conn rcv_lock converted to spinlock, struct cor_sock created, kernel_packet skb_clone...
[cor_2_6_31.git] / fs / xfs / xfs_mount.c
blob5c6f092659c1cfb3f0edef669a197d10a955b34d
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_dir2.h"
28 #include "xfs_dmapi.h"
29 #include "xfs_mount.h"
30 #include "xfs_bmap_btree.h"
31 #include "xfs_alloc_btree.h"
32 #include "xfs_ialloc_btree.h"
33 #include "xfs_dir2_sf.h"
34 #include "xfs_attr_sf.h"
35 #include "xfs_dinode.h"
36 #include "xfs_inode.h"
37 #include "xfs_btree.h"
38 #include "xfs_ialloc.h"
39 #include "xfs_alloc.h"
40 #include "xfs_rtalloc.h"
41 #include "xfs_bmap.h"
42 #include "xfs_error.h"
43 #include "xfs_rw.h"
44 #include "xfs_quota.h"
45 #include "xfs_fsops.h"
46 #include "xfs_utils.h"
48 STATIC void xfs_unmountfs_wait(xfs_mount_t *);
51 #ifdef HAVE_PERCPU_SB
52 STATIC void xfs_icsb_balance_counter(xfs_mount_t *, xfs_sb_field_t,
53 int);
54 STATIC void xfs_icsb_balance_counter_locked(xfs_mount_t *, xfs_sb_field_t,
55 int);
56 STATIC int xfs_icsb_modify_counters(xfs_mount_t *, xfs_sb_field_t,
57 int64_t, int);
58 STATIC void xfs_icsb_disable_counter(xfs_mount_t *, xfs_sb_field_t);
60 #else
62 #define xfs_icsb_balance_counter(mp, a, b) do { } while (0)
63 #define xfs_icsb_balance_counter_locked(mp, a, b) do { } while (0)
64 #define xfs_icsb_modify_counters(mp, a, b, c) do { } while (0)
66 #endif
68 static const struct {
69 short offset;
70 short type; /* 0 = integer
71 * 1 = binary / string (no translation)
73 } xfs_sb_info[] = {
74 { offsetof(xfs_sb_t, sb_magicnum), 0 },
75 { offsetof(xfs_sb_t, sb_blocksize), 0 },
76 { offsetof(xfs_sb_t, sb_dblocks), 0 },
77 { offsetof(xfs_sb_t, sb_rblocks), 0 },
78 { offsetof(xfs_sb_t, sb_rextents), 0 },
79 { offsetof(xfs_sb_t, sb_uuid), 1 },
80 { offsetof(xfs_sb_t, sb_logstart), 0 },
81 { offsetof(xfs_sb_t, sb_rootino), 0 },
82 { offsetof(xfs_sb_t, sb_rbmino), 0 },
83 { offsetof(xfs_sb_t, sb_rsumino), 0 },
84 { offsetof(xfs_sb_t, sb_rextsize), 0 },
85 { offsetof(xfs_sb_t, sb_agblocks), 0 },
86 { offsetof(xfs_sb_t, sb_agcount), 0 },
87 { offsetof(xfs_sb_t, sb_rbmblocks), 0 },
88 { offsetof(xfs_sb_t, sb_logblocks), 0 },
89 { offsetof(xfs_sb_t, sb_versionnum), 0 },
90 { offsetof(xfs_sb_t, sb_sectsize), 0 },
91 { offsetof(xfs_sb_t, sb_inodesize), 0 },
92 { offsetof(xfs_sb_t, sb_inopblock), 0 },
93 { offsetof(xfs_sb_t, sb_fname[0]), 1 },
94 { offsetof(xfs_sb_t, sb_blocklog), 0 },
95 { offsetof(xfs_sb_t, sb_sectlog), 0 },
96 { offsetof(xfs_sb_t, sb_inodelog), 0 },
97 { offsetof(xfs_sb_t, sb_inopblog), 0 },
98 { offsetof(xfs_sb_t, sb_agblklog), 0 },
99 { offsetof(xfs_sb_t, sb_rextslog), 0 },
100 { offsetof(xfs_sb_t, sb_inprogress), 0 },
101 { offsetof(xfs_sb_t, sb_imax_pct), 0 },
102 { offsetof(xfs_sb_t, sb_icount), 0 },
103 { offsetof(xfs_sb_t, sb_ifree), 0 },
104 { offsetof(xfs_sb_t, sb_fdblocks), 0 },
105 { offsetof(xfs_sb_t, sb_frextents), 0 },
106 { offsetof(xfs_sb_t, sb_uquotino), 0 },
107 { offsetof(xfs_sb_t, sb_gquotino), 0 },
108 { offsetof(xfs_sb_t, sb_qflags), 0 },
109 { offsetof(xfs_sb_t, sb_flags), 0 },
110 { offsetof(xfs_sb_t, sb_shared_vn), 0 },
111 { offsetof(xfs_sb_t, sb_inoalignmt), 0 },
112 { offsetof(xfs_sb_t, sb_unit), 0 },
113 { offsetof(xfs_sb_t, sb_width), 0 },
114 { offsetof(xfs_sb_t, sb_dirblklog), 0 },
115 { offsetof(xfs_sb_t, sb_logsectlog), 0 },
116 { offsetof(xfs_sb_t, sb_logsectsize),0 },
117 { offsetof(xfs_sb_t, sb_logsunit), 0 },
118 { offsetof(xfs_sb_t, sb_features2), 0 },
119 { offsetof(xfs_sb_t, sb_bad_features2), 0 },
120 { sizeof(xfs_sb_t), 0 }
123 static DEFINE_MUTEX(xfs_uuid_table_mutex);
124 static int xfs_uuid_table_size;
125 static uuid_t *xfs_uuid_table;
128 * See if the UUID is unique among mounted XFS filesystems.
129 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
131 STATIC int
132 xfs_uuid_mount(
133 struct xfs_mount *mp)
135 uuid_t *uuid = &mp->m_sb.sb_uuid;
136 int hole, i;
138 if (mp->m_flags & XFS_MOUNT_NOUUID)
139 return 0;
141 if (uuid_is_nil(uuid)) {
142 cmn_err(CE_WARN,
143 "XFS: Filesystem %s has nil UUID - can't mount",
144 mp->m_fsname);
145 return XFS_ERROR(EINVAL);
148 mutex_lock(&xfs_uuid_table_mutex);
149 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
150 if (uuid_is_nil(&xfs_uuid_table[i])) {
151 hole = i;
152 continue;
154 if (uuid_equal(uuid, &xfs_uuid_table[i]))
155 goto out_duplicate;
158 if (hole < 0) {
159 xfs_uuid_table = kmem_realloc(xfs_uuid_table,
160 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
161 xfs_uuid_table_size * sizeof(*xfs_uuid_table),
162 KM_SLEEP);
163 hole = xfs_uuid_table_size++;
165 xfs_uuid_table[hole] = *uuid;
166 mutex_unlock(&xfs_uuid_table_mutex);
168 return 0;
170 out_duplicate:
171 mutex_unlock(&xfs_uuid_table_mutex);
172 cmn_err(CE_WARN, "XFS: Filesystem %s has duplicate UUID - can't mount",
173 mp->m_fsname);
174 return XFS_ERROR(EINVAL);
177 STATIC void
178 xfs_uuid_unmount(
179 struct xfs_mount *mp)
181 uuid_t *uuid = &mp->m_sb.sb_uuid;
182 int i;
184 if (mp->m_flags & XFS_MOUNT_NOUUID)
185 return;
187 mutex_lock(&xfs_uuid_table_mutex);
188 for (i = 0; i < xfs_uuid_table_size; i++) {
189 if (uuid_is_nil(&xfs_uuid_table[i]))
190 continue;
191 if (!uuid_equal(uuid, &xfs_uuid_table[i]))
192 continue;
193 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
194 break;
196 ASSERT(i < xfs_uuid_table_size);
197 mutex_unlock(&xfs_uuid_table_mutex);
202 * Free up the resources associated with a mount structure. Assume that
203 * the structure was initially zeroed, so we can tell which fields got
204 * initialized.
206 STATIC void
207 xfs_free_perag(
208 xfs_mount_t *mp)
210 if (mp->m_perag) {
211 int agno;
213 for (agno = 0; agno < mp->m_maxagi; agno++)
214 if (mp->m_perag[agno].pagb_list)
215 kmem_free(mp->m_perag[agno].pagb_list);
216 kmem_free(mp->m_perag);
221 * Check size of device based on the (data/realtime) block count.
222 * Note: this check is used by the growfs code as well as mount.
225 xfs_sb_validate_fsb_count(
226 xfs_sb_t *sbp,
227 __uint64_t nblocks)
229 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
230 ASSERT(sbp->sb_blocklog >= BBSHIFT);
232 #if XFS_BIG_BLKNOS /* Limited by ULONG_MAX of page cache index */
233 if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
234 return E2BIG;
235 #else /* Limited by UINT_MAX of sectors */
236 if (nblocks << (sbp->sb_blocklog - BBSHIFT) > UINT_MAX)
237 return E2BIG;
238 #endif
239 return 0;
243 * Check the validity of the SB found.
245 STATIC int
246 xfs_mount_validate_sb(
247 xfs_mount_t *mp,
248 xfs_sb_t *sbp,
249 int flags)
252 * If the log device and data device have the
253 * same device number, the log is internal.
254 * Consequently, the sb_logstart should be non-zero. If
255 * we have a zero sb_logstart in this case, we may be trying to mount
256 * a volume filesystem in a non-volume manner.
258 if (sbp->sb_magicnum != XFS_SB_MAGIC) {
259 xfs_fs_mount_cmn_err(flags, "bad magic number");
260 return XFS_ERROR(EWRONGFS);
263 if (!xfs_sb_good_version(sbp)) {
264 xfs_fs_mount_cmn_err(flags, "bad version");
265 return XFS_ERROR(EWRONGFS);
268 if (unlikely(
269 sbp->sb_logstart == 0 && mp->m_logdev_targp == mp->m_ddev_targp)) {
270 xfs_fs_mount_cmn_err(flags,
271 "filesystem is marked as having an external log; "
272 "specify logdev on the\nmount command line.");
273 return XFS_ERROR(EINVAL);
276 if (unlikely(
277 sbp->sb_logstart != 0 && mp->m_logdev_targp != mp->m_ddev_targp)) {
278 xfs_fs_mount_cmn_err(flags,
279 "filesystem is marked as having an internal log; "
280 "do not specify logdev on\nthe mount command line.");
281 return XFS_ERROR(EINVAL);
285 * More sanity checking. These were stolen directly from
286 * xfs_repair.
288 if (unlikely(
289 sbp->sb_agcount <= 0 ||
290 sbp->sb_sectsize < XFS_MIN_SECTORSIZE ||
291 sbp->sb_sectsize > XFS_MAX_SECTORSIZE ||
292 sbp->sb_sectlog < XFS_MIN_SECTORSIZE_LOG ||
293 sbp->sb_sectlog > XFS_MAX_SECTORSIZE_LOG ||
294 sbp->sb_sectsize != (1 << sbp->sb_sectlog) ||
295 sbp->sb_blocksize < XFS_MIN_BLOCKSIZE ||
296 sbp->sb_blocksize > XFS_MAX_BLOCKSIZE ||
297 sbp->sb_blocklog < XFS_MIN_BLOCKSIZE_LOG ||
298 sbp->sb_blocklog > XFS_MAX_BLOCKSIZE_LOG ||
299 sbp->sb_blocksize != (1 << sbp->sb_blocklog) ||
300 sbp->sb_inodesize < XFS_DINODE_MIN_SIZE ||
301 sbp->sb_inodesize > XFS_DINODE_MAX_SIZE ||
302 sbp->sb_inodelog < XFS_DINODE_MIN_LOG ||
303 sbp->sb_inodelog > XFS_DINODE_MAX_LOG ||
304 sbp->sb_inodesize != (1 << sbp->sb_inodelog) ||
305 (sbp->sb_blocklog - sbp->sb_inodelog != sbp->sb_inopblog) ||
306 (sbp->sb_rextsize * sbp->sb_blocksize > XFS_MAX_RTEXTSIZE) ||
307 (sbp->sb_rextsize * sbp->sb_blocksize < XFS_MIN_RTEXTSIZE) ||
308 (sbp->sb_imax_pct > 100 /* zero sb_imax_pct is valid */))) {
309 xfs_fs_mount_cmn_err(flags, "SB sanity check 1 failed");
310 return XFS_ERROR(EFSCORRUPTED);
314 * Sanity check AG count, size fields against data size field
316 if (unlikely(
317 sbp->sb_dblocks == 0 ||
318 sbp->sb_dblocks >
319 (xfs_drfsbno_t)sbp->sb_agcount * sbp->sb_agblocks ||
320 sbp->sb_dblocks < (xfs_drfsbno_t)(sbp->sb_agcount - 1) *
321 sbp->sb_agblocks + XFS_MIN_AG_BLOCKS)) {
322 xfs_fs_mount_cmn_err(flags, "SB sanity check 2 failed");
323 return XFS_ERROR(EFSCORRUPTED);
327 * Until this is fixed only page-sized or smaller data blocks work.
329 if (unlikely(sbp->sb_blocksize > PAGE_SIZE)) {
330 xfs_fs_mount_cmn_err(flags,
331 "file system with blocksize %d bytes",
332 sbp->sb_blocksize);
333 xfs_fs_mount_cmn_err(flags,
334 "only pagesize (%ld) or less will currently work.",
335 PAGE_SIZE);
336 return XFS_ERROR(ENOSYS);
340 * Currently only very few inode sizes are supported.
342 switch (sbp->sb_inodesize) {
343 case 256:
344 case 512:
345 case 1024:
346 case 2048:
347 break;
348 default:
349 xfs_fs_mount_cmn_err(flags,
350 "inode size of %d bytes not supported",
351 sbp->sb_inodesize);
352 return XFS_ERROR(ENOSYS);
355 if (xfs_sb_validate_fsb_count(sbp, sbp->sb_dblocks) ||
356 xfs_sb_validate_fsb_count(sbp, sbp->sb_rblocks)) {
357 xfs_fs_mount_cmn_err(flags,
358 "file system too large to be mounted on this system.");
359 return XFS_ERROR(E2BIG);
362 if (unlikely(sbp->sb_inprogress)) {
363 xfs_fs_mount_cmn_err(flags, "file system busy");
364 return XFS_ERROR(EFSCORRUPTED);
368 * Version 1 directory format has never worked on Linux.
370 if (unlikely(!xfs_sb_version_hasdirv2(sbp))) {
371 xfs_fs_mount_cmn_err(flags,
372 "file system using version 1 directory format");
373 return XFS_ERROR(ENOSYS);
376 return 0;
379 STATIC void
380 xfs_initialize_perag_icache(
381 xfs_perag_t *pag)
383 if (!pag->pag_ici_init) {
384 rwlock_init(&pag->pag_ici_lock);
385 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
386 pag->pag_ici_init = 1;
390 xfs_agnumber_t
391 xfs_initialize_perag(
392 xfs_mount_t *mp,
393 xfs_agnumber_t agcount)
395 xfs_agnumber_t index, max_metadata;
396 xfs_perag_t *pag;
397 xfs_agino_t agino;
398 xfs_ino_t ino;
399 xfs_sb_t *sbp = &mp->m_sb;
400 xfs_ino_t max_inum = XFS_MAXINUMBER_32;
402 /* Check to see if the filesystem can overflow 32 bit inodes */
403 agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0);
404 ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino);
406 /* Clear the mount flag if no inode can overflow 32 bits
407 * on this filesystem, or if specifically requested..
409 if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > max_inum) {
410 mp->m_flags |= XFS_MOUNT_32BITINODES;
411 } else {
412 mp->m_flags &= ~XFS_MOUNT_32BITINODES;
415 /* If we can overflow then setup the ag headers accordingly */
416 if (mp->m_flags & XFS_MOUNT_32BITINODES) {
417 /* Calculate how much should be reserved for inodes to
418 * meet the max inode percentage.
420 if (mp->m_maxicount) {
421 __uint64_t icount;
423 icount = sbp->sb_dblocks * sbp->sb_imax_pct;
424 do_div(icount, 100);
425 icount += sbp->sb_agblocks - 1;
426 do_div(icount, sbp->sb_agblocks);
427 max_metadata = icount;
428 } else {
429 max_metadata = agcount;
431 for (index = 0; index < agcount; index++) {
432 ino = XFS_AGINO_TO_INO(mp, index, agino);
433 if (ino > max_inum) {
434 index++;
435 break;
438 /* This ag is preferred for inodes */
439 pag = &mp->m_perag[index];
440 pag->pagi_inodeok = 1;
441 if (index < max_metadata)
442 pag->pagf_metadata = 1;
443 xfs_initialize_perag_icache(pag);
445 } else {
446 /* Setup default behavior for smaller filesystems */
447 for (index = 0; index < agcount; index++) {
448 pag = &mp->m_perag[index];
449 pag->pagi_inodeok = 1;
450 xfs_initialize_perag_icache(pag);
453 return index;
456 void
457 xfs_sb_from_disk(
458 xfs_sb_t *to,
459 xfs_dsb_t *from)
461 to->sb_magicnum = be32_to_cpu(from->sb_magicnum);
462 to->sb_blocksize = be32_to_cpu(from->sb_blocksize);
463 to->sb_dblocks = be64_to_cpu(from->sb_dblocks);
464 to->sb_rblocks = be64_to_cpu(from->sb_rblocks);
465 to->sb_rextents = be64_to_cpu(from->sb_rextents);
466 memcpy(&to->sb_uuid, &from->sb_uuid, sizeof(to->sb_uuid));
467 to->sb_logstart = be64_to_cpu(from->sb_logstart);
468 to->sb_rootino = be64_to_cpu(from->sb_rootino);
469 to->sb_rbmino = be64_to_cpu(from->sb_rbmino);
470 to->sb_rsumino = be64_to_cpu(from->sb_rsumino);
471 to->sb_rextsize = be32_to_cpu(from->sb_rextsize);
472 to->sb_agblocks = be32_to_cpu(from->sb_agblocks);
473 to->sb_agcount = be32_to_cpu(from->sb_agcount);
474 to->sb_rbmblocks = be32_to_cpu(from->sb_rbmblocks);
475 to->sb_logblocks = be32_to_cpu(from->sb_logblocks);
476 to->sb_versionnum = be16_to_cpu(from->sb_versionnum);
477 to->sb_sectsize = be16_to_cpu(from->sb_sectsize);
478 to->sb_inodesize = be16_to_cpu(from->sb_inodesize);
479 to->sb_inopblock = be16_to_cpu(from->sb_inopblock);
480 memcpy(&to->sb_fname, &from->sb_fname, sizeof(to->sb_fname));
481 to->sb_blocklog = from->sb_blocklog;
482 to->sb_sectlog = from->sb_sectlog;
483 to->sb_inodelog = from->sb_inodelog;
484 to->sb_inopblog = from->sb_inopblog;
485 to->sb_agblklog = from->sb_agblklog;
486 to->sb_rextslog = from->sb_rextslog;
487 to->sb_inprogress = from->sb_inprogress;
488 to->sb_imax_pct = from->sb_imax_pct;
489 to->sb_icount = be64_to_cpu(from->sb_icount);
490 to->sb_ifree = be64_to_cpu(from->sb_ifree);
491 to->sb_fdblocks = be64_to_cpu(from->sb_fdblocks);
492 to->sb_frextents = be64_to_cpu(from->sb_frextents);
493 to->sb_uquotino = be64_to_cpu(from->sb_uquotino);
494 to->sb_gquotino = be64_to_cpu(from->sb_gquotino);
495 to->sb_qflags = be16_to_cpu(from->sb_qflags);
496 to->sb_flags = from->sb_flags;
497 to->sb_shared_vn = from->sb_shared_vn;
498 to->sb_inoalignmt = be32_to_cpu(from->sb_inoalignmt);
499 to->sb_unit = be32_to_cpu(from->sb_unit);
500 to->sb_width = be32_to_cpu(from->sb_width);
501 to->sb_dirblklog = from->sb_dirblklog;
502 to->sb_logsectlog = from->sb_logsectlog;
503 to->sb_logsectsize = be16_to_cpu(from->sb_logsectsize);
504 to->sb_logsunit = be32_to_cpu(from->sb_logsunit);
505 to->sb_features2 = be32_to_cpu(from->sb_features2);
506 to->sb_bad_features2 = be32_to_cpu(from->sb_bad_features2);
510 * Copy in core superblock to ondisk one.
512 * The fields argument is mask of superblock fields to copy.
514 void
515 xfs_sb_to_disk(
516 xfs_dsb_t *to,
517 xfs_sb_t *from,
518 __int64_t fields)
520 xfs_caddr_t to_ptr = (xfs_caddr_t)to;
521 xfs_caddr_t from_ptr = (xfs_caddr_t)from;
522 xfs_sb_field_t f;
523 int first;
524 int size;
526 ASSERT(fields);
527 if (!fields)
528 return;
530 while (fields) {
531 f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
532 first = xfs_sb_info[f].offset;
533 size = xfs_sb_info[f + 1].offset - first;
535 ASSERT(xfs_sb_info[f].type == 0 || xfs_sb_info[f].type == 1);
537 if (size == 1 || xfs_sb_info[f].type == 1) {
538 memcpy(to_ptr + first, from_ptr + first, size);
539 } else {
540 switch (size) {
541 case 2:
542 *(__be16 *)(to_ptr + first) =
543 cpu_to_be16(*(__u16 *)(from_ptr + first));
544 break;
545 case 4:
546 *(__be32 *)(to_ptr + first) =
547 cpu_to_be32(*(__u32 *)(from_ptr + first));
548 break;
549 case 8:
550 *(__be64 *)(to_ptr + first) =
551 cpu_to_be64(*(__u64 *)(from_ptr + first));
552 break;
553 default:
554 ASSERT(0);
558 fields &= ~(1LL << f);
563 * xfs_readsb
565 * Does the initial read of the superblock.
568 xfs_readsb(xfs_mount_t *mp, int flags)
570 unsigned int sector_size;
571 unsigned int extra_flags;
572 xfs_buf_t *bp;
573 int error;
575 ASSERT(mp->m_sb_bp == NULL);
576 ASSERT(mp->m_ddev_targp != NULL);
579 * Allocate a (locked) buffer to hold the superblock.
580 * This will be kept around at all times to optimize
581 * access to the superblock.
583 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
584 extra_flags = XFS_BUF_LOCK | XFS_BUF_MANAGE | XFS_BUF_MAPPED;
586 bp = xfs_buf_read_flags(mp->m_ddev_targp, XFS_SB_DADDR,
587 BTOBB(sector_size), extra_flags);
588 if (!bp || XFS_BUF_ISERROR(bp)) {
589 xfs_fs_mount_cmn_err(flags, "SB read failed");
590 error = bp ? XFS_BUF_GETERROR(bp) : ENOMEM;
591 goto fail;
593 ASSERT(XFS_BUF_ISBUSY(bp));
594 ASSERT(XFS_BUF_VALUSEMA(bp) <= 0);
597 * Initialize the mount structure from the superblock.
598 * But first do some basic consistency checking.
600 xfs_sb_from_disk(&mp->m_sb, XFS_BUF_TO_SBP(bp));
602 error = xfs_mount_validate_sb(mp, &(mp->m_sb), flags);
603 if (error) {
604 xfs_fs_mount_cmn_err(flags, "SB validate failed");
605 goto fail;
609 * We must be able to do sector-sized and sector-aligned IO.
611 if (sector_size > mp->m_sb.sb_sectsize) {
612 xfs_fs_mount_cmn_err(flags,
613 "device supports only %u byte sectors (not %u)",
614 sector_size, mp->m_sb.sb_sectsize);
615 error = ENOSYS;
616 goto fail;
620 * If device sector size is smaller than the superblock size,
621 * re-read the superblock so the buffer is correctly sized.
623 if (sector_size < mp->m_sb.sb_sectsize) {
624 XFS_BUF_UNMANAGE(bp);
625 xfs_buf_relse(bp);
626 sector_size = mp->m_sb.sb_sectsize;
627 bp = xfs_buf_read_flags(mp->m_ddev_targp, XFS_SB_DADDR,
628 BTOBB(sector_size), extra_flags);
629 if (!bp || XFS_BUF_ISERROR(bp)) {
630 xfs_fs_mount_cmn_err(flags, "SB re-read failed");
631 error = bp ? XFS_BUF_GETERROR(bp) : ENOMEM;
632 goto fail;
634 ASSERT(XFS_BUF_ISBUSY(bp));
635 ASSERT(XFS_BUF_VALUSEMA(bp) <= 0);
638 /* Initialize per-cpu counters */
639 xfs_icsb_reinit_counters(mp);
641 mp->m_sb_bp = bp;
642 xfs_buf_relse(bp);
643 ASSERT(XFS_BUF_VALUSEMA(bp) > 0);
644 return 0;
646 fail:
647 if (bp) {
648 XFS_BUF_UNMANAGE(bp);
649 xfs_buf_relse(bp);
651 return error;
656 * xfs_mount_common
658 * Mount initialization code establishing various mount
659 * fields from the superblock associated with the given
660 * mount structure
662 STATIC void
663 xfs_mount_common(xfs_mount_t *mp, xfs_sb_t *sbp)
665 mp->m_agfrotor = mp->m_agirotor = 0;
666 spin_lock_init(&mp->m_agirotor_lock);
667 mp->m_maxagi = mp->m_sb.sb_agcount;
668 mp->m_blkbit_log = sbp->sb_blocklog + XFS_NBBYLOG;
669 mp->m_blkbb_log = sbp->sb_blocklog - BBSHIFT;
670 mp->m_sectbb_log = sbp->sb_sectlog - BBSHIFT;
671 mp->m_agno_log = xfs_highbit32(sbp->sb_agcount - 1) + 1;
672 mp->m_agino_log = sbp->sb_inopblog + sbp->sb_agblklog;
673 mp->m_blockmask = sbp->sb_blocksize - 1;
674 mp->m_blockwsize = sbp->sb_blocksize >> XFS_WORDLOG;
675 mp->m_blockwmask = mp->m_blockwsize - 1;
677 mp->m_alloc_mxr[0] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 1);
678 mp->m_alloc_mxr[1] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 0);
679 mp->m_alloc_mnr[0] = mp->m_alloc_mxr[0] / 2;
680 mp->m_alloc_mnr[1] = mp->m_alloc_mxr[1] / 2;
682 mp->m_inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 1);
683 mp->m_inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 0);
684 mp->m_inobt_mnr[0] = mp->m_inobt_mxr[0] / 2;
685 mp->m_inobt_mnr[1] = mp->m_inobt_mxr[1] / 2;
687 mp->m_bmap_dmxr[0] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 1);
688 mp->m_bmap_dmxr[1] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 0);
689 mp->m_bmap_dmnr[0] = mp->m_bmap_dmxr[0] / 2;
690 mp->m_bmap_dmnr[1] = mp->m_bmap_dmxr[1] / 2;
692 mp->m_bsize = XFS_FSB_TO_BB(mp, 1);
693 mp->m_ialloc_inos = (int)MAX((__uint16_t)XFS_INODES_PER_CHUNK,
694 sbp->sb_inopblock);
695 mp->m_ialloc_blks = mp->m_ialloc_inos >> sbp->sb_inopblog;
699 * xfs_initialize_perag_data
701 * Read in each per-ag structure so we can count up the number of
702 * allocated inodes, free inodes and used filesystem blocks as this
703 * information is no longer persistent in the superblock. Once we have
704 * this information, write it into the in-core superblock structure.
706 STATIC int
707 xfs_initialize_perag_data(xfs_mount_t *mp, xfs_agnumber_t agcount)
709 xfs_agnumber_t index;
710 xfs_perag_t *pag;
711 xfs_sb_t *sbp = &mp->m_sb;
712 uint64_t ifree = 0;
713 uint64_t ialloc = 0;
714 uint64_t bfree = 0;
715 uint64_t bfreelst = 0;
716 uint64_t btree = 0;
717 int error;
719 for (index = 0; index < agcount; index++) {
721 * read the agf, then the agi. This gets us
722 * all the information we need and populates the
723 * per-ag structures for us.
725 error = xfs_alloc_pagf_init(mp, NULL, index, 0);
726 if (error)
727 return error;
729 error = xfs_ialloc_pagi_init(mp, NULL, index);
730 if (error)
731 return error;
732 pag = &mp->m_perag[index];
733 ifree += pag->pagi_freecount;
734 ialloc += pag->pagi_count;
735 bfree += pag->pagf_freeblks;
736 bfreelst += pag->pagf_flcount;
737 btree += pag->pagf_btreeblks;
740 * Overwrite incore superblock counters with just-read data
742 spin_lock(&mp->m_sb_lock);
743 sbp->sb_ifree = ifree;
744 sbp->sb_icount = ialloc;
745 sbp->sb_fdblocks = bfree + bfreelst + btree;
746 spin_unlock(&mp->m_sb_lock);
748 /* Fixup the per-cpu counters as well. */
749 xfs_icsb_reinit_counters(mp);
751 return 0;
755 * Update alignment values based on mount options and sb values
757 STATIC int
758 xfs_update_alignment(xfs_mount_t *mp)
760 xfs_sb_t *sbp = &(mp->m_sb);
762 if (mp->m_dalign) {
764 * If stripe unit and stripe width are not multiples
765 * of the fs blocksize turn off alignment.
767 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
768 (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
769 if (mp->m_flags & XFS_MOUNT_RETERR) {
770 cmn_err(CE_WARN,
771 "XFS: alignment check 1 failed");
772 return XFS_ERROR(EINVAL);
774 mp->m_dalign = mp->m_swidth = 0;
775 } else {
777 * Convert the stripe unit and width to FSBs.
779 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
780 if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
781 if (mp->m_flags & XFS_MOUNT_RETERR) {
782 return XFS_ERROR(EINVAL);
784 xfs_fs_cmn_err(CE_WARN, mp,
785 "stripe alignment turned off: sunit(%d)/swidth(%d) incompatible with agsize(%d)",
786 mp->m_dalign, mp->m_swidth,
787 sbp->sb_agblocks);
789 mp->m_dalign = 0;
790 mp->m_swidth = 0;
791 } else if (mp->m_dalign) {
792 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
793 } else {
794 if (mp->m_flags & XFS_MOUNT_RETERR) {
795 xfs_fs_cmn_err(CE_WARN, mp,
796 "stripe alignment turned off: sunit(%d) less than bsize(%d)",
797 mp->m_dalign,
798 mp->m_blockmask +1);
799 return XFS_ERROR(EINVAL);
801 mp->m_swidth = 0;
806 * Update superblock with new values
807 * and log changes
809 if (xfs_sb_version_hasdalign(sbp)) {
810 if (sbp->sb_unit != mp->m_dalign) {
811 sbp->sb_unit = mp->m_dalign;
812 mp->m_update_flags |= XFS_SB_UNIT;
814 if (sbp->sb_width != mp->m_swidth) {
815 sbp->sb_width = mp->m_swidth;
816 mp->m_update_flags |= XFS_SB_WIDTH;
819 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
820 xfs_sb_version_hasdalign(&mp->m_sb)) {
821 mp->m_dalign = sbp->sb_unit;
822 mp->m_swidth = sbp->sb_width;
825 return 0;
829 * Set the maximum inode count for this filesystem
831 STATIC void
832 xfs_set_maxicount(xfs_mount_t *mp)
834 xfs_sb_t *sbp = &(mp->m_sb);
835 __uint64_t icount;
837 if (sbp->sb_imax_pct) {
839 * Make sure the maximum inode count is a multiple
840 * of the units we allocate inodes in.
842 icount = sbp->sb_dblocks * sbp->sb_imax_pct;
843 do_div(icount, 100);
844 do_div(icount, mp->m_ialloc_blks);
845 mp->m_maxicount = (icount * mp->m_ialloc_blks) <<
846 sbp->sb_inopblog;
847 } else {
848 mp->m_maxicount = 0;
853 * Set the default minimum read and write sizes unless
854 * already specified in a mount option.
855 * We use smaller I/O sizes when the file system
856 * is being used for NFS service (wsync mount option).
858 STATIC void
859 xfs_set_rw_sizes(xfs_mount_t *mp)
861 xfs_sb_t *sbp = &(mp->m_sb);
862 int readio_log, writeio_log;
864 if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
865 if (mp->m_flags & XFS_MOUNT_WSYNC) {
866 readio_log = XFS_WSYNC_READIO_LOG;
867 writeio_log = XFS_WSYNC_WRITEIO_LOG;
868 } else {
869 readio_log = XFS_READIO_LOG_LARGE;
870 writeio_log = XFS_WRITEIO_LOG_LARGE;
872 } else {
873 readio_log = mp->m_readio_log;
874 writeio_log = mp->m_writeio_log;
877 if (sbp->sb_blocklog > readio_log) {
878 mp->m_readio_log = sbp->sb_blocklog;
879 } else {
880 mp->m_readio_log = readio_log;
882 mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
883 if (sbp->sb_blocklog > writeio_log) {
884 mp->m_writeio_log = sbp->sb_blocklog;
885 } else {
886 mp->m_writeio_log = writeio_log;
888 mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
892 * Set whether we're using inode alignment.
894 STATIC void
895 xfs_set_inoalignment(xfs_mount_t *mp)
897 if (xfs_sb_version_hasalign(&mp->m_sb) &&
898 mp->m_sb.sb_inoalignmt >=
899 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
900 mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
901 else
902 mp->m_inoalign_mask = 0;
904 * If we are using stripe alignment, check whether
905 * the stripe unit is a multiple of the inode alignment
907 if (mp->m_dalign && mp->m_inoalign_mask &&
908 !(mp->m_dalign & mp->m_inoalign_mask))
909 mp->m_sinoalign = mp->m_dalign;
910 else
911 mp->m_sinoalign = 0;
915 * Check that the data (and log if separate) are an ok size.
917 STATIC int
918 xfs_check_sizes(xfs_mount_t *mp)
920 xfs_buf_t *bp;
921 xfs_daddr_t d;
922 int error;
924 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
925 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
926 cmn_err(CE_WARN, "XFS: size check 1 failed");
927 return XFS_ERROR(E2BIG);
929 error = xfs_read_buf(mp, mp->m_ddev_targp,
930 d - XFS_FSS_TO_BB(mp, 1),
931 XFS_FSS_TO_BB(mp, 1), 0, &bp);
932 if (!error) {
933 xfs_buf_relse(bp);
934 } else {
935 cmn_err(CE_WARN, "XFS: size check 2 failed");
936 if (error == ENOSPC)
937 error = XFS_ERROR(E2BIG);
938 return error;
941 if (mp->m_logdev_targp != mp->m_ddev_targp) {
942 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
943 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
944 cmn_err(CE_WARN, "XFS: size check 3 failed");
945 return XFS_ERROR(E2BIG);
947 error = xfs_read_buf(mp, mp->m_logdev_targp,
948 d - XFS_FSB_TO_BB(mp, 1),
949 XFS_FSB_TO_BB(mp, 1), 0, &bp);
950 if (!error) {
951 xfs_buf_relse(bp);
952 } else {
953 cmn_err(CE_WARN, "XFS: size check 3 failed");
954 if (error == ENOSPC)
955 error = XFS_ERROR(E2BIG);
956 return error;
959 return 0;
963 * Clear the quotaflags in memory and in the superblock.
966 xfs_mount_reset_sbqflags(
967 struct xfs_mount *mp)
969 int error;
970 struct xfs_trans *tp;
972 mp->m_qflags = 0;
975 * It is OK to look at sb_qflags here in mount path,
976 * without m_sb_lock.
978 if (mp->m_sb.sb_qflags == 0)
979 return 0;
980 spin_lock(&mp->m_sb_lock);
981 mp->m_sb.sb_qflags = 0;
982 spin_unlock(&mp->m_sb_lock);
985 * If the fs is readonly, let the incore superblock run
986 * with quotas off but don't flush the update out to disk
988 if (mp->m_flags & XFS_MOUNT_RDONLY)
989 return 0;
991 #ifdef QUOTADEBUG
992 xfs_fs_cmn_err(CE_NOTE, mp, "Writing superblock quota changes");
993 #endif
995 tp = xfs_trans_alloc(mp, XFS_TRANS_QM_SBCHANGE);
996 error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
997 XFS_DEFAULT_LOG_COUNT);
998 if (error) {
999 xfs_trans_cancel(tp, 0);
1000 xfs_fs_cmn_err(CE_ALERT, mp,
1001 "xfs_mount_reset_sbqflags: Superblock update failed!");
1002 return error;
1005 xfs_mod_sb(tp, XFS_SB_QFLAGS);
1006 return xfs_trans_commit(tp, 0);
1010 * This function does the following on an initial mount of a file system:
1011 * - reads the superblock from disk and init the mount struct
1012 * - if we're a 32-bit kernel, do a size check on the superblock
1013 * so we don't mount terabyte filesystems
1014 * - init mount struct realtime fields
1015 * - allocate inode hash table for fs
1016 * - init directory manager
1017 * - perform recovery and init the log manager
1020 xfs_mountfs(
1021 xfs_mount_t *mp)
1023 xfs_sb_t *sbp = &(mp->m_sb);
1024 xfs_inode_t *rip;
1025 __uint64_t resblks;
1026 uint quotamount = 0;
1027 uint quotaflags = 0;
1028 int error = 0;
1030 xfs_mount_common(mp, sbp);
1033 * Check for a mismatched features2 values. Older kernels
1034 * read & wrote into the wrong sb offset for sb_features2
1035 * on some platforms due to xfs_sb_t not being 64bit size aligned
1036 * when sb_features2 was added, which made older superblock
1037 * reading/writing routines swap it as a 64-bit value.
1039 * For backwards compatibility, we make both slots equal.
1041 * If we detect a mismatched field, we OR the set bits into the
1042 * existing features2 field in case it has already been modified; we
1043 * don't want to lose any features. We then update the bad location
1044 * with the ORed value so that older kernels will see any features2
1045 * flags, and mark the two fields as needing updates once the
1046 * transaction subsystem is online.
1048 if (xfs_sb_has_mismatched_features2(sbp)) {
1049 cmn_err(CE_WARN,
1050 "XFS: correcting sb_features alignment problem");
1051 sbp->sb_features2 |= sbp->sb_bad_features2;
1052 sbp->sb_bad_features2 = sbp->sb_features2;
1053 mp->m_update_flags |= XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2;
1056 * Re-check for ATTR2 in case it was found in bad_features2
1057 * slot.
1059 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
1060 !(mp->m_flags & XFS_MOUNT_NOATTR2))
1061 mp->m_flags |= XFS_MOUNT_ATTR2;
1064 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
1065 (mp->m_flags & XFS_MOUNT_NOATTR2)) {
1066 xfs_sb_version_removeattr2(&mp->m_sb);
1067 mp->m_update_flags |= XFS_SB_FEATURES2;
1069 /* update sb_versionnum for the clearing of the morebits */
1070 if (!sbp->sb_features2)
1071 mp->m_update_flags |= XFS_SB_VERSIONNUM;
1075 * Check if sb_agblocks is aligned at stripe boundary
1076 * If sb_agblocks is NOT aligned turn off m_dalign since
1077 * allocator alignment is within an ag, therefore ag has
1078 * to be aligned at stripe boundary.
1080 error = xfs_update_alignment(mp);
1081 if (error)
1082 goto out;
1084 xfs_alloc_compute_maxlevels(mp);
1085 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
1086 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
1087 xfs_ialloc_compute_maxlevels(mp);
1089 xfs_set_maxicount(mp);
1091 mp->m_maxioffset = xfs_max_file_offset(sbp->sb_blocklog);
1093 error = xfs_uuid_mount(mp);
1094 if (error)
1095 goto out;
1098 * Set the minimum read and write sizes
1100 xfs_set_rw_sizes(mp);
1103 * Set the inode cluster size.
1104 * This may still be overridden by the file system
1105 * block size if it is larger than the chosen cluster size.
1107 mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
1110 * Set inode alignment fields
1112 xfs_set_inoalignment(mp);
1115 * Check that the data (and log if separate) are an ok size.
1117 error = xfs_check_sizes(mp);
1118 if (error)
1119 goto out_remove_uuid;
1122 * Initialize realtime fields in the mount structure
1124 error = xfs_rtmount_init(mp);
1125 if (error) {
1126 cmn_err(CE_WARN, "XFS: RT mount failed");
1127 goto out_remove_uuid;
1131 * Copies the low order bits of the timestamp and the randomly
1132 * set "sequence" number out of a UUID.
1134 uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
1136 mp->m_dmevmask = 0; /* not persistent; set after each mount */
1138 xfs_dir_mount(mp);
1141 * Initialize the attribute manager's entries.
1143 mp->m_attr_magicpct = (mp->m_sb.sb_blocksize * 37) / 100;
1146 * Initialize the precomputed transaction reservations values.
1148 xfs_trans_init(mp);
1151 * Allocate and initialize the per-ag data.
1153 init_rwsem(&mp->m_peraglock);
1154 mp->m_perag = kmem_zalloc(sbp->sb_agcount * sizeof(xfs_perag_t),
1155 KM_MAYFAIL);
1156 if (!mp->m_perag)
1157 goto out_remove_uuid;
1159 mp->m_maxagi = xfs_initialize_perag(mp, sbp->sb_agcount);
1161 if (!sbp->sb_logblocks) {
1162 cmn_err(CE_WARN, "XFS: no log defined");
1163 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
1164 error = XFS_ERROR(EFSCORRUPTED);
1165 goto out_free_perag;
1169 * log's mount-time initialization. Perform 1st part recovery if needed
1171 error = xfs_log_mount(mp, mp->m_logdev_targp,
1172 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
1173 XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
1174 if (error) {
1175 cmn_err(CE_WARN, "XFS: log mount failed");
1176 goto out_free_perag;
1180 * Now the log is mounted, we know if it was an unclean shutdown or
1181 * not. If it was, with the first phase of recovery has completed, we
1182 * have consistent AG blocks on disk. We have not recovered EFIs yet,
1183 * but they are recovered transactionally in the second recovery phase
1184 * later.
1186 * Hence we can safely re-initialise incore superblock counters from
1187 * the per-ag data. These may not be correct if the filesystem was not
1188 * cleanly unmounted, so we need to wait for recovery to finish before
1189 * doing this.
1191 * If the filesystem was cleanly unmounted, then we can trust the
1192 * values in the superblock to be correct and we don't need to do
1193 * anything here.
1195 * If we are currently making the filesystem, the initialisation will
1196 * fail as the perag data is in an undefined state.
1198 if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
1199 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
1200 !mp->m_sb.sb_inprogress) {
1201 error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
1202 if (error)
1203 goto out_free_perag;
1207 * Get and sanity-check the root inode.
1208 * Save the pointer to it in the mount structure.
1210 error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip, 0);
1211 if (error) {
1212 cmn_err(CE_WARN, "XFS: failed to read root inode");
1213 goto out_log_dealloc;
1216 ASSERT(rip != NULL);
1218 if (unlikely((rip->i_d.di_mode & S_IFMT) != S_IFDIR)) {
1219 cmn_err(CE_WARN, "XFS: corrupted root inode");
1220 cmn_err(CE_WARN, "Device %s - root %llu is not a directory",
1221 XFS_BUFTARG_NAME(mp->m_ddev_targp),
1222 (unsigned long long)rip->i_ino);
1223 xfs_iunlock(rip, XFS_ILOCK_EXCL);
1224 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
1225 mp);
1226 error = XFS_ERROR(EFSCORRUPTED);
1227 goto out_rele_rip;
1229 mp->m_rootip = rip; /* save it */
1231 xfs_iunlock(rip, XFS_ILOCK_EXCL);
1234 * Initialize realtime inode pointers in the mount structure
1236 error = xfs_rtmount_inodes(mp);
1237 if (error) {
1239 * Free up the root inode.
1241 cmn_err(CE_WARN, "XFS: failed to read RT inodes");
1242 goto out_rele_rip;
1246 * If this is a read-only mount defer the superblock updates until
1247 * the next remount into writeable mode. Otherwise we would never
1248 * perform the update e.g. for the root filesystem.
1250 if (mp->m_update_flags && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
1251 error = xfs_mount_log_sb(mp, mp->m_update_flags);
1252 if (error) {
1253 cmn_err(CE_WARN, "XFS: failed to write sb changes");
1254 goto out_rtunmount;
1259 * Initialise the XFS quota management subsystem for this mount
1261 if (XFS_IS_QUOTA_RUNNING(mp)) {
1262 error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
1263 if (error)
1264 goto out_rtunmount;
1265 } else {
1266 ASSERT(!XFS_IS_QUOTA_ON(mp));
1269 * If a file system had quotas running earlier, but decided to
1270 * mount without -o uquota/pquota/gquota options, revoke the
1271 * quotachecked license.
1273 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
1274 cmn_err(CE_NOTE,
1275 "XFS: resetting qflags for filesystem %s",
1276 mp->m_fsname);
1278 error = xfs_mount_reset_sbqflags(mp);
1279 if (error)
1280 return error;
1285 * Finish recovering the file system. This part needed to be
1286 * delayed until after the root and real-time bitmap inodes
1287 * were consistently read in.
1289 error = xfs_log_mount_finish(mp);
1290 if (error) {
1291 cmn_err(CE_WARN, "XFS: log mount finish failed");
1292 goto out_rtunmount;
1296 * Complete the quota initialisation, post-log-replay component.
1298 if (quotamount) {
1299 ASSERT(mp->m_qflags == 0);
1300 mp->m_qflags = quotaflags;
1302 xfs_qm_mount_quotas(mp);
1305 #if defined(DEBUG) && defined(XFS_LOUD_RECOVERY)
1306 if (XFS_IS_QUOTA_ON(mp))
1307 xfs_fs_cmn_err(CE_NOTE, mp, "Disk quotas turned on");
1308 else
1309 xfs_fs_cmn_err(CE_NOTE, mp, "Disk quotas not turned on");
1310 #endif
1313 * Now we are mounted, reserve a small amount of unused space for
1314 * privileged transactions. This is needed so that transaction
1315 * space required for critical operations can dip into this pool
1316 * when at ENOSPC. This is needed for operations like create with
1317 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
1318 * are not allowed to use this reserved space.
1320 * We default to 5% or 1024 fsbs of space reserved, whichever is smaller.
1321 * This may drive us straight to ENOSPC on mount, but that implies
1322 * we were already there on the last unmount. Warn if this occurs.
1324 resblks = mp->m_sb.sb_dblocks;
1325 do_div(resblks, 20);
1326 resblks = min_t(__uint64_t, resblks, 1024);
1327 error = xfs_reserve_blocks(mp, &resblks, NULL);
1328 if (error)
1329 cmn_err(CE_WARN, "XFS: Unable to allocate reserve blocks. "
1330 "Continuing without a reserve pool.");
1332 return 0;
1334 out_rtunmount:
1335 xfs_rtunmount_inodes(mp);
1336 out_rele_rip:
1337 IRELE(rip);
1338 out_log_dealloc:
1339 xfs_log_unmount(mp);
1340 out_free_perag:
1341 xfs_free_perag(mp);
1342 out_remove_uuid:
1343 xfs_uuid_unmount(mp);
1344 out:
1345 return error;
1349 * This flushes out the inodes,dquots and the superblock, unmounts the
1350 * log and makes sure that incore structures are freed.
1352 void
1353 xfs_unmountfs(
1354 struct xfs_mount *mp)
1356 __uint64_t resblks;
1357 int error;
1359 xfs_qm_unmount_quotas(mp);
1360 xfs_rtunmount_inodes(mp);
1361 IRELE(mp->m_rootip);
1364 * We can potentially deadlock here if we have an inode cluster
1365 * that has been freed has its buffer still pinned in memory because
1366 * the transaction is still sitting in a iclog. The stale inodes
1367 * on that buffer will have their flush locks held until the
1368 * transaction hits the disk and the callbacks run. the inode
1369 * flush takes the flush lock unconditionally and with nothing to
1370 * push out the iclog we will never get that unlocked. hence we
1371 * need to force the log first.
1373 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE | XFS_LOG_SYNC);
1374 xfs_reclaim_inodes(mp, XFS_IFLUSH_ASYNC);
1376 xfs_qm_unmount(mp);
1379 * Flush out the log synchronously so that we know for sure
1380 * that nothing is pinned. This is important because bflush()
1381 * will skip pinned buffers.
1383 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE | XFS_LOG_SYNC);
1385 xfs_binval(mp->m_ddev_targp);
1386 if (mp->m_rtdev_targp) {
1387 xfs_binval(mp->m_rtdev_targp);
1391 * Unreserve any blocks we have so that when we unmount we don't account
1392 * the reserved free space as used. This is really only necessary for
1393 * lazy superblock counting because it trusts the incore superblock
1394 * counters to be absolutely correct on clean unmount.
1396 * We don't bother correcting this elsewhere for lazy superblock
1397 * counting because on mount of an unclean filesystem we reconstruct the
1398 * correct counter value and this is irrelevant.
1400 * For non-lazy counter filesystems, this doesn't matter at all because
1401 * we only every apply deltas to the superblock and hence the incore
1402 * value does not matter....
1404 resblks = 0;
1405 error = xfs_reserve_blocks(mp, &resblks, NULL);
1406 if (error)
1407 cmn_err(CE_WARN, "XFS: Unable to free reserved block pool. "
1408 "Freespace may not be correct on next mount.");
1410 error = xfs_log_sbcount(mp, 1);
1411 if (error)
1412 cmn_err(CE_WARN, "XFS: Unable to update superblock counters. "
1413 "Freespace may not be correct on next mount.");
1414 xfs_unmountfs_writesb(mp);
1415 xfs_unmountfs_wait(mp); /* wait for async bufs */
1416 xfs_log_unmount_write(mp);
1417 xfs_log_unmount(mp);
1418 xfs_uuid_unmount(mp);
1420 #if defined(DEBUG)
1421 xfs_errortag_clearall(mp, 0);
1422 #endif
1423 xfs_free_perag(mp);
1426 STATIC void
1427 xfs_unmountfs_wait(xfs_mount_t *mp)
1429 if (mp->m_logdev_targp != mp->m_ddev_targp)
1430 xfs_wait_buftarg(mp->m_logdev_targp);
1431 if (mp->m_rtdev_targp)
1432 xfs_wait_buftarg(mp->m_rtdev_targp);
1433 xfs_wait_buftarg(mp->m_ddev_targp);
1437 xfs_fs_writable(xfs_mount_t *mp)
1439 return !(xfs_test_for_freeze(mp) || XFS_FORCED_SHUTDOWN(mp) ||
1440 (mp->m_flags & XFS_MOUNT_RDONLY));
1444 * xfs_log_sbcount
1446 * Called either periodically to keep the on disk superblock values
1447 * roughly up to date or from unmount to make sure the values are
1448 * correct on a clean unmount.
1450 * Note this code can be called during the process of freezing, so
1451 * we may need to use the transaction allocator which does not not
1452 * block when the transaction subsystem is in its frozen state.
1455 xfs_log_sbcount(
1456 xfs_mount_t *mp,
1457 uint sync)
1459 xfs_trans_t *tp;
1460 int error;
1462 if (!xfs_fs_writable(mp))
1463 return 0;
1465 xfs_icsb_sync_counters(mp, 0);
1468 * we don't need to do this if we are updating the superblock
1469 * counters on every modification.
1471 if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1472 return 0;
1474 tp = _xfs_trans_alloc(mp, XFS_TRANS_SB_COUNT);
1475 error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
1476 XFS_DEFAULT_LOG_COUNT);
1477 if (error) {
1478 xfs_trans_cancel(tp, 0);
1479 return error;
1482 xfs_mod_sb(tp, XFS_SB_IFREE | XFS_SB_ICOUNT | XFS_SB_FDBLOCKS);
1483 if (sync)
1484 xfs_trans_set_sync(tp);
1485 error = xfs_trans_commit(tp, 0);
1486 return error;
1490 xfs_unmountfs_writesb(xfs_mount_t *mp)
1492 xfs_buf_t *sbp;
1493 int error = 0;
1496 * skip superblock write if fs is read-only, or
1497 * if we are doing a forced umount.
1499 if (!((mp->m_flags & XFS_MOUNT_RDONLY) ||
1500 XFS_FORCED_SHUTDOWN(mp))) {
1502 sbp = xfs_getsb(mp, 0);
1504 XFS_BUF_UNDONE(sbp);
1505 XFS_BUF_UNREAD(sbp);
1506 XFS_BUF_UNDELAYWRITE(sbp);
1507 XFS_BUF_WRITE(sbp);
1508 XFS_BUF_UNASYNC(sbp);
1509 ASSERT(XFS_BUF_TARGET(sbp) == mp->m_ddev_targp);
1510 xfsbdstrat(mp, sbp);
1511 error = xfs_iowait(sbp);
1512 if (error)
1513 xfs_ioerror_alert("xfs_unmountfs_writesb",
1514 mp, sbp, XFS_BUF_ADDR(sbp));
1515 xfs_buf_relse(sbp);
1517 return error;
1521 * xfs_mod_sb() can be used to copy arbitrary changes to the
1522 * in-core superblock into the superblock buffer to be logged.
1523 * It does not provide the higher level of locking that is
1524 * needed to protect the in-core superblock from concurrent
1525 * access.
1527 void
1528 xfs_mod_sb(xfs_trans_t *tp, __int64_t fields)
1530 xfs_buf_t *bp;
1531 int first;
1532 int last;
1533 xfs_mount_t *mp;
1534 xfs_sb_field_t f;
1536 ASSERT(fields);
1537 if (!fields)
1538 return;
1539 mp = tp->t_mountp;
1540 bp = xfs_trans_getsb(tp, mp, 0);
1541 first = sizeof(xfs_sb_t);
1542 last = 0;
1544 /* translate/copy */
1546 xfs_sb_to_disk(XFS_BUF_TO_SBP(bp), &mp->m_sb, fields);
1548 /* find modified range */
1550 f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
1551 ASSERT((1LL << f) & XFS_SB_MOD_BITS);
1552 first = xfs_sb_info[f].offset;
1554 f = (xfs_sb_field_t)xfs_highbit64((__uint64_t)fields);
1555 ASSERT((1LL << f) & XFS_SB_MOD_BITS);
1556 last = xfs_sb_info[f + 1].offset - 1;
1558 xfs_trans_log_buf(tp, bp, first, last);
1563 * xfs_mod_incore_sb_unlocked() is a utility routine common used to apply
1564 * a delta to a specified field in the in-core superblock. Simply
1565 * switch on the field indicated and apply the delta to that field.
1566 * Fields are not allowed to dip below zero, so if the delta would
1567 * do this do not apply it and return EINVAL.
1569 * The m_sb_lock must be held when this routine is called.
1572 xfs_mod_incore_sb_unlocked(
1573 xfs_mount_t *mp,
1574 xfs_sb_field_t field,
1575 int64_t delta,
1576 int rsvd)
1578 int scounter; /* short counter for 32 bit fields */
1579 long long lcounter; /* long counter for 64 bit fields */
1580 long long res_used, rem;
1583 * With the in-core superblock spin lock held, switch
1584 * on the indicated field. Apply the delta to the
1585 * proper field. If the fields value would dip below
1586 * 0, then do not apply the delta and return EINVAL.
1588 switch (field) {
1589 case XFS_SBS_ICOUNT:
1590 lcounter = (long long)mp->m_sb.sb_icount;
1591 lcounter += delta;
1592 if (lcounter < 0) {
1593 ASSERT(0);
1594 return XFS_ERROR(EINVAL);
1596 mp->m_sb.sb_icount = lcounter;
1597 return 0;
1598 case XFS_SBS_IFREE:
1599 lcounter = (long long)mp->m_sb.sb_ifree;
1600 lcounter += delta;
1601 if (lcounter < 0) {
1602 ASSERT(0);
1603 return XFS_ERROR(EINVAL);
1605 mp->m_sb.sb_ifree = lcounter;
1606 return 0;
1607 case XFS_SBS_FDBLOCKS:
1608 lcounter = (long long)
1609 mp->m_sb.sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
1610 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1612 if (delta > 0) { /* Putting blocks back */
1613 if (res_used > delta) {
1614 mp->m_resblks_avail += delta;
1615 } else {
1616 rem = delta - res_used;
1617 mp->m_resblks_avail = mp->m_resblks;
1618 lcounter += rem;
1620 } else { /* Taking blocks away */
1622 lcounter += delta;
1625 * If were out of blocks, use any available reserved blocks if
1626 * were allowed to.
1629 if (lcounter < 0) {
1630 if (rsvd) {
1631 lcounter = (long long)mp->m_resblks_avail + delta;
1632 if (lcounter < 0) {
1633 return XFS_ERROR(ENOSPC);
1635 mp->m_resblks_avail = lcounter;
1636 return 0;
1637 } else { /* not reserved */
1638 return XFS_ERROR(ENOSPC);
1643 mp->m_sb.sb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
1644 return 0;
1645 case XFS_SBS_FREXTENTS:
1646 lcounter = (long long)mp->m_sb.sb_frextents;
1647 lcounter += delta;
1648 if (lcounter < 0) {
1649 return XFS_ERROR(ENOSPC);
1651 mp->m_sb.sb_frextents = lcounter;
1652 return 0;
1653 case XFS_SBS_DBLOCKS:
1654 lcounter = (long long)mp->m_sb.sb_dblocks;
1655 lcounter += delta;
1656 if (lcounter < 0) {
1657 ASSERT(0);
1658 return XFS_ERROR(EINVAL);
1660 mp->m_sb.sb_dblocks = lcounter;
1661 return 0;
1662 case XFS_SBS_AGCOUNT:
1663 scounter = mp->m_sb.sb_agcount;
1664 scounter += delta;
1665 if (scounter < 0) {
1666 ASSERT(0);
1667 return XFS_ERROR(EINVAL);
1669 mp->m_sb.sb_agcount = scounter;
1670 return 0;
1671 case XFS_SBS_IMAX_PCT:
1672 scounter = mp->m_sb.sb_imax_pct;
1673 scounter += delta;
1674 if (scounter < 0) {
1675 ASSERT(0);
1676 return XFS_ERROR(EINVAL);
1678 mp->m_sb.sb_imax_pct = scounter;
1679 return 0;
1680 case XFS_SBS_REXTSIZE:
1681 scounter = mp->m_sb.sb_rextsize;
1682 scounter += delta;
1683 if (scounter < 0) {
1684 ASSERT(0);
1685 return XFS_ERROR(EINVAL);
1687 mp->m_sb.sb_rextsize = scounter;
1688 return 0;
1689 case XFS_SBS_RBMBLOCKS:
1690 scounter = mp->m_sb.sb_rbmblocks;
1691 scounter += delta;
1692 if (scounter < 0) {
1693 ASSERT(0);
1694 return XFS_ERROR(EINVAL);
1696 mp->m_sb.sb_rbmblocks = scounter;
1697 return 0;
1698 case XFS_SBS_RBLOCKS:
1699 lcounter = (long long)mp->m_sb.sb_rblocks;
1700 lcounter += delta;
1701 if (lcounter < 0) {
1702 ASSERT(0);
1703 return XFS_ERROR(EINVAL);
1705 mp->m_sb.sb_rblocks = lcounter;
1706 return 0;
1707 case XFS_SBS_REXTENTS:
1708 lcounter = (long long)mp->m_sb.sb_rextents;
1709 lcounter += delta;
1710 if (lcounter < 0) {
1711 ASSERT(0);
1712 return XFS_ERROR(EINVAL);
1714 mp->m_sb.sb_rextents = lcounter;
1715 return 0;
1716 case XFS_SBS_REXTSLOG:
1717 scounter = mp->m_sb.sb_rextslog;
1718 scounter += delta;
1719 if (scounter < 0) {
1720 ASSERT(0);
1721 return XFS_ERROR(EINVAL);
1723 mp->m_sb.sb_rextslog = scounter;
1724 return 0;
1725 default:
1726 ASSERT(0);
1727 return XFS_ERROR(EINVAL);
1732 * xfs_mod_incore_sb() is used to change a field in the in-core
1733 * superblock structure by the specified delta. This modification
1734 * is protected by the m_sb_lock. Just use the xfs_mod_incore_sb_unlocked()
1735 * routine to do the work.
1738 xfs_mod_incore_sb(
1739 xfs_mount_t *mp,
1740 xfs_sb_field_t field,
1741 int64_t delta,
1742 int rsvd)
1744 int status;
1746 /* check for per-cpu counters */
1747 switch (field) {
1748 #ifdef HAVE_PERCPU_SB
1749 case XFS_SBS_ICOUNT:
1750 case XFS_SBS_IFREE:
1751 case XFS_SBS_FDBLOCKS:
1752 if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) {
1753 status = xfs_icsb_modify_counters(mp, field,
1754 delta, rsvd);
1755 break;
1757 /* FALLTHROUGH */
1758 #endif
1759 default:
1760 spin_lock(&mp->m_sb_lock);
1761 status = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
1762 spin_unlock(&mp->m_sb_lock);
1763 break;
1766 return status;
1770 * xfs_mod_incore_sb_batch() is used to change more than one field
1771 * in the in-core superblock structure at a time. This modification
1772 * is protected by a lock internal to this module. The fields and
1773 * changes to those fields are specified in the array of xfs_mod_sb
1774 * structures passed in.
1776 * Either all of the specified deltas will be applied or none of
1777 * them will. If any modified field dips below 0, then all modifications
1778 * will be backed out and EINVAL will be returned.
1781 xfs_mod_incore_sb_batch(xfs_mount_t *mp, xfs_mod_sb_t *msb, uint nmsb, int rsvd)
1783 int status=0;
1784 xfs_mod_sb_t *msbp;
1787 * Loop through the array of mod structures and apply each
1788 * individually. If any fail, then back out all those
1789 * which have already been applied. Do all of this within
1790 * the scope of the m_sb_lock so that all of the changes will
1791 * be atomic.
1793 spin_lock(&mp->m_sb_lock);
1794 msbp = &msb[0];
1795 for (msbp = &msbp[0]; msbp < (msb + nmsb); msbp++) {
1797 * Apply the delta at index n. If it fails, break
1798 * from the loop so we'll fall into the undo loop
1799 * below.
1801 switch (msbp->msb_field) {
1802 #ifdef HAVE_PERCPU_SB
1803 case XFS_SBS_ICOUNT:
1804 case XFS_SBS_IFREE:
1805 case XFS_SBS_FDBLOCKS:
1806 if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) {
1807 spin_unlock(&mp->m_sb_lock);
1808 status = xfs_icsb_modify_counters(mp,
1809 msbp->msb_field,
1810 msbp->msb_delta, rsvd);
1811 spin_lock(&mp->m_sb_lock);
1812 break;
1814 /* FALLTHROUGH */
1815 #endif
1816 default:
1817 status = xfs_mod_incore_sb_unlocked(mp,
1818 msbp->msb_field,
1819 msbp->msb_delta, rsvd);
1820 break;
1823 if (status != 0) {
1824 break;
1829 * If we didn't complete the loop above, then back out
1830 * any changes made to the superblock. If you add code
1831 * between the loop above and here, make sure that you
1832 * preserve the value of status. Loop back until
1833 * we step below the beginning of the array. Make sure
1834 * we don't touch anything back there.
1836 if (status != 0) {
1837 msbp--;
1838 while (msbp >= msb) {
1839 switch (msbp->msb_field) {
1840 #ifdef HAVE_PERCPU_SB
1841 case XFS_SBS_ICOUNT:
1842 case XFS_SBS_IFREE:
1843 case XFS_SBS_FDBLOCKS:
1844 if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) {
1845 spin_unlock(&mp->m_sb_lock);
1846 status = xfs_icsb_modify_counters(mp,
1847 msbp->msb_field,
1848 -(msbp->msb_delta),
1849 rsvd);
1850 spin_lock(&mp->m_sb_lock);
1851 break;
1853 /* FALLTHROUGH */
1854 #endif
1855 default:
1856 status = xfs_mod_incore_sb_unlocked(mp,
1857 msbp->msb_field,
1858 -(msbp->msb_delta),
1859 rsvd);
1860 break;
1862 ASSERT(status == 0);
1863 msbp--;
1866 spin_unlock(&mp->m_sb_lock);
1867 return status;
1871 * xfs_getsb() is called to obtain the buffer for the superblock.
1872 * The buffer is returned locked and read in from disk.
1873 * The buffer should be released with a call to xfs_brelse().
1875 * If the flags parameter is BUF_TRYLOCK, then we'll only return
1876 * the superblock buffer if it can be locked without sleeping.
1877 * If it can't then we'll return NULL.
1879 xfs_buf_t *
1880 xfs_getsb(
1881 xfs_mount_t *mp,
1882 int flags)
1884 xfs_buf_t *bp;
1886 ASSERT(mp->m_sb_bp != NULL);
1887 bp = mp->m_sb_bp;
1888 if (flags & XFS_BUF_TRYLOCK) {
1889 if (!XFS_BUF_CPSEMA(bp)) {
1890 return NULL;
1892 } else {
1893 XFS_BUF_PSEMA(bp, PRIBIO);
1895 XFS_BUF_HOLD(bp);
1896 ASSERT(XFS_BUF_ISDONE(bp));
1897 return bp;
1901 * Used to free the superblock along various error paths.
1903 void
1904 xfs_freesb(
1905 xfs_mount_t *mp)
1907 xfs_buf_t *bp;
1910 * Use xfs_getsb() so that the buffer will be locked
1911 * when we call xfs_buf_relse().
1913 bp = xfs_getsb(mp, 0);
1914 XFS_BUF_UNMANAGE(bp);
1915 xfs_buf_relse(bp);
1916 mp->m_sb_bp = NULL;
1920 * Used to log changes to the superblock unit and width fields which could
1921 * be altered by the mount options, as well as any potential sb_features2
1922 * fixup. Only the first superblock is updated.
1925 xfs_mount_log_sb(
1926 xfs_mount_t *mp,
1927 __int64_t fields)
1929 xfs_trans_t *tp;
1930 int error;
1932 ASSERT(fields & (XFS_SB_UNIT | XFS_SB_WIDTH | XFS_SB_UUID |
1933 XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2 |
1934 XFS_SB_VERSIONNUM));
1936 tp = xfs_trans_alloc(mp, XFS_TRANS_SB_UNIT);
1937 error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
1938 XFS_DEFAULT_LOG_COUNT);
1939 if (error) {
1940 xfs_trans_cancel(tp, 0);
1941 return error;
1943 xfs_mod_sb(tp, fields);
1944 error = xfs_trans_commit(tp, 0);
1945 return error;
1949 #ifdef HAVE_PERCPU_SB
1951 * Per-cpu incore superblock counters
1953 * Simple concept, difficult implementation
1955 * Basically, replace the incore superblock counters with a distributed per cpu
1956 * counter for contended fields (e.g. free block count).
1958 * Difficulties arise in that the incore sb is used for ENOSPC checking, and
1959 * hence needs to be accurately read when we are running low on space. Hence
1960 * there is a method to enable and disable the per-cpu counters based on how
1961 * much "stuff" is available in them.
1963 * Basically, a counter is enabled if there is enough free resource to justify
1964 * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local
1965 * ENOSPC), then we disable the counters to synchronise all callers and
1966 * re-distribute the available resources.
1968 * If, once we redistributed the available resources, we still get a failure,
1969 * we disable the per-cpu counter and go through the slow path.
1971 * The slow path is the current xfs_mod_incore_sb() function. This means that
1972 * when we disable a per-cpu counter, we need to drain its resources back to
1973 * the global superblock. We do this after disabling the counter to prevent
1974 * more threads from queueing up on the counter.
1976 * Essentially, this means that we still need a lock in the fast path to enable
1977 * synchronisation between the global counters and the per-cpu counters. This
1978 * is not a problem because the lock will be local to a CPU almost all the time
1979 * and have little contention except when we get to ENOSPC conditions.
1981 * Basically, this lock becomes a barrier that enables us to lock out the fast
1982 * path while we do things like enabling and disabling counters and
1983 * synchronising the counters.
1985 * Locking rules:
1987 * 1. m_sb_lock before picking up per-cpu locks
1988 * 2. per-cpu locks always picked up via for_each_online_cpu() order
1989 * 3. accurate counter sync requires m_sb_lock + per cpu locks
1990 * 4. modifying per-cpu counters requires holding per-cpu lock
1991 * 5. modifying global counters requires holding m_sb_lock
1992 * 6. enabling or disabling a counter requires holding the m_sb_lock
1993 * and _none_ of the per-cpu locks.
1995 * Disabled counters are only ever re-enabled by a balance operation
1996 * that results in more free resources per CPU than a given threshold.
1997 * To ensure counters don't remain disabled, they are rebalanced when
1998 * the global resource goes above a higher threshold (i.e. some hysteresis
1999 * is present to prevent thrashing).
2002 #ifdef CONFIG_HOTPLUG_CPU
2004 * hot-plug CPU notifier support.
2006 * We need a notifier per filesystem as we need to be able to identify
2007 * the filesystem to balance the counters out. This is achieved by
2008 * having a notifier block embedded in the xfs_mount_t and doing pointer
2009 * magic to get the mount pointer from the notifier block address.
2011 STATIC int
2012 xfs_icsb_cpu_notify(
2013 struct notifier_block *nfb,
2014 unsigned long action,
2015 void *hcpu)
2017 xfs_icsb_cnts_t *cntp;
2018 xfs_mount_t *mp;
2020 mp = (xfs_mount_t *)container_of(nfb, xfs_mount_t, m_icsb_notifier);
2021 cntp = (xfs_icsb_cnts_t *)
2022 per_cpu_ptr(mp->m_sb_cnts, (unsigned long)hcpu);
2023 switch (action) {
2024 case CPU_UP_PREPARE:
2025 case CPU_UP_PREPARE_FROZEN:
2026 /* Easy Case - initialize the area and locks, and
2027 * then rebalance when online does everything else for us. */
2028 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2029 break;
2030 case CPU_ONLINE:
2031 case CPU_ONLINE_FROZEN:
2032 xfs_icsb_lock(mp);
2033 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
2034 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
2035 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
2036 xfs_icsb_unlock(mp);
2037 break;
2038 case CPU_DEAD:
2039 case CPU_DEAD_FROZEN:
2040 /* Disable all the counters, then fold the dead cpu's
2041 * count into the total on the global superblock and
2042 * re-enable the counters. */
2043 xfs_icsb_lock(mp);
2044 spin_lock(&mp->m_sb_lock);
2045 xfs_icsb_disable_counter(mp, XFS_SBS_ICOUNT);
2046 xfs_icsb_disable_counter(mp, XFS_SBS_IFREE);
2047 xfs_icsb_disable_counter(mp, XFS_SBS_FDBLOCKS);
2049 mp->m_sb.sb_icount += cntp->icsb_icount;
2050 mp->m_sb.sb_ifree += cntp->icsb_ifree;
2051 mp->m_sb.sb_fdblocks += cntp->icsb_fdblocks;
2053 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2055 xfs_icsb_balance_counter_locked(mp, XFS_SBS_ICOUNT, 0);
2056 xfs_icsb_balance_counter_locked(mp, XFS_SBS_IFREE, 0);
2057 xfs_icsb_balance_counter_locked(mp, XFS_SBS_FDBLOCKS, 0);
2058 spin_unlock(&mp->m_sb_lock);
2059 xfs_icsb_unlock(mp);
2060 break;
2063 return NOTIFY_OK;
2065 #endif /* CONFIG_HOTPLUG_CPU */
2068 xfs_icsb_init_counters(
2069 xfs_mount_t *mp)
2071 xfs_icsb_cnts_t *cntp;
2072 int i;
2074 mp->m_sb_cnts = alloc_percpu(xfs_icsb_cnts_t);
2075 if (mp->m_sb_cnts == NULL)
2076 return -ENOMEM;
2078 #ifdef CONFIG_HOTPLUG_CPU
2079 mp->m_icsb_notifier.notifier_call = xfs_icsb_cpu_notify;
2080 mp->m_icsb_notifier.priority = 0;
2081 register_hotcpu_notifier(&mp->m_icsb_notifier);
2082 #endif /* CONFIG_HOTPLUG_CPU */
2084 for_each_online_cpu(i) {
2085 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2086 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2089 mutex_init(&mp->m_icsb_mutex);
2092 * start with all counters disabled so that the
2093 * initial balance kicks us off correctly
2095 mp->m_icsb_counters = -1;
2096 return 0;
2099 void
2100 xfs_icsb_reinit_counters(
2101 xfs_mount_t *mp)
2103 xfs_icsb_lock(mp);
2105 * start with all counters disabled so that the
2106 * initial balance kicks us off correctly
2108 mp->m_icsb_counters = -1;
2109 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
2110 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
2111 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
2112 xfs_icsb_unlock(mp);
2115 void
2116 xfs_icsb_destroy_counters(
2117 xfs_mount_t *mp)
2119 if (mp->m_sb_cnts) {
2120 unregister_hotcpu_notifier(&mp->m_icsb_notifier);
2121 free_percpu(mp->m_sb_cnts);
2123 mutex_destroy(&mp->m_icsb_mutex);
2126 STATIC_INLINE void
2127 xfs_icsb_lock_cntr(
2128 xfs_icsb_cnts_t *icsbp)
2130 while (test_and_set_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags)) {
2131 ndelay(1000);
2135 STATIC_INLINE void
2136 xfs_icsb_unlock_cntr(
2137 xfs_icsb_cnts_t *icsbp)
2139 clear_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags);
2143 STATIC_INLINE void
2144 xfs_icsb_lock_all_counters(
2145 xfs_mount_t *mp)
2147 xfs_icsb_cnts_t *cntp;
2148 int i;
2150 for_each_online_cpu(i) {
2151 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2152 xfs_icsb_lock_cntr(cntp);
2156 STATIC_INLINE void
2157 xfs_icsb_unlock_all_counters(
2158 xfs_mount_t *mp)
2160 xfs_icsb_cnts_t *cntp;
2161 int i;
2163 for_each_online_cpu(i) {
2164 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2165 xfs_icsb_unlock_cntr(cntp);
2169 STATIC void
2170 xfs_icsb_count(
2171 xfs_mount_t *mp,
2172 xfs_icsb_cnts_t *cnt,
2173 int flags)
2175 xfs_icsb_cnts_t *cntp;
2176 int i;
2178 memset(cnt, 0, sizeof(xfs_icsb_cnts_t));
2180 if (!(flags & XFS_ICSB_LAZY_COUNT))
2181 xfs_icsb_lock_all_counters(mp);
2183 for_each_online_cpu(i) {
2184 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2185 cnt->icsb_icount += cntp->icsb_icount;
2186 cnt->icsb_ifree += cntp->icsb_ifree;
2187 cnt->icsb_fdblocks += cntp->icsb_fdblocks;
2190 if (!(flags & XFS_ICSB_LAZY_COUNT))
2191 xfs_icsb_unlock_all_counters(mp);
2194 STATIC int
2195 xfs_icsb_counter_disabled(
2196 xfs_mount_t *mp,
2197 xfs_sb_field_t field)
2199 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2200 return test_bit(field, &mp->m_icsb_counters);
2203 STATIC void
2204 xfs_icsb_disable_counter(
2205 xfs_mount_t *mp,
2206 xfs_sb_field_t field)
2208 xfs_icsb_cnts_t cnt;
2210 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2213 * If we are already disabled, then there is nothing to do
2214 * here. We check before locking all the counters to avoid
2215 * the expensive lock operation when being called in the
2216 * slow path and the counter is already disabled. This is
2217 * safe because the only time we set or clear this state is under
2218 * the m_icsb_mutex.
2220 if (xfs_icsb_counter_disabled(mp, field))
2221 return;
2223 xfs_icsb_lock_all_counters(mp);
2224 if (!test_and_set_bit(field, &mp->m_icsb_counters)) {
2225 /* drain back to superblock */
2227 xfs_icsb_count(mp, &cnt, XFS_ICSB_LAZY_COUNT);
2228 switch(field) {
2229 case XFS_SBS_ICOUNT:
2230 mp->m_sb.sb_icount = cnt.icsb_icount;
2231 break;
2232 case XFS_SBS_IFREE:
2233 mp->m_sb.sb_ifree = cnt.icsb_ifree;
2234 break;
2235 case XFS_SBS_FDBLOCKS:
2236 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
2237 break;
2238 default:
2239 BUG();
2243 xfs_icsb_unlock_all_counters(mp);
2246 STATIC void
2247 xfs_icsb_enable_counter(
2248 xfs_mount_t *mp,
2249 xfs_sb_field_t field,
2250 uint64_t count,
2251 uint64_t resid)
2253 xfs_icsb_cnts_t *cntp;
2254 int i;
2256 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2258 xfs_icsb_lock_all_counters(mp);
2259 for_each_online_cpu(i) {
2260 cntp = per_cpu_ptr(mp->m_sb_cnts, i);
2261 switch (field) {
2262 case XFS_SBS_ICOUNT:
2263 cntp->icsb_icount = count + resid;
2264 break;
2265 case XFS_SBS_IFREE:
2266 cntp->icsb_ifree = count + resid;
2267 break;
2268 case XFS_SBS_FDBLOCKS:
2269 cntp->icsb_fdblocks = count + resid;
2270 break;
2271 default:
2272 BUG();
2273 break;
2275 resid = 0;
2277 clear_bit(field, &mp->m_icsb_counters);
2278 xfs_icsb_unlock_all_counters(mp);
2281 void
2282 xfs_icsb_sync_counters_locked(
2283 xfs_mount_t *mp,
2284 int flags)
2286 xfs_icsb_cnts_t cnt;
2288 xfs_icsb_count(mp, &cnt, flags);
2290 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_ICOUNT))
2291 mp->m_sb.sb_icount = cnt.icsb_icount;
2292 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_IFREE))
2293 mp->m_sb.sb_ifree = cnt.icsb_ifree;
2294 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_FDBLOCKS))
2295 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
2299 * Accurate update of per-cpu counters to incore superblock
2301 void
2302 xfs_icsb_sync_counters(
2303 xfs_mount_t *mp,
2304 int flags)
2306 spin_lock(&mp->m_sb_lock);
2307 xfs_icsb_sync_counters_locked(mp, flags);
2308 spin_unlock(&mp->m_sb_lock);
2312 * Balance and enable/disable counters as necessary.
2314 * Thresholds for re-enabling counters are somewhat magic. inode counts are
2315 * chosen to be the same number as single on disk allocation chunk per CPU, and
2316 * free blocks is something far enough zero that we aren't going thrash when we
2317 * get near ENOSPC. We also need to supply a minimum we require per cpu to
2318 * prevent looping endlessly when xfs_alloc_space asks for more than will
2319 * be distributed to a single CPU but each CPU has enough blocks to be
2320 * reenabled.
2322 * Note that we can be called when counters are already disabled.
2323 * xfs_icsb_disable_counter() optimises the counter locking in this case to
2324 * prevent locking every per-cpu counter needlessly.
2327 #define XFS_ICSB_INO_CNTR_REENABLE (uint64_t)64
2328 #define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \
2329 (uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp))
2330 STATIC void
2331 xfs_icsb_balance_counter_locked(
2332 xfs_mount_t *mp,
2333 xfs_sb_field_t field,
2334 int min_per_cpu)
2336 uint64_t count, resid;
2337 int weight = num_online_cpus();
2338 uint64_t min = (uint64_t)min_per_cpu;
2340 /* disable counter and sync counter */
2341 xfs_icsb_disable_counter(mp, field);
2343 /* update counters - first CPU gets residual*/
2344 switch (field) {
2345 case XFS_SBS_ICOUNT:
2346 count = mp->m_sb.sb_icount;
2347 resid = do_div(count, weight);
2348 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
2349 return;
2350 break;
2351 case XFS_SBS_IFREE:
2352 count = mp->m_sb.sb_ifree;
2353 resid = do_div(count, weight);
2354 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
2355 return;
2356 break;
2357 case XFS_SBS_FDBLOCKS:
2358 count = mp->m_sb.sb_fdblocks;
2359 resid = do_div(count, weight);
2360 if (count < max(min, XFS_ICSB_FDBLK_CNTR_REENABLE(mp)))
2361 return;
2362 break;
2363 default:
2364 BUG();
2365 count = resid = 0; /* quiet, gcc */
2366 break;
2369 xfs_icsb_enable_counter(mp, field, count, resid);
2372 STATIC void
2373 xfs_icsb_balance_counter(
2374 xfs_mount_t *mp,
2375 xfs_sb_field_t fields,
2376 int min_per_cpu)
2378 spin_lock(&mp->m_sb_lock);
2379 xfs_icsb_balance_counter_locked(mp, fields, min_per_cpu);
2380 spin_unlock(&mp->m_sb_lock);
2383 STATIC int
2384 xfs_icsb_modify_counters(
2385 xfs_mount_t *mp,
2386 xfs_sb_field_t field,
2387 int64_t delta,
2388 int rsvd)
2390 xfs_icsb_cnts_t *icsbp;
2391 long long lcounter; /* long counter for 64 bit fields */
2392 int cpu, ret = 0;
2394 might_sleep();
2395 again:
2396 cpu = get_cpu();
2397 icsbp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, cpu);
2400 * if the counter is disabled, go to slow path
2402 if (unlikely(xfs_icsb_counter_disabled(mp, field)))
2403 goto slow_path;
2404 xfs_icsb_lock_cntr(icsbp);
2405 if (unlikely(xfs_icsb_counter_disabled(mp, field))) {
2406 xfs_icsb_unlock_cntr(icsbp);
2407 goto slow_path;
2410 switch (field) {
2411 case XFS_SBS_ICOUNT:
2412 lcounter = icsbp->icsb_icount;
2413 lcounter += delta;
2414 if (unlikely(lcounter < 0))
2415 goto balance_counter;
2416 icsbp->icsb_icount = lcounter;
2417 break;
2419 case XFS_SBS_IFREE:
2420 lcounter = icsbp->icsb_ifree;
2421 lcounter += delta;
2422 if (unlikely(lcounter < 0))
2423 goto balance_counter;
2424 icsbp->icsb_ifree = lcounter;
2425 break;
2427 case XFS_SBS_FDBLOCKS:
2428 BUG_ON((mp->m_resblks - mp->m_resblks_avail) != 0);
2430 lcounter = icsbp->icsb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
2431 lcounter += delta;
2432 if (unlikely(lcounter < 0))
2433 goto balance_counter;
2434 icsbp->icsb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
2435 break;
2436 default:
2437 BUG();
2438 break;
2440 xfs_icsb_unlock_cntr(icsbp);
2441 put_cpu();
2442 return 0;
2444 slow_path:
2445 put_cpu();
2448 * serialise with a mutex so we don't burn lots of cpu on
2449 * the superblock lock. We still need to hold the superblock
2450 * lock, however, when we modify the global structures.
2452 xfs_icsb_lock(mp);
2455 * Now running atomically.
2457 * If the counter is enabled, someone has beaten us to rebalancing.
2458 * Drop the lock and try again in the fast path....
2460 if (!(xfs_icsb_counter_disabled(mp, field))) {
2461 xfs_icsb_unlock(mp);
2462 goto again;
2466 * The counter is currently disabled. Because we are
2467 * running atomically here, we know a rebalance cannot
2468 * be in progress. Hence we can go straight to operating
2469 * on the global superblock. We do not call xfs_mod_incore_sb()
2470 * here even though we need to get the m_sb_lock. Doing so
2471 * will cause us to re-enter this function and deadlock.
2472 * Hence we get the m_sb_lock ourselves and then call
2473 * xfs_mod_incore_sb_unlocked() as the unlocked path operates
2474 * directly on the global counters.
2476 spin_lock(&mp->m_sb_lock);
2477 ret = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
2478 spin_unlock(&mp->m_sb_lock);
2481 * Now that we've modified the global superblock, we
2482 * may be able to re-enable the distributed counters
2483 * (e.g. lots of space just got freed). After that
2484 * we are done.
2486 if (ret != ENOSPC)
2487 xfs_icsb_balance_counter(mp, field, 0);
2488 xfs_icsb_unlock(mp);
2489 return ret;
2491 balance_counter:
2492 xfs_icsb_unlock_cntr(icsbp);
2493 put_cpu();
2496 * We may have multiple threads here if multiple per-cpu
2497 * counters run dry at the same time. This will mean we can
2498 * do more balances than strictly necessary but it is not
2499 * the common slowpath case.
2501 xfs_icsb_lock(mp);
2504 * running atomically.
2506 * This will leave the counter in the correct state for future
2507 * accesses. After the rebalance, we simply try again and our retry
2508 * will either succeed through the fast path or slow path without
2509 * another balance operation being required.
2511 xfs_icsb_balance_counter(mp, field, delta);
2512 xfs_icsb_unlock(mp);
2513 goto again;
2516 #endif