conn rcv_lock converted to spinlock, struct cor_sock created, kernel_packet skb_clone...
[cor_2_6_31.git] / drivers / regulator / core.c
blob98c3a74e994943f1041818896ae23961781ed041
1 /*
2 * core.c -- Voltage/Current Regulator framework.
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/device.h>
19 #include <linux/err.h>
20 #include <linux/mutex.h>
21 #include <linux/suspend.h>
22 #include <linux/regulator/consumer.h>
23 #include <linux/regulator/driver.h>
24 #include <linux/regulator/machine.h>
26 #define REGULATOR_VERSION "0.5"
28 static DEFINE_MUTEX(regulator_list_mutex);
29 static LIST_HEAD(regulator_list);
30 static LIST_HEAD(regulator_map_list);
31 static int has_full_constraints;
34 * struct regulator_map
36 * Used to provide symbolic supply names to devices.
38 struct regulator_map {
39 struct list_head list;
40 struct device *dev;
41 const char *supply;
42 struct regulator_dev *regulator;
46 * struct regulator
48 * One for each consumer device.
50 struct regulator {
51 struct device *dev;
52 struct list_head list;
53 int uA_load;
54 int min_uV;
55 int max_uV;
56 char *supply_name;
57 struct device_attribute dev_attr;
58 struct regulator_dev *rdev;
61 static int _regulator_is_enabled(struct regulator_dev *rdev);
62 static int _regulator_disable(struct regulator_dev *rdev);
63 static int _regulator_get_voltage(struct regulator_dev *rdev);
64 static int _regulator_get_current_limit(struct regulator_dev *rdev);
65 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
66 static void _notifier_call_chain(struct regulator_dev *rdev,
67 unsigned long event, void *data);
69 /* gets the regulator for a given consumer device */
70 static struct regulator *get_device_regulator(struct device *dev)
72 struct regulator *regulator = NULL;
73 struct regulator_dev *rdev;
75 mutex_lock(&regulator_list_mutex);
76 list_for_each_entry(rdev, &regulator_list, list) {
77 mutex_lock(&rdev->mutex);
78 list_for_each_entry(regulator, &rdev->consumer_list, list) {
79 if (regulator->dev == dev) {
80 mutex_unlock(&rdev->mutex);
81 mutex_unlock(&regulator_list_mutex);
82 return regulator;
85 mutex_unlock(&rdev->mutex);
87 mutex_unlock(&regulator_list_mutex);
88 return NULL;
91 /* Platform voltage constraint check */
92 static int regulator_check_voltage(struct regulator_dev *rdev,
93 int *min_uV, int *max_uV)
95 BUG_ON(*min_uV > *max_uV);
97 if (!rdev->constraints) {
98 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
99 rdev->desc->name);
100 return -ENODEV;
102 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
103 printk(KERN_ERR "%s: operation not allowed for %s\n",
104 __func__, rdev->desc->name);
105 return -EPERM;
108 if (*max_uV > rdev->constraints->max_uV)
109 *max_uV = rdev->constraints->max_uV;
110 if (*min_uV < rdev->constraints->min_uV)
111 *min_uV = rdev->constraints->min_uV;
113 if (*min_uV > *max_uV)
114 return -EINVAL;
116 return 0;
119 /* current constraint check */
120 static int regulator_check_current_limit(struct regulator_dev *rdev,
121 int *min_uA, int *max_uA)
123 BUG_ON(*min_uA > *max_uA);
125 if (!rdev->constraints) {
126 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
127 rdev->desc->name);
128 return -ENODEV;
130 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
131 printk(KERN_ERR "%s: operation not allowed for %s\n",
132 __func__, rdev->desc->name);
133 return -EPERM;
136 if (*max_uA > rdev->constraints->max_uA)
137 *max_uA = rdev->constraints->max_uA;
138 if (*min_uA < rdev->constraints->min_uA)
139 *min_uA = rdev->constraints->min_uA;
141 if (*min_uA > *max_uA)
142 return -EINVAL;
144 return 0;
147 /* operating mode constraint check */
148 static int regulator_check_mode(struct regulator_dev *rdev, int mode)
150 switch (mode) {
151 case REGULATOR_MODE_FAST:
152 case REGULATOR_MODE_NORMAL:
153 case REGULATOR_MODE_IDLE:
154 case REGULATOR_MODE_STANDBY:
155 break;
156 default:
157 return -EINVAL;
160 if (!rdev->constraints) {
161 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
162 rdev->desc->name);
163 return -ENODEV;
165 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
166 printk(KERN_ERR "%s: operation not allowed for %s\n",
167 __func__, rdev->desc->name);
168 return -EPERM;
170 if (!(rdev->constraints->valid_modes_mask & mode)) {
171 printk(KERN_ERR "%s: invalid mode %x for %s\n",
172 __func__, mode, rdev->desc->name);
173 return -EINVAL;
175 return 0;
178 /* dynamic regulator mode switching constraint check */
179 static int regulator_check_drms(struct regulator_dev *rdev)
181 if (!rdev->constraints) {
182 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
183 rdev->desc->name);
184 return -ENODEV;
186 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
187 printk(KERN_ERR "%s: operation not allowed for %s\n",
188 __func__, rdev->desc->name);
189 return -EPERM;
191 return 0;
194 static ssize_t device_requested_uA_show(struct device *dev,
195 struct device_attribute *attr, char *buf)
197 struct regulator *regulator;
199 regulator = get_device_regulator(dev);
200 if (regulator == NULL)
201 return 0;
203 return sprintf(buf, "%d\n", regulator->uA_load);
206 static ssize_t regulator_uV_show(struct device *dev,
207 struct device_attribute *attr, char *buf)
209 struct regulator_dev *rdev = dev_get_drvdata(dev);
210 ssize_t ret;
212 mutex_lock(&rdev->mutex);
213 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
214 mutex_unlock(&rdev->mutex);
216 return ret;
218 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
220 static ssize_t regulator_uA_show(struct device *dev,
221 struct device_attribute *attr, char *buf)
223 struct regulator_dev *rdev = dev_get_drvdata(dev);
225 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
227 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
229 static ssize_t regulator_name_show(struct device *dev,
230 struct device_attribute *attr, char *buf)
232 struct regulator_dev *rdev = dev_get_drvdata(dev);
233 const char *name;
235 if (rdev->constraints->name)
236 name = rdev->constraints->name;
237 else if (rdev->desc->name)
238 name = rdev->desc->name;
239 else
240 name = "";
242 return sprintf(buf, "%s\n", name);
245 static ssize_t regulator_print_opmode(char *buf, int mode)
247 switch (mode) {
248 case REGULATOR_MODE_FAST:
249 return sprintf(buf, "fast\n");
250 case REGULATOR_MODE_NORMAL:
251 return sprintf(buf, "normal\n");
252 case REGULATOR_MODE_IDLE:
253 return sprintf(buf, "idle\n");
254 case REGULATOR_MODE_STANDBY:
255 return sprintf(buf, "standby\n");
257 return sprintf(buf, "unknown\n");
260 static ssize_t regulator_opmode_show(struct device *dev,
261 struct device_attribute *attr, char *buf)
263 struct regulator_dev *rdev = dev_get_drvdata(dev);
265 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
267 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
269 static ssize_t regulator_print_state(char *buf, int state)
271 if (state > 0)
272 return sprintf(buf, "enabled\n");
273 else if (state == 0)
274 return sprintf(buf, "disabled\n");
275 else
276 return sprintf(buf, "unknown\n");
279 static ssize_t regulator_state_show(struct device *dev,
280 struct device_attribute *attr, char *buf)
282 struct regulator_dev *rdev = dev_get_drvdata(dev);
284 return regulator_print_state(buf, _regulator_is_enabled(rdev));
286 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
288 static ssize_t regulator_status_show(struct device *dev,
289 struct device_attribute *attr, char *buf)
291 struct regulator_dev *rdev = dev_get_drvdata(dev);
292 int status;
293 char *label;
295 status = rdev->desc->ops->get_status(rdev);
296 if (status < 0)
297 return status;
299 switch (status) {
300 case REGULATOR_STATUS_OFF:
301 label = "off";
302 break;
303 case REGULATOR_STATUS_ON:
304 label = "on";
305 break;
306 case REGULATOR_STATUS_ERROR:
307 label = "error";
308 break;
309 case REGULATOR_STATUS_FAST:
310 label = "fast";
311 break;
312 case REGULATOR_STATUS_NORMAL:
313 label = "normal";
314 break;
315 case REGULATOR_STATUS_IDLE:
316 label = "idle";
317 break;
318 case REGULATOR_STATUS_STANDBY:
319 label = "standby";
320 break;
321 default:
322 return -ERANGE;
325 return sprintf(buf, "%s\n", label);
327 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
329 static ssize_t regulator_min_uA_show(struct device *dev,
330 struct device_attribute *attr, char *buf)
332 struct regulator_dev *rdev = dev_get_drvdata(dev);
334 if (!rdev->constraints)
335 return sprintf(buf, "constraint not defined\n");
337 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
339 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
341 static ssize_t regulator_max_uA_show(struct device *dev,
342 struct device_attribute *attr, char *buf)
344 struct regulator_dev *rdev = dev_get_drvdata(dev);
346 if (!rdev->constraints)
347 return sprintf(buf, "constraint not defined\n");
349 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
351 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
353 static ssize_t regulator_min_uV_show(struct device *dev,
354 struct device_attribute *attr, char *buf)
356 struct regulator_dev *rdev = dev_get_drvdata(dev);
358 if (!rdev->constraints)
359 return sprintf(buf, "constraint not defined\n");
361 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
363 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
365 static ssize_t regulator_max_uV_show(struct device *dev,
366 struct device_attribute *attr, char *buf)
368 struct regulator_dev *rdev = dev_get_drvdata(dev);
370 if (!rdev->constraints)
371 return sprintf(buf, "constraint not defined\n");
373 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
375 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
377 static ssize_t regulator_total_uA_show(struct device *dev,
378 struct device_attribute *attr, char *buf)
380 struct regulator_dev *rdev = dev_get_drvdata(dev);
381 struct regulator *regulator;
382 int uA = 0;
384 mutex_lock(&rdev->mutex);
385 list_for_each_entry(regulator, &rdev->consumer_list, list)
386 uA += regulator->uA_load;
387 mutex_unlock(&rdev->mutex);
388 return sprintf(buf, "%d\n", uA);
390 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
392 static ssize_t regulator_num_users_show(struct device *dev,
393 struct device_attribute *attr, char *buf)
395 struct regulator_dev *rdev = dev_get_drvdata(dev);
396 return sprintf(buf, "%d\n", rdev->use_count);
399 static ssize_t regulator_type_show(struct device *dev,
400 struct device_attribute *attr, char *buf)
402 struct regulator_dev *rdev = dev_get_drvdata(dev);
404 switch (rdev->desc->type) {
405 case REGULATOR_VOLTAGE:
406 return sprintf(buf, "voltage\n");
407 case REGULATOR_CURRENT:
408 return sprintf(buf, "current\n");
410 return sprintf(buf, "unknown\n");
413 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
414 struct device_attribute *attr, char *buf)
416 struct regulator_dev *rdev = dev_get_drvdata(dev);
418 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
420 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
421 regulator_suspend_mem_uV_show, NULL);
423 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
424 struct device_attribute *attr, char *buf)
426 struct regulator_dev *rdev = dev_get_drvdata(dev);
428 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
430 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
431 regulator_suspend_disk_uV_show, NULL);
433 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
434 struct device_attribute *attr, char *buf)
436 struct regulator_dev *rdev = dev_get_drvdata(dev);
438 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
440 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
441 regulator_suspend_standby_uV_show, NULL);
443 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
444 struct device_attribute *attr, char *buf)
446 struct regulator_dev *rdev = dev_get_drvdata(dev);
448 return regulator_print_opmode(buf,
449 rdev->constraints->state_mem.mode);
451 static DEVICE_ATTR(suspend_mem_mode, 0444,
452 regulator_suspend_mem_mode_show, NULL);
454 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
455 struct device_attribute *attr, char *buf)
457 struct regulator_dev *rdev = dev_get_drvdata(dev);
459 return regulator_print_opmode(buf,
460 rdev->constraints->state_disk.mode);
462 static DEVICE_ATTR(suspend_disk_mode, 0444,
463 regulator_suspend_disk_mode_show, NULL);
465 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
466 struct device_attribute *attr, char *buf)
468 struct regulator_dev *rdev = dev_get_drvdata(dev);
470 return regulator_print_opmode(buf,
471 rdev->constraints->state_standby.mode);
473 static DEVICE_ATTR(suspend_standby_mode, 0444,
474 regulator_suspend_standby_mode_show, NULL);
476 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
477 struct device_attribute *attr, char *buf)
479 struct regulator_dev *rdev = dev_get_drvdata(dev);
481 return regulator_print_state(buf,
482 rdev->constraints->state_mem.enabled);
484 static DEVICE_ATTR(suspend_mem_state, 0444,
485 regulator_suspend_mem_state_show, NULL);
487 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
488 struct device_attribute *attr, char *buf)
490 struct regulator_dev *rdev = dev_get_drvdata(dev);
492 return regulator_print_state(buf,
493 rdev->constraints->state_disk.enabled);
495 static DEVICE_ATTR(suspend_disk_state, 0444,
496 regulator_suspend_disk_state_show, NULL);
498 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
499 struct device_attribute *attr, char *buf)
501 struct regulator_dev *rdev = dev_get_drvdata(dev);
503 return regulator_print_state(buf,
504 rdev->constraints->state_standby.enabled);
506 static DEVICE_ATTR(suspend_standby_state, 0444,
507 regulator_suspend_standby_state_show, NULL);
511 * These are the only attributes are present for all regulators.
512 * Other attributes are a function of regulator functionality.
514 static struct device_attribute regulator_dev_attrs[] = {
515 __ATTR(name, 0444, regulator_name_show, NULL),
516 __ATTR(num_users, 0444, regulator_num_users_show, NULL),
517 __ATTR(type, 0444, regulator_type_show, NULL),
518 __ATTR_NULL,
521 static void regulator_dev_release(struct device *dev)
523 struct regulator_dev *rdev = dev_get_drvdata(dev);
524 kfree(rdev);
527 static struct class regulator_class = {
528 .name = "regulator",
529 .dev_release = regulator_dev_release,
530 .dev_attrs = regulator_dev_attrs,
533 /* Calculate the new optimum regulator operating mode based on the new total
534 * consumer load. All locks held by caller */
535 static void drms_uA_update(struct regulator_dev *rdev)
537 struct regulator *sibling;
538 int current_uA = 0, output_uV, input_uV, err;
539 unsigned int mode;
541 err = regulator_check_drms(rdev);
542 if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
543 !rdev->desc->ops->get_voltage || !rdev->desc->ops->set_mode)
544 return;
546 /* get output voltage */
547 output_uV = rdev->desc->ops->get_voltage(rdev);
548 if (output_uV <= 0)
549 return;
551 /* get input voltage */
552 if (rdev->supply && rdev->supply->desc->ops->get_voltage)
553 input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
554 else
555 input_uV = rdev->constraints->input_uV;
556 if (input_uV <= 0)
557 return;
559 /* calc total requested load */
560 list_for_each_entry(sibling, &rdev->consumer_list, list)
561 current_uA += sibling->uA_load;
563 /* now get the optimum mode for our new total regulator load */
564 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
565 output_uV, current_uA);
567 /* check the new mode is allowed */
568 err = regulator_check_mode(rdev, mode);
569 if (err == 0)
570 rdev->desc->ops->set_mode(rdev, mode);
573 static int suspend_set_state(struct regulator_dev *rdev,
574 struct regulator_state *rstate)
576 int ret = 0;
578 /* enable & disable are mandatory for suspend control */
579 if (!rdev->desc->ops->set_suspend_enable ||
580 !rdev->desc->ops->set_suspend_disable) {
581 printk(KERN_ERR "%s: no way to set suspend state\n",
582 __func__);
583 return -EINVAL;
586 if (rstate->enabled)
587 ret = rdev->desc->ops->set_suspend_enable(rdev);
588 else
589 ret = rdev->desc->ops->set_suspend_disable(rdev);
590 if (ret < 0) {
591 printk(KERN_ERR "%s: failed to enabled/disable\n", __func__);
592 return ret;
595 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
596 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
597 if (ret < 0) {
598 printk(KERN_ERR "%s: failed to set voltage\n",
599 __func__);
600 return ret;
604 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
605 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
606 if (ret < 0) {
607 printk(KERN_ERR "%s: failed to set mode\n", __func__);
608 return ret;
611 return ret;
614 /* locks held by caller */
615 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
617 if (!rdev->constraints)
618 return -EINVAL;
620 switch (state) {
621 case PM_SUSPEND_STANDBY:
622 return suspend_set_state(rdev,
623 &rdev->constraints->state_standby);
624 case PM_SUSPEND_MEM:
625 return suspend_set_state(rdev,
626 &rdev->constraints->state_mem);
627 case PM_SUSPEND_MAX:
628 return suspend_set_state(rdev,
629 &rdev->constraints->state_disk);
630 default:
631 return -EINVAL;
635 static void print_constraints(struct regulator_dev *rdev)
637 struct regulation_constraints *constraints = rdev->constraints;
638 char buf[80];
639 int count;
641 if (rdev->desc->type == REGULATOR_VOLTAGE) {
642 if (constraints->min_uV == constraints->max_uV)
643 count = sprintf(buf, "%d mV ",
644 constraints->min_uV / 1000);
645 else
646 count = sprintf(buf, "%d <--> %d mV ",
647 constraints->min_uV / 1000,
648 constraints->max_uV / 1000);
649 } else {
650 if (constraints->min_uA == constraints->max_uA)
651 count = sprintf(buf, "%d mA ",
652 constraints->min_uA / 1000);
653 else
654 count = sprintf(buf, "%d <--> %d mA ",
655 constraints->min_uA / 1000,
656 constraints->max_uA / 1000);
658 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
659 count += sprintf(buf + count, "fast ");
660 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
661 count += sprintf(buf + count, "normal ");
662 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
663 count += sprintf(buf + count, "idle ");
664 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
665 count += sprintf(buf + count, "standby");
667 printk(KERN_INFO "regulator: %s: %s\n", rdev->desc->name, buf);
671 * set_machine_constraints - sets regulator constraints
672 * @rdev: regulator source
673 * @constraints: constraints to apply
675 * Allows platform initialisation code to define and constrain
676 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
677 * Constraints *must* be set by platform code in order for some
678 * regulator operations to proceed i.e. set_voltage, set_current_limit,
679 * set_mode.
681 static int set_machine_constraints(struct regulator_dev *rdev,
682 struct regulation_constraints *constraints)
684 int ret = 0;
685 const char *name;
686 struct regulator_ops *ops = rdev->desc->ops;
688 if (constraints->name)
689 name = constraints->name;
690 else if (rdev->desc->name)
691 name = rdev->desc->name;
692 else
693 name = "regulator";
695 /* constrain machine-level voltage specs to fit
696 * the actual range supported by this regulator.
698 if (ops->list_voltage && rdev->desc->n_voltages) {
699 int count = rdev->desc->n_voltages;
700 int i;
701 int min_uV = INT_MAX;
702 int max_uV = INT_MIN;
703 int cmin = constraints->min_uV;
704 int cmax = constraints->max_uV;
706 /* it's safe to autoconfigure fixed-voltage supplies
707 and the constraints are used by list_voltage. */
708 if (count == 1 && !cmin) {
709 cmin = 1;
710 cmax = INT_MAX;
711 constraints->min_uV = cmin;
712 constraints->max_uV = cmax;
715 /* voltage constraints are optional */
716 if ((cmin == 0) && (cmax == 0))
717 goto out;
719 /* else require explicit machine-level constraints */
720 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
721 pr_err("%s: %s '%s' voltage constraints\n",
722 __func__, "invalid", name);
723 ret = -EINVAL;
724 goto out;
727 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
728 for (i = 0; i < count; i++) {
729 int value;
731 value = ops->list_voltage(rdev, i);
732 if (value <= 0)
733 continue;
735 /* maybe adjust [min_uV..max_uV] */
736 if (value >= cmin && value < min_uV)
737 min_uV = value;
738 if (value <= cmax && value > max_uV)
739 max_uV = value;
742 /* final: [min_uV..max_uV] valid iff constraints valid */
743 if (max_uV < min_uV) {
744 pr_err("%s: %s '%s' voltage constraints\n",
745 __func__, "unsupportable", name);
746 ret = -EINVAL;
747 goto out;
750 /* use regulator's subset of machine constraints */
751 if (constraints->min_uV < min_uV) {
752 pr_debug("%s: override '%s' %s, %d -> %d\n",
753 __func__, name, "min_uV",
754 constraints->min_uV, min_uV);
755 constraints->min_uV = min_uV;
757 if (constraints->max_uV > max_uV) {
758 pr_debug("%s: override '%s' %s, %d -> %d\n",
759 __func__, name, "max_uV",
760 constraints->max_uV, max_uV);
761 constraints->max_uV = max_uV;
765 rdev->constraints = constraints;
767 /* do we need to apply the constraint voltage */
768 if (rdev->constraints->apply_uV &&
769 rdev->constraints->min_uV == rdev->constraints->max_uV &&
770 ops->set_voltage) {
771 ret = ops->set_voltage(rdev,
772 rdev->constraints->min_uV, rdev->constraints->max_uV);
773 if (ret < 0) {
774 printk(KERN_ERR "%s: failed to apply %duV constraint to %s\n",
775 __func__,
776 rdev->constraints->min_uV, name);
777 rdev->constraints = NULL;
778 goto out;
782 /* do we need to setup our suspend state */
783 if (constraints->initial_state) {
784 ret = suspend_prepare(rdev, constraints->initial_state);
785 if (ret < 0) {
786 printk(KERN_ERR "%s: failed to set suspend state for %s\n",
787 __func__, name);
788 rdev->constraints = NULL;
789 goto out;
793 if (constraints->initial_mode) {
794 if (!ops->set_mode) {
795 printk(KERN_ERR "%s: no set_mode operation for %s\n",
796 __func__, name);
797 ret = -EINVAL;
798 goto out;
801 ret = ops->set_mode(rdev, constraints->initial_mode);
802 if (ret < 0) {
803 printk(KERN_ERR
804 "%s: failed to set initial mode for %s: %d\n",
805 __func__, name, ret);
806 goto out;
810 /* If the constraints say the regulator should be on at this point
811 * and we have control then make sure it is enabled.
813 if ((constraints->always_on || constraints->boot_on) && ops->enable) {
814 ret = ops->enable(rdev);
815 if (ret < 0) {
816 printk(KERN_ERR "%s: failed to enable %s\n",
817 __func__, name);
818 rdev->constraints = NULL;
819 goto out;
823 print_constraints(rdev);
824 out:
825 return ret;
829 * set_supply - set regulator supply regulator
830 * @rdev: regulator name
831 * @supply_rdev: supply regulator name
833 * Called by platform initialisation code to set the supply regulator for this
834 * regulator. This ensures that a regulators supply will also be enabled by the
835 * core if it's child is enabled.
837 static int set_supply(struct regulator_dev *rdev,
838 struct regulator_dev *supply_rdev)
840 int err;
842 err = sysfs_create_link(&rdev->dev.kobj, &supply_rdev->dev.kobj,
843 "supply");
844 if (err) {
845 printk(KERN_ERR
846 "%s: could not add device link %s err %d\n",
847 __func__, supply_rdev->dev.kobj.name, err);
848 goto out;
850 rdev->supply = supply_rdev;
851 list_add(&rdev->slist, &supply_rdev->supply_list);
852 out:
853 return err;
857 * set_consumer_device_supply: Bind a regulator to a symbolic supply
858 * @rdev: regulator source
859 * @consumer_dev: device the supply applies to
860 * @supply: symbolic name for supply
862 * Allows platform initialisation code to map physical regulator
863 * sources to symbolic names for supplies for use by devices. Devices
864 * should use these symbolic names to request regulators, avoiding the
865 * need to provide board-specific regulator names as platform data.
867 static int set_consumer_device_supply(struct regulator_dev *rdev,
868 struct device *consumer_dev, const char *supply)
870 struct regulator_map *node;
872 if (supply == NULL)
873 return -EINVAL;
875 list_for_each_entry(node, &regulator_map_list, list) {
876 if (consumer_dev != node->dev)
877 continue;
878 if (strcmp(node->supply, supply) != 0)
879 continue;
881 dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
882 dev_name(&node->regulator->dev),
883 node->regulator->desc->name,
884 supply,
885 dev_name(&rdev->dev), rdev->desc->name);
886 return -EBUSY;
889 node = kmalloc(sizeof(struct regulator_map), GFP_KERNEL);
890 if (node == NULL)
891 return -ENOMEM;
893 node->regulator = rdev;
894 node->dev = consumer_dev;
895 node->supply = supply;
897 list_add(&node->list, &regulator_map_list);
898 return 0;
901 static void unset_consumer_device_supply(struct regulator_dev *rdev,
902 struct device *consumer_dev)
904 struct regulator_map *node, *n;
906 list_for_each_entry_safe(node, n, &regulator_map_list, list) {
907 if (rdev == node->regulator &&
908 consumer_dev == node->dev) {
909 list_del(&node->list);
910 kfree(node);
911 return;
916 static void unset_regulator_supplies(struct regulator_dev *rdev)
918 struct regulator_map *node, *n;
920 list_for_each_entry_safe(node, n, &regulator_map_list, list) {
921 if (rdev == node->regulator) {
922 list_del(&node->list);
923 kfree(node);
924 return;
929 #define REG_STR_SIZE 32
931 static struct regulator *create_regulator(struct regulator_dev *rdev,
932 struct device *dev,
933 const char *supply_name)
935 struct regulator *regulator;
936 char buf[REG_STR_SIZE];
937 int err, size;
939 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
940 if (regulator == NULL)
941 return NULL;
943 mutex_lock(&rdev->mutex);
944 regulator->rdev = rdev;
945 list_add(&regulator->list, &rdev->consumer_list);
947 if (dev) {
948 /* create a 'requested_microamps_name' sysfs entry */
949 size = scnprintf(buf, REG_STR_SIZE, "microamps_requested_%s",
950 supply_name);
951 if (size >= REG_STR_SIZE)
952 goto overflow_err;
954 regulator->dev = dev;
955 regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
956 if (regulator->dev_attr.attr.name == NULL)
957 goto attr_name_err;
959 regulator->dev_attr.attr.owner = THIS_MODULE;
960 regulator->dev_attr.attr.mode = 0444;
961 regulator->dev_attr.show = device_requested_uA_show;
962 err = device_create_file(dev, &regulator->dev_attr);
963 if (err < 0) {
964 printk(KERN_WARNING "%s: could not add regulator_dev"
965 " load sysfs\n", __func__);
966 goto attr_name_err;
969 /* also add a link to the device sysfs entry */
970 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
971 dev->kobj.name, supply_name);
972 if (size >= REG_STR_SIZE)
973 goto attr_err;
975 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
976 if (regulator->supply_name == NULL)
977 goto attr_err;
979 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
980 buf);
981 if (err) {
982 printk(KERN_WARNING
983 "%s: could not add device link %s err %d\n",
984 __func__, dev->kobj.name, err);
985 device_remove_file(dev, &regulator->dev_attr);
986 goto link_name_err;
989 mutex_unlock(&rdev->mutex);
990 return regulator;
991 link_name_err:
992 kfree(regulator->supply_name);
993 attr_err:
994 device_remove_file(regulator->dev, &regulator->dev_attr);
995 attr_name_err:
996 kfree(regulator->dev_attr.attr.name);
997 overflow_err:
998 list_del(&regulator->list);
999 kfree(regulator);
1000 mutex_unlock(&rdev->mutex);
1001 return NULL;
1005 * regulator_get - lookup and obtain a reference to a regulator.
1006 * @dev: device for regulator "consumer"
1007 * @id: Supply name or regulator ID.
1009 * Returns a struct regulator corresponding to the regulator producer,
1010 * or IS_ERR() condition containing errno.
1012 * Use of supply names configured via regulator_set_device_supply() is
1013 * strongly encouraged. It is recommended that the supply name used
1014 * should match the name used for the supply and/or the relevant
1015 * device pins in the datasheet.
1017 struct regulator *regulator_get(struct device *dev, const char *id)
1019 struct regulator_dev *rdev;
1020 struct regulator_map *map;
1021 struct regulator *regulator = ERR_PTR(-ENODEV);
1023 if (id == NULL) {
1024 printk(KERN_ERR "regulator: get() with no identifier\n");
1025 return regulator;
1028 mutex_lock(&regulator_list_mutex);
1030 list_for_each_entry(map, &regulator_map_list, list) {
1031 if (dev == map->dev &&
1032 strcmp(map->supply, id) == 0) {
1033 rdev = map->regulator;
1034 goto found;
1037 mutex_unlock(&regulator_list_mutex);
1038 return regulator;
1040 found:
1041 if (!try_module_get(rdev->owner))
1042 goto out;
1044 regulator = create_regulator(rdev, dev, id);
1045 if (regulator == NULL) {
1046 regulator = ERR_PTR(-ENOMEM);
1047 module_put(rdev->owner);
1050 out:
1051 mutex_unlock(&regulator_list_mutex);
1052 return regulator;
1054 EXPORT_SYMBOL_GPL(regulator_get);
1057 * regulator_put - "free" the regulator source
1058 * @regulator: regulator source
1060 * Note: drivers must ensure that all regulator_enable calls made on this
1061 * regulator source are balanced by regulator_disable calls prior to calling
1062 * this function.
1064 void regulator_put(struct regulator *regulator)
1066 struct regulator_dev *rdev;
1068 if (regulator == NULL || IS_ERR(regulator))
1069 return;
1071 mutex_lock(&regulator_list_mutex);
1072 rdev = regulator->rdev;
1074 /* remove any sysfs entries */
1075 if (regulator->dev) {
1076 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1077 kfree(regulator->supply_name);
1078 device_remove_file(regulator->dev, &regulator->dev_attr);
1079 kfree(regulator->dev_attr.attr.name);
1081 list_del(&regulator->list);
1082 kfree(regulator);
1084 module_put(rdev->owner);
1085 mutex_unlock(&regulator_list_mutex);
1087 EXPORT_SYMBOL_GPL(regulator_put);
1089 /* locks held by regulator_enable() */
1090 static int _regulator_enable(struct regulator_dev *rdev)
1092 int ret = -EINVAL;
1094 if (!rdev->constraints) {
1095 printk(KERN_ERR "%s: %s has no constraints\n",
1096 __func__, rdev->desc->name);
1097 return ret;
1100 /* do we need to enable the supply regulator first */
1101 if (rdev->supply) {
1102 ret = _regulator_enable(rdev->supply);
1103 if (ret < 0) {
1104 printk(KERN_ERR "%s: failed to enable %s: %d\n",
1105 __func__, rdev->desc->name, ret);
1106 return ret;
1110 /* check voltage and requested load before enabling */
1111 if (rdev->desc->ops->enable) {
1113 if (rdev->constraints &&
1114 (rdev->constraints->valid_ops_mask &
1115 REGULATOR_CHANGE_DRMS))
1116 drms_uA_update(rdev);
1118 ret = rdev->desc->ops->enable(rdev);
1119 if (ret < 0) {
1120 printk(KERN_ERR "%s: failed to enable %s: %d\n",
1121 __func__, rdev->desc->name, ret);
1122 return ret;
1124 rdev->use_count++;
1125 return ret;
1128 return ret;
1132 * regulator_enable - enable regulator output
1133 * @regulator: regulator source
1135 * Request that the regulator be enabled with the regulator output at
1136 * the predefined voltage or current value. Calls to regulator_enable()
1137 * must be balanced with calls to regulator_disable().
1139 * NOTE: the output value can be set by other drivers, boot loader or may be
1140 * hardwired in the regulator.
1142 int regulator_enable(struct regulator *regulator)
1144 struct regulator_dev *rdev = regulator->rdev;
1145 int ret = 0;
1147 mutex_lock(&rdev->mutex);
1148 ret = _regulator_enable(rdev);
1149 mutex_unlock(&rdev->mutex);
1150 return ret;
1152 EXPORT_SYMBOL_GPL(regulator_enable);
1154 /* locks held by regulator_disable() */
1155 static int _regulator_disable(struct regulator_dev *rdev)
1157 int ret = 0;
1159 if (WARN(rdev->use_count <= 0,
1160 "unbalanced disables for %s\n",
1161 rdev->desc->name))
1162 return -EIO;
1164 /* are we the last user and permitted to disable ? */
1165 if (rdev->use_count == 1 && !rdev->constraints->always_on) {
1167 /* we are last user */
1168 if (rdev->desc->ops->disable) {
1169 ret = rdev->desc->ops->disable(rdev);
1170 if (ret < 0) {
1171 printk(KERN_ERR "%s: failed to disable %s\n",
1172 __func__, rdev->desc->name);
1173 return ret;
1177 /* decrease our supplies ref count and disable if required */
1178 if (rdev->supply)
1179 _regulator_disable(rdev->supply);
1181 rdev->use_count = 0;
1182 } else if (rdev->use_count > 1) {
1184 if (rdev->constraints &&
1185 (rdev->constraints->valid_ops_mask &
1186 REGULATOR_CHANGE_DRMS))
1187 drms_uA_update(rdev);
1189 rdev->use_count--;
1191 return ret;
1195 * regulator_disable - disable regulator output
1196 * @regulator: regulator source
1198 * Disable the regulator output voltage or current. Calls to
1199 * regulator_enable() must be balanced with calls to
1200 * regulator_disable().
1202 * NOTE: this will only disable the regulator output if no other consumer
1203 * devices have it enabled, the regulator device supports disabling and
1204 * machine constraints permit this operation.
1206 int regulator_disable(struct regulator *regulator)
1208 struct regulator_dev *rdev = regulator->rdev;
1209 int ret = 0;
1211 mutex_lock(&rdev->mutex);
1212 ret = _regulator_disable(rdev);
1213 mutex_unlock(&rdev->mutex);
1214 return ret;
1216 EXPORT_SYMBOL_GPL(regulator_disable);
1218 /* locks held by regulator_force_disable() */
1219 static int _regulator_force_disable(struct regulator_dev *rdev)
1221 int ret = 0;
1223 /* force disable */
1224 if (rdev->desc->ops->disable) {
1225 /* ah well, who wants to live forever... */
1226 ret = rdev->desc->ops->disable(rdev);
1227 if (ret < 0) {
1228 printk(KERN_ERR "%s: failed to force disable %s\n",
1229 __func__, rdev->desc->name);
1230 return ret;
1232 /* notify other consumers that power has been forced off */
1233 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE,
1234 NULL);
1237 /* decrease our supplies ref count and disable if required */
1238 if (rdev->supply)
1239 _regulator_disable(rdev->supply);
1241 rdev->use_count = 0;
1242 return ret;
1246 * regulator_force_disable - force disable regulator output
1247 * @regulator: regulator source
1249 * Forcibly disable the regulator output voltage or current.
1250 * NOTE: this *will* disable the regulator output even if other consumer
1251 * devices have it enabled. This should be used for situations when device
1252 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1254 int regulator_force_disable(struct regulator *regulator)
1256 int ret;
1258 mutex_lock(&regulator->rdev->mutex);
1259 regulator->uA_load = 0;
1260 ret = _regulator_force_disable(regulator->rdev);
1261 mutex_unlock(&regulator->rdev->mutex);
1262 return ret;
1264 EXPORT_SYMBOL_GPL(regulator_force_disable);
1266 static int _regulator_is_enabled(struct regulator_dev *rdev)
1268 int ret;
1270 mutex_lock(&rdev->mutex);
1272 /* sanity check */
1273 if (!rdev->desc->ops->is_enabled) {
1274 ret = -EINVAL;
1275 goto out;
1278 ret = rdev->desc->ops->is_enabled(rdev);
1279 out:
1280 mutex_unlock(&rdev->mutex);
1281 return ret;
1285 * regulator_is_enabled - is the regulator output enabled
1286 * @regulator: regulator source
1288 * Returns positive if the regulator driver backing the source/client
1289 * has requested that the device be enabled, zero if it hasn't, else a
1290 * negative errno code.
1292 * Note that the device backing this regulator handle can have multiple
1293 * users, so it might be enabled even if regulator_enable() was never
1294 * called for this particular source.
1296 int regulator_is_enabled(struct regulator *regulator)
1298 return _regulator_is_enabled(regulator->rdev);
1300 EXPORT_SYMBOL_GPL(regulator_is_enabled);
1303 * regulator_count_voltages - count regulator_list_voltage() selectors
1304 * @regulator: regulator source
1306 * Returns number of selectors, or negative errno. Selectors are
1307 * numbered starting at zero, and typically correspond to bitfields
1308 * in hardware registers.
1310 int regulator_count_voltages(struct regulator *regulator)
1312 struct regulator_dev *rdev = regulator->rdev;
1314 return rdev->desc->n_voltages ? : -EINVAL;
1316 EXPORT_SYMBOL_GPL(regulator_count_voltages);
1319 * regulator_list_voltage - enumerate supported voltages
1320 * @regulator: regulator source
1321 * @selector: identify voltage to list
1322 * Context: can sleep
1324 * Returns a voltage that can be passed to @regulator_set_voltage(),
1325 * zero if this selector code can't be used on this sytem, or a
1326 * negative errno.
1328 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1330 struct regulator_dev *rdev = regulator->rdev;
1331 struct regulator_ops *ops = rdev->desc->ops;
1332 int ret;
1334 if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1335 return -EINVAL;
1337 mutex_lock(&rdev->mutex);
1338 ret = ops->list_voltage(rdev, selector);
1339 mutex_unlock(&rdev->mutex);
1341 if (ret > 0) {
1342 if (ret < rdev->constraints->min_uV)
1343 ret = 0;
1344 else if (ret > rdev->constraints->max_uV)
1345 ret = 0;
1348 return ret;
1350 EXPORT_SYMBOL_GPL(regulator_list_voltage);
1353 * regulator_set_voltage - set regulator output voltage
1354 * @regulator: regulator source
1355 * @min_uV: Minimum required voltage in uV
1356 * @max_uV: Maximum acceptable voltage in uV
1358 * Sets a voltage regulator to the desired output voltage. This can be set
1359 * during any regulator state. IOW, regulator can be disabled or enabled.
1361 * If the regulator is enabled then the voltage will change to the new value
1362 * immediately otherwise if the regulator is disabled the regulator will
1363 * output at the new voltage when enabled.
1365 * NOTE: If the regulator is shared between several devices then the lowest
1366 * request voltage that meets the system constraints will be used.
1367 * Regulator system constraints must be set for this regulator before
1368 * calling this function otherwise this call will fail.
1370 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1372 struct regulator_dev *rdev = regulator->rdev;
1373 int ret;
1375 mutex_lock(&rdev->mutex);
1377 /* sanity check */
1378 if (!rdev->desc->ops->set_voltage) {
1379 ret = -EINVAL;
1380 goto out;
1383 /* constraints check */
1384 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1385 if (ret < 0)
1386 goto out;
1387 regulator->min_uV = min_uV;
1388 regulator->max_uV = max_uV;
1389 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV);
1391 out:
1392 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, NULL);
1393 mutex_unlock(&rdev->mutex);
1394 return ret;
1396 EXPORT_SYMBOL_GPL(regulator_set_voltage);
1398 static int _regulator_get_voltage(struct regulator_dev *rdev)
1400 /* sanity check */
1401 if (rdev->desc->ops->get_voltage)
1402 return rdev->desc->ops->get_voltage(rdev);
1403 else
1404 return -EINVAL;
1408 * regulator_get_voltage - get regulator output voltage
1409 * @regulator: regulator source
1411 * This returns the current regulator voltage in uV.
1413 * NOTE: If the regulator is disabled it will return the voltage value. This
1414 * function should not be used to determine regulator state.
1416 int regulator_get_voltage(struct regulator *regulator)
1418 int ret;
1420 mutex_lock(&regulator->rdev->mutex);
1422 ret = _regulator_get_voltage(regulator->rdev);
1424 mutex_unlock(&regulator->rdev->mutex);
1426 return ret;
1428 EXPORT_SYMBOL_GPL(regulator_get_voltage);
1431 * regulator_set_current_limit - set regulator output current limit
1432 * @regulator: regulator source
1433 * @min_uA: Minimuum supported current in uA
1434 * @max_uA: Maximum supported current in uA
1436 * Sets current sink to the desired output current. This can be set during
1437 * any regulator state. IOW, regulator can be disabled or enabled.
1439 * If the regulator is enabled then the current will change to the new value
1440 * immediately otherwise if the regulator is disabled the regulator will
1441 * output at the new current when enabled.
1443 * NOTE: Regulator system constraints must be set for this regulator before
1444 * calling this function otherwise this call will fail.
1446 int regulator_set_current_limit(struct regulator *regulator,
1447 int min_uA, int max_uA)
1449 struct regulator_dev *rdev = regulator->rdev;
1450 int ret;
1452 mutex_lock(&rdev->mutex);
1454 /* sanity check */
1455 if (!rdev->desc->ops->set_current_limit) {
1456 ret = -EINVAL;
1457 goto out;
1460 /* constraints check */
1461 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
1462 if (ret < 0)
1463 goto out;
1465 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
1466 out:
1467 mutex_unlock(&rdev->mutex);
1468 return ret;
1470 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
1472 static int _regulator_get_current_limit(struct regulator_dev *rdev)
1474 int ret;
1476 mutex_lock(&rdev->mutex);
1478 /* sanity check */
1479 if (!rdev->desc->ops->get_current_limit) {
1480 ret = -EINVAL;
1481 goto out;
1484 ret = rdev->desc->ops->get_current_limit(rdev);
1485 out:
1486 mutex_unlock(&rdev->mutex);
1487 return ret;
1491 * regulator_get_current_limit - get regulator output current
1492 * @regulator: regulator source
1494 * This returns the current supplied by the specified current sink in uA.
1496 * NOTE: If the regulator is disabled it will return the current value. This
1497 * function should not be used to determine regulator state.
1499 int regulator_get_current_limit(struct regulator *regulator)
1501 return _regulator_get_current_limit(regulator->rdev);
1503 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
1506 * regulator_set_mode - set regulator operating mode
1507 * @regulator: regulator source
1508 * @mode: operating mode - one of the REGULATOR_MODE constants
1510 * Set regulator operating mode to increase regulator efficiency or improve
1511 * regulation performance.
1513 * NOTE: Regulator system constraints must be set for this regulator before
1514 * calling this function otherwise this call will fail.
1516 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
1518 struct regulator_dev *rdev = regulator->rdev;
1519 int ret;
1521 mutex_lock(&rdev->mutex);
1523 /* sanity check */
1524 if (!rdev->desc->ops->set_mode) {
1525 ret = -EINVAL;
1526 goto out;
1529 /* constraints check */
1530 ret = regulator_check_mode(rdev, mode);
1531 if (ret < 0)
1532 goto out;
1534 ret = rdev->desc->ops->set_mode(rdev, mode);
1535 out:
1536 mutex_unlock(&rdev->mutex);
1537 return ret;
1539 EXPORT_SYMBOL_GPL(regulator_set_mode);
1541 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
1543 int ret;
1545 mutex_lock(&rdev->mutex);
1547 /* sanity check */
1548 if (!rdev->desc->ops->get_mode) {
1549 ret = -EINVAL;
1550 goto out;
1553 ret = rdev->desc->ops->get_mode(rdev);
1554 out:
1555 mutex_unlock(&rdev->mutex);
1556 return ret;
1560 * regulator_get_mode - get regulator operating mode
1561 * @regulator: regulator source
1563 * Get the current regulator operating mode.
1565 unsigned int regulator_get_mode(struct regulator *regulator)
1567 return _regulator_get_mode(regulator->rdev);
1569 EXPORT_SYMBOL_GPL(regulator_get_mode);
1572 * regulator_set_optimum_mode - set regulator optimum operating mode
1573 * @regulator: regulator source
1574 * @uA_load: load current
1576 * Notifies the regulator core of a new device load. This is then used by
1577 * DRMS (if enabled by constraints) to set the most efficient regulator
1578 * operating mode for the new regulator loading.
1580 * Consumer devices notify their supply regulator of the maximum power
1581 * they will require (can be taken from device datasheet in the power
1582 * consumption tables) when they change operational status and hence power
1583 * state. Examples of operational state changes that can affect power
1584 * consumption are :-
1586 * o Device is opened / closed.
1587 * o Device I/O is about to begin or has just finished.
1588 * o Device is idling in between work.
1590 * This information is also exported via sysfs to userspace.
1592 * DRMS will sum the total requested load on the regulator and change
1593 * to the most efficient operating mode if platform constraints allow.
1595 * Returns the new regulator mode or error.
1597 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
1599 struct regulator_dev *rdev = regulator->rdev;
1600 struct regulator *consumer;
1601 int ret, output_uV, input_uV, total_uA_load = 0;
1602 unsigned int mode;
1604 mutex_lock(&rdev->mutex);
1606 regulator->uA_load = uA_load;
1607 ret = regulator_check_drms(rdev);
1608 if (ret < 0)
1609 goto out;
1610 ret = -EINVAL;
1612 /* sanity check */
1613 if (!rdev->desc->ops->get_optimum_mode)
1614 goto out;
1616 /* get output voltage */
1617 output_uV = rdev->desc->ops->get_voltage(rdev);
1618 if (output_uV <= 0) {
1619 printk(KERN_ERR "%s: invalid output voltage found for %s\n",
1620 __func__, rdev->desc->name);
1621 goto out;
1624 /* get input voltage */
1625 if (rdev->supply && rdev->supply->desc->ops->get_voltage)
1626 input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
1627 else
1628 input_uV = rdev->constraints->input_uV;
1629 if (input_uV <= 0) {
1630 printk(KERN_ERR "%s: invalid input voltage found for %s\n",
1631 __func__, rdev->desc->name);
1632 goto out;
1635 /* calc total requested load for this regulator */
1636 list_for_each_entry(consumer, &rdev->consumer_list, list)
1637 total_uA_load += consumer->uA_load;
1639 mode = rdev->desc->ops->get_optimum_mode(rdev,
1640 input_uV, output_uV,
1641 total_uA_load);
1642 ret = regulator_check_mode(rdev, mode);
1643 if (ret < 0) {
1644 printk(KERN_ERR "%s: failed to get optimum mode for %s @"
1645 " %d uA %d -> %d uV\n", __func__, rdev->desc->name,
1646 total_uA_load, input_uV, output_uV);
1647 goto out;
1650 ret = rdev->desc->ops->set_mode(rdev, mode);
1651 if (ret < 0) {
1652 printk(KERN_ERR "%s: failed to set optimum mode %x for %s\n",
1653 __func__, mode, rdev->desc->name);
1654 goto out;
1656 ret = mode;
1657 out:
1658 mutex_unlock(&rdev->mutex);
1659 return ret;
1661 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
1664 * regulator_register_notifier - register regulator event notifier
1665 * @regulator: regulator source
1666 * @nb: notifier block
1668 * Register notifier block to receive regulator events.
1670 int regulator_register_notifier(struct regulator *regulator,
1671 struct notifier_block *nb)
1673 return blocking_notifier_chain_register(&regulator->rdev->notifier,
1674 nb);
1676 EXPORT_SYMBOL_GPL(regulator_register_notifier);
1679 * regulator_unregister_notifier - unregister regulator event notifier
1680 * @regulator: regulator source
1681 * @nb: notifier block
1683 * Unregister regulator event notifier block.
1685 int regulator_unregister_notifier(struct regulator *regulator,
1686 struct notifier_block *nb)
1688 return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
1689 nb);
1691 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
1693 /* notify regulator consumers and downstream regulator consumers.
1694 * Note mutex must be held by caller.
1696 static void _notifier_call_chain(struct regulator_dev *rdev,
1697 unsigned long event, void *data)
1699 struct regulator_dev *_rdev;
1701 /* call rdev chain first */
1702 blocking_notifier_call_chain(&rdev->notifier, event, NULL);
1704 /* now notify regulator we supply */
1705 list_for_each_entry(_rdev, &rdev->supply_list, slist) {
1706 mutex_lock(&_rdev->mutex);
1707 _notifier_call_chain(_rdev, event, data);
1708 mutex_unlock(&_rdev->mutex);
1713 * regulator_bulk_get - get multiple regulator consumers
1715 * @dev: Device to supply
1716 * @num_consumers: Number of consumers to register
1717 * @consumers: Configuration of consumers; clients are stored here.
1719 * @return 0 on success, an errno on failure.
1721 * This helper function allows drivers to get several regulator
1722 * consumers in one operation. If any of the regulators cannot be
1723 * acquired then any regulators that were allocated will be freed
1724 * before returning to the caller.
1726 int regulator_bulk_get(struct device *dev, int num_consumers,
1727 struct regulator_bulk_data *consumers)
1729 int i;
1730 int ret;
1732 for (i = 0; i < num_consumers; i++)
1733 consumers[i].consumer = NULL;
1735 for (i = 0; i < num_consumers; i++) {
1736 consumers[i].consumer = regulator_get(dev,
1737 consumers[i].supply);
1738 if (IS_ERR(consumers[i].consumer)) {
1739 dev_err(dev, "Failed to get supply '%s'\n",
1740 consumers[i].supply);
1741 ret = PTR_ERR(consumers[i].consumer);
1742 consumers[i].consumer = NULL;
1743 goto err;
1747 return 0;
1749 err:
1750 for (i = 0; i < num_consumers && consumers[i].consumer; i++)
1751 regulator_put(consumers[i].consumer);
1753 return ret;
1755 EXPORT_SYMBOL_GPL(regulator_bulk_get);
1758 * regulator_bulk_enable - enable multiple regulator consumers
1760 * @num_consumers: Number of consumers
1761 * @consumers: Consumer data; clients are stored here.
1762 * @return 0 on success, an errno on failure
1764 * This convenience API allows consumers to enable multiple regulator
1765 * clients in a single API call. If any consumers cannot be enabled
1766 * then any others that were enabled will be disabled again prior to
1767 * return.
1769 int regulator_bulk_enable(int num_consumers,
1770 struct regulator_bulk_data *consumers)
1772 int i;
1773 int ret;
1775 for (i = 0; i < num_consumers; i++) {
1776 ret = regulator_enable(consumers[i].consumer);
1777 if (ret != 0)
1778 goto err;
1781 return 0;
1783 err:
1784 printk(KERN_ERR "Failed to enable %s\n", consumers[i].supply);
1785 for (i = 0; i < num_consumers; i++)
1786 regulator_disable(consumers[i].consumer);
1788 return ret;
1790 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
1793 * regulator_bulk_disable - disable multiple regulator consumers
1795 * @num_consumers: Number of consumers
1796 * @consumers: Consumer data; clients are stored here.
1797 * @return 0 on success, an errno on failure
1799 * This convenience API allows consumers to disable multiple regulator
1800 * clients in a single API call. If any consumers cannot be enabled
1801 * then any others that were disabled will be disabled again prior to
1802 * return.
1804 int regulator_bulk_disable(int num_consumers,
1805 struct regulator_bulk_data *consumers)
1807 int i;
1808 int ret;
1810 for (i = 0; i < num_consumers; i++) {
1811 ret = regulator_disable(consumers[i].consumer);
1812 if (ret != 0)
1813 goto err;
1816 return 0;
1818 err:
1819 printk(KERN_ERR "Failed to disable %s\n", consumers[i].supply);
1820 for (i = 0; i < num_consumers; i++)
1821 regulator_enable(consumers[i].consumer);
1823 return ret;
1825 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
1828 * regulator_bulk_free - free multiple regulator consumers
1830 * @num_consumers: Number of consumers
1831 * @consumers: Consumer data; clients are stored here.
1833 * This convenience API allows consumers to free multiple regulator
1834 * clients in a single API call.
1836 void regulator_bulk_free(int num_consumers,
1837 struct regulator_bulk_data *consumers)
1839 int i;
1841 for (i = 0; i < num_consumers; i++) {
1842 regulator_put(consumers[i].consumer);
1843 consumers[i].consumer = NULL;
1846 EXPORT_SYMBOL_GPL(regulator_bulk_free);
1849 * regulator_notifier_call_chain - call regulator event notifier
1850 * @rdev: regulator source
1851 * @event: notifier block
1852 * @data: callback-specific data.
1854 * Called by regulator drivers to notify clients a regulator event has
1855 * occurred. We also notify regulator clients downstream.
1856 * Note lock must be held by caller.
1858 int regulator_notifier_call_chain(struct regulator_dev *rdev,
1859 unsigned long event, void *data)
1861 _notifier_call_chain(rdev, event, data);
1862 return NOTIFY_DONE;
1865 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
1868 * To avoid cluttering sysfs (and memory) with useless state, only
1869 * create attributes that can be meaningfully displayed.
1871 static int add_regulator_attributes(struct regulator_dev *rdev)
1873 struct device *dev = &rdev->dev;
1874 struct regulator_ops *ops = rdev->desc->ops;
1875 int status = 0;
1877 /* some attributes need specific methods to be displayed */
1878 if (ops->get_voltage) {
1879 status = device_create_file(dev, &dev_attr_microvolts);
1880 if (status < 0)
1881 return status;
1883 if (ops->get_current_limit) {
1884 status = device_create_file(dev, &dev_attr_microamps);
1885 if (status < 0)
1886 return status;
1888 if (ops->get_mode) {
1889 status = device_create_file(dev, &dev_attr_opmode);
1890 if (status < 0)
1891 return status;
1893 if (ops->is_enabled) {
1894 status = device_create_file(dev, &dev_attr_state);
1895 if (status < 0)
1896 return status;
1898 if (ops->get_status) {
1899 status = device_create_file(dev, &dev_attr_status);
1900 if (status < 0)
1901 return status;
1904 /* some attributes are type-specific */
1905 if (rdev->desc->type == REGULATOR_CURRENT) {
1906 status = device_create_file(dev, &dev_attr_requested_microamps);
1907 if (status < 0)
1908 return status;
1911 /* all the other attributes exist to support constraints;
1912 * don't show them if there are no constraints, or if the
1913 * relevant supporting methods are missing.
1915 if (!rdev->constraints)
1916 return status;
1918 /* constraints need specific supporting methods */
1919 if (ops->set_voltage) {
1920 status = device_create_file(dev, &dev_attr_min_microvolts);
1921 if (status < 0)
1922 return status;
1923 status = device_create_file(dev, &dev_attr_max_microvolts);
1924 if (status < 0)
1925 return status;
1927 if (ops->set_current_limit) {
1928 status = device_create_file(dev, &dev_attr_min_microamps);
1929 if (status < 0)
1930 return status;
1931 status = device_create_file(dev, &dev_attr_max_microamps);
1932 if (status < 0)
1933 return status;
1936 /* suspend mode constraints need multiple supporting methods */
1937 if (!(ops->set_suspend_enable && ops->set_suspend_disable))
1938 return status;
1940 status = device_create_file(dev, &dev_attr_suspend_standby_state);
1941 if (status < 0)
1942 return status;
1943 status = device_create_file(dev, &dev_attr_suspend_mem_state);
1944 if (status < 0)
1945 return status;
1946 status = device_create_file(dev, &dev_attr_suspend_disk_state);
1947 if (status < 0)
1948 return status;
1950 if (ops->set_suspend_voltage) {
1951 status = device_create_file(dev,
1952 &dev_attr_suspend_standby_microvolts);
1953 if (status < 0)
1954 return status;
1955 status = device_create_file(dev,
1956 &dev_attr_suspend_mem_microvolts);
1957 if (status < 0)
1958 return status;
1959 status = device_create_file(dev,
1960 &dev_attr_suspend_disk_microvolts);
1961 if (status < 0)
1962 return status;
1965 if (ops->set_suspend_mode) {
1966 status = device_create_file(dev,
1967 &dev_attr_suspend_standby_mode);
1968 if (status < 0)
1969 return status;
1970 status = device_create_file(dev,
1971 &dev_attr_suspend_mem_mode);
1972 if (status < 0)
1973 return status;
1974 status = device_create_file(dev,
1975 &dev_attr_suspend_disk_mode);
1976 if (status < 0)
1977 return status;
1980 return status;
1984 * regulator_register - register regulator
1985 * @regulator_desc: regulator to register
1986 * @dev: struct device for the regulator
1987 * @init_data: platform provided init data, passed through by driver
1988 * @driver_data: private regulator data
1990 * Called by regulator drivers to register a regulator.
1991 * Returns 0 on success.
1993 struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
1994 struct device *dev, struct regulator_init_data *init_data,
1995 void *driver_data)
1997 static atomic_t regulator_no = ATOMIC_INIT(0);
1998 struct regulator_dev *rdev;
1999 int ret, i;
2001 if (regulator_desc == NULL)
2002 return ERR_PTR(-EINVAL);
2004 if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2005 return ERR_PTR(-EINVAL);
2007 if (regulator_desc->type != REGULATOR_VOLTAGE &&
2008 regulator_desc->type != REGULATOR_CURRENT)
2009 return ERR_PTR(-EINVAL);
2011 if (!init_data)
2012 return ERR_PTR(-EINVAL);
2014 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2015 if (rdev == NULL)
2016 return ERR_PTR(-ENOMEM);
2018 mutex_lock(&regulator_list_mutex);
2020 mutex_init(&rdev->mutex);
2021 rdev->reg_data = driver_data;
2022 rdev->owner = regulator_desc->owner;
2023 rdev->desc = regulator_desc;
2024 INIT_LIST_HEAD(&rdev->consumer_list);
2025 INIT_LIST_HEAD(&rdev->supply_list);
2026 INIT_LIST_HEAD(&rdev->list);
2027 INIT_LIST_HEAD(&rdev->slist);
2028 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2030 /* preform any regulator specific init */
2031 if (init_data->regulator_init) {
2032 ret = init_data->regulator_init(rdev->reg_data);
2033 if (ret < 0)
2034 goto clean;
2037 /* register with sysfs */
2038 rdev->dev.class = &regulator_class;
2039 rdev->dev.parent = dev;
2040 dev_set_name(&rdev->dev, "regulator.%d",
2041 atomic_inc_return(&regulator_no) - 1);
2042 ret = device_register(&rdev->dev);
2043 if (ret != 0)
2044 goto clean;
2046 dev_set_drvdata(&rdev->dev, rdev);
2048 /* set regulator constraints */
2049 ret = set_machine_constraints(rdev, &init_data->constraints);
2050 if (ret < 0)
2051 goto scrub;
2053 /* add attributes supported by this regulator */
2054 ret = add_regulator_attributes(rdev);
2055 if (ret < 0)
2056 goto scrub;
2058 /* set supply regulator if it exists */
2059 if (init_data->supply_regulator_dev) {
2060 ret = set_supply(rdev,
2061 dev_get_drvdata(init_data->supply_regulator_dev));
2062 if (ret < 0)
2063 goto scrub;
2066 /* add consumers devices */
2067 for (i = 0; i < init_data->num_consumer_supplies; i++) {
2068 ret = set_consumer_device_supply(rdev,
2069 init_data->consumer_supplies[i].dev,
2070 init_data->consumer_supplies[i].supply);
2071 if (ret < 0) {
2072 for (--i; i >= 0; i--)
2073 unset_consumer_device_supply(rdev,
2074 init_data->consumer_supplies[i].dev);
2075 goto scrub;
2079 list_add(&rdev->list, &regulator_list);
2080 out:
2081 mutex_unlock(&regulator_list_mutex);
2082 return rdev;
2084 scrub:
2085 device_unregister(&rdev->dev);
2086 /* device core frees rdev */
2087 rdev = ERR_PTR(ret);
2088 goto out;
2090 clean:
2091 kfree(rdev);
2092 rdev = ERR_PTR(ret);
2093 goto out;
2095 EXPORT_SYMBOL_GPL(regulator_register);
2098 * regulator_unregister - unregister regulator
2099 * @rdev: regulator to unregister
2101 * Called by regulator drivers to unregister a regulator.
2103 void regulator_unregister(struct regulator_dev *rdev)
2105 if (rdev == NULL)
2106 return;
2108 mutex_lock(&regulator_list_mutex);
2109 unset_regulator_supplies(rdev);
2110 list_del(&rdev->list);
2111 if (rdev->supply)
2112 sysfs_remove_link(&rdev->dev.kobj, "supply");
2113 device_unregister(&rdev->dev);
2114 mutex_unlock(&regulator_list_mutex);
2116 EXPORT_SYMBOL_GPL(regulator_unregister);
2119 * regulator_suspend_prepare - prepare regulators for system wide suspend
2120 * @state: system suspend state
2122 * Configure each regulator with it's suspend operating parameters for state.
2123 * This will usually be called by machine suspend code prior to supending.
2125 int regulator_suspend_prepare(suspend_state_t state)
2127 struct regulator_dev *rdev;
2128 int ret = 0;
2130 /* ON is handled by regulator active state */
2131 if (state == PM_SUSPEND_ON)
2132 return -EINVAL;
2134 mutex_lock(&regulator_list_mutex);
2135 list_for_each_entry(rdev, &regulator_list, list) {
2137 mutex_lock(&rdev->mutex);
2138 ret = suspend_prepare(rdev, state);
2139 mutex_unlock(&rdev->mutex);
2141 if (ret < 0) {
2142 printk(KERN_ERR "%s: failed to prepare %s\n",
2143 __func__, rdev->desc->name);
2144 goto out;
2147 out:
2148 mutex_unlock(&regulator_list_mutex);
2149 return ret;
2151 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2154 * regulator_has_full_constraints - the system has fully specified constraints
2156 * Calling this function will cause the regulator API to disable all
2157 * regulators which have a zero use count and don't have an always_on
2158 * constraint in a late_initcall.
2160 * The intention is that this will become the default behaviour in a
2161 * future kernel release so users are encouraged to use this facility
2162 * now.
2164 void regulator_has_full_constraints(void)
2166 has_full_constraints = 1;
2168 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
2171 * rdev_get_drvdata - get rdev regulator driver data
2172 * @rdev: regulator
2174 * Get rdev regulator driver private data. This call can be used in the
2175 * regulator driver context.
2177 void *rdev_get_drvdata(struct regulator_dev *rdev)
2179 return rdev->reg_data;
2181 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
2184 * regulator_get_drvdata - get regulator driver data
2185 * @regulator: regulator
2187 * Get regulator driver private data. This call can be used in the consumer
2188 * driver context when non API regulator specific functions need to be called.
2190 void *regulator_get_drvdata(struct regulator *regulator)
2192 return regulator->rdev->reg_data;
2194 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
2197 * regulator_set_drvdata - set regulator driver data
2198 * @regulator: regulator
2199 * @data: data
2201 void regulator_set_drvdata(struct regulator *regulator, void *data)
2203 regulator->rdev->reg_data = data;
2205 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
2208 * regulator_get_id - get regulator ID
2209 * @rdev: regulator
2211 int rdev_get_id(struct regulator_dev *rdev)
2213 return rdev->desc->id;
2215 EXPORT_SYMBOL_GPL(rdev_get_id);
2217 struct device *rdev_get_dev(struct regulator_dev *rdev)
2219 return &rdev->dev;
2221 EXPORT_SYMBOL_GPL(rdev_get_dev);
2223 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
2225 return reg_init_data->driver_data;
2227 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
2229 static int __init regulator_init(void)
2231 printk(KERN_INFO "regulator: core version %s\n", REGULATOR_VERSION);
2232 return class_register(&regulator_class);
2235 /* init early to allow our consumers to complete system booting */
2236 core_initcall(regulator_init);
2238 static int __init regulator_init_complete(void)
2240 struct regulator_dev *rdev;
2241 struct regulator_ops *ops;
2242 struct regulation_constraints *c;
2243 int enabled, ret;
2244 const char *name;
2246 mutex_lock(&regulator_list_mutex);
2248 /* If we have a full configuration then disable any regulators
2249 * which are not in use or always_on. This will become the
2250 * default behaviour in the future.
2252 list_for_each_entry(rdev, &regulator_list, list) {
2253 ops = rdev->desc->ops;
2254 c = rdev->constraints;
2256 if (c->name)
2257 name = c->name;
2258 else if (rdev->desc->name)
2259 name = rdev->desc->name;
2260 else
2261 name = "regulator";
2263 if (!ops->disable || c->always_on)
2264 continue;
2266 mutex_lock(&rdev->mutex);
2268 if (rdev->use_count)
2269 goto unlock;
2271 /* If we can't read the status assume it's on. */
2272 if (ops->is_enabled)
2273 enabled = ops->is_enabled(rdev);
2274 else
2275 enabled = 1;
2277 if (!enabled)
2278 goto unlock;
2280 if (has_full_constraints) {
2281 /* We log since this may kill the system if it
2282 * goes wrong. */
2283 printk(KERN_INFO "%s: disabling %s\n",
2284 __func__, name);
2285 ret = ops->disable(rdev);
2286 if (ret != 0) {
2287 printk(KERN_ERR
2288 "%s: couldn't disable %s: %d\n",
2289 __func__, name, ret);
2291 } else {
2292 /* The intention is that in future we will
2293 * assume that full constraints are provided
2294 * so warn even if we aren't going to do
2295 * anything here.
2297 printk(KERN_WARNING
2298 "%s: incomplete constraints, leaving %s on\n",
2299 __func__, name);
2302 unlock:
2303 mutex_unlock(&rdev->mutex);
2306 mutex_unlock(&regulator_list_mutex);
2308 return 0;
2310 late_initcall(regulator_init_complete);