conn rcv_lock converted to spinlock, struct cor_sock created, kernel_packet skb_clone...
[cor_2_6_31.git] / arch / sparc / mm / init_64.c
blobed6be6ba2f4e9f7859c3e34b27fdc8e5ccc6f5ab
1 /*
2 * arch/sparc64/mm/init.c
4 * Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
6 */
8 #include <linux/module.h>
9 #include <linux/kernel.h>
10 #include <linux/sched.h>
11 #include <linux/string.h>
12 #include <linux/init.h>
13 #include <linux/bootmem.h>
14 #include <linux/mm.h>
15 #include <linux/hugetlb.h>
16 #include <linux/slab.h>
17 #include <linux/initrd.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/poison.h>
21 #include <linux/fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/kprobes.h>
24 #include <linux/cache.h>
25 #include <linux/sort.h>
26 #include <linux/percpu.h>
27 #include <linux/lmb.h>
28 #include <linux/mmzone.h>
30 #include <asm/head.h>
31 #include <asm/system.h>
32 #include <asm/page.h>
33 #include <asm/pgalloc.h>
34 #include <asm/pgtable.h>
35 #include <asm/oplib.h>
36 #include <asm/iommu.h>
37 #include <asm/io.h>
38 #include <asm/uaccess.h>
39 #include <asm/mmu_context.h>
40 #include <asm/tlbflush.h>
41 #include <asm/dma.h>
42 #include <asm/starfire.h>
43 #include <asm/tlb.h>
44 #include <asm/spitfire.h>
45 #include <asm/sections.h>
46 #include <asm/tsb.h>
47 #include <asm/hypervisor.h>
48 #include <asm/prom.h>
49 #include <asm/mdesc.h>
50 #include <asm/cpudata.h>
51 #include <asm/irq.h>
53 #include "init_64.h"
55 unsigned long kern_linear_pte_xor[2] __read_mostly;
57 /* A bitmap, one bit for every 256MB of physical memory. If the bit
58 * is clear, we should use a 4MB page (via kern_linear_pte_xor[0]) else
59 * if set we should use a 256MB page (via kern_linear_pte_xor[1]).
61 unsigned long kpte_linear_bitmap[KPTE_BITMAP_BYTES / sizeof(unsigned long)];
63 #ifndef CONFIG_DEBUG_PAGEALLOC
64 /* A special kernel TSB for 4MB and 256MB linear mappings.
65 * Space is allocated for this right after the trap table
66 * in arch/sparc64/kernel/head.S
68 extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
69 #endif
71 #define MAX_BANKS 32
73 static struct linux_prom64_registers pavail[MAX_BANKS] __devinitdata;
74 static int pavail_ents __devinitdata;
76 static int cmp_p64(const void *a, const void *b)
78 const struct linux_prom64_registers *x = a, *y = b;
80 if (x->phys_addr > y->phys_addr)
81 return 1;
82 if (x->phys_addr < y->phys_addr)
83 return -1;
84 return 0;
87 static void __init read_obp_memory(const char *property,
88 struct linux_prom64_registers *regs,
89 int *num_ents)
91 int node = prom_finddevice("/memory");
92 int prop_size = prom_getproplen(node, property);
93 int ents, ret, i;
95 ents = prop_size / sizeof(struct linux_prom64_registers);
96 if (ents > MAX_BANKS) {
97 prom_printf("The machine has more %s property entries than "
98 "this kernel can support (%d).\n",
99 property, MAX_BANKS);
100 prom_halt();
103 ret = prom_getproperty(node, property, (char *) regs, prop_size);
104 if (ret == -1) {
105 prom_printf("Couldn't get %s property from /memory.\n");
106 prom_halt();
109 /* Sanitize what we got from the firmware, by page aligning
110 * everything.
112 for (i = 0; i < ents; i++) {
113 unsigned long base, size;
115 base = regs[i].phys_addr;
116 size = regs[i].reg_size;
118 size &= PAGE_MASK;
119 if (base & ~PAGE_MASK) {
120 unsigned long new_base = PAGE_ALIGN(base);
122 size -= new_base - base;
123 if ((long) size < 0L)
124 size = 0UL;
125 base = new_base;
127 if (size == 0UL) {
128 /* If it is empty, simply get rid of it.
129 * This simplifies the logic of the other
130 * functions that process these arrays.
132 memmove(&regs[i], &regs[i + 1],
133 (ents - i - 1) * sizeof(regs[0]));
134 i--;
135 ents--;
136 continue;
138 regs[i].phys_addr = base;
139 regs[i].reg_size = size;
142 *num_ents = ents;
144 sort(regs, ents, sizeof(struct linux_prom64_registers),
145 cmp_p64, NULL);
148 unsigned long *sparc64_valid_addr_bitmap __read_mostly;
149 EXPORT_SYMBOL(sparc64_valid_addr_bitmap);
151 /* Kernel physical address base and size in bytes. */
152 unsigned long kern_base __read_mostly;
153 unsigned long kern_size __read_mostly;
155 /* Initial ramdisk setup */
156 extern unsigned long sparc_ramdisk_image64;
157 extern unsigned int sparc_ramdisk_image;
158 extern unsigned int sparc_ramdisk_size;
160 struct page *mem_map_zero __read_mostly;
161 EXPORT_SYMBOL(mem_map_zero);
163 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
165 unsigned long sparc64_kern_pri_context __read_mostly;
166 unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
167 unsigned long sparc64_kern_sec_context __read_mostly;
169 int num_kernel_image_mappings;
171 #ifdef CONFIG_DEBUG_DCFLUSH
172 atomic_t dcpage_flushes = ATOMIC_INIT(0);
173 #ifdef CONFIG_SMP
174 atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
175 #endif
176 #endif
178 inline void flush_dcache_page_impl(struct page *page)
180 BUG_ON(tlb_type == hypervisor);
181 #ifdef CONFIG_DEBUG_DCFLUSH
182 atomic_inc(&dcpage_flushes);
183 #endif
185 #ifdef DCACHE_ALIASING_POSSIBLE
186 __flush_dcache_page(page_address(page),
187 ((tlb_type == spitfire) &&
188 page_mapping(page) != NULL));
189 #else
190 if (page_mapping(page) != NULL &&
191 tlb_type == spitfire)
192 __flush_icache_page(__pa(page_address(page)));
193 #endif
196 #define PG_dcache_dirty PG_arch_1
197 #define PG_dcache_cpu_shift 32UL
198 #define PG_dcache_cpu_mask \
199 ((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
201 #define dcache_dirty_cpu(page) \
202 (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
204 static inline void set_dcache_dirty(struct page *page, int this_cpu)
206 unsigned long mask = this_cpu;
207 unsigned long non_cpu_bits;
209 non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
210 mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
212 __asm__ __volatile__("1:\n\t"
213 "ldx [%2], %%g7\n\t"
214 "and %%g7, %1, %%g1\n\t"
215 "or %%g1, %0, %%g1\n\t"
216 "casx [%2], %%g7, %%g1\n\t"
217 "cmp %%g7, %%g1\n\t"
218 "bne,pn %%xcc, 1b\n\t"
219 " nop"
220 : /* no outputs */
221 : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
222 : "g1", "g7");
225 static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
227 unsigned long mask = (1UL << PG_dcache_dirty);
229 __asm__ __volatile__("! test_and_clear_dcache_dirty\n"
230 "1:\n\t"
231 "ldx [%2], %%g7\n\t"
232 "srlx %%g7, %4, %%g1\n\t"
233 "and %%g1, %3, %%g1\n\t"
234 "cmp %%g1, %0\n\t"
235 "bne,pn %%icc, 2f\n\t"
236 " andn %%g7, %1, %%g1\n\t"
237 "casx [%2], %%g7, %%g1\n\t"
238 "cmp %%g7, %%g1\n\t"
239 "bne,pn %%xcc, 1b\n\t"
240 " nop\n"
241 "2:"
242 : /* no outputs */
243 : "r" (cpu), "r" (mask), "r" (&page->flags),
244 "i" (PG_dcache_cpu_mask),
245 "i" (PG_dcache_cpu_shift)
246 : "g1", "g7");
249 static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
251 unsigned long tsb_addr = (unsigned long) ent;
253 if (tlb_type == cheetah_plus || tlb_type == hypervisor)
254 tsb_addr = __pa(tsb_addr);
256 __tsb_insert(tsb_addr, tag, pte);
259 unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
260 unsigned long _PAGE_SZBITS __read_mostly;
262 static void flush_dcache(unsigned long pfn)
264 struct page *page;
266 page = pfn_to_page(pfn);
267 if (page && page_mapping(page)) {
268 unsigned long pg_flags;
270 pg_flags = page->flags;
271 if (pg_flags & (1UL << PG_dcache_dirty)) {
272 int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
273 PG_dcache_cpu_mask);
274 int this_cpu = get_cpu();
276 /* This is just to optimize away some function calls
277 * in the SMP case.
279 if (cpu == this_cpu)
280 flush_dcache_page_impl(page);
281 else
282 smp_flush_dcache_page_impl(page, cpu);
284 clear_dcache_dirty_cpu(page, cpu);
286 put_cpu();
291 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t pte)
293 struct mm_struct *mm;
294 struct tsb *tsb;
295 unsigned long tag, flags;
296 unsigned long tsb_index, tsb_hash_shift;
298 if (tlb_type != hypervisor) {
299 unsigned long pfn = pte_pfn(pte);
301 if (pfn_valid(pfn))
302 flush_dcache(pfn);
305 mm = vma->vm_mm;
307 tsb_index = MM_TSB_BASE;
308 tsb_hash_shift = PAGE_SHIFT;
310 spin_lock_irqsave(&mm->context.lock, flags);
312 #ifdef CONFIG_HUGETLB_PAGE
313 if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL) {
314 if ((tlb_type == hypervisor &&
315 (pte_val(pte) & _PAGE_SZALL_4V) == _PAGE_SZHUGE_4V) ||
316 (tlb_type != hypervisor &&
317 (pte_val(pte) & _PAGE_SZALL_4U) == _PAGE_SZHUGE_4U)) {
318 tsb_index = MM_TSB_HUGE;
319 tsb_hash_shift = HPAGE_SHIFT;
322 #endif
324 tsb = mm->context.tsb_block[tsb_index].tsb;
325 tsb += ((address >> tsb_hash_shift) &
326 (mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
327 tag = (address >> 22UL);
328 tsb_insert(tsb, tag, pte_val(pte));
330 spin_unlock_irqrestore(&mm->context.lock, flags);
333 void flush_dcache_page(struct page *page)
335 struct address_space *mapping;
336 int this_cpu;
338 if (tlb_type == hypervisor)
339 return;
341 /* Do not bother with the expensive D-cache flush if it
342 * is merely the zero page. The 'bigcore' testcase in GDB
343 * causes this case to run millions of times.
345 if (page == ZERO_PAGE(0))
346 return;
348 this_cpu = get_cpu();
350 mapping = page_mapping(page);
351 if (mapping && !mapping_mapped(mapping)) {
352 int dirty = test_bit(PG_dcache_dirty, &page->flags);
353 if (dirty) {
354 int dirty_cpu = dcache_dirty_cpu(page);
356 if (dirty_cpu == this_cpu)
357 goto out;
358 smp_flush_dcache_page_impl(page, dirty_cpu);
360 set_dcache_dirty(page, this_cpu);
361 } else {
362 /* We could delay the flush for the !page_mapping
363 * case too. But that case is for exec env/arg
364 * pages and those are %99 certainly going to get
365 * faulted into the tlb (and thus flushed) anyways.
367 flush_dcache_page_impl(page);
370 out:
371 put_cpu();
373 EXPORT_SYMBOL(flush_dcache_page);
375 void __kprobes flush_icache_range(unsigned long start, unsigned long end)
377 /* Cheetah and Hypervisor platform cpus have coherent I-cache. */
378 if (tlb_type == spitfire) {
379 unsigned long kaddr;
381 /* This code only runs on Spitfire cpus so this is
382 * why we can assume _PAGE_PADDR_4U.
384 for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
385 unsigned long paddr, mask = _PAGE_PADDR_4U;
387 if (kaddr >= PAGE_OFFSET)
388 paddr = kaddr & mask;
389 else {
390 pgd_t *pgdp = pgd_offset_k(kaddr);
391 pud_t *pudp = pud_offset(pgdp, kaddr);
392 pmd_t *pmdp = pmd_offset(pudp, kaddr);
393 pte_t *ptep = pte_offset_kernel(pmdp, kaddr);
395 paddr = pte_val(*ptep) & mask;
397 __flush_icache_page(paddr);
401 EXPORT_SYMBOL(flush_icache_range);
403 void mmu_info(struct seq_file *m)
405 if (tlb_type == cheetah)
406 seq_printf(m, "MMU Type\t: Cheetah\n");
407 else if (tlb_type == cheetah_plus)
408 seq_printf(m, "MMU Type\t: Cheetah+\n");
409 else if (tlb_type == spitfire)
410 seq_printf(m, "MMU Type\t: Spitfire\n");
411 else if (tlb_type == hypervisor)
412 seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
413 else
414 seq_printf(m, "MMU Type\t: ???\n");
416 #ifdef CONFIG_DEBUG_DCFLUSH
417 seq_printf(m, "DCPageFlushes\t: %d\n",
418 atomic_read(&dcpage_flushes));
419 #ifdef CONFIG_SMP
420 seq_printf(m, "DCPageFlushesXC\t: %d\n",
421 atomic_read(&dcpage_flushes_xcall));
422 #endif /* CONFIG_SMP */
423 #endif /* CONFIG_DEBUG_DCFLUSH */
426 struct linux_prom_translation prom_trans[512] __read_mostly;
427 unsigned int prom_trans_ents __read_mostly;
429 unsigned long kern_locked_tte_data;
431 /* The obp translations are saved based on 8k pagesize, since obp can
432 * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
433 * HI_OBP_ADDRESS range are handled in ktlb.S.
435 static inline int in_obp_range(unsigned long vaddr)
437 return (vaddr >= LOW_OBP_ADDRESS &&
438 vaddr < HI_OBP_ADDRESS);
441 static int cmp_ptrans(const void *a, const void *b)
443 const struct linux_prom_translation *x = a, *y = b;
445 if (x->virt > y->virt)
446 return 1;
447 if (x->virt < y->virt)
448 return -1;
449 return 0;
452 /* Read OBP translations property into 'prom_trans[]'. */
453 static void __init read_obp_translations(void)
455 int n, node, ents, first, last, i;
457 node = prom_finddevice("/virtual-memory");
458 n = prom_getproplen(node, "translations");
459 if (unlikely(n == 0 || n == -1)) {
460 prom_printf("prom_mappings: Couldn't get size.\n");
461 prom_halt();
463 if (unlikely(n > sizeof(prom_trans))) {
464 prom_printf("prom_mappings: Size %Zd is too big.\n", n);
465 prom_halt();
468 if ((n = prom_getproperty(node, "translations",
469 (char *)&prom_trans[0],
470 sizeof(prom_trans))) == -1) {
471 prom_printf("prom_mappings: Couldn't get property.\n");
472 prom_halt();
475 n = n / sizeof(struct linux_prom_translation);
477 ents = n;
479 sort(prom_trans, ents, sizeof(struct linux_prom_translation),
480 cmp_ptrans, NULL);
482 /* Now kick out all the non-OBP entries. */
483 for (i = 0; i < ents; i++) {
484 if (in_obp_range(prom_trans[i].virt))
485 break;
487 first = i;
488 for (; i < ents; i++) {
489 if (!in_obp_range(prom_trans[i].virt))
490 break;
492 last = i;
494 for (i = 0; i < (last - first); i++) {
495 struct linux_prom_translation *src = &prom_trans[i + first];
496 struct linux_prom_translation *dest = &prom_trans[i];
498 *dest = *src;
500 for (; i < ents; i++) {
501 struct linux_prom_translation *dest = &prom_trans[i];
502 dest->virt = dest->size = dest->data = 0x0UL;
505 prom_trans_ents = last - first;
507 if (tlb_type == spitfire) {
508 /* Clear diag TTE bits. */
509 for (i = 0; i < prom_trans_ents; i++)
510 prom_trans[i].data &= ~0x0003fe0000000000UL;
514 static void __init hypervisor_tlb_lock(unsigned long vaddr,
515 unsigned long pte,
516 unsigned long mmu)
518 unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
520 if (ret != 0) {
521 prom_printf("hypervisor_tlb_lock[%lx:%lx:%lx:%lx]: "
522 "errors with %lx\n", vaddr, 0, pte, mmu, ret);
523 prom_halt();
527 static unsigned long kern_large_tte(unsigned long paddr);
529 static void __init remap_kernel(void)
531 unsigned long phys_page, tte_vaddr, tte_data;
532 int i, tlb_ent = sparc64_highest_locked_tlbent();
534 tte_vaddr = (unsigned long) KERNBASE;
535 phys_page = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
536 tte_data = kern_large_tte(phys_page);
538 kern_locked_tte_data = tte_data;
540 /* Now lock us into the TLBs via Hypervisor or OBP. */
541 if (tlb_type == hypervisor) {
542 for (i = 0; i < num_kernel_image_mappings; i++) {
543 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
544 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
545 tte_vaddr += 0x400000;
546 tte_data += 0x400000;
548 } else {
549 for (i = 0; i < num_kernel_image_mappings; i++) {
550 prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
551 prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
552 tte_vaddr += 0x400000;
553 tte_data += 0x400000;
555 sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
557 if (tlb_type == cheetah_plus) {
558 sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
559 CTX_CHEETAH_PLUS_NUC);
560 sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
561 sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
566 static void __init inherit_prom_mappings(void)
568 /* Now fixup OBP's idea about where we really are mapped. */
569 printk("Remapping the kernel... ");
570 remap_kernel();
571 printk("done.\n");
574 void prom_world(int enter)
576 if (!enter)
577 set_fs((mm_segment_t) { get_thread_current_ds() });
579 __asm__ __volatile__("flushw");
582 void __flush_dcache_range(unsigned long start, unsigned long end)
584 unsigned long va;
586 if (tlb_type == spitfire) {
587 int n = 0;
589 for (va = start; va < end; va += 32) {
590 spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
591 if (++n >= 512)
592 break;
594 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
595 start = __pa(start);
596 end = __pa(end);
597 for (va = start; va < end; va += 32)
598 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
599 "membar #Sync"
600 : /* no outputs */
601 : "r" (va),
602 "i" (ASI_DCACHE_INVALIDATE));
605 EXPORT_SYMBOL(__flush_dcache_range);
607 /* get_new_mmu_context() uses "cache + 1". */
608 DEFINE_SPINLOCK(ctx_alloc_lock);
609 unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
610 #define MAX_CTX_NR (1UL << CTX_NR_BITS)
611 #define CTX_BMAP_SLOTS BITS_TO_LONGS(MAX_CTX_NR)
612 DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
614 /* Caller does TLB context flushing on local CPU if necessary.
615 * The caller also ensures that CTX_VALID(mm->context) is false.
617 * We must be careful about boundary cases so that we never
618 * let the user have CTX 0 (nucleus) or we ever use a CTX
619 * version of zero (and thus NO_CONTEXT would not be caught
620 * by version mis-match tests in mmu_context.h).
622 * Always invoked with interrupts disabled.
624 void get_new_mmu_context(struct mm_struct *mm)
626 unsigned long ctx, new_ctx;
627 unsigned long orig_pgsz_bits;
628 unsigned long flags;
629 int new_version;
631 spin_lock_irqsave(&ctx_alloc_lock, flags);
632 orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
633 ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
634 new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
635 new_version = 0;
636 if (new_ctx >= (1 << CTX_NR_BITS)) {
637 new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
638 if (new_ctx >= ctx) {
639 int i;
640 new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
641 CTX_FIRST_VERSION;
642 if (new_ctx == 1)
643 new_ctx = CTX_FIRST_VERSION;
645 /* Don't call memset, for 16 entries that's just
646 * plain silly...
648 mmu_context_bmap[0] = 3;
649 mmu_context_bmap[1] = 0;
650 mmu_context_bmap[2] = 0;
651 mmu_context_bmap[3] = 0;
652 for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
653 mmu_context_bmap[i + 0] = 0;
654 mmu_context_bmap[i + 1] = 0;
655 mmu_context_bmap[i + 2] = 0;
656 mmu_context_bmap[i + 3] = 0;
658 new_version = 1;
659 goto out;
662 mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
663 new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
664 out:
665 tlb_context_cache = new_ctx;
666 mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
667 spin_unlock_irqrestore(&ctx_alloc_lock, flags);
669 if (unlikely(new_version))
670 smp_new_mmu_context_version();
673 static int numa_enabled = 1;
674 static int numa_debug;
676 static int __init early_numa(char *p)
678 if (!p)
679 return 0;
681 if (strstr(p, "off"))
682 numa_enabled = 0;
684 if (strstr(p, "debug"))
685 numa_debug = 1;
687 return 0;
689 early_param("numa", early_numa);
691 #define numadbg(f, a...) \
692 do { if (numa_debug) \
693 printk(KERN_INFO f, ## a); \
694 } while (0)
696 static void __init find_ramdisk(unsigned long phys_base)
698 #ifdef CONFIG_BLK_DEV_INITRD
699 if (sparc_ramdisk_image || sparc_ramdisk_image64) {
700 unsigned long ramdisk_image;
702 /* Older versions of the bootloader only supported a
703 * 32-bit physical address for the ramdisk image
704 * location, stored at sparc_ramdisk_image. Newer
705 * SILO versions set sparc_ramdisk_image to zero and
706 * provide a full 64-bit physical address at
707 * sparc_ramdisk_image64.
709 ramdisk_image = sparc_ramdisk_image;
710 if (!ramdisk_image)
711 ramdisk_image = sparc_ramdisk_image64;
713 /* Another bootloader quirk. The bootloader normalizes
714 * the physical address to KERNBASE, so we have to
715 * factor that back out and add in the lowest valid
716 * physical page address to get the true physical address.
718 ramdisk_image -= KERNBASE;
719 ramdisk_image += phys_base;
721 numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
722 ramdisk_image, sparc_ramdisk_size);
724 initrd_start = ramdisk_image;
725 initrd_end = ramdisk_image + sparc_ramdisk_size;
727 lmb_reserve(initrd_start, sparc_ramdisk_size);
729 initrd_start += PAGE_OFFSET;
730 initrd_end += PAGE_OFFSET;
732 #endif
735 struct node_mem_mask {
736 unsigned long mask;
737 unsigned long val;
738 unsigned long bootmem_paddr;
740 static struct node_mem_mask node_masks[MAX_NUMNODES];
741 static int num_node_masks;
743 int numa_cpu_lookup_table[NR_CPUS];
744 cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
746 #ifdef CONFIG_NEED_MULTIPLE_NODES
748 struct mdesc_mblock {
749 u64 base;
750 u64 size;
751 u64 offset; /* RA-to-PA */
753 static struct mdesc_mblock *mblocks;
754 static int num_mblocks;
756 static unsigned long ra_to_pa(unsigned long addr)
758 int i;
760 for (i = 0; i < num_mblocks; i++) {
761 struct mdesc_mblock *m = &mblocks[i];
763 if (addr >= m->base &&
764 addr < (m->base + m->size)) {
765 addr += m->offset;
766 break;
769 return addr;
772 static int find_node(unsigned long addr)
774 int i;
776 addr = ra_to_pa(addr);
777 for (i = 0; i < num_node_masks; i++) {
778 struct node_mem_mask *p = &node_masks[i];
780 if ((addr & p->mask) == p->val)
781 return i;
783 return -1;
786 static unsigned long long nid_range(unsigned long long start,
787 unsigned long long end, int *nid)
789 *nid = find_node(start);
790 start += PAGE_SIZE;
791 while (start < end) {
792 int n = find_node(start);
794 if (n != *nid)
795 break;
796 start += PAGE_SIZE;
799 if (start > end)
800 start = end;
802 return start;
804 #else
805 static unsigned long long nid_range(unsigned long long start,
806 unsigned long long end, int *nid)
808 *nid = 0;
809 return end;
811 #endif
813 /* This must be invoked after performing all of the necessary
814 * add_active_range() calls for 'nid'. We need to be able to get
815 * correct data from get_pfn_range_for_nid().
817 static void __init allocate_node_data(int nid)
819 unsigned long paddr, num_pages, start_pfn, end_pfn;
820 struct pglist_data *p;
822 #ifdef CONFIG_NEED_MULTIPLE_NODES
823 paddr = lmb_alloc_nid(sizeof(struct pglist_data),
824 SMP_CACHE_BYTES, nid, nid_range);
825 if (!paddr) {
826 prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
827 prom_halt();
829 NODE_DATA(nid) = __va(paddr);
830 memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
832 NODE_DATA(nid)->bdata = &bootmem_node_data[nid];
833 #endif
835 p = NODE_DATA(nid);
837 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
838 p->node_start_pfn = start_pfn;
839 p->node_spanned_pages = end_pfn - start_pfn;
841 if (p->node_spanned_pages) {
842 num_pages = bootmem_bootmap_pages(p->node_spanned_pages);
844 paddr = lmb_alloc_nid(num_pages << PAGE_SHIFT, PAGE_SIZE, nid,
845 nid_range);
846 if (!paddr) {
847 prom_printf("Cannot allocate bootmap for nid[%d]\n",
848 nid);
849 prom_halt();
851 node_masks[nid].bootmem_paddr = paddr;
855 static void init_node_masks_nonnuma(void)
857 int i;
859 numadbg("Initializing tables for non-numa.\n");
861 node_masks[0].mask = node_masks[0].val = 0;
862 num_node_masks = 1;
864 for (i = 0; i < NR_CPUS; i++)
865 numa_cpu_lookup_table[i] = 0;
867 numa_cpumask_lookup_table[0] = CPU_MASK_ALL;
870 #ifdef CONFIG_NEED_MULTIPLE_NODES
871 struct pglist_data *node_data[MAX_NUMNODES];
873 EXPORT_SYMBOL(numa_cpu_lookup_table);
874 EXPORT_SYMBOL(numa_cpumask_lookup_table);
875 EXPORT_SYMBOL(node_data);
877 struct mdesc_mlgroup {
878 u64 node;
879 u64 latency;
880 u64 match;
881 u64 mask;
883 static struct mdesc_mlgroup *mlgroups;
884 static int num_mlgroups;
886 static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
887 u32 cfg_handle)
889 u64 arc;
891 mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
892 u64 target = mdesc_arc_target(md, arc);
893 const u64 *val;
895 val = mdesc_get_property(md, target,
896 "cfg-handle", NULL);
897 if (val && *val == cfg_handle)
898 return 0;
900 return -ENODEV;
903 static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
904 u32 cfg_handle)
906 u64 arc, candidate, best_latency = ~(u64)0;
908 candidate = MDESC_NODE_NULL;
909 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
910 u64 target = mdesc_arc_target(md, arc);
911 const char *name = mdesc_node_name(md, target);
912 const u64 *val;
914 if (strcmp(name, "pio-latency-group"))
915 continue;
917 val = mdesc_get_property(md, target, "latency", NULL);
918 if (!val)
919 continue;
921 if (*val < best_latency) {
922 candidate = target;
923 best_latency = *val;
927 if (candidate == MDESC_NODE_NULL)
928 return -ENODEV;
930 return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
933 int of_node_to_nid(struct device_node *dp)
935 const struct linux_prom64_registers *regs;
936 struct mdesc_handle *md;
937 u32 cfg_handle;
938 int count, nid;
939 u64 grp;
941 /* This is the right thing to do on currently supported
942 * SUN4U NUMA platforms as well, as the PCI controller does
943 * not sit behind any particular memory controller.
945 if (!mlgroups)
946 return -1;
948 regs = of_get_property(dp, "reg", NULL);
949 if (!regs)
950 return -1;
952 cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
954 md = mdesc_grab();
956 count = 0;
957 nid = -1;
958 mdesc_for_each_node_by_name(md, grp, "group") {
959 if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
960 nid = count;
961 break;
963 count++;
966 mdesc_release(md);
968 return nid;
971 static void __init add_node_ranges(void)
973 int i;
975 for (i = 0; i < lmb.memory.cnt; i++) {
976 unsigned long size = lmb_size_bytes(&lmb.memory, i);
977 unsigned long start, end;
979 start = lmb.memory.region[i].base;
980 end = start + size;
981 while (start < end) {
982 unsigned long this_end;
983 int nid;
985 this_end = nid_range(start, end, &nid);
987 numadbg("Adding active range nid[%d] "
988 "start[%lx] end[%lx]\n",
989 nid, start, this_end);
991 add_active_range(nid,
992 start >> PAGE_SHIFT,
993 this_end >> PAGE_SHIFT);
995 start = this_end;
1000 static int __init grab_mlgroups(struct mdesc_handle *md)
1002 unsigned long paddr;
1003 int count = 0;
1004 u64 node;
1006 mdesc_for_each_node_by_name(md, node, "memory-latency-group")
1007 count++;
1008 if (!count)
1009 return -ENOENT;
1011 paddr = lmb_alloc(count * sizeof(struct mdesc_mlgroup),
1012 SMP_CACHE_BYTES);
1013 if (!paddr)
1014 return -ENOMEM;
1016 mlgroups = __va(paddr);
1017 num_mlgroups = count;
1019 count = 0;
1020 mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
1021 struct mdesc_mlgroup *m = &mlgroups[count++];
1022 const u64 *val;
1024 m->node = node;
1026 val = mdesc_get_property(md, node, "latency", NULL);
1027 m->latency = *val;
1028 val = mdesc_get_property(md, node, "address-match", NULL);
1029 m->match = *val;
1030 val = mdesc_get_property(md, node, "address-mask", NULL);
1031 m->mask = *val;
1033 numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
1034 "match[%llx] mask[%llx]\n",
1035 count - 1, m->node, m->latency, m->match, m->mask);
1038 return 0;
1041 static int __init grab_mblocks(struct mdesc_handle *md)
1043 unsigned long paddr;
1044 int count = 0;
1045 u64 node;
1047 mdesc_for_each_node_by_name(md, node, "mblock")
1048 count++;
1049 if (!count)
1050 return -ENOENT;
1052 paddr = lmb_alloc(count * sizeof(struct mdesc_mblock),
1053 SMP_CACHE_BYTES);
1054 if (!paddr)
1055 return -ENOMEM;
1057 mblocks = __va(paddr);
1058 num_mblocks = count;
1060 count = 0;
1061 mdesc_for_each_node_by_name(md, node, "mblock") {
1062 struct mdesc_mblock *m = &mblocks[count++];
1063 const u64 *val;
1065 val = mdesc_get_property(md, node, "base", NULL);
1066 m->base = *val;
1067 val = mdesc_get_property(md, node, "size", NULL);
1068 m->size = *val;
1069 val = mdesc_get_property(md, node,
1070 "address-congruence-offset", NULL);
1071 m->offset = *val;
1073 numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
1074 count - 1, m->base, m->size, m->offset);
1077 return 0;
1080 static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
1081 u64 grp, cpumask_t *mask)
1083 u64 arc;
1085 cpus_clear(*mask);
1087 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
1088 u64 target = mdesc_arc_target(md, arc);
1089 const char *name = mdesc_node_name(md, target);
1090 const u64 *id;
1092 if (strcmp(name, "cpu"))
1093 continue;
1094 id = mdesc_get_property(md, target, "id", NULL);
1095 if (*id < nr_cpu_ids)
1096 cpu_set(*id, *mask);
1100 static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
1102 int i;
1104 for (i = 0; i < num_mlgroups; i++) {
1105 struct mdesc_mlgroup *m = &mlgroups[i];
1106 if (m->node == node)
1107 return m;
1109 return NULL;
1112 static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
1113 int index)
1115 struct mdesc_mlgroup *candidate = NULL;
1116 u64 arc, best_latency = ~(u64)0;
1117 struct node_mem_mask *n;
1119 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1120 u64 target = mdesc_arc_target(md, arc);
1121 struct mdesc_mlgroup *m = find_mlgroup(target);
1122 if (!m)
1123 continue;
1124 if (m->latency < best_latency) {
1125 candidate = m;
1126 best_latency = m->latency;
1129 if (!candidate)
1130 return -ENOENT;
1132 if (num_node_masks != index) {
1133 printk(KERN_ERR "Inconsistent NUMA state, "
1134 "index[%d] != num_node_masks[%d]\n",
1135 index, num_node_masks);
1136 return -EINVAL;
1139 n = &node_masks[num_node_masks++];
1141 n->mask = candidate->mask;
1142 n->val = candidate->match;
1144 numadbg("NUMA NODE[%d]: mask[%lx] val[%lx] (latency[%llx])\n",
1145 index, n->mask, n->val, candidate->latency);
1147 return 0;
1150 static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
1151 int index)
1153 cpumask_t mask;
1154 int cpu;
1156 numa_parse_mdesc_group_cpus(md, grp, &mask);
1158 for_each_cpu_mask(cpu, mask)
1159 numa_cpu_lookup_table[cpu] = index;
1160 numa_cpumask_lookup_table[index] = mask;
1162 if (numa_debug) {
1163 printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
1164 for_each_cpu_mask(cpu, mask)
1165 printk("%d ", cpu);
1166 printk("]\n");
1169 return numa_attach_mlgroup(md, grp, index);
1172 static int __init numa_parse_mdesc(void)
1174 struct mdesc_handle *md = mdesc_grab();
1175 int i, err, count;
1176 u64 node;
1178 node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
1179 if (node == MDESC_NODE_NULL) {
1180 mdesc_release(md);
1181 return -ENOENT;
1184 err = grab_mblocks(md);
1185 if (err < 0)
1186 goto out;
1188 err = grab_mlgroups(md);
1189 if (err < 0)
1190 goto out;
1192 count = 0;
1193 mdesc_for_each_node_by_name(md, node, "group") {
1194 err = numa_parse_mdesc_group(md, node, count);
1195 if (err < 0)
1196 break;
1197 count++;
1200 add_node_ranges();
1202 for (i = 0; i < num_node_masks; i++) {
1203 allocate_node_data(i);
1204 node_set_online(i);
1207 err = 0;
1208 out:
1209 mdesc_release(md);
1210 return err;
1213 static int __init numa_parse_jbus(void)
1215 unsigned long cpu, index;
1217 /* NUMA node id is encoded in bits 36 and higher, and there is
1218 * a 1-to-1 mapping from CPU ID to NUMA node ID.
1220 index = 0;
1221 for_each_present_cpu(cpu) {
1222 numa_cpu_lookup_table[cpu] = index;
1223 numa_cpumask_lookup_table[index] = cpumask_of_cpu(cpu);
1224 node_masks[index].mask = ~((1UL << 36UL) - 1UL);
1225 node_masks[index].val = cpu << 36UL;
1227 index++;
1229 num_node_masks = index;
1231 add_node_ranges();
1233 for (index = 0; index < num_node_masks; index++) {
1234 allocate_node_data(index);
1235 node_set_online(index);
1238 return 0;
1241 static int __init numa_parse_sun4u(void)
1243 if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1244 unsigned long ver;
1246 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
1247 if ((ver >> 32UL) == __JALAPENO_ID ||
1248 (ver >> 32UL) == __SERRANO_ID)
1249 return numa_parse_jbus();
1251 return -1;
1254 static int __init bootmem_init_numa(void)
1256 int err = -1;
1258 numadbg("bootmem_init_numa()\n");
1260 if (numa_enabled) {
1261 if (tlb_type == hypervisor)
1262 err = numa_parse_mdesc();
1263 else
1264 err = numa_parse_sun4u();
1266 return err;
1269 #else
1271 static int bootmem_init_numa(void)
1273 return -1;
1276 #endif
1278 static void __init bootmem_init_nonnuma(void)
1280 unsigned long top_of_ram = lmb_end_of_DRAM();
1281 unsigned long total_ram = lmb_phys_mem_size();
1282 unsigned int i;
1284 numadbg("bootmem_init_nonnuma()\n");
1286 printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1287 top_of_ram, total_ram);
1288 printk(KERN_INFO "Memory hole size: %ldMB\n",
1289 (top_of_ram - total_ram) >> 20);
1291 init_node_masks_nonnuma();
1293 for (i = 0; i < lmb.memory.cnt; i++) {
1294 unsigned long size = lmb_size_bytes(&lmb.memory, i);
1295 unsigned long start_pfn, end_pfn;
1297 if (!size)
1298 continue;
1300 start_pfn = lmb.memory.region[i].base >> PAGE_SHIFT;
1301 end_pfn = start_pfn + lmb_size_pages(&lmb.memory, i);
1302 add_active_range(0, start_pfn, end_pfn);
1305 allocate_node_data(0);
1307 node_set_online(0);
1310 static void __init reserve_range_in_node(int nid, unsigned long start,
1311 unsigned long end)
1313 numadbg(" reserve_range_in_node(nid[%d],start[%lx],end[%lx]\n",
1314 nid, start, end);
1315 while (start < end) {
1316 unsigned long this_end;
1317 int n;
1319 this_end = nid_range(start, end, &n);
1320 if (n == nid) {
1321 numadbg(" MATCH reserving range [%lx:%lx]\n",
1322 start, this_end);
1323 reserve_bootmem_node(NODE_DATA(nid), start,
1324 (this_end - start), BOOTMEM_DEFAULT);
1325 } else
1326 numadbg(" NO MATCH, advancing start to %lx\n",
1327 this_end);
1329 start = this_end;
1333 static void __init trim_reserved_in_node(int nid)
1335 int i;
1337 numadbg(" trim_reserved_in_node(%d)\n", nid);
1339 for (i = 0; i < lmb.reserved.cnt; i++) {
1340 unsigned long start = lmb.reserved.region[i].base;
1341 unsigned long size = lmb_size_bytes(&lmb.reserved, i);
1342 unsigned long end = start + size;
1344 reserve_range_in_node(nid, start, end);
1348 static void __init bootmem_init_one_node(int nid)
1350 struct pglist_data *p;
1352 numadbg("bootmem_init_one_node(%d)\n", nid);
1354 p = NODE_DATA(nid);
1356 if (p->node_spanned_pages) {
1357 unsigned long paddr = node_masks[nid].bootmem_paddr;
1358 unsigned long end_pfn;
1360 end_pfn = p->node_start_pfn + p->node_spanned_pages;
1362 numadbg(" init_bootmem_node(%d, %lx, %lx, %lx)\n",
1363 nid, paddr >> PAGE_SHIFT, p->node_start_pfn, end_pfn);
1365 init_bootmem_node(p, paddr >> PAGE_SHIFT,
1366 p->node_start_pfn, end_pfn);
1368 numadbg(" free_bootmem_with_active_regions(%d, %lx)\n",
1369 nid, end_pfn);
1370 free_bootmem_with_active_regions(nid, end_pfn);
1372 trim_reserved_in_node(nid);
1374 numadbg(" sparse_memory_present_with_active_regions(%d)\n",
1375 nid);
1376 sparse_memory_present_with_active_regions(nid);
1380 static unsigned long __init bootmem_init(unsigned long phys_base)
1382 unsigned long end_pfn;
1383 int nid;
1385 end_pfn = lmb_end_of_DRAM() >> PAGE_SHIFT;
1386 max_pfn = max_low_pfn = end_pfn;
1387 min_low_pfn = (phys_base >> PAGE_SHIFT);
1389 if (bootmem_init_numa() < 0)
1390 bootmem_init_nonnuma();
1392 /* XXX cpu notifier XXX */
1394 for_each_online_node(nid)
1395 bootmem_init_one_node(nid);
1397 sparse_init();
1399 return end_pfn;
1402 static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1403 static int pall_ents __initdata;
1405 #ifdef CONFIG_DEBUG_PAGEALLOC
1406 static unsigned long __ref kernel_map_range(unsigned long pstart,
1407 unsigned long pend, pgprot_t prot)
1409 unsigned long vstart = PAGE_OFFSET + pstart;
1410 unsigned long vend = PAGE_OFFSET + pend;
1411 unsigned long alloc_bytes = 0UL;
1413 if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1414 prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1415 vstart, vend);
1416 prom_halt();
1419 while (vstart < vend) {
1420 unsigned long this_end, paddr = __pa(vstart);
1421 pgd_t *pgd = pgd_offset_k(vstart);
1422 pud_t *pud;
1423 pmd_t *pmd;
1424 pte_t *pte;
1426 pud = pud_offset(pgd, vstart);
1427 if (pud_none(*pud)) {
1428 pmd_t *new;
1430 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1431 alloc_bytes += PAGE_SIZE;
1432 pud_populate(&init_mm, pud, new);
1435 pmd = pmd_offset(pud, vstart);
1436 if (!pmd_present(*pmd)) {
1437 pte_t *new;
1439 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1440 alloc_bytes += PAGE_SIZE;
1441 pmd_populate_kernel(&init_mm, pmd, new);
1444 pte = pte_offset_kernel(pmd, vstart);
1445 this_end = (vstart + PMD_SIZE) & PMD_MASK;
1446 if (this_end > vend)
1447 this_end = vend;
1449 while (vstart < this_end) {
1450 pte_val(*pte) = (paddr | pgprot_val(prot));
1452 vstart += PAGE_SIZE;
1453 paddr += PAGE_SIZE;
1454 pte++;
1458 return alloc_bytes;
1461 extern unsigned int kvmap_linear_patch[1];
1462 #endif /* CONFIG_DEBUG_PAGEALLOC */
1464 static void __init mark_kpte_bitmap(unsigned long start, unsigned long end)
1466 const unsigned long shift_256MB = 28;
1467 const unsigned long mask_256MB = ((1UL << shift_256MB) - 1UL);
1468 const unsigned long size_256MB = (1UL << shift_256MB);
1470 while (start < end) {
1471 long remains;
1473 remains = end - start;
1474 if (remains < size_256MB)
1475 break;
1477 if (start & mask_256MB) {
1478 start = (start + size_256MB) & ~mask_256MB;
1479 continue;
1482 while (remains >= size_256MB) {
1483 unsigned long index = start >> shift_256MB;
1485 __set_bit(index, kpte_linear_bitmap);
1487 start += size_256MB;
1488 remains -= size_256MB;
1493 static void __init init_kpte_bitmap(void)
1495 unsigned long i;
1497 for (i = 0; i < pall_ents; i++) {
1498 unsigned long phys_start, phys_end;
1500 phys_start = pall[i].phys_addr;
1501 phys_end = phys_start + pall[i].reg_size;
1503 mark_kpte_bitmap(phys_start, phys_end);
1507 static void __init kernel_physical_mapping_init(void)
1509 #ifdef CONFIG_DEBUG_PAGEALLOC
1510 unsigned long i, mem_alloced = 0UL;
1512 for (i = 0; i < pall_ents; i++) {
1513 unsigned long phys_start, phys_end;
1515 phys_start = pall[i].phys_addr;
1516 phys_end = phys_start + pall[i].reg_size;
1518 mem_alloced += kernel_map_range(phys_start, phys_end,
1519 PAGE_KERNEL);
1522 printk("Allocated %ld bytes for kernel page tables.\n",
1523 mem_alloced);
1525 kvmap_linear_patch[0] = 0x01000000; /* nop */
1526 flushi(&kvmap_linear_patch[0]);
1528 __flush_tlb_all();
1529 #endif
1532 #ifdef CONFIG_DEBUG_PAGEALLOC
1533 void kernel_map_pages(struct page *page, int numpages, int enable)
1535 unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1536 unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1538 kernel_map_range(phys_start, phys_end,
1539 (enable ? PAGE_KERNEL : __pgprot(0)));
1541 flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1542 PAGE_OFFSET + phys_end);
1544 /* we should perform an IPI and flush all tlbs,
1545 * but that can deadlock->flush only current cpu.
1547 __flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1548 PAGE_OFFSET + phys_end);
1550 #endif
1552 unsigned long __init find_ecache_flush_span(unsigned long size)
1554 int i;
1556 for (i = 0; i < pavail_ents; i++) {
1557 if (pavail[i].reg_size >= size)
1558 return pavail[i].phys_addr;
1561 return ~0UL;
1564 static void __init tsb_phys_patch(void)
1566 struct tsb_ldquad_phys_patch_entry *pquad;
1567 struct tsb_phys_patch_entry *p;
1569 pquad = &__tsb_ldquad_phys_patch;
1570 while (pquad < &__tsb_ldquad_phys_patch_end) {
1571 unsigned long addr = pquad->addr;
1573 if (tlb_type == hypervisor)
1574 *(unsigned int *) addr = pquad->sun4v_insn;
1575 else
1576 *(unsigned int *) addr = pquad->sun4u_insn;
1577 wmb();
1578 __asm__ __volatile__("flush %0"
1579 : /* no outputs */
1580 : "r" (addr));
1582 pquad++;
1585 p = &__tsb_phys_patch;
1586 while (p < &__tsb_phys_patch_end) {
1587 unsigned long addr = p->addr;
1589 *(unsigned int *) addr = p->insn;
1590 wmb();
1591 __asm__ __volatile__("flush %0"
1592 : /* no outputs */
1593 : "r" (addr));
1595 p++;
1599 /* Don't mark as init, we give this to the Hypervisor. */
1600 #ifndef CONFIG_DEBUG_PAGEALLOC
1601 #define NUM_KTSB_DESCR 2
1602 #else
1603 #define NUM_KTSB_DESCR 1
1604 #endif
1605 static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
1606 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
1608 static void __init sun4v_ktsb_init(void)
1610 unsigned long ktsb_pa;
1612 /* First KTSB for PAGE_SIZE mappings. */
1613 ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1615 switch (PAGE_SIZE) {
1616 case 8 * 1024:
1617 default:
1618 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
1619 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
1620 break;
1622 case 64 * 1024:
1623 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
1624 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
1625 break;
1627 case 512 * 1024:
1628 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
1629 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
1630 break;
1632 case 4 * 1024 * 1024:
1633 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
1634 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
1635 break;
1638 ktsb_descr[0].assoc = 1;
1639 ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
1640 ktsb_descr[0].ctx_idx = 0;
1641 ktsb_descr[0].tsb_base = ktsb_pa;
1642 ktsb_descr[0].resv = 0;
1644 #ifndef CONFIG_DEBUG_PAGEALLOC
1645 /* Second KTSB for 4MB/256MB mappings. */
1646 ktsb_pa = (kern_base +
1647 ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1649 ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
1650 ktsb_descr[1].pgsz_mask = (HV_PGSZ_MASK_4MB |
1651 HV_PGSZ_MASK_256MB);
1652 ktsb_descr[1].assoc = 1;
1653 ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
1654 ktsb_descr[1].ctx_idx = 0;
1655 ktsb_descr[1].tsb_base = ktsb_pa;
1656 ktsb_descr[1].resv = 0;
1657 #endif
1660 void __cpuinit sun4v_ktsb_register(void)
1662 unsigned long pa, ret;
1664 pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
1666 ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
1667 if (ret != 0) {
1668 prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
1669 "errors with %lx\n", pa, ret);
1670 prom_halt();
1674 /* paging_init() sets up the page tables */
1676 static unsigned long last_valid_pfn;
1677 pgd_t swapper_pg_dir[2048];
1679 static void sun4u_pgprot_init(void);
1680 static void sun4v_pgprot_init(void);
1682 void __init paging_init(void)
1684 unsigned long end_pfn, shift, phys_base;
1685 unsigned long real_end, i;
1687 /* These build time checkes make sure that the dcache_dirty_cpu()
1688 * page->flags usage will work.
1690 * When a page gets marked as dcache-dirty, we store the
1691 * cpu number starting at bit 32 in the page->flags. Also,
1692 * functions like clear_dcache_dirty_cpu use the cpu mask
1693 * in 13-bit signed-immediate instruction fields.
1697 * Page flags must not reach into upper 32 bits that are used
1698 * for the cpu number
1700 BUILD_BUG_ON(NR_PAGEFLAGS > 32);
1703 * The bit fields placed in the high range must not reach below
1704 * the 32 bit boundary. Otherwise we cannot place the cpu field
1705 * at the 32 bit boundary.
1707 BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
1708 ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
1710 BUILD_BUG_ON(NR_CPUS > 4096);
1712 kern_base = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
1713 kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
1715 /* Invalidate both kernel TSBs. */
1716 memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
1717 #ifndef CONFIG_DEBUG_PAGEALLOC
1718 memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
1719 #endif
1721 if (tlb_type == hypervisor)
1722 sun4v_pgprot_init();
1723 else
1724 sun4u_pgprot_init();
1726 if (tlb_type == cheetah_plus ||
1727 tlb_type == hypervisor)
1728 tsb_phys_patch();
1730 if (tlb_type == hypervisor) {
1731 sun4v_patch_tlb_handlers();
1732 sun4v_ktsb_init();
1735 lmb_init();
1737 /* Find available physical memory...
1739 * Read it twice in order to work around a bug in openfirmware.
1740 * The call to grab this table itself can cause openfirmware to
1741 * allocate memory, which in turn can take away some space from
1742 * the list of available memory. Reading it twice makes sure
1743 * we really do get the final value.
1745 read_obp_translations();
1746 read_obp_memory("reg", &pall[0], &pall_ents);
1747 read_obp_memory("available", &pavail[0], &pavail_ents);
1748 read_obp_memory("available", &pavail[0], &pavail_ents);
1750 phys_base = 0xffffffffffffffffUL;
1751 for (i = 0; i < pavail_ents; i++) {
1752 phys_base = min(phys_base, pavail[i].phys_addr);
1753 lmb_add(pavail[i].phys_addr, pavail[i].reg_size);
1756 lmb_reserve(kern_base, kern_size);
1758 find_ramdisk(phys_base);
1760 lmb_enforce_memory_limit(cmdline_memory_size);
1762 lmb_analyze();
1763 lmb_dump_all();
1765 set_bit(0, mmu_context_bmap);
1767 shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
1769 real_end = (unsigned long)_end;
1770 num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << 22);
1771 printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
1772 num_kernel_image_mappings);
1774 /* Set kernel pgd to upper alias so physical page computations
1775 * work.
1777 init_mm.pgd += ((shift) / (sizeof(pgd_t)));
1779 memset(swapper_low_pmd_dir, 0, sizeof(swapper_low_pmd_dir));
1781 /* Now can init the kernel/bad page tables. */
1782 pud_set(pud_offset(&swapper_pg_dir[0], 0),
1783 swapper_low_pmd_dir + (shift / sizeof(pgd_t)));
1785 inherit_prom_mappings();
1787 init_kpte_bitmap();
1789 /* Ok, we can use our TLB miss and window trap handlers safely. */
1790 setup_tba();
1792 __flush_tlb_all();
1794 if (tlb_type == hypervisor)
1795 sun4v_ktsb_register();
1797 prom_build_devicetree();
1798 of_populate_present_mask();
1799 #ifndef CONFIG_SMP
1800 of_fill_in_cpu_data();
1801 #endif
1803 if (tlb_type == hypervisor) {
1804 sun4v_mdesc_init();
1805 mdesc_populate_present_mask(cpu_all_mask);
1806 #ifndef CONFIG_SMP
1807 mdesc_fill_in_cpu_data(cpu_all_mask);
1808 #endif
1811 /* Once the OF device tree and MDESC have been setup, we know
1812 * the list of possible cpus. Therefore we can allocate the
1813 * IRQ stacks.
1815 for_each_possible_cpu(i) {
1816 /* XXX Use node local allocations... XXX */
1817 softirq_stack[i] = __va(lmb_alloc(THREAD_SIZE, THREAD_SIZE));
1818 hardirq_stack[i] = __va(lmb_alloc(THREAD_SIZE, THREAD_SIZE));
1821 /* Setup bootmem... */
1822 last_valid_pfn = end_pfn = bootmem_init(phys_base);
1824 #ifndef CONFIG_NEED_MULTIPLE_NODES
1825 max_mapnr = last_valid_pfn;
1826 #endif
1827 kernel_physical_mapping_init();
1830 unsigned long max_zone_pfns[MAX_NR_ZONES];
1832 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
1834 max_zone_pfns[ZONE_NORMAL] = end_pfn;
1836 free_area_init_nodes(max_zone_pfns);
1839 printk("Booting Linux...\n");
1842 int __devinit page_in_phys_avail(unsigned long paddr)
1844 int i;
1846 paddr &= PAGE_MASK;
1848 for (i = 0; i < pavail_ents; i++) {
1849 unsigned long start, end;
1851 start = pavail[i].phys_addr;
1852 end = start + pavail[i].reg_size;
1854 if (paddr >= start && paddr < end)
1855 return 1;
1857 if (paddr >= kern_base && paddr < (kern_base + kern_size))
1858 return 1;
1859 #ifdef CONFIG_BLK_DEV_INITRD
1860 if (paddr >= __pa(initrd_start) &&
1861 paddr < __pa(PAGE_ALIGN(initrd_end)))
1862 return 1;
1863 #endif
1865 return 0;
1868 static struct linux_prom64_registers pavail_rescan[MAX_BANKS] __initdata;
1869 static int pavail_rescan_ents __initdata;
1871 /* Certain OBP calls, such as fetching "available" properties, can
1872 * claim physical memory. So, along with initializing the valid
1873 * address bitmap, what we do here is refetch the physical available
1874 * memory list again, and make sure it provides at least as much
1875 * memory as 'pavail' does.
1877 static void __init setup_valid_addr_bitmap_from_pavail(void)
1879 int i;
1881 read_obp_memory("available", &pavail_rescan[0], &pavail_rescan_ents);
1883 for (i = 0; i < pavail_ents; i++) {
1884 unsigned long old_start, old_end;
1886 old_start = pavail[i].phys_addr;
1887 old_end = old_start + pavail[i].reg_size;
1888 while (old_start < old_end) {
1889 int n;
1891 for (n = 0; n < pavail_rescan_ents; n++) {
1892 unsigned long new_start, new_end;
1894 new_start = pavail_rescan[n].phys_addr;
1895 new_end = new_start +
1896 pavail_rescan[n].reg_size;
1898 if (new_start <= old_start &&
1899 new_end >= (old_start + PAGE_SIZE)) {
1900 set_bit(old_start >> 22,
1901 sparc64_valid_addr_bitmap);
1902 goto do_next_page;
1906 prom_printf("mem_init: Lost memory in pavail\n");
1907 prom_printf("mem_init: OLD start[%lx] size[%lx]\n",
1908 pavail[i].phys_addr,
1909 pavail[i].reg_size);
1910 prom_printf("mem_init: NEW start[%lx] size[%lx]\n",
1911 pavail_rescan[i].phys_addr,
1912 pavail_rescan[i].reg_size);
1913 prom_printf("mem_init: Cannot continue, aborting.\n");
1914 prom_halt();
1916 do_next_page:
1917 old_start += PAGE_SIZE;
1922 void __init mem_init(void)
1924 unsigned long codepages, datapages, initpages;
1925 unsigned long addr, last;
1926 int i;
1928 i = last_valid_pfn >> ((22 - PAGE_SHIFT) + 6);
1929 i += 1;
1930 sparc64_valid_addr_bitmap = (unsigned long *) alloc_bootmem(i << 3);
1931 if (sparc64_valid_addr_bitmap == NULL) {
1932 prom_printf("mem_init: Cannot alloc valid_addr_bitmap.\n");
1933 prom_halt();
1935 memset(sparc64_valid_addr_bitmap, 0, i << 3);
1937 addr = PAGE_OFFSET + kern_base;
1938 last = PAGE_ALIGN(kern_size) + addr;
1939 while (addr < last) {
1940 set_bit(__pa(addr) >> 22, sparc64_valid_addr_bitmap);
1941 addr += PAGE_SIZE;
1944 setup_valid_addr_bitmap_from_pavail();
1946 high_memory = __va(last_valid_pfn << PAGE_SHIFT);
1948 #ifdef CONFIG_NEED_MULTIPLE_NODES
1949 for_each_online_node(i) {
1950 if (NODE_DATA(i)->node_spanned_pages != 0) {
1951 totalram_pages +=
1952 free_all_bootmem_node(NODE_DATA(i));
1955 #else
1956 totalram_pages = free_all_bootmem();
1957 #endif
1959 /* We subtract one to account for the mem_map_zero page
1960 * allocated below.
1962 totalram_pages -= 1;
1963 num_physpages = totalram_pages;
1966 * Set up the zero page, mark it reserved, so that page count
1967 * is not manipulated when freeing the page from user ptes.
1969 mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
1970 if (mem_map_zero == NULL) {
1971 prom_printf("paging_init: Cannot alloc zero page.\n");
1972 prom_halt();
1974 SetPageReserved(mem_map_zero);
1976 codepages = (((unsigned long) _etext) - ((unsigned long) _start));
1977 codepages = PAGE_ALIGN(codepages) >> PAGE_SHIFT;
1978 datapages = (((unsigned long) _edata) - ((unsigned long) _etext));
1979 datapages = PAGE_ALIGN(datapages) >> PAGE_SHIFT;
1980 initpages = (((unsigned long) __init_end) - ((unsigned long) __init_begin));
1981 initpages = PAGE_ALIGN(initpages) >> PAGE_SHIFT;
1983 printk("Memory: %luk available (%ldk kernel code, %ldk data, %ldk init) [%016lx,%016lx]\n",
1984 nr_free_pages() << (PAGE_SHIFT-10),
1985 codepages << (PAGE_SHIFT-10),
1986 datapages << (PAGE_SHIFT-10),
1987 initpages << (PAGE_SHIFT-10),
1988 PAGE_OFFSET, (last_valid_pfn << PAGE_SHIFT));
1990 if (tlb_type == cheetah || tlb_type == cheetah_plus)
1991 cheetah_ecache_flush_init();
1994 void free_initmem(void)
1996 unsigned long addr, initend;
1997 int do_free = 1;
1999 /* If the physical memory maps were trimmed by kernel command
2000 * line options, don't even try freeing this initmem stuff up.
2001 * The kernel image could have been in the trimmed out region
2002 * and if so the freeing below will free invalid page structs.
2004 if (cmdline_memory_size)
2005 do_free = 0;
2008 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
2010 addr = PAGE_ALIGN((unsigned long)(__init_begin));
2011 initend = (unsigned long)(__init_end) & PAGE_MASK;
2012 for (; addr < initend; addr += PAGE_SIZE) {
2013 unsigned long page;
2014 struct page *p;
2016 page = (addr +
2017 ((unsigned long) __va(kern_base)) -
2018 ((unsigned long) KERNBASE));
2019 memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
2021 if (do_free) {
2022 p = virt_to_page(page);
2024 ClearPageReserved(p);
2025 init_page_count(p);
2026 __free_page(p);
2027 num_physpages++;
2028 totalram_pages++;
2033 #ifdef CONFIG_BLK_DEV_INITRD
2034 void free_initrd_mem(unsigned long start, unsigned long end)
2036 if (start < end)
2037 printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
2038 for (; start < end; start += PAGE_SIZE) {
2039 struct page *p = virt_to_page(start);
2041 ClearPageReserved(p);
2042 init_page_count(p);
2043 __free_page(p);
2044 num_physpages++;
2045 totalram_pages++;
2048 #endif
2050 #define _PAGE_CACHE_4U (_PAGE_CP_4U | _PAGE_CV_4U)
2051 #define _PAGE_CACHE_4V (_PAGE_CP_4V | _PAGE_CV_4V)
2052 #define __DIRTY_BITS_4U (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
2053 #define __DIRTY_BITS_4V (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
2054 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
2055 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
2057 pgprot_t PAGE_KERNEL __read_mostly;
2058 EXPORT_SYMBOL(PAGE_KERNEL);
2060 pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
2061 pgprot_t PAGE_COPY __read_mostly;
2063 pgprot_t PAGE_SHARED __read_mostly;
2064 EXPORT_SYMBOL(PAGE_SHARED);
2066 unsigned long pg_iobits __read_mostly;
2068 unsigned long _PAGE_IE __read_mostly;
2069 EXPORT_SYMBOL(_PAGE_IE);
2071 unsigned long _PAGE_E __read_mostly;
2072 EXPORT_SYMBOL(_PAGE_E);
2074 unsigned long _PAGE_CACHE __read_mostly;
2075 EXPORT_SYMBOL(_PAGE_CACHE);
2077 #ifdef CONFIG_SPARSEMEM_VMEMMAP
2078 unsigned long vmemmap_table[VMEMMAP_SIZE];
2080 int __meminit vmemmap_populate(struct page *start, unsigned long nr, int node)
2082 unsigned long vstart = (unsigned long) start;
2083 unsigned long vend = (unsigned long) (start + nr);
2084 unsigned long phys_start = (vstart - VMEMMAP_BASE);
2085 unsigned long phys_end = (vend - VMEMMAP_BASE);
2086 unsigned long addr = phys_start & VMEMMAP_CHUNK_MASK;
2087 unsigned long end = VMEMMAP_ALIGN(phys_end);
2088 unsigned long pte_base;
2090 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2091 _PAGE_CP_4U | _PAGE_CV_4U |
2092 _PAGE_P_4U | _PAGE_W_4U);
2093 if (tlb_type == hypervisor)
2094 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2095 _PAGE_CP_4V | _PAGE_CV_4V |
2096 _PAGE_P_4V | _PAGE_W_4V);
2098 for (; addr < end; addr += VMEMMAP_CHUNK) {
2099 unsigned long *vmem_pp =
2100 vmemmap_table + (addr >> VMEMMAP_CHUNK_SHIFT);
2101 void *block;
2103 if (!(*vmem_pp & _PAGE_VALID)) {
2104 block = vmemmap_alloc_block(1UL << 22, node);
2105 if (!block)
2106 return -ENOMEM;
2108 *vmem_pp = pte_base | __pa(block);
2110 printk(KERN_INFO "[%p-%p] page_structs=%lu "
2111 "node=%d entry=%lu/%lu\n", start, block, nr,
2112 node,
2113 addr >> VMEMMAP_CHUNK_SHIFT,
2114 VMEMMAP_SIZE >> VMEMMAP_CHUNK_SHIFT);
2117 return 0;
2119 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
2121 static void prot_init_common(unsigned long page_none,
2122 unsigned long page_shared,
2123 unsigned long page_copy,
2124 unsigned long page_readonly,
2125 unsigned long page_exec_bit)
2127 PAGE_COPY = __pgprot(page_copy);
2128 PAGE_SHARED = __pgprot(page_shared);
2130 protection_map[0x0] = __pgprot(page_none);
2131 protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
2132 protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
2133 protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
2134 protection_map[0x4] = __pgprot(page_readonly);
2135 protection_map[0x5] = __pgprot(page_readonly);
2136 protection_map[0x6] = __pgprot(page_copy);
2137 protection_map[0x7] = __pgprot(page_copy);
2138 protection_map[0x8] = __pgprot(page_none);
2139 protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
2140 protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
2141 protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
2142 protection_map[0xc] = __pgprot(page_readonly);
2143 protection_map[0xd] = __pgprot(page_readonly);
2144 protection_map[0xe] = __pgprot(page_shared);
2145 protection_map[0xf] = __pgprot(page_shared);
2148 static void __init sun4u_pgprot_init(void)
2150 unsigned long page_none, page_shared, page_copy, page_readonly;
2151 unsigned long page_exec_bit;
2153 PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2154 _PAGE_CACHE_4U | _PAGE_P_4U |
2155 __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2156 _PAGE_EXEC_4U);
2157 PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2158 _PAGE_CACHE_4U | _PAGE_P_4U |
2159 __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2160 _PAGE_EXEC_4U | _PAGE_L_4U);
2162 _PAGE_IE = _PAGE_IE_4U;
2163 _PAGE_E = _PAGE_E_4U;
2164 _PAGE_CACHE = _PAGE_CACHE_4U;
2166 pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
2167 __ACCESS_BITS_4U | _PAGE_E_4U);
2169 #ifdef CONFIG_DEBUG_PAGEALLOC
2170 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZBITS_4U) ^
2171 0xfffff80000000000UL;
2172 #else
2173 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
2174 0xfffff80000000000UL;
2175 #endif
2176 kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
2177 _PAGE_P_4U | _PAGE_W_4U);
2179 /* XXX Should use 256MB on Panther. XXX */
2180 kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
2182 _PAGE_SZBITS = _PAGE_SZBITS_4U;
2183 _PAGE_ALL_SZ_BITS = (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
2184 _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
2185 _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
2188 page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
2189 page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2190 __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
2191 page_copy = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2192 __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2193 page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2194 __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2196 page_exec_bit = _PAGE_EXEC_4U;
2198 prot_init_common(page_none, page_shared, page_copy, page_readonly,
2199 page_exec_bit);
2202 static void __init sun4v_pgprot_init(void)
2204 unsigned long page_none, page_shared, page_copy, page_readonly;
2205 unsigned long page_exec_bit;
2207 PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
2208 _PAGE_CACHE_4V | _PAGE_P_4V |
2209 __ACCESS_BITS_4V | __DIRTY_BITS_4V |
2210 _PAGE_EXEC_4V);
2211 PAGE_KERNEL_LOCKED = PAGE_KERNEL;
2213 _PAGE_IE = _PAGE_IE_4V;
2214 _PAGE_E = _PAGE_E_4V;
2215 _PAGE_CACHE = _PAGE_CACHE_4V;
2217 #ifdef CONFIG_DEBUG_PAGEALLOC
2218 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZBITS_4V) ^
2219 0xfffff80000000000UL;
2220 #else
2221 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
2222 0xfffff80000000000UL;
2223 #endif
2224 kern_linear_pte_xor[0] |= (_PAGE_CP_4V | _PAGE_CV_4V |
2225 _PAGE_P_4V | _PAGE_W_4V);
2227 #ifdef CONFIG_DEBUG_PAGEALLOC
2228 kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZBITS_4V) ^
2229 0xfffff80000000000UL;
2230 #else
2231 kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
2232 0xfffff80000000000UL;
2233 #endif
2234 kern_linear_pte_xor[1] |= (_PAGE_CP_4V | _PAGE_CV_4V |
2235 _PAGE_P_4V | _PAGE_W_4V);
2237 pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
2238 __ACCESS_BITS_4V | _PAGE_E_4V);
2240 _PAGE_SZBITS = _PAGE_SZBITS_4V;
2241 _PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
2242 _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
2243 _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
2244 _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
2246 page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | _PAGE_CACHE_4V;
2247 page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2248 __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
2249 page_copy = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2250 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2251 page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2252 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2254 page_exec_bit = _PAGE_EXEC_4V;
2256 prot_init_common(page_none, page_shared, page_copy, page_readonly,
2257 page_exec_bit);
2260 unsigned long pte_sz_bits(unsigned long sz)
2262 if (tlb_type == hypervisor) {
2263 switch (sz) {
2264 case 8 * 1024:
2265 default:
2266 return _PAGE_SZ8K_4V;
2267 case 64 * 1024:
2268 return _PAGE_SZ64K_4V;
2269 case 512 * 1024:
2270 return _PAGE_SZ512K_4V;
2271 case 4 * 1024 * 1024:
2272 return _PAGE_SZ4MB_4V;
2274 } else {
2275 switch (sz) {
2276 case 8 * 1024:
2277 default:
2278 return _PAGE_SZ8K_4U;
2279 case 64 * 1024:
2280 return _PAGE_SZ64K_4U;
2281 case 512 * 1024:
2282 return _PAGE_SZ512K_4U;
2283 case 4 * 1024 * 1024:
2284 return _PAGE_SZ4MB_4U;
2289 pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
2291 pte_t pte;
2293 pte_val(pte) = page | pgprot_val(pgprot_noncached(prot));
2294 pte_val(pte) |= (((unsigned long)space) << 32);
2295 pte_val(pte) |= pte_sz_bits(page_size);
2297 return pte;
2300 static unsigned long kern_large_tte(unsigned long paddr)
2302 unsigned long val;
2304 val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2305 _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
2306 _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
2307 if (tlb_type == hypervisor)
2308 val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2309 _PAGE_CP_4V | _PAGE_CV_4V | _PAGE_P_4V |
2310 _PAGE_EXEC_4V | _PAGE_W_4V);
2312 return val | paddr;
2315 /* If not locked, zap it. */
2316 void __flush_tlb_all(void)
2318 unsigned long pstate;
2319 int i;
2321 __asm__ __volatile__("flushw\n\t"
2322 "rdpr %%pstate, %0\n\t"
2323 "wrpr %0, %1, %%pstate"
2324 : "=r" (pstate)
2325 : "i" (PSTATE_IE));
2326 if (tlb_type == hypervisor) {
2327 sun4v_mmu_demap_all();
2328 } else if (tlb_type == spitfire) {
2329 for (i = 0; i < 64; i++) {
2330 /* Spitfire Errata #32 workaround */
2331 /* NOTE: Always runs on spitfire, so no
2332 * cheetah+ page size encodings.
2334 __asm__ __volatile__("stxa %0, [%1] %2\n\t"
2335 "flush %%g6"
2336 : /* No outputs */
2337 : "r" (0),
2338 "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2340 if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
2341 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2342 "membar #Sync"
2343 : /* no outputs */
2344 : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
2345 spitfire_put_dtlb_data(i, 0x0UL);
2348 /* Spitfire Errata #32 workaround */
2349 /* NOTE: Always runs on spitfire, so no
2350 * cheetah+ page size encodings.
2352 __asm__ __volatile__("stxa %0, [%1] %2\n\t"
2353 "flush %%g6"
2354 : /* No outputs */
2355 : "r" (0),
2356 "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2358 if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
2359 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2360 "membar #Sync"
2361 : /* no outputs */
2362 : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
2363 spitfire_put_itlb_data(i, 0x0UL);
2366 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
2367 cheetah_flush_dtlb_all();
2368 cheetah_flush_itlb_all();
2370 __asm__ __volatile__("wrpr %0, 0, %%pstate"
2371 : : "r" (pstate));