage
void handle_ibe(void);
62 extern asmlinkage
void handle_dbe(void);
63 extern asmlinkage
void handle_sys(void);
64 extern asmlinkage
void handle_bp(void);
65 extern asmlinkage
void handle_ri(void);
66 extern asmlinkage
void handle_ri_rdhwr_vivt(void);
67 extern asmlinkage
void handle_ri_rdhwr(void);
68 extern asmlinkage
void handle_cpu(void);
69 extern asmlinkage
void handle_ov(void);
70 extern asmlinkage
void handle_tr(void);
71 extern asmlinkage
void handle_fpe(void);
72 extern asmlinkage
void handle_mdmx(void);
73 extern asmlinkage
void handle_watch(void);
74 extern asmlinkage
void handle_mt(void);
75 extern asmlinkage
void handle_dsp(void);
76 extern asmlinkage
void handle_mcheck(void);
77 extern asmlinkage
void handle_reserved(void);
79 extern int fpu_emulator_cop1Handler(struct pt_regs
*xcp
,
80 struct mips_fpu_struct
*ctx
, int has_fpu
);
82 #ifdef CONFIG_CPU_CAVIUM_OCTEON
83 extern asmlinkage
void octeon_cop2_restore(struct octeon_cop2_state
*task
);
86 void (*board_be_init
)(void);
87 int (*board_be_handler
)(struct pt_regs
*regs
, int is_fixup
);
88 void (*board_nmi_handler_setup
)(void);
89 void (*board_ejtag_handler_setup
)(void);
90 void (*board_bind_eic_interrupt
)(int irq
, int regset
);
93 static void show_raw_backtrace(unsigned long reg29
)
95 unsigned long *sp
= (unsigned long *)(reg29
& ~3);
98 printk("Call Trace:");
99 #ifdef CONFIG_KALLSYMS
102 while (!kstack_end(sp
)) {
103 unsigned long __user
*p
=
104 (unsigned long __user
*)(unsigned long)sp
++;
105 if (__get_user(addr
, p
)) {
106 printk(" (Bad stack address)");
109 if (__kernel_text_address(addr
))
115 #ifdef CONFIG_KALLSYMS
117 static int __init
set_raw_show_trace(char *str
)
122 __setup("raw_show_trace", set_raw_show_trace
);
125 static void show_backtrace(struct task_struct
*task
, const struct pt_regs
*regs
)
127 unsigned long sp
= regs
->regs
[29];
128 unsigned long ra
= regs
->regs
[31];
129 unsigned long pc
= regs
->cp0_epc
;
131 if (raw_show_trace
|| !__kernel_text_address(pc
)) {
132 show_raw_backtrace(sp
);
135 printk("Call Trace:\n");
138 pc
= unwind_stack(task
, &sp
, pc
, &ra
);
144 * This routine abuses get_user()/put_user() to reference pointers
145 * with at least a bit of error checking ...
147 static void show_stacktrace(struct task_struct
*task
,
148 const struct pt_regs
*regs
)
150 const int field
= 2 * sizeof(unsigned long);
153 unsigned long __user
*sp
= (unsigned long __user
*)regs
->regs
[29];
157 while ((unsigned long) sp
& (PAGE_SIZE
- 1)) {
158 if (i
&& ((i
% (64 / field
)) == 0))
165 if (__get_user(stackdata
, sp
++)) {
166 printk(" (Bad stack address)");
170 printk(" %0*lx", field
, stackdata
);
174 show_backtrace(task
, regs
);
177 void show_stack(struct task_struct
*task
, unsigned long *sp
)
181 regs
.regs
[29] = (unsigned long)sp
;
185 if (task
&& task
!= current
) {
186 regs
.regs
[29] = task
->thread
.reg29
;
188 regs
.cp0_epc
= task
->thread
.reg31
;
190 prepare_frametrace(®s
);
193 show_stacktrace(task
, ®s
);
197 * The architecture-independent dump_stack generator
199 void dump_stack(void)
203 prepare_frametrace(®s
);
204 show_backtrace(current
, ®s
);
207 EXPORT_SYMBOL(dump_stack
);
209 static void show_code(unsigned int __user
*pc
)
212 unsigned short __user
*pc16
= NULL
;
216 if ((unsigned long)pc
& 1)
217 pc16
= (unsigned short __user
*)((unsigned long)pc
& ~1);
218 for(i
= -3 ; i
< 6 ; i
++) {
220 if (pc16
? __get_user(insn
, pc16
+ i
) : __get_user(insn
, pc
+ i
)) {
221 printk(" (Bad address in epc)\n");
224 printk("%c%0*x%c", (i
?' ':'<'), pc16
? 4 : 8, insn
, (i
?' ':'>'));
228 static void __show_regs(const struct pt_regs
*regs
)
230 const int field
= 2 * sizeof(unsigned long);
231 unsigned int cause
= regs
->cp0_cause
;
234 printk("Cpu %d\n", smp_processor_id());
237 * Saved main processor registers
239 for (i
= 0; i
< 32; ) {
243 printk(" %0*lx", field
, 0UL);
244 else if (i
== 26 || i
== 27)
245 printk(" %*s", field
, "");
247 printk(" %0*lx", field
, regs
->regs
[i
]);
254 #ifdef CONFIG_CPU_HAS_SMARTMIPS
255 printk("Acx : %0*lx\n", field
, regs
->acx
);
257 printk("Hi : %0*lx\n", field
, regs
->hi
);
258 printk("Lo : %0*lx\n", field
, regs
->lo
);
261 * Saved cp0 registers
263 printk("epc : %0*lx %pS\n", field
, regs
->cp0_epc
,
264 (void *) regs
->cp0_epc
);
265 printk(" %s\n", print_tainted());
266 printk("ra : %0*lx %pS\n", field
, regs
->regs
[31],
267 (void *) regs
->regs
[31]);
269 printk("Status: %08x ", (uint32_t) regs
->cp0_status
);
271 if (current_cpu_data
.isa_level
== MIPS_CPU_ISA_I
) {
272 if (regs
->cp0_status
& ST0_KUO
)
274 if (regs
->cp0_status
& ST0_IEO
)
276 if (regs
->cp0_status
& ST0_KUP
)
278 if (regs
->cp0_status
& ST0_IEP
)
280 if (regs
->cp0_status
& ST0_KUC
)
282 if (regs
->cp0_status
& ST0_IEC
)
285 if (regs
->cp0_status
& ST0_KX
)
287 if (regs
->cp0_status
& ST0_SX
)
289 if (regs
->cp0_status
& ST0_UX
)
291 switch (regs
->cp0_status
& ST0_KSU
) {
296 printk("SUPERVISOR ");
305 if (regs
->cp0_status
& ST0_ERL
)
307 if (regs
->cp0_status
& ST0_EXL
)
309 if (regs
->cp0_status
& ST0_IE
)
314 printk("Cause : %08x\n", cause
);
316 cause
= (cause
& CAUSEF_EXCCODE
) >> CAUSEB_EXCCODE
;
317 if (1 <= cause
&& cause
<= 5)
318 printk("BadVA : %0*lx\n", field
, regs
->cp0_badvaddr
);
320 printk("PrId : %08x (%s)\n", read_c0_prid(),
325 * FIXME: really the generic show_regs should take a const pointer argument.
327 void show_regs(struct pt_regs
*regs
)
329 __show_regs((struct pt_regs
*)regs
);
332 void show_registers(const struct pt_regs
*regs
)
334 const int field
= 2 * sizeof(unsigned long);
338 printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
339 current
->comm
, current
->pid
, current_thread_info(), current
,
340 field
, current_thread_info()->tp_value
);
341 if (cpu_has_userlocal
) {
344 tls
= read_c0_userlocal();
345 if (tls
!= current_thread_info()->tp_value
)
346 printk("*HwTLS: %0*lx\n", field
, tls
);
349 show_stacktrace(current
, regs
);
350 show_code((unsigned int __user
*) regs
->cp0_epc
);
354 static DEFINE_SPINLOCK(die_lock
);
356 void __noreturn
die(const char * str
, const struct pt_regs
* regs
)
358 static int die_counter
;
359 #ifdef CONFIG_MIPS_MT_SMTC
360 unsigned long dvpret
= dvpe();
361 #endif /* CONFIG_MIPS_MT_SMTC */
364 spin_lock_irq(&die_lock
);
366 #ifdef CONFIG_MIPS_MT_SMTC
367 mips_mt_regdump(dvpret
);
368 #endif /* CONFIG_MIPS_MT_SMTC */
369 printk("%s[#%d]:\n", str
, ++die_counter
);
370 show_registers(regs
);
371 add_taint(TAINT_DIE
);
372 spin_unlock_irq(&die_lock
);
375 panic("Fatal exception in interrupt");
378 printk(KERN_EMERG
"Fatal exception: panic in 5 seconds\n");
380 panic("Fatal exception");
386 extern struct exception_table_entry __start___dbe_table
[];
387 extern struct exception_table_entry __stop___dbe_table
[];
390 " .section __dbe_table, \"a\"\n"
393 /* Given an address, look for it in the exception tables. */
394 static const struct exception_table_entry
*search_dbe_tables(unsigned long addr
)
396 const struct exception_table_entry
*e
;
398 e
= search_extable(__start___dbe_table
, __stop___dbe_table
- 1, addr
);
400 e
= search_module_dbetables(addr
);
404 asmlinkage
void do_be(struct pt_regs
*regs
)
406 const int field
= 2 * sizeof(unsigned long);
407 const struct exception_table_entry
*fixup
= NULL
;
408 int data
= regs
->cp0_cause
& 4;
409 int action
= MIPS_BE_FATAL
;
411 /* XXX For now. Fixme, this searches the wrong table ... */
412 if (data
&& !user_mode(regs
))
413 fixup
= search_dbe_tables(exception_epc(regs
));
416 action
= MIPS_BE_FIXUP
;
418 if (board_be_handler
)
419 action
= board_be_handler(regs
, fixup
!= NULL
);
422 case MIPS_BE_DISCARD
:
426 regs
->cp0_epc
= fixup
->nextinsn
;
435 * Assume it would be too dangerous to continue ...
437 printk(KERN_ALERT
"%s bus error, epc == %0*lx, ra == %0*lx\n",
438 data
? "Data" : "Instruction",
439 field
, regs
->cp0_epc
, field
, regs
->regs
[31]);
440 if (notify_die(DIE_OOPS
, "bus error", regs
, SIGBUS
, 0, 0)
444 die_if_kernel("Oops", regs
);
445 force_sig(SIGBUS
, current
);
449 * ll/sc, rdhwr, sync emulation
452 #define OPCODE 0xfc000000
453 #define BASE 0x03e00000
454 #define RT 0x001f0000
455 #define OFFSET 0x0000ffff
456 #define LL 0xc0000000
457 #define SC 0xe0000000
458 #define SPEC0 0x00000000
459 #define SPEC3 0x7c000000
460 #define RD 0x0000f800
461 #define FUNC 0x0000003f
462 #define SYNC 0x0000000f
463 #define RDHWR 0x0000003b
466 * The ll_bit is cleared by r*_switch.S
469 unsigned long ll_bit
;
471 static struct task_struct
*ll_task
= NULL
;
473 static inline int simulate_ll(struct pt_regs
*regs
, unsigned int opcode
)
475 unsigned long value
, __user
*vaddr
;
479 * analyse the ll instruction that just caused a ri exception
480 * and put the referenced address to addr.
483 /* sign extend offset */
484 offset
= opcode
& OFFSET
;
488 vaddr
= (unsigned long __user
*)
489 ((unsigned long)(regs
->regs
[(opcode
& BASE
) >> 21]) + offset
);
491 if ((unsigned long)vaddr
& 3)
493 if (get_user(value
, vaddr
))
498 if (ll_task
== NULL
|| ll_task
== current
) {
507 regs
->regs
[(opcode
& RT
) >> 16] = value
;
512 static inline int simulate_sc(struct pt_regs
*regs
, unsigned int opcode
)
514 unsigned long __user
*vaddr
;
519 * analyse the sc instruction that just caused a ri exception
520 * and put the referenced address to addr.
523 /* sign extend offset */
524 offset
= opcode
& OFFSET
;
528 vaddr
= (unsigned long __user
*)
529 ((unsigned long)(regs
->regs
[(opcode
& BASE
) >> 21]) + offset
);
530 reg
= (opcode
& RT
) >> 16;
532 if ((unsigned long)vaddr
& 3)
537 if (ll_bit
== 0 || ll_task
!= current
) {
545 if (put_user(regs
->regs
[reg
], vaddr
))
554 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both
555 * opcodes are supposed to result in coprocessor unusable exceptions if
556 * executed on ll/sc-less processors. That's the theory. In practice a
557 * few processors such as NEC's VR4100 throw reserved instruction exceptions
558 * instead, so we're doing the emulation thing in both exception handlers.
560 static int simulate_llsc(struct pt_regs
*regs
, unsigned int opcode
)
562 if ((opcode
& OPCODE
) == LL
)
563 return simulate_ll(regs
, opcode
);
564 if ((opcode
& OPCODE
) == SC
)
565 return simulate_sc(regs
, opcode
);
567 return -1; /* Must be something else ... */
571 * Simulate trapping 'rdhwr' instructions to provide user accessible
572 * registers not implemented in hardware.
574 static int simulate_rdhwr(struct pt_regs
*regs
, unsigned int opcode
)
576 struct thread_info
*ti
= task_thread_info(current
);
578 if ((opcode
& OPCODE
) == SPEC3
&& (opcode
& FUNC
) == RDHWR
) {
579 int rd
= (opcode
& RD
) >> 11;
580 int rt
= (opcode
& RT
) >> 16;
582 case 0: /* CPU number */
583 regs
->regs
[rt
] = smp_processor_id();
585 case 1: /* SYNCI length */
586 regs
->regs
[rt
] = min(current_cpu_data
.dcache
.linesz
,
587 current_cpu_data
.icache
.linesz
);
589 case 2: /* Read count register */
590 regs
->regs
[rt
] = read_c0_count();
592 case 3: /* Count register resolution */
593 switch (current_cpu_data
.cputype
) {
603 regs
->regs
[rt
] = ti
->tp_value
;
614 static int simulate_sync(struct pt_regs
*regs
, unsigned int opcode
)
616 if ((opcode
& OPCODE
) == SPEC0
&& (opcode
& FUNC
) == SYNC
)
619 return -1; /* Must be something else ... */
622 asmlinkage
void do_ov(struct pt_regs
*regs
)
626 die_if_kernel("Integer overflow", regs
);
628 info
.si_code
= FPE_INTOVF
;
629 info
.si_signo
= SIGFPE
;
631 info
.si_addr
= (void __user
*) regs
->cp0_epc
;
632 force_sig_info(SIGFPE
, &info
, current
);
636 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
638 asmlinkage
void do_fpe(struct pt_regs
*regs
, unsigned long fcr31
)
642 if (notify_die(DIE_FP
, "FP exception", regs
, SIGFPE
, 0, 0)
645 die_if_kernel("FP exception in kernel code", regs
);
647 if (fcr31
& FPU_CSR_UNI_X
) {
651 * Unimplemented operation exception. If we've got the full
652 * software emulator on-board, let's use it...
654 * Force FPU to dump state into task/thread context. We're
655 * moving a lot of data here for what is probably a single
656 * instruction, but the alternative is to pre-decode the FP
657 * register operands before invoking the emulator, which seems
658 * a bit extreme for what should be an infrequent event.
660 /* Ensure 'resume' not overwrite saved fp context again. */
663 /* Run the emulator */
664 sig
= fpu_emulator_cop1Handler(regs
, ¤t
->thread
.fpu
, 1);
667 * We can't allow the emulated instruction to leave any of
668 * the cause bit set in $fcr31.
670 current
->thread
.fpu
.fcr31
&= ~FPU_CSR_ALL_X
;
672 /* Restore the hardware register state */
673 own_fpu(1); /* Using the FPU again. */
675 /* If something went wrong, signal */
677 force_sig(sig
, current
);
680 } else if (fcr31
& FPU_CSR_INV_X
)
681 info
.si_code
= FPE_FLTINV
;
682 else if (fcr31
& FPU_CSR_DIV_X
)
683 info
.si_code
= FPE_FLTDIV
;
684 else if (fcr31
& FPU_CSR_OVF_X
)
685 info
.si_code
= FPE_FLTOVF
;
686 else if (fcr31
& FPU_CSR_UDF_X
)
687 info
.si_code
= FPE_FLTUND
;
688 else if (fcr31
& FPU_CSR_INE_X
)
689 info
.si_code
= FPE_FLTRES
;
691 info
.si_code
= __SI_FAULT
;
692 info
.si_signo
= SIGFPE
;
694 info
.si_addr
= (void __user
*) regs
->cp0_epc
;
695 force_sig_info(SIGFPE
, &info
, current
);
698 static void do_trap_or_bp(struct pt_regs
*regs
, unsigned int code
,
704 if (notify_die(DIE_TRAP
, str
, regs
, code
, 0, 0) == NOTIFY_STOP
)
708 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
709 * insns, even for trap and break codes that indicate arithmetic
710 * failures. Weird ...
711 * But should we continue the brokenness??? --macro
716 scnprintf(b
, sizeof(b
), "%s instruction in kernel code", str
);
717 die_if_kernel(b
, regs
);
718 if (code
== BRK_DIVZERO
)
719 info
.si_code
= FPE_INTDIV
;
721 info
.si_code
= FPE_INTOVF
;
722 info
.si_signo
= SIGFPE
;
724 info
.si_addr
= (void __user
*) regs
->cp0_epc
;
725 force_sig_info(SIGFPE
, &info
, current
);
728 die_if_kernel("Kernel bug detected", regs
);
729 force_sig(SIGTRAP
, current
);
733 * Address errors may be deliberately induced by the FPU
734 * emulator to retake control of the CPU after executing the
735 * instruction in the delay slot of an emulated branch.
737 * Terminate if exception was recognized as a delay slot return
738 * otherwise handle as normal.
740 if (do_dsemulret(regs
))
743 die_if_kernel("Math emu break/trap", regs
);
744 force_sig(SIGTRAP
, current
);
747 scnprintf(b
, sizeof(b
), "%s instruction in kernel code", str
);
748 die_if_kernel(b
, regs
);
749 force_sig(SIGTRAP
, current
);
753 asmlinkage
void do_bp(struct pt_regs
*regs
)
755 unsigned int opcode
, bcode
;
757 if (__get_user(opcode
, (unsigned int __user
*) exception_epc(regs
)))
761 * There is the ancient bug in the MIPS assemblers that the break
762 * code starts left to bit 16 instead to bit 6 in the opcode.
763 * Gas is bug-compatible, but not always, grrr...
764 * We handle both cases with a simple heuristics. --macro
766 bcode
= ((opcode
>> 6) & ((1 << 20) - 1));
767 if (bcode
>= (1 << 10))
770 do_trap_or_bp(regs
, bcode
, "Break");
774 force_sig(SIGSEGV
, current
);
777 asmlinkage
void do_tr(struct pt_regs
*regs
)
779 unsigned int opcode
, tcode
= 0;
781 if (__get_user(opcode
, (unsigned int __user
*) exception_epc(regs
)))
784 /* Immediate versions don't provide a code. */
785 if (!(opcode
& OPCODE
))
786 tcode
= ((opcode
>> 6) & ((1 << 10) - 1));
788 do_trap_or_bp(regs
, tcode
, "Trap");
792 force_sig(SIGSEGV
, current
);
795 asmlinkage
void do_ri(struct pt_regs
*regs
)
797 unsigned int __user
*epc
= (unsigned int __user
*)exception_epc(regs
);
798 unsigned long old_epc
= regs
->cp0_epc
;
799 unsigned int opcode
= 0;
802 if (notify_die(DIE_RI
, "RI Fault", regs
, SIGSEGV
, 0, 0)
806 die_if_kernel("Reserved instruction in kernel code", regs
);
808 if (unlikely(compute_return_epc(regs
) < 0))
811 if (unlikely(get_user(opcode
, epc
) < 0))
814 if (!cpu_has_llsc
&& status
< 0)
815 status
= simulate_llsc(regs
, opcode
);
818 status
= simulate_rdhwr(regs
, opcode
);
821 status
= simulate_sync(regs
, opcode
);
826 if (unlikely(status
> 0)) {
827 regs
->cp0_epc
= old_epc
; /* Undo skip-over. */
828 force_sig(status
, current
);
833 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
834 * emulated more than some threshold number of instructions, force migration to
835 * a "CPU" that has FP support.
837 static void mt_ase_fp_affinity(void)
839 #ifdef CONFIG_MIPS_MT_FPAFF
840 if (mt_fpemul_threshold
> 0 &&
841 ((current
->thread
.emulated_fp
++ > mt_fpemul_threshold
))) {
843 * If there's no FPU present, or if the application has already
844 * restricted the allowed set to exclude any CPUs with FPUs,
845 * we'll skip the procedure.
847 if (cpus_intersects(current
->cpus_allowed
, mt_fpu_cpumask
)) {
850 current
->thread
.user_cpus_allowed
851 = current
->cpus_allowed
;
852 cpus_and(tmask
, current
->cpus_allowed
,
854 set_cpus_allowed(current
, tmask
);
855 set_thread_flag(TIF_FPUBOUND
);
858 #endif /* CONFIG_MIPS_MT_FPAFF */
861 asmlinkage
void do_cpu(struct pt_regs
*regs
)
863 unsigned int __user
*epc
;
864 unsigned long old_epc
;
868 unsigned long __maybe_unused flags
;
870 die_if_kernel("do_cpu invoked from kernel context!", regs
);
872 cpid
= (regs
->cp0_cause
>> CAUSEB_CE
) & 3;
876 epc
= (unsigned int __user
*)exception_epc(regs
);
877 old_epc
= regs
->cp0_epc
;
881 if (unlikely(compute_return_epc(regs
) < 0))
884 if (unlikely(get_user(opcode
, epc
) < 0))
887 if (!cpu_has_llsc
&& status
< 0)
888 status
= simulate_llsc(regs
, opcode
);
891 status
= simulate_rdhwr(regs
, opcode
);
896 if (unlikely(status
> 0)) {
897 regs
->cp0_epc
= old_epc
; /* Undo skip-over. */
898 force_sig(status
, current
);
904 if (used_math()) /* Using the FPU again. */
906 else { /* First time FPU user. */
911 if (!raw_cpu_has_fpu
) {
913 sig
= fpu_emulator_cop1Handler(regs
,
914 ¤t
->thread
.fpu
, 0);
916 force_sig(sig
, current
);
918 mt_ase_fp_affinity();
924 #ifdef CONFIG_CPU_CAVIUM_OCTEON
925 prefetch(¤t
->thread
.cp2
);
926 local_irq_save(flags
);
927 KSTK_STATUS(current
) |= ST0_CU2
;
928 status
= read_c0_status();
929 write_c0_status(status
| ST0_CU2
);
930 octeon_cop2_restore(&(current
->thread
.cp2
));
931 write_c0_status(status
& ~ST0_CU2
);
932 local_irq_restore(flags
);
939 force_sig(SIGILL
, current
);
942 asmlinkage
void do_mdmx(struct pt_regs
*regs
)
944 force_sig(SIGILL
, current
);
948 * Called with interrupts disabled.
950 asmlinkage
void do_watch(struct pt_regs
*regs
)
955 * Clear WP (bit 22) bit of cause register so we don't loop
958 cause
= read_c0_cause();
960 write_c0_cause(cause
);
963 * If the current thread has the watch registers loaded, save
964 * their values and send SIGTRAP. Otherwise another thread
965 * left the registers set, clear them and continue.
967 if (test_tsk_thread_flag(current
, TIF_LOAD_WATCH
)) {
968 mips_read_watch_registers();
970 force_sig(SIGTRAP
, current
);
972 mips_clear_watch_registers();
977 asmlinkage
void do_mcheck(struct pt_regs
*regs
)
979 const int field
= 2 * sizeof(unsigned long);
980 int multi_match
= regs
->cp0_status
& ST0_TS
;
985 printk("Index : %0x\n", read_c0_index());
986 printk("Pagemask: %0x\n", read_c0_pagemask());
987 printk("EntryHi : %0*lx\n", field
, read_c0_entryhi());
988 printk("EntryLo0: %0*lx\n", field
, read_c0_entrylo0());
989 printk("EntryLo1: %0*lx\n", field
, read_c0_entrylo1());
994 show_code((unsigned int __user
*) regs
->cp0_epc
);
997 * Some chips may have other causes of machine check (e.g. SB1
1000 panic("Caught Machine Check exception - %scaused by multiple "
1001 "matching entries in the TLB.",
1002 (multi_match
) ? "" : "not ");
1005 asmlinkage
void do_mt(struct pt_regs
*regs
)
1009 subcode
= (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT
)
1010 >> VPECONTROL_EXCPT_SHIFT
;
1013 printk(KERN_DEBUG
"Thread Underflow\n");
1016 printk(KERN_DEBUG
"Thread Overflow\n");
1019 printk(KERN_DEBUG
"Invalid YIELD Qualifier\n");
1022 printk(KERN_DEBUG
"Gating Storage Exception\n");
1025 printk(KERN_DEBUG
"YIELD Scheduler Exception\n");
1028 printk(KERN_DEBUG
"Gating Storage Schedulier Exception\n");
1031 printk(KERN_DEBUG
"*** UNKNOWN THREAD EXCEPTION %d ***\n",
1035 die_if_kernel("MIPS MT Thread exception in kernel", regs
);
1037 force_sig(SIGILL
, current
);
1041 asmlinkage
void do_dsp(struct pt_regs
*regs
)
1044 panic("Unexpected DSP exception\n");
1046 force_sig(SIGILL
, current
);
1049 asmlinkage
void do_reserved(struct pt_regs
*regs
)
1052 * Game over - no way to handle this if it ever occurs. Most probably
1053 * caused by a new unknown cpu type or after another deadly
1054 * hard/software error.
1057 panic("Caught reserved exception %ld - should not happen.",
1058 (regs
->cp0_cause
& 0x7f) >> 2);
1061 static int __initdata l1parity
= 1;
1062 static int __init
nol1parity(char *s
)
1067 __setup("nol1par", nol1parity
);
1068 static int __initdata l2parity
= 1;
1069 static int __init
nol2parity(char *s
)
1074 __setup("nol2par", nol2parity
);
1077 * Some MIPS CPUs can enable/disable for cache parity detection, but do
1078 * it different ways.
1080 static inline void parity_protection_init(void)
1082 switch (current_cpu_type()) {
1088 #define ERRCTL_PE 0x80000000
1089 #define ERRCTL_L2P 0x00800000
1090 unsigned long errctl
;
1091 unsigned int l1parity_present
, l2parity_present
;
1093 errctl
= read_c0_ecc();
1094 errctl
&= ~(ERRCTL_PE
|ERRCTL_L2P
);
1096 /* probe L1 parity support */
1097 write_c0_ecc(errctl
| ERRCTL_PE
);
1098 back_to_back_c0_hazard();
1099 l1parity_present
= (read_c0_ecc() & ERRCTL_PE
);
1101 /* probe L2 parity support */
1102 write_c0_ecc(errctl
|ERRCTL_L2P
);
1103 back_to_back_c0_hazard();
1104 l2parity_present
= (read_c0_ecc() & ERRCTL_L2P
);
1106 if (l1parity_present
&& l2parity_present
) {
1108 errctl
|= ERRCTL_PE
;
1109 if (l1parity
^ l2parity
)
1110 errctl
|= ERRCTL_L2P
;
1111 } else if (l1parity_present
) {
1113 errctl
|= ERRCTL_PE
;
1114 } else if (l2parity_present
) {
1116 errctl
|= ERRCTL_L2P
;
1118 /* No parity available */
1121 printk(KERN_INFO
"Writing ErrCtl register=%08lx\n", errctl
);
1123 write_c0_ecc(errctl
);
1124 back_to_back_c0_hazard();
1125 errctl
= read_c0_ecc();
1126 printk(KERN_INFO
"Readback ErrCtl register=%08lx\n", errctl
);
1128 if (l1parity_present
)
1129 printk(KERN_INFO
"Cache parity protection %sabled\n",
1130 (errctl
& ERRCTL_PE
) ? "en" : "dis");
1132 if (l2parity_present
) {
1133 if (l1parity_present
&& l1parity
)
1134 errctl
^= ERRCTL_L2P
;
1135 printk(KERN_INFO
"L2 cache parity protection %sabled\n",
1136 (errctl
& ERRCTL_L2P
) ? "en" : "dis");
1142 write_c0_ecc(0x80000000);
1143 back_to_back_c0_hazard();
1144 /* Set the PE bit (bit 31) in the c0_errctl register. */
1145 printk(KERN_INFO
"Cache parity protection %sabled\n",
1146 (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1150 /* Clear the DE bit (bit 16) in the c0_status register. */
1151 printk(KERN_INFO
"Enable cache parity protection for "
1152 "MIPS 20KC/25KF CPUs.\n");
1153 clear_c0_status(ST0_DE
);
1160 asmlinkage
void cache_parity_error(void)
1162 const int field
= 2 * sizeof(unsigned long);
1163 unsigned int reg_val
;
1165 /* For the moment, report the problem and hang. */
1166 printk("Cache error exception:\n");
1167 printk("cp0_errorepc == %0*lx\n", field
, read_c0_errorepc());
1168 reg_val
= read_c0_cacheerr();
1169 printk("c0_cacheerr == %08x\n", reg_val
);
1171 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1172 reg_val
& (1<<30) ? "secondary" : "primary",
1173 reg_val
& (1<<31) ? "data" : "insn");
1174 printk("Error bits: %s%s%s%s%s%s%s\n",
1175 reg_val
& (1<<29) ? "ED " : "",
1176 reg_val
& (1<<28) ? "ET " : "",
1177 reg_val
& (1<<26) ? "EE " : "",
1178 reg_val
& (1<<25) ? "EB " : "",
1179 reg_val
& (1<<24) ? "EI " : "",
1180 reg_val
& (1<<23) ? "E1 " : "",
1181 reg_val
& (1<<22) ? "E0 " : "");
1182 printk("IDX: 0x%08x\n", reg_val
& ((1<<22)-1));
1184 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1185 if (reg_val
& (1<<22))
1186 printk("DErrAddr0: 0x%0*lx\n", field
, read_c0_derraddr0());
1188 if (reg_val
& (1<<23))
1189 printk("DErrAddr1: 0x%0*lx\n", field
, read_c0_derraddr1());
1192 panic("Can't handle the cache error!");
1196 * SDBBP EJTAG debug exception handler.
1197 * We skip the instruction and return to the next instruction.
1199 void ejtag_exception_handler(struct pt_regs
*regs
)
1201 const int field
= 2 * sizeof(unsigned long);
1202 unsigned long depc
, old_epc
;
1205 printk(KERN_DEBUG
"SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1206 depc
= read_c0_depc();
1207 debug
= read_c0_debug();
1208 printk(KERN_DEBUG
"c0_depc = %0*lx, DEBUG = %08x\n", field
, depc
, debug
);
1209 if (debug
& 0x80000000) {
1211 * In branch delay slot.
1212 * We cheat a little bit here and use EPC to calculate the
1213 * debug return address (DEPC). EPC is restored after the
1216 old_epc
= regs
->cp0_epc
;
1217 regs
->cp0_epc
= depc
;
1218 __compute_return_epc(regs
);
1219 depc
= regs
->cp0_epc
;
1220 regs
->cp0_epc
= old_epc
;
1223 write_c0_depc(depc
);
1226 printk(KERN_DEBUG
"\n\n----- Enable EJTAG single stepping ----\n\n");
1227 write_c0_debug(debug
| 0x100);
1232 * NMI exception handler.
1234 NORET_TYPE
void ATTRIB_NORET
nmi_exception_handler(struct pt_regs
*regs
)
1237 printk("NMI taken!!!!\n");
1241 #define VECTORSPACING 0x100 /* for EI/VI mode */
1243 unsigned long ebase
;
1244 unsigned long exception_handlers
[32];
1245 unsigned long vi_handlers
[64];
1248 * As a side effect of the way this is implemented we're limited
1249 * to interrupt handlers in the address range from
1250 * KSEG0 <= x < KSEG0 + 256mb on the Nevada. Oh well ...
1252 void *set_except_vector(int n
, void *addr
)
1254 unsigned long handler
= (unsigned long) addr
;
1255 unsigned long old_handler
= exception_handlers
[n
];
1257 exception_handlers
[n
] = handler
;
1258 if (n
== 0 && cpu_has_divec
) {
1259 *(u32
*)(ebase
+ 0x200) = 0x08000000 |
1260 (0x03ffffff & (handler
>> 2));
1261 local_flush_icache_range(ebase
+ 0x200, ebase
+ 0x204);
1263 return (void *)old_handler
;
1266 static asmlinkage
void do_default_vi(void)
1268 show_regs(get_irq_regs());
1269 panic("Caught unexpected vectored interrupt.");
1272 static void *set_vi_srs_handler(int n
, vi_handler_t addr
, int srs
)
1274 unsigned long handler
;
1275 unsigned long old_handler
= vi_handlers
[n
];
1276 int srssets
= current_cpu_data
.srsets
;
1280 BUG_ON(!cpu_has_veic
&& !cpu_has_vint
);
1283 handler
= (unsigned long) do_default_vi
;
1286 handler
= (unsigned long) addr
;
1287 vi_handlers
[n
] = (unsigned long) addr
;
1289 b
= (unsigned char *)(ebase
+ 0x200 + n
*VECTORSPACING
);
1292 panic("Shadow register set %d not supported", srs
);
1295 if (board_bind_eic_interrupt
)
1296 board_bind_eic_interrupt(n
, srs
);
1297 } else if (cpu_has_vint
) {
1298 /* SRSMap is only defined if shadow sets are implemented */
1300 change_c0_srsmap(0xf << n
*4, srs
<< n
*4);
1305 * If no shadow set is selected then use the default handler
1306 * that does normal register saving and a standard interrupt exit
1309 extern char except_vec_vi
, except_vec_vi_lui
;
1310 extern char except_vec_vi_ori
, except_vec_vi_end
;
1311 extern char rollback_except_vec_vi
;
1312 char *vec_start
= (cpu_wait
== r4k_wait
) ?
1313 &rollback_except_vec_vi
: &except_vec_vi
;
1314 #ifdef CONFIG_MIPS_MT_SMTC
1316 * We need to provide the SMTC vectored interrupt handler
1317 * not only with the address of the handler, but with the
1318 * Status.IM bit to be masked before going there.
1320 extern char except_vec_vi_mori
;
1321 const int mori_offset
= &except_vec_vi_mori
- vec_start
;
1322 #endif /* CONFIG_MIPS_MT_SMTC */
1323 const int handler_len
= &except_vec_vi_end
- vec_start
;
1324 const int lui_offset
= &except_vec_vi_lui
- vec_start
;
1325 const int ori_offset
= &except_vec_vi_ori
- vec_start
;
1327 if (handler_len
> VECTORSPACING
) {
1329 * Sigh... panicing won't help as the console
1330 * is probably not configured :(
1332 panic("VECTORSPACING too small");
1335 memcpy(b
, vec_start
, handler_len
);
1336 #ifdef CONFIG_MIPS_MT_SMTC
1337 BUG_ON(n
> 7); /* Vector index %d exceeds SMTC maximum. */
1339 w
= (u32
*)(b
+ mori_offset
);
1340 *w
= (*w
& 0xffff0000) | (0x100 << n
);
1341 #endif /* CONFIG_MIPS_MT_SMTC */
1342 w
= (u32
*)(b
+ lui_offset
);
1343 *w
= (*w
& 0xffff0000) | (((u32
)handler
>> 16) & 0xffff);
1344 w
= (u32
*)(b
+ ori_offset
);
1345 *w
= (*w
& 0xffff0000) | ((u32
)handler
& 0xffff);
1346 local_flush_icache_range((unsigned long)b
,
1347 (unsigned long)(b
+handler_len
));
1351 * In other cases jump directly to the interrupt handler
1353 * It is the handlers responsibility to save registers if required
1354 * (eg hi/lo) and return from the exception using "eret"
1357 *w
++ = 0x08000000 | (((u32
)handler
>> 2) & 0x03fffff); /* j handler */
1359 local_flush_icache_range((unsigned long)b
,
1360 (unsigned long)(b
+8));
1363 return (void *)old_handler
;
1366 void *set_vi_handler(int n
, vi_handler_t addr
)
1368 return set_vi_srs_handler(n
, addr
, 0);
1372 * This is used by native signal handling
1374 asmlinkage
int (*save_fp_context
)(struct sigcontext __user
*sc
);
1375 asmlinkage
int (*restore_fp_context
)(struct sigcontext __user
*sc
);
1377 extern asmlinkage
int _save_fp_context(struct sigcontext __user
*sc
);
1378 extern asmlinkage
int _restore_fp_context(struct sigcontext __user
*sc
);
1380 extern asmlinkage
int fpu_emulator_save_context(struct sigcontext __user
*sc
);
1381 extern asmlinkage
int fpu_emulator_restore_context(struct sigcontext __user
*sc
);
1384 static int smp_save_fp_context(struct sigcontext __user
*sc
)
1386 return raw_cpu_has_fpu
1387 ? _save_fp_context(sc
)
1388 : fpu_emulator_save_context(sc
);
1391 static int smp_restore_fp_context(struct sigcontext __user
*sc
)
1393 return raw_cpu_has_fpu
1394 ? _restore_fp_context(sc
)
1395 : fpu_emulator_restore_context(sc
);
1399 static inline void signal_init(void)
1402 /* For now just do the cpu_has_fpu check when the functions are invoked */
1403 save_fp_context
= smp_save_fp_context
;
1404 restore_fp_context
= smp_restore_fp_context
;
1407 save_fp_context
= _save_fp_context
;
1408 restore_fp_context
= _restore_fp_context
;
1410 save_fp_context
= fpu_emulator_save_context
;
1411 restore_fp_context
= fpu_emulator_restore_context
;
1416 #ifdef CONFIG_MIPS32_COMPAT
1419 * This is used by 32-bit signal stuff on the 64-bit kernel
1421 asmlinkage
int (*save_fp_context32
)(struct sigcontext32 __user
*sc
);
1422 asmlinkage
int (*restore_fp_context32
)(struct sigcontext32 __user
*sc
);
1424 extern asmlinkage
int _save_fp_context32(struct sigcontext32 __user
*sc
);
1425 extern asmlinkage
int _restore_fp_context32(struct sigcontext32 __user
*sc
);
1427 extern asmlinkage
int fpu_emulator_save_context32(struct sigcontext32 __user
*sc
);
1428 extern asmlinkage
int fpu_emulator_restore_context32(struct sigcontext32 __user
*sc
);
1430 static inline void signal32_init(void)
1433 save_fp_context32
= _save_fp_context32
;
1434 restore_fp_context32
= _restore_fp_context32
;
1436 save_fp_context32
= fpu_emulator_save_context32
;
1437 restore_fp_context32
= fpu_emulator_restore_context32
;
1442 extern void cpu_cache_init(void);
1443 extern void tlb_init(void);
1444 extern void flush_tlb_handlers(void);
1449 int cp0_compare_irq
;
1452 * Performance counter IRQ or -1 if shared with timer
1454 int cp0_perfcount_irq
;
1455 EXPORT_SYMBOL_GPL(cp0_perfcount_irq
);
1457 static int __cpuinitdata noulri
;
1459 static int __init
ulri_disable(char *s
)
1461 pr_info("Disabling ulri\n");
1466 __setup("noulri", ulri_disable
);
1468 void __cpuinit
per_cpu_trap_init(void)
1470 unsigned int cpu
= smp_processor_id();
1471 unsigned int status_set
= ST0_CU0
;
1472 #ifdef CONFIG_MIPS_MT_SMTC
1473 int secondaryTC
= 0;
1474 int bootTC
= (cpu
== 0);
1477 * Only do per_cpu_trap_init() for first TC of Each VPE.
1478 * Note that this hack assumes that the SMTC init code
1479 * assigns TCs consecutively and in ascending order.
1482 if (((read_c0_tcbind() & TCBIND_CURTC
) != 0) &&
1483 ((read_c0_tcbind() & TCBIND_CURVPE
) == cpu_data
[cpu
- 1].vpe_id
))
1485 #endif /* CONFIG_MIPS_MT_SMTC */
1488 * Disable coprocessors and select 32-bit or 64-bit addressing
1489 * and the 16/32 or 32/32 FPR register model. Reset the BEV
1490 * flag that some firmware may have left set and the TS bit (for
1491 * IP27). Set XX for ISA IV code to work.
1494 status_set
|= ST0_FR
|ST0_KX
|ST0_SX
|ST0_UX
;
1496 if (current_cpu_data
.isa_level
== MIPS_CPU_ISA_IV
)
1497 status_set
|= ST0_XX
;
1499 status_set
|= ST0_MX
;
1501 change_c0_status(ST0_CU
|ST0_MX
|ST0_RE
|ST0_FR
|ST0_BEV
|ST0_TS
|ST0_KX
|ST0_SX
|ST0_UX
,
1504 if (cpu_has_mips_r2
) {
1505 unsigned int enable
= 0x0000000f | cpu_hwrena_impl_bits
;
1507 if (!noulri
&& cpu_has_userlocal
)
1508 enable
|= (1 << 29);
1510 write_c0_hwrena(enable
);
1513 #ifdef CONFIG_MIPS_MT_SMTC
1515 #endif /* CONFIG_MIPS_MT_SMTC */
1517 if (cpu_has_veic
|| cpu_has_vint
) {
1518 unsigned long sr
= set_c0_status(ST0_BEV
);
1519 write_c0_ebase(ebase
);
1520 write_c0_status(sr
);
1521 /* Setting vector spacing enables EI/VI mode */
1522 change_c0_intctl(0x3e0, VECTORSPACING
);
1524 if (cpu_has_divec
) {
1525 if (cpu_has_mipsmt
) {
1526 unsigned int vpflags
= dvpe();
1527 set_c0_cause(CAUSEF_IV
);
1530 set_c0_cause(CAUSEF_IV
);
1534 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
1536 * o read IntCtl.IPTI to determine the timer interrupt
1537 * o read IntCtl.IPPCI to determine the performance counter interrupt
1539 if (cpu_has_mips_r2
) {
1540 cp0_compare_irq
= (read_c0_intctl() >> 29) & 7;
1541 cp0_perfcount_irq
= (read_c0_intctl() >> 26) & 7;
1542 if (cp0_perfcount_irq
== cp0_compare_irq
)
1543 cp0_perfcount_irq
= -1;
1545 cp0_compare_irq
= CP0_LEGACY_COMPARE_IRQ
;
1546 cp0_perfcount_irq
= -1;
1549 #ifdef CONFIG_MIPS_MT_SMTC
1551 #endif /* CONFIG_MIPS_MT_SMTC */
1553 cpu_data
[cpu
].asid_cache
= ASID_FIRST_VERSION
;
1554 TLBMISS_HANDLER_SETUP();
1556 atomic_inc(&init_mm
.mm_count
);
1557 current
->active_mm
= &init_mm
;
1558 BUG_ON(current
->mm
);
1559 enter_lazy_tlb(&init_mm
, current
);
1561 #ifdef CONFIG_MIPS_MT_SMTC
1563 #endif /* CONFIG_MIPS_MT_SMTC */
1566 #ifdef CONFIG_MIPS_MT_SMTC
1567 } else if (!secondaryTC
) {
1569 * First TC in non-boot VPE must do subset of tlb_init()
1570 * for MMU countrol registers.
1572 write_c0_pagemask(PM_DEFAULT_MASK
);
1575 #endif /* CONFIG_MIPS_MT_SMTC */
1578 /* Install CPU exception handler */
1579 void __init
set_handler(unsigned long offset
, void *addr
, unsigned long size
)
1581 memcpy((void *)(ebase
+ offset
), addr
, size
);
1582 local_flush_icache_range(ebase
+ offset
, ebase
+ offset
+ size
);
1585 static char panic_null_cerr
[] __cpuinitdata
=
1586 "Trying to set NULL cache error exception handler";
1589 * Install uncached CPU exception handler.
1590 * This is suitable only for the cache error exception which is the only
1591 * exception handler that is being run uncached.
1593 void __cpuinit
set_uncached_handler(unsigned long offset
, void *addr
,
1597 unsigned long uncached_ebase
= KSEG1ADDR(ebase
);
1600 unsigned long uncached_ebase
= TO_UNCAC(ebase
);
1604 panic(panic_null_cerr
);
1606 memcpy((void *)(uncached_ebase
+ offset
), addr
, size
);
1609 static int __initdata rdhwr_noopt
;
1610 static int __init
set_rdhwr_noopt(char *str
)
1616 __setup("rdhwr_noopt", set_rdhwr_noopt
);
1618 void __init
trap_init(void)
1620 extern char except_vec3_generic
, except_vec3_r4000
;
1621 extern char except_vec4
;
1626 rollback
= (cpu_wait
== r4k_wait
);
1628 #if defined(CONFIG_KGDB)
1629 if (kgdb_early_setup
)
1630 return; /* Already done */
1633 if (cpu_has_veic
|| cpu_has_vint
) {
1634 unsigned long size
= 0x200 + VECTORSPACING
*64;
1635 ebase
= (unsigned long)
1636 __alloc_bootmem(size
, 1 << fls(size
), 0);
1639 if (cpu_has_mips_r2
)
1640 ebase
+= (read_c0_ebase() & 0x3ffff000);
1643 per_cpu_trap_init();
1646 * Copy the generic exception handlers to their final destination.
1647 * This will be overriden later as suitable for a particular
1650 set_handler(0x180, &except_vec3_generic
, 0x80);
1653 * Setup default vectors
1655 for (i
= 0; i
<= 31; i
++)
1656 set_except_vector(i
, handle_reserved
);
1659 * Copy the EJTAG debug exception vector handler code to it's final
1662 if (cpu_has_ejtag
&& board_ejtag_handler_setup
)
1663 board_ejtag_handler_setup();
1666 * Only some CPUs have the watch exceptions.
1669 set_except_vector(23, handle_watch
);
1672 * Initialise interrupt handlers
1674 if (cpu_has_veic
|| cpu_has_vint
) {
1675 int nvec
= cpu_has_veic
? 64 : 8;
1676 for (i
= 0; i
< nvec
; i
++)
1677 set_vi_handler(i
, NULL
);
1679 else if (cpu_has_divec
)
1680 set_handler(0x200, &except_vec4
, 0x8);
1683 * Some CPUs can enable/disable for cache parity detection, but does
1684 * it different ways.
1686 parity_protection_init();
1689 * The Data Bus Errors / Instruction Bus Errors are signaled
1690 * by external hardware. Therefore these two exceptions
1691 * may have board specific handlers.
1696 set_except_vector(0, rollback
? rollback_handle_int
: handle_int
);
1697 set_except_vector(1, handle_tlbm
);
1698 set_except_vector(2, handle_tlbl
);
1699 set_except_vector(3, handle_tlbs
);
1701 set_except_vector(4, handle_adel
);
1702 set_except_vector(5, handle_ades
);
1704 set_except_vector(6, handle_ibe
);
1705 set_except_vector(7, handle_dbe
);
1707 set_except_vector(8, handle_sys
);
1708 set_except_vector(9, handle_bp
);
1709 set_except_vector(10, rdhwr_noopt
? handle_ri
:
1710 (cpu_has_vtag_icache
?
1711 handle_ri_rdhwr_vivt
: handle_ri_rdhwr
));
1712 set_except_vector(11, handle_cpu
);
1713 set_except_vector(12, handle_ov
);
1714 set_except_vector(13, handle_tr
);
1716 if (current_cpu_type() == CPU_R6000
||
1717 current_cpu_type() == CPU_R6000A
) {
1719 * The R6000 is the only R-series CPU that features a machine
1720 * check exception (similar to the R4000 cache error) and
1721 * unaligned ldc1/sdc1 exception. The handlers have not been
1722 * written yet. Well, anyway there is no R6000 machine on the
1723 * current list of targets for Linux/MIPS.
1724 * (Duh, crap, there is someone with a triple R6k machine)
1726 //set_except_vector(14, handle_mc);
1727 //set_except_vector(15, handle_ndc);
1731 if (board_nmi_handler_setup
)
1732 board_nmi_handler_setup();
1734 if (cpu_has_fpu
&& !cpu_has_nofpuex
)
1735 set_except_vector(15, handle_fpe
);
1737 set_except_vector(22, handle_mdmx
);
1740 set_except_vector(24, handle_mcheck
);
1743 set_except_vector(25, handle_mt
);
1745 set_except_vector(26, handle_dsp
);
1748 /* Special exception: R4[04]00 uses also the divec space. */
1749 memcpy((void *)(ebase
+ 0x180), &except_vec3_r4000
, 0x100);
1750 else if (cpu_has_4kex
)
1751 memcpy((void *)(ebase
+ 0x180), &except_vec3_generic
, 0x80);
1753 memcpy((void *)(ebase
+ 0x080), &except_vec3_generic
, 0x80);
1756 #ifdef CONFIG_MIPS32_COMPAT
1760 local_flush_icache_range(ebase
, ebase
+ 0x400);
1761 flush_tlb_handlers();
1763 sort_extable(__start___dbe_table
, __stop___dbe_table
);