conn rcv_lock converted to spinlock, struct cor_sock created, kernel_packet skb_clone...
[cor_2_6_31.git] / fs / nilfs2 / super.c
blob8e2ec43b18f4f458b6f683fc94a9f656a36a9c3a
1 /*
2 * super.c - NILFS module and super block management.
4 * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 * Written by Ryusuke Konishi <ryusuke@osrg.net>
23 * linux/fs/ext2/super.c
25 * Copyright (C) 1992, 1993, 1994, 1995
26 * Remy Card (card@masi.ibp.fr)
27 * Laboratoire MASI - Institut Blaise Pascal
28 * Universite Pierre et Marie Curie (Paris VI)
30 * from
32 * linux/fs/minix/inode.c
34 * Copyright (C) 1991, 1992 Linus Torvalds
36 * Big-endian to little-endian byte-swapping/bitmaps by
37 * David S. Miller (davem@caip.rutgers.edu), 1995
40 #include <linux/module.h>
41 #include <linux/string.h>
42 #include <linux/slab.h>
43 #include <linux/init.h>
44 #include <linux/blkdev.h>
45 #include <linux/parser.h>
46 #include <linux/random.h>
47 #include <linux/crc32.h>
48 #include <linux/smp_lock.h>
49 #include <linux/vfs.h>
50 #include <linux/writeback.h>
51 #include <linux/kobject.h>
52 #include <linux/exportfs.h>
53 #include "nilfs.h"
54 #include "mdt.h"
55 #include "alloc.h"
56 #include "page.h"
57 #include "cpfile.h"
58 #include "ifile.h"
59 #include "dat.h"
60 #include "segment.h"
61 #include "segbuf.h"
63 MODULE_AUTHOR("NTT Corp.");
64 MODULE_DESCRIPTION("A New Implementation of the Log-structured Filesystem "
65 "(NILFS)");
66 MODULE_LICENSE("GPL");
68 static void nilfs_write_super(struct super_block *sb);
69 static int nilfs_remount(struct super_block *sb, int *flags, char *data);
71 /**
72 * nilfs_error() - report failure condition on a filesystem
74 * nilfs_error() sets an ERROR_FS flag on the superblock as well as
75 * reporting an error message. It should be called when NILFS detects
76 * incoherences or defects of meta data on disk. As for sustainable
77 * errors such as a single-shot I/O error, nilfs_warning() or the printk()
78 * function should be used instead.
80 * The segment constructor must not call this function because it can
81 * kill itself.
83 void nilfs_error(struct super_block *sb, const char *function,
84 const char *fmt, ...)
86 struct nilfs_sb_info *sbi = NILFS_SB(sb);
87 va_list args;
89 va_start(args, fmt);
90 printk(KERN_CRIT "NILFS error (device %s): %s: ", sb->s_id, function);
91 vprintk(fmt, args);
92 printk("\n");
93 va_end(args);
95 if (!(sb->s_flags & MS_RDONLY)) {
96 struct the_nilfs *nilfs = sbi->s_nilfs;
98 if (!nilfs_test_opt(sbi, ERRORS_CONT))
99 nilfs_detach_segment_constructor(sbi);
101 down_write(&nilfs->ns_sem);
102 if (!(nilfs->ns_mount_state & NILFS_ERROR_FS)) {
103 nilfs->ns_mount_state |= NILFS_ERROR_FS;
104 nilfs->ns_sbp[0]->s_state |=
105 cpu_to_le16(NILFS_ERROR_FS);
106 nilfs_commit_super(sbi, 1);
108 up_write(&nilfs->ns_sem);
110 if (nilfs_test_opt(sbi, ERRORS_RO)) {
111 printk(KERN_CRIT "Remounting filesystem read-only\n");
112 sb->s_flags |= MS_RDONLY;
116 if (nilfs_test_opt(sbi, ERRORS_PANIC))
117 panic("NILFS (device %s): panic forced after error\n",
118 sb->s_id);
121 void nilfs_warning(struct super_block *sb, const char *function,
122 const char *fmt, ...)
124 va_list args;
126 va_start(args, fmt);
127 printk(KERN_WARNING "NILFS warning (device %s): %s: ",
128 sb->s_id, function);
129 vprintk(fmt, args);
130 printk("\n");
131 va_end(args);
134 static struct kmem_cache *nilfs_inode_cachep;
136 struct inode *nilfs_alloc_inode_common(struct the_nilfs *nilfs)
138 struct nilfs_inode_info *ii;
140 ii = kmem_cache_alloc(nilfs_inode_cachep, GFP_NOFS);
141 if (!ii)
142 return NULL;
143 ii->i_bh = NULL;
144 ii->i_state = 0;
145 ii->vfs_inode.i_version = 1;
146 nilfs_btnode_cache_init(&ii->i_btnode_cache, nilfs->ns_bdi);
147 return &ii->vfs_inode;
150 struct inode *nilfs_alloc_inode(struct super_block *sb)
152 return nilfs_alloc_inode_common(NILFS_SB(sb)->s_nilfs);
155 void nilfs_destroy_inode(struct inode *inode)
157 kmem_cache_free(nilfs_inode_cachep, NILFS_I(inode));
160 static void init_once(void *obj)
162 struct nilfs_inode_info *ii = obj;
164 INIT_LIST_HEAD(&ii->i_dirty);
165 #ifdef CONFIG_NILFS_XATTR
166 init_rwsem(&ii->xattr_sem);
167 #endif
168 nilfs_btnode_cache_init_once(&ii->i_btnode_cache);
169 ii->i_bmap = (struct nilfs_bmap *)&ii->i_bmap_union;
170 inode_init_once(&ii->vfs_inode);
173 static int nilfs_init_inode_cache(void)
175 nilfs_inode_cachep = kmem_cache_create("nilfs2_inode_cache",
176 sizeof(struct nilfs_inode_info),
177 0, SLAB_RECLAIM_ACCOUNT,
178 init_once);
180 return (nilfs_inode_cachep == NULL) ? -ENOMEM : 0;
183 static inline void nilfs_destroy_inode_cache(void)
185 kmem_cache_destroy(nilfs_inode_cachep);
188 static void nilfs_clear_inode(struct inode *inode)
190 struct nilfs_inode_info *ii = NILFS_I(inode);
193 * Free resources allocated in nilfs_read_inode(), here.
195 BUG_ON(!list_empty(&ii->i_dirty));
196 brelse(ii->i_bh);
197 ii->i_bh = NULL;
199 if (test_bit(NILFS_I_BMAP, &ii->i_state))
200 nilfs_bmap_clear(ii->i_bmap);
202 nilfs_btnode_cache_clear(&ii->i_btnode_cache);
205 static int nilfs_sync_super(struct nilfs_sb_info *sbi, int dupsb)
207 struct the_nilfs *nilfs = sbi->s_nilfs;
208 int err;
209 int barrier_done = 0;
211 if (nilfs_test_opt(sbi, BARRIER)) {
212 set_buffer_ordered(nilfs->ns_sbh[0]);
213 barrier_done = 1;
215 retry:
216 set_buffer_dirty(nilfs->ns_sbh[0]);
217 err = sync_dirty_buffer(nilfs->ns_sbh[0]);
218 if (err == -EOPNOTSUPP && barrier_done) {
219 nilfs_warning(sbi->s_super, __func__,
220 "barrier-based sync failed. "
221 "disabling barriers\n");
222 nilfs_clear_opt(sbi, BARRIER);
223 barrier_done = 0;
224 clear_buffer_ordered(nilfs->ns_sbh[0]);
225 goto retry;
227 if (unlikely(err)) {
228 printk(KERN_ERR
229 "NILFS: unable to write superblock (err=%d)\n", err);
230 if (err == -EIO && nilfs->ns_sbh[1]) {
231 nilfs_fall_back_super_block(nilfs);
232 goto retry;
234 } else {
235 struct nilfs_super_block *sbp = nilfs->ns_sbp[0];
238 * The latest segment becomes trailable from the position
239 * written in superblock.
241 clear_nilfs_discontinued(nilfs);
243 /* update GC protection for recent segments */
244 if (nilfs->ns_sbh[1]) {
245 sbp = NULL;
246 if (dupsb) {
247 set_buffer_dirty(nilfs->ns_sbh[1]);
248 if (!sync_dirty_buffer(nilfs->ns_sbh[1]))
249 sbp = nilfs->ns_sbp[1];
252 if (sbp) {
253 spin_lock(&nilfs->ns_last_segment_lock);
254 nilfs->ns_prot_seq = le64_to_cpu(sbp->s_last_seq);
255 spin_unlock(&nilfs->ns_last_segment_lock);
259 return err;
262 int nilfs_commit_super(struct nilfs_sb_info *sbi, int dupsb)
264 struct the_nilfs *nilfs = sbi->s_nilfs;
265 struct nilfs_super_block **sbp = nilfs->ns_sbp;
266 sector_t nfreeblocks;
267 time_t t;
268 int err;
270 /* nilfs->sem must be locked by the caller. */
271 if (sbp[0]->s_magic != NILFS_SUPER_MAGIC) {
272 if (sbp[1] && sbp[1]->s_magic == NILFS_SUPER_MAGIC)
273 nilfs_swap_super_block(nilfs);
274 else {
275 printk(KERN_CRIT "NILFS: superblock broke on dev %s\n",
276 sbi->s_super->s_id);
277 return -EIO;
280 err = nilfs_count_free_blocks(nilfs, &nfreeblocks);
281 if (unlikely(err)) {
282 printk(KERN_ERR "NILFS: failed to count free blocks\n");
283 return err;
285 spin_lock(&nilfs->ns_last_segment_lock);
286 sbp[0]->s_last_seq = cpu_to_le64(nilfs->ns_last_seq);
287 sbp[0]->s_last_pseg = cpu_to_le64(nilfs->ns_last_pseg);
288 sbp[0]->s_last_cno = cpu_to_le64(nilfs->ns_last_cno);
289 spin_unlock(&nilfs->ns_last_segment_lock);
291 t = get_seconds();
292 nilfs->ns_sbwtime[0] = t;
293 sbp[0]->s_free_blocks_count = cpu_to_le64(nfreeblocks);
294 sbp[0]->s_wtime = cpu_to_le64(t);
295 sbp[0]->s_sum = 0;
296 sbp[0]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
297 (unsigned char *)sbp[0],
298 nilfs->ns_sbsize));
299 if (dupsb && sbp[1]) {
300 memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
301 nilfs->ns_sbwtime[1] = t;
303 sbi->s_super->s_dirt = 0;
304 return nilfs_sync_super(sbi, dupsb);
307 static void nilfs_put_super(struct super_block *sb)
309 struct nilfs_sb_info *sbi = NILFS_SB(sb);
310 struct the_nilfs *nilfs = sbi->s_nilfs;
312 lock_kernel();
314 if (sb->s_dirt)
315 nilfs_write_super(sb);
317 nilfs_detach_segment_constructor(sbi);
319 if (!(sb->s_flags & MS_RDONLY)) {
320 down_write(&nilfs->ns_sem);
321 nilfs->ns_sbp[0]->s_state = cpu_to_le16(nilfs->ns_mount_state);
322 nilfs_commit_super(sbi, 1);
323 up_write(&nilfs->ns_sem);
325 down_write(&nilfs->ns_super_sem);
326 if (nilfs->ns_current == sbi)
327 nilfs->ns_current = NULL;
328 up_write(&nilfs->ns_super_sem);
330 nilfs_detach_checkpoint(sbi);
331 put_nilfs(sbi->s_nilfs);
332 sbi->s_super = NULL;
333 sb->s_fs_info = NULL;
334 nilfs_put_sbinfo(sbi);
336 unlock_kernel();
340 * nilfs_write_super - write super block(s) of NILFS
341 * @sb: super_block
343 * nilfs_write_super() gets a fs-dependent lock, writes super block(s), and
344 * clears s_dirt. This function is called in the section protected by
345 * lock_super().
347 * The s_dirt flag is managed by each filesystem and we protect it by ns_sem
348 * of the struct the_nilfs. Lock order must be as follows:
350 * 1. lock_super()
351 * 2. down_write(&nilfs->ns_sem)
353 * Inside NILFS, locking ns_sem is enough to protect s_dirt and the buffer
354 * of the super block (nilfs->ns_sbp[]).
356 * In most cases, VFS functions call lock_super() before calling these
357 * methods. So we must be careful not to bring on deadlocks when using
358 * lock_super(); see generic_shutdown_super(), write_super(), and so on.
360 * Note that order of lock_kernel() and lock_super() depends on contexts
361 * of VFS. We should also note that lock_kernel() can be used in its
362 * protective section and only the outermost one has an effect.
364 static void nilfs_write_super(struct super_block *sb)
366 struct nilfs_sb_info *sbi = NILFS_SB(sb);
367 struct the_nilfs *nilfs = sbi->s_nilfs;
369 down_write(&nilfs->ns_sem);
370 if (!(sb->s_flags & MS_RDONLY)) {
371 struct nilfs_super_block **sbp = nilfs->ns_sbp;
372 u64 t = get_seconds();
373 int dupsb;
375 if (!nilfs_discontinued(nilfs) && t >= nilfs->ns_sbwtime[0] &&
376 t < nilfs->ns_sbwtime[0] + NILFS_SB_FREQ) {
377 up_write(&nilfs->ns_sem);
378 return;
380 dupsb = sbp[1] && t > nilfs->ns_sbwtime[1] + NILFS_ALTSB_FREQ;
381 nilfs_commit_super(sbi, dupsb);
383 sb->s_dirt = 0;
384 up_write(&nilfs->ns_sem);
387 static int nilfs_sync_fs(struct super_block *sb, int wait)
389 int err = 0;
391 nilfs_write_super(sb);
393 /* This function is called when super block should be written back */
394 if (wait)
395 err = nilfs_construct_segment(sb);
396 return err;
399 int nilfs_attach_checkpoint(struct nilfs_sb_info *sbi, __u64 cno)
401 struct the_nilfs *nilfs = sbi->s_nilfs;
402 struct nilfs_checkpoint *raw_cp;
403 struct buffer_head *bh_cp;
404 int err;
406 down_write(&nilfs->ns_super_sem);
407 list_add(&sbi->s_list, &nilfs->ns_supers);
408 up_write(&nilfs->ns_super_sem);
410 sbi->s_ifile = nilfs_mdt_new(
411 nilfs, sbi->s_super, NILFS_IFILE_INO, NILFS_IFILE_GFP);
412 if (!sbi->s_ifile)
413 return -ENOMEM;
415 err = nilfs_palloc_init_blockgroup(sbi->s_ifile, nilfs->ns_inode_size);
416 if (unlikely(err))
417 goto failed;
419 err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, cno, 0, &raw_cp,
420 &bh_cp);
421 if (unlikely(err)) {
422 if (err == -ENOENT || err == -EINVAL) {
423 printk(KERN_ERR
424 "NILFS: Invalid checkpoint "
425 "(checkpoint number=%llu)\n",
426 (unsigned long long)cno);
427 err = -EINVAL;
429 goto failed;
431 err = nilfs_read_inode_common(sbi->s_ifile, &raw_cp->cp_ifile_inode);
432 if (unlikely(err))
433 goto failed_bh;
434 atomic_set(&sbi->s_inodes_count, le64_to_cpu(raw_cp->cp_inodes_count));
435 atomic_set(&sbi->s_blocks_count, le64_to_cpu(raw_cp->cp_blocks_count));
437 nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
438 return 0;
440 failed_bh:
441 nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
442 failed:
443 nilfs_mdt_destroy(sbi->s_ifile);
444 sbi->s_ifile = NULL;
446 down_write(&nilfs->ns_super_sem);
447 list_del_init(&sbi->s_list);
448 up_write(&nilfs->ns_super_sem);
450 return err;
453 void nilfs_detach_checkpoint(struct nilfs_sb_info *sbi)
455 struct the_nilfs *nilfs = sbi->s_nilfs;
457 nilfs_mdt_clear(sbi->s_ifile);
458 nilfs_mdt_destroy(sbi->s_ifile);
459 sbi->s_ifile = NULL;
460 down_write(&nilfs->ns_super_sem);
461 list_del_init(&sbi->s_list);
462 up_write(&nilfs->ns_super_sem);
465 static int nilfs_mark_recovery_complete(struct nilfs_sb_info *sbi)
467 struct the_nilfs *nilfs = sbi->s_nilfs;
468 int err = 0;
470 down_write(&nilfs->ns_sem);
471 if (!(nilfs->ns_mount_state & NILFS_VALID_FS)) {
472 nilfs->ns_mount_state |= NILFS_VALID_FS;
473 err = nilfs_commit_super(sbi, 1);
474 if (likely(!err))
475 printk(KERN_INFO "NILFS: recovery complete.\n");
477 up_write(&nilfs->ns_sem);
478 return err;
481 static int nilfs_statfs(struct dentry *dentry, struct kstatfs *buf)
483 struct super_block *sb = dentry->d_sb;
484 struct nilfs_sb_info *sbi = NILFS_SB(sb);
485 struct the_nilfs *nilfs = sbi->s_nilfs;
486 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
487 unsigned long long blocks;
488 unsigned long overhead;
489 unsigned long nrsvblocks;
490 sector_t nfreeblocks;
491 int err;
494 * Compute all of the segment blocks
496 * The blocks before first segment and after last segment
497 * are excluded.
499 blocks = nilfs->ns_blocks_per_segment * nilfs->ns_nsegments
500 - nilfs->ns_first_data_block;
501 nrsvblocks = nilfs->ns_nrsvsegs * nilfs->ns_blocks_per_segment;
504 * Compute the overhead
506 * When distributing meta data blocks outside semgent structure,
507 * We must count them as the overhead.
509 overhead = 0;
511 err = nilfs_count_free_blocks(nilfs, &nfreeblocks);
512 if (unlikely(err))
513 return err;
515 buf->f_type = NILFS_SUPER_MAGIC;
516 buf->f_bsize = sb->s_blocksize;
517 buf->f_blocks = blocks - overhead;
518 buf->f_bfree = nfreeblocks;
519 buf->f_bavail = (buf->f_bfree >= nrsvblocks) ?
520 (buf->f_bfree - nrsvblocks) : 0;
521 buf->f_files = atomic_read(&sbi->s_inodes_count);
522 buf->f_ffree = 0; /* nilfs_count_free_inodes(sb); */
523 buf->f_namelen = NILFS_NAME_LEN;
524 buf->f_fsid.val[0] = (u32)id;
525 buf->f_fsid.val[1] = (u32)(id >> 32);
527 return 0;
530 static struct super_operations nilfs_sops = {
531 .alloc_inode = nilfs_alloc_inode,
532 .destroy_inode = nilfs_destroy_inode,
533 .dirty_inode = nilfs_dirty_inode,
534 /* .write_inode = nilfs_write_inode, */
535 /* .put_inode = nilfs_put_inode, */
536 /* .drop_inode = nilfs_drop_inode, */
537 .delete_inode = nilfs_delete_inode,
538 .put_super = nilfs_put_super,
539 .write_super = nilfs_write_super,
540 .sync_fs = nilfs_sync_fs,
541 /* .write_super_lockfs */
542 /* .unlockfs */
543 .statfs = nilfs_statfs,
544 .remount_fs = nilfs_remount,
545 .clear_inode = nilfs_clear_inode,
546 /* .umount_begin */
547 /* .show_options */
550 static struct inode *
551 nilfs_nfs_get_inode(struct super_block *sb, u64 ino, u32 generation)
553 struct inode *inode;
555 if (ino < NILFS_FIRST_INO(sb) && ino != NILFS_ROOT_INO &&
556 ino != NILFS_SKETCH_INO)
557 return ERR_PTR(-ESTALE);
559 inode = nilfs_iget(sb, ino);
560 if (IS_ERR(inode))
561 return ERR_CAST(inode);
562 if (generation && inode->i_generation != generation) {
563 iput(inode);
564 return ERR_PTR(-ESTALE);
567 return inode;
570 static struct dentry *
571 nilfs_fh_to_dentry(struct super_block *sb, struct fid *fid, int fh_len,
572 int fh_type)
574 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
575 nilfs_nfs_get_inode);
578 static struct dentry *
579 nilfs_fh_to_parent(struct super_block *sb, struct fid *fid, int fh_len,
580 int fh_type)
582 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
583 nilfs_nfs_get_inode);
586 static struct export_operations nilfs_export_ops = {
587 .fh_to_dentry = nilfs_fh_to_dentry,
588 .fh_to_parent = nilfs_fh_to_parent,
589 .get_parent = nilfs_get_parent,
592 enum {
593 Opt_err_cont, Opt_err_panic, Opt_err_ro,
594 Opt_barrier, Opt_snapshot, Opt_order,
595 Opt_err,
598 static match_table_t tokens = {
599 {Opt_err_cont, "errors=continue"},
600 {Opt_err_panic, "errors=panic"},
601 {Opt_err_ro, "errors=remount-ro"},
602 {Opt_barrier, "barrier=%s"},
603 {Opt_snapshot, "cp=%u"},
604 {Opt_order, "order=%s"},
605 {Opt_err, NULL}
608 static int match_bool(substring_t *s, int *result)
610 int len = s->to - s->from;
612 if (strncmp(s->from, "on", len) == 0)
613 *result = 1;
614 else if (strncmp(s->from, "off", len) == 0)
615 *result = 0;
616 else
617 return 1;
618 return 0;
621 static int parse_options(char *options, struct super_block *sb)
623 struct nilfs_sb_info *sbi = NILFS_SB(sb);
624 char *p;
625 substring_t args[MAX_OPT_ARGS];
626 int option;
628 if (!options)
629 return 1;
631 while ((p = strsep(&options, ",")) != NULL) {
632 int token;
633 if (!*p)
634 continue;
636 token = match_token(p, tokens, args);
637 switch (token) {
638 case Opt_barrier:
639 if (match_bool(&args[0], &option))
640 return 0;
641 if (option)
642 nilfs_set_opt(sbi, BARRIER);
643 else
644 nilfs_clear_opt(sbi, BARRIER);
645 break;
646 case Opt_order:
647 if (strcmp(args[0].from, "relaxed") == 0)
648 /* Ordered data semantics */
649 nilfs_clear_opt(sbi, STRICT_ORDER);
650 else if (strcmp(args[0].from, "strict") == 0)
651 /* Strict in-order semantics */
652 nilfs_set_opt(sbi, STRICT_ORDER);
653 else
654 return 0;
655 break;
656 case Opt_err_panic:
657 nilfs_write_opt(sbi, ERROR_MODE, ERRORS_PANIC);
658 break;
659 case Opt_err_ro:
660 nilfs_write_opt(sbi, ERROR_MODE, ERRORS_RO);
661 break;
662 case Opt_err_cont:
663 nilfs_write_opt(sbi, ERROR_MODE, ERRORS_CONT);
664 break;
665 case Opt_snapshot:
666 if (match_int(&args[0], &option) || option <= 0)
667 return 0;
668 if (!(sb->s_flags & MS_RDONLY))
669 return 0;
670 sbi->s_snapshot_cno = option;
671 nilfs_set_opt(sbi, SNAPSHOT);
672 break;
673 default:
674 printk(KERN_ERR
675 "NILFS: Unrecognized mount option \"%s\"\n", p);
676 return 0;
679 return 1;
682 static inline void
683 nilfs_set_default_options(struct nilfs_sb_info *sbi,
684 struct nilfs_super_block *sbp)
686 sbi->s_mount_opt =
687 NILFS_MOUNT_ERRORS_CONT | NILFS_MOUNT_BARRIER;
690 static int nilfs_setup_super(struct nilfs_sb_info *sbi)
692 struct the_nilfs *nilfs = sbi->s_nilfs;
693 struct nilfs_super_block *sbp = nilfs->ns_sbp[0];
694 int max_mnt_count = le16_to_cpu(sbp->s_max_mnt_count);
695 int mnt_count = le16_to_cpu(sbp->s_mnt_count);
697 /* nilfs->sem must be locked by the caller. */
698 if (!(nilfs->ns_mount_state & NILFS_VALID_FS)) {
699 printk(KERN_WARNING "NILFS warning: mounting unchecked fs\n");
700 } else if (nilfs->ns_mount_state & NILFS_ERROR_FS) {
701 printk(KERN_WARNING
702 "NILFS warning: mounting fs with errors\n");
703 #if 0
704 } else if (max_mnt_count >= 0 && mnt_count >= max_mnt_count) {
705 printk(KERN_WARNING
706 "NILFS warning: maximal mount count reached\n");
707 #endif
709 if (!max_mnt_count)
710 sbp->s_max_mnt_count = cpu_to_le16(NILFS_DFL_MAX_MNT_COUNT);
712 sbp->s_mnt_count = cpu_to_le16(mnt_count + 1);
713 sbp->s_state = cpu_to_le16(le16_to_cpu(sbp->s_state) & ~NILFS_VALID_FS);
714 sbp->s_mtime = cpu_to_le64(get_seconds());
715 return nilfs_commit_super(sbi, 1);
718 struct nilfs_super_block *nilfs_read_super_block(struct super_block *sb,
719 u64 pos, int blocksize,
720 struct buffer_head **pbh)
722 unsigned long long sb_index = pos;
723 unsigned long offset;
725 offset = do_div(sb_index, blocksize);
726 *pbh = sb_bread(sb, sb_index);
727 if (!*pbh)
728 return NULL;
729 return (struct nilfs_super_block *)((char *)(*pbh)->b_data + offset);
732 int nilfs_store_magic_and_option(struct super_block *sb,
733 struct nilfs_super_block *sbp,
734 char *data)
736 struct nilfs_sb_info *sbi = NILFS_SB(sb);
738 sb->s_magic = le16_to_cpu(sbp->s_magic);
740 /* FS independent flags */
741 #ifdef NILFS_ATIME_DISABLE
742 sb->s_flags |= MS_NOATIME;
743 #endif
745 nilfs_set_default_options(sbi, sbp);
747 sbi->s_resuid = le16_to_cpu(sbp->s_def_resuid);
748 sbi->s_resgid = le16_to_cpu(sbp->s_def_resgid);
749 sbi->s_interval = le32_to_cpu(sbp->s_c_interval);
750 sbi->s_watermark = le32_to_cpu(sbp->s_c_block_max);
752 return !parse_options(data, sb) ? -EINVAL : 0 ;
756 * nilfs_fill_super() - initialize a super block instance
757 * @sb: super_block
758 * @data: mount options
759 * @silent: silent mode flag
760 * @nilfs: the_nilfs struct
762 * This function is called exclusively by nilfs->ns_mount_mutex.
763 * So, the recovery process is protected from other simultaneous mounts.
765 static int
766 nilfs_fill_super(struct super_block *sb, void *data, int silent,
767 struct the_nilfs *nilfs)
769 struct nilfs_sb_info *sbi;
770 struct inode *root;
771 __u64 cno;
772 int err;
774 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
775 if (!sbi)
776 return -ENOMEM;
778 sb->s_fs_info = sbi;
780 get_nilfs(nilfs);
781 sbi->s_nilfs = nilfs;
782 sbi->s_super = sb;
783 atomic_set(&sbi->s_count, 1);
785 err = init_nilfs(nilfs, sbi, (char *)data);
786 if (err)
787 goto failed_sbi;
789 spin_lock_init(&sbi->s_inode_lock);
790 INIT_LIST_HEAD(&sbi->s_dirty_files);
791 INIT_LIST_HEAD(&sbi->s_list);
794 * Following initialization is overlapped because
795 * nilfs_sb_info structure has been cleared at the beginning.
796 * But we reserve them to keep our interest and make ready
797 * for the future change.
799 get_random_bytes(&sbi->s_next_generation,
800 sizeof(sbi->s_next_generation));
801 spin_lock_init(&sbi->s_next_gen_lock);
803 sb->s_op = &nilfs_sops;
804 sb->s_export_op = &nilfs_export_ops;
805 sb->s_root = NULL;
806 sb->s_time_gran = 1;
808 if (!nilfs_loaded(nilfs)) {
809 err = load_nilfs(nilfs, sbi);
810 if (err)
811 goto failed_sbi;
813 cno = nilfs_last_cno(nilfs);
815 if (sb->s_flags & MS_RDONLY) {
816 if (nilfs_test_opt(sbi, SNAPSHOT)) {
817 err = nilfs_cpfile_is_snapshot(nilfs->ns_cpfile,
818 sbi->s_snapshot_cno);
819 if (err < 0)
820 goto failed_sbi;
821 if (!err) {
822 printk(KERN_ERR
823 "NILFS: The specified checkpoint is "
824 "not a snapshot "
825 "(checkpoint number=%llu).\n",
826 (unsigned long long)sbi->s_snapshot_cno);
827 err = -EINVAL;
828 goto failed_sbi;
830 cno = sbi->s_snapshot_cno;
831 } else
832 /* Read-only mount */
833 sbi->s_snapshot_cno = cno;
836 err = nilfs_attach_checkpoint(sbi, cno);
837 if (err) {
838 printk(KERN_ERR "NILFS: error loading a checkpoint"
839 " (checkpoint number=%llu).\n", (unsigned long long)cno);
840 goto failed_sbi;
843 if (!(sb->s_flags & MS_RDONLY)) {
844 err = nilfs_attach_segment_constructor(sbi);
845 if (err)
846 goto failed_checkpoint;
849 root = nilfs_iget(sb, NILFS_ROOT_INO);
850 if (IS_ERR(root)) {
851 printk(KERN_ERR "NILFS: get root inode failed\n");
852 err = PTR_ERR(root);
853 goto failed_segctor;
855 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
856 iput(root);
857 printk(KERN_ERR "NILFS: corrupt root inode.\n");
858 err = -EINVAL;
859 goto failed_segctor;
861 sb->s_root = d_alloc_root(root);
862 if (!sb->s_root) {
863 iput(root);
864 printk(KERN_ERR "NILFS: get root dentry failed\n");
865 err = -ENOMEM;
866 goto failed_segctor;
869 if (!(sb->s_flags & MS_RDONLY)) {
870 down_write(&nilfs->ns_sem);
871 nilfs_setup_super(sbi);
872 up_write(&nilfs->ns_sem);
875 err = nilfs_mark_recovery_complete(sbi);
876 if (unlikely(err)) {
877 printk(KERN_ERR "NILFS: recovery failed.\n");
878 goto failed_root;
881 down_write(&nilfs->ns_super_sem);
882 if (!nilfs_test_opt(sbi, SNAPSHOT))
883 nilfs->ns_current = sbi;
884 up_write(&nilfs->ns_super_sem);
886 return 0;
888 failed_root:
889 dput(sb->s_root);
890 sb->s_root = NULL;
892 failed_segctor:
893 nilfs_detach_segment_constructor(sbi);
895 failed_checkpoint:
896 nilfs_detach_checkpoint(sbi);
898 failed_sbi:
899 put_nilfs(nilfs);
900 sb->s_fs_info = NULL;
901 nilfs_put_sbinfo(sbi);
902 return err;
905 static int nilfs_remount(struct super_block *sb, int *flags, char *data)
907 struct nilfs_sb_info *sbi = NILFS_SB(sb);
908 struct nilfs_super_block *sbp;
909 struct the_nilfs *nilfs = sbi->s_nilfs;
910 unsigned long old_sb_flags;
911 struct nilfs_mount_options old_opts;
912 int err;
914 lock_kernel();
916 down_write(&nilfs->ns_super_sem);
917 old_sb_flags = sb->s_flags;
918 old_opts.mount_opt = sbi->s_mount_opt;
919 old_opts.snapshot_cno = sbi->s_snapshot_cno;
921 if (!parse_options(data, sb)) {
922 err = -EINVAL;
923 goto restore_opts;
925 sb->s_flags = (sb->s_flags & ~MS_POSIXACL);
927 if ((*flags & MS_RDONLY) &&
928 sbi->s_snapshot_cno != old_opts.snapshot_cno) {
929 printk(KERN_WARNING "NILFS (device %s): couldn't "
930 "remount to a different snapshot. \n",
931 sb->s_id);
932 err = -EINVAL;
933 goto restore_opts;
936 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
937 goto out;
938 if (*flags & MS_RDONLY) {
939 /* Shutting down the segment constructor */
940 nilfs_detach_segment_constructor(sbi);
941 sb->s_flags |= MS_RDONLY;
943 sbi->s_snapshot_cno = nilfs_last_cno(nilfs);
944 /* nilfs_set_opt(sbi, SNAPSHOT); */
947 * Remounting a valid RW partition RDONLY, so set
948 * the RDONLY flag and then mark the partition as valid again.
950 down_write(&nilfs->ns_sem);
951 sbp = nilfs->ns_sbp[0];
952 if (!(sbp->s_state & le16_to_cpu(NILFS_VALID_FS)) &&
953 (nilfs->ns_mount_state & NILFS_VALID_FS))
954 sbp->s_state = cpu_to_le16(nilfs->ns_mount_state);
955 sbp->s_mtime = cpu_to_le64(get_seconds());
956 nilfs_commit_super(sbi, 1);
957 up_write(&nilfs->ns_sem);
958 } else {
960 * Mounting a RDONLY partition read-write, so reread and
961 * store the current valid flag. (It may have been changed
962 * by fsck since we originally mounted the partition.)
964 if (nilfs->ns_current && nilfs->ns_current != sbi) {
965 printk(KERN_WARNING "NILFS (device %s): couldn't "
966 "remount because an RW-mount exists.\n",
967 sb->s_id);
968 err = -EBUSY;
969 goto restore_opts;
971 if (sbi->s_snapshot_cno != nilfs_last_cno(nilfs)) {
972 printk(KERN_WARNING "NILFS (device %s): couldn't "
973 "remount because the current RO-mount is not "
974 "the latest one.\n",
975 sb->s_id);
976 err = -EINVAL;
977 goto restore_opts;
979 sb->s_flags &= ~MS_RDONLY;
980 nilfs_clear_opt(sbi, SNAPSHOT);
981 sbi->s_snapshot_cno = 0;
983 err = nilfs_attach_segment_constructor(sbi);
984 if (err)
985 goto restore_opts;
987 down_write(&nilfs->ns_sem);
988 nilfs_setup_super(sbi);
989 up_write(&nilfs->ns_sem);
991 nilfs->ns_current = sbi;
993 out:
994 up_write(&nilfs->ns_super_sem);
995 unlock_kernel();
996 return 0;
998 restore_opts:
999 sb->s_flags = old_sb_flags;
1000 sbi->s_mount_opt = old_opts.mount_opt;
1001 sbi->s_snapshot_cno = old_opts.snapshot_cno;
1002 up_write(&nilfs->ns_super_sem);
1003 unlock_kernel();
1004 return err;
1007 struct nilfs_super_data {
1008 struct block_device *bdev;
1009 struct nilfs_sb_info *sbi;
1010 __u64 cno;
1011 int flags;
1015 * nilfs_identify - pre-read mount options needed to identify mount instance
1016 * @data: mount options
1017 * @sd: nilfs_super_data
1019 static int nilfs_identify(char *data, struct nilfs_super_data *sd)
1021 char *p, *options = data;
1022 substring_t args[MAX_OPT_ARGS];
1023 int option, token;
1024 int ret = 0;
1026 do {
1027 p = strsep(&options, ",");
1028 if (p != NULL && *p) {
1029 token = match_token(p, tokens, args);
1030 if (token == Opt_snapshot) {
1031 if (!(sd->flags & MS_RDONLY))
1032 ret++;
1033 else {
1034 ret = match_int(&args[0], &option);
1035 if (!ret) {
1036 if (option > 0)
1037 sd->cno = option;
1038 else
1039 ret++;
1043 if (ret)
1044 printk(KERN_ERR
1045 "NILFS: invalid mount option: %s\n", p);
1047 if (!options)
1048 break;
1049 BUG_ON(options == data);
1050 *(options - 1) = ',';
1051 } while (!ret);
1052 return ret;
1055 static int nilfs_set_bdev_super(struct super_block *s, void *data)
1057 struct nilfs_super_data *sd = data;
1059 s->s_bdev = sd->bdev;
1060 s->s_dev = s->s_bdev->bd_dev;
1061 return 0;
1064 static int nilfs_test_bdev_super(struct super_block *s, void *data)
1066 struct nilfs_super_data *sd = data;
1068 return sd->sbi && s->s_fs_info == (void *)sd->sbi;
1071 static int
1072 nilfs_get_sb(struct file_system_type *fs_type, int flags,
1073 const char *dev_name, void *data, struct vfsmount *mnt)
1075 struct nilfs_super_data sd;
1076 struct super_block *s;
1077 struct the_nilfs *nilfs;
1078 int err, need_to_close = 1;
1080 sd.bdev = open_bdev_exclusive(dev_name, flags, fs_type);
1081 if (IS_ERR(sd.bdev))
1082 return PTR_ERR(sd.bdev);
1085 * To get mount instance using sget() vfs-routine, NILFS needs
1086 * much more information than normal filesystems to identify mount
1087 * instance. For snapshot mounts, not only a mount type (ro-mount
1088 * or rw-mount) but also a checkpoint number is required.
1090 sd.cno = 0;
1091 sd.flags = flags;
1092 if (nilfs_identify((char *)data, &sd)) {
1093 err = -EINVAL;
1094 goto failed;
1097 nilfs = find_or_create_nilfs(sd.bdev);
1098 if (!nilfs) {
1099 err = -ENOMEM;
1100 goto failed;
1103 mutex_lock(&nilfs->ns_mount_mutex);
1105 if (!sd.cno) {
1107 * Check if an exclusive mount exists or not.
1108 * Snapshot mounts coexist with a current mount
1109 * (i.e. rw-mount or ro-mount), whereas rw-mount and
1110 * ro-mount are mutually exclusive.
1112 down_read(&nilfs->ns_super_sem);
1113 if (nilfs->ns_current &&
1114 ((nilfs->ns_current->s_super->s_flags ^ flags)
1115 & MS_RDONLY)) {
1116 up_read(&nilfs->ns_super_sem);
1117 err = -EBUSY;
1118 goto failed_unlock;
1120 up_read(&nilfs->ns_super_sem);
1124 * Find existing nilfs_sb_info struct
1126 sd.sbi = nilfs_find_sbinfo(nilfs, !(flags & MS_RDONLY), sd.cno);
1128 if (!sd.cno)
1129 /* trying to get the latest checkpoint. */
1130 sd.cno = nilfs_last_cno(nilfs);
1133 * Get super block instance holding the nilfs_sb_info struct.
1134 * A new instance is allocated if no existing mount is present or
1135 * existing instance has been unmounted.
1137 s = sget(fs_type, nilfs_test_bdev_super, nilfs_set_bdev_super, &sd);
1138 if (sd.sbi)
1139 nilfs_put_sbinfo(sd.sbi);
1141 if (IS_ERR(s)) {
1142 err = PTR_ERR(s);
1143 goto failed_unlock;
1146 if (!s->s_root) {
1147 char b[BDEVNAME_SIZE];
1149 /* New superblock instance created */
1150 s->s_flags = flags;
1151 strlcpy(s->s_id, bdevname(sd.bdev, b), sizeof(s->s_id));
1152 sb_set_blocksize(s, block_size(sd.bdev));
1154 err = nilfs_fill_super(s, data, flags & MS_VERBOSE, nilfs);
1155 if (err)
1156 goto cancel_new;
1158 s->s_flags |= MS_ACTIVE;
1159 need_to_close = 0;
1162 mutex_unlock(&nilfs->ns_mount_mutex);
1163 put_nilfs(nilfs);
1164 if (need_to_close)
1165 close_bdev_exclusive(sd.bdev, flags);
1166 simple_set_mnt(mnt, s);
1167 return 0;
1169 failed_unlock:
1170 mutex_unlock(&nilfs->ns_mount_mutex);
1171 put_nilfs(nilfs);
1172 failed:
1173 close_bdev_exclusive(sd.bdev, flags);
1175 return err;
1177 cancel_new:
1178 /* Abandoning the newly allocated superblock */
1179 mutex_unlock(&nilfs->ns_mount_mutex);
1180 put_nilfs(nilfs);
1181 up_write(&s->s_umount);
1182 deactivate_super(s);
1184 * deactivate_super() invokes close_bdev_exclusive().
1185 * We must finish all post-cleaning before this call;
1186 * put_nilfs() needs the block device.
1188 return err;
1191 struct file_system_type nilfs_fs_type = {
1192 .owner = THIS_MODULE,
1193 .name = "nilfs2",
1194 .get_sb = nilfs_get_sb,
1195 .kill_sb = kill_block_super,
1196 .fs_flags = FS_REQUIRES_DEV,
1199 static int __init init_nilfs_fs(void)
1201 int err;
1203 err = nilfs_init_inode_cache();
1204 if (err)
1205 goto failed;
1207 err = nilfs_init_transaction_cache();
1208 if (err)
1209 goto failed_inode_cache;
1211 err = nilfs_init_segbuf_cache();
1212 if (err)
1213 goto failed_transaction_cache;
1215 err = nilfs_btree_path_cache_init();
1216 if (err)
1217 goto failed_segbuf_cache;
1219 err = register_filesystem(&nilfs_fs_type);
1220 if (err)
1221 goto failed_btree_path_cache;
1223 return 0;
1225 failed_btree_path_cache:
1226 nilfs_btree_path_cache_destroy();
1228 failed_segbuf_cache:
1229 nilfs_destroy_segbuf_cache();
1231 failed_transaction_cache:
1232 nilfs_destroy_transaction_cache();
1234 failed_inode_cache:
1235 nilfs_destroy_inode_cache();
1237 failed:
1238 return err;
1241 static void __exit exit_nilfs_fs(void)
1243 nilfs_destroy_segbuf_cache();
1244 nilfs_destroy_transaction_cache();
1245 nilfs_destroy_inode_cache();
1246 nilfs_btree_path_cache_destroy();
1247 unregister_filesystem(&nilfs_fs_type);
1250 module_init(init_nilfs_fs)
1251 module_exit(exit_nilfs_fs)