close_port, kpacket_gen kmalloc oom, formard.c wake_sender/skb receive oom handling...
[cor_2_6_31.git] / drivers / block / cciss.c
bloba52cc7fe45ea12d4e3d7742615ed9904013e0f10
1 /*
2 * Disk Array driver for HP Smart Array controllers.
3 * (C) Copyright 2000, 2007 Hewlett-Packard Development Company, L.P.
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; version 2 of the License.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
17 * 02111-1307, USA.
19 * Questions/Comments/Bugfixes to iss_storagedev@hp.com
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/types.h>
26 #include <linux/pci.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/smp_lock.h>
30 #include <linux/delay.h>
31 #include <linux/major.h>
32 #include <linux/fs.h>
33 #include <linux/bio.h>
34 #include <linux/blkpg.h>
35 #include <linux/timer.h>
36 #include <linux/proc_fs.h>
37 #include <linux/seq_file.h>
38 #include <linux/init.h>
39 #include <linux/hdreg.h>
40 #include <linux/spinlock.h>
41 #include <linux/compat.h>
42 #include <asm/uaccess.h>
43 #include <asm/io.h>
45 #include <linux/dma-mapping.h>
46 #include <linux/blkdev.h>
47 #include <linux/genhd.h>
48 #include <linux/completion.h>
49 #include <scsi/scsi.h>
50 #include <scsi/sg.h>
51 #include <scsi/scsi_ioctl.h>
52 #include <linux/cdrom.h>
53 #include <linux/scatterlist.h>
54 #include <linux/kthread.h>
56 #define CCISS_DRIVER_VERSION(maj,min,submin) ((maj<<16)|(min<<8)|(submin))
57 #define DRIVER_NAME "HP CISS Driver (v 3.6.20)"
58 #define DRIVER_VERSION CCISS_DRIVER_VERSION(3, 6, 20)
60 /* Embedded module documentation macros - see modules.h */
61 MODULE_AUTHOR("Hewlett-Packard Company");
62 MODULE_DESCRIPTION("Driver for HP Smart Array Controllers");
63 MODULE_SUPPORTED_DEVICE("HP SA5i SA5i+ SA532 SA5300 SA5312 SA641 SA642 SA6400"
64 " SA6i P600 P800 P400 P400i E200 E200i E500 P700m"
65 " Smart Array G2 Series SAS/SATA Controllers");
66 MODULE_VERSION("3.6.20");
67 MODULE_LICENSE("GPL");
69 #include "cciss_cmd.h"
70 #include "cciss.h"
71 #include <linux/cciss_ioctl.h>
73 /* define the PCI info for the cards we can control */
74 static const struct pci_device_id cciss_pci_device_id[] = {
75 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISS, 0x0E11, 0x4070},
76 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4080},
77 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4082},
78 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4083},
79 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x4091},
80 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409A},
81 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409B},
82 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409C},
83 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409D},
84 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSA, 0x103C, 0x3225},
85 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3223},
86 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3234},
87 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3235},
88 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3211},
89 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3212},
90 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3213},
91 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3214},
92 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3215},
93 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3237},
94 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x323D},
95 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241},
96 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243},
97 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245},
98 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247},
99 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249},
100 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324A},
101 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324B},
102 {PCI_VENDOR_ID_HP, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID,
103 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
104 {0,}
107 MODULE_DEVICE_TABLE(pci, cciss_pci_device_id);
109 /* board_id = Subsystem Device ID & Vendor ID
110 * product = Marketing Name for the board
111 * access = Address of the struct of function pointers
113 static struct board_type products[] = {
114 {0x40700E11, "Smart Array 5300", &SA5_access},
115 {0x40800E11, "Smart Array 5i", &SA5B_access},
116 {0x40820E11, "Smart Array 532", &SA5B_access},
117 {0x40830E11, "Smart Array 5312", &SA5B_access},
118 {0x409A0E11, "Smart Array 641", &SA5_access},
119 {0x409B0E11, "Smart Array 642", &SA5_access},
120 {0x409C0E11, "Smart Array 6400", &SA5_access},
121 {0x409D0E11, "Smart Array 6400 EM", &SA5_access},
122 {0x40910E11, "Smart Array 6i", &SA5_access},
123 {0x3225103C, "Smart Array P600", &SA5_access},
124 {0x3223103C, "Smart Array P800", &SA5_access},
125 {0x3234103C, "Smart Array P400", &SA5_access},
126 {0x3235103C, "Smart Array P400i", &SA5_access},
127 {0x3211103C, "Smart Array E200i", &SA5_access},
128 {0x3212103C, "Smart Array E200", &SA5_access},
129 {0x3213103C, "Smart Array E200i", &SA5_access},
130 {0x3214103C, "Smart Array E200i", &SA5_access},
131 {0x3215103C, "Smart Array E200i", &SA5_access},
132 {0x3237103C, "Smart Array E500", &SA5_access},
133 {0x323D103C, "Smart Array P700m", &SA5_access},
134 {0x3241103C, "Smart Array P212", &SA5_access},
135 {0x3243103C, "Smart Array P410", &SA5_access},
136 {0x3245103C, "Smart Array P410i", &SA5_access},
137 {0x3247103C, "Smart Array P411", &SA5_access},
138 {0x3249103C, "Smart Array P812", &SA5_access},
139 {0x324A103C, "Smart Array P712m", &SA5_access},
140 {0x324B103C, "Smart Array P711m", &SA5_access},
141 {0xFFFF103C, "Unknown Smart Array", &SA5_access},
144 /* How long to wait (in milliseconds) for board to go into simple mode */
145 #define MAX_CONFIG_WAIT 30000
146 #define MAX_IOCTL_CONFIG_WAIT 1000
148 /*define how many times we will try a command because of bus resets */
149 #define MAX_CMD_RETRIES 3
151 #define MAX_CTLR 32
153 /* Originally cciss driver only supports 8 major numbers */
154 #define MAX_CTLR_ORIG 8
156 static ctlr_info_t *hba[MAX_CTLR];
158 static void do_cciss_request(struct request_queue *q);
159 static irqreturn_t do_cciss_intr(int irq, void *dev_id);
160 static int cciss_open(struct block_device *bdev, fmode_t mode);
161 static int cciss_release(struct gendisk *disk, fmode_t mode);
162 static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
163 unsigned int cmd, unsigned long arg);
164 static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo);
166 static int cciss_revalidate(struct gendisk *disk);
167 static int rebuild_lun_table(ctlr_info_t *h, int first_time);
168 static int deregister_disk(ctlr_info_t *h, int drv_index,
169 int clear_all);
171 static void cciss_read_capacity(int ctlr, int logvol, int withirq,
172 sector_t *total_size, unsigned int *block_size);
173 static void cciss_read_capacity_16(int ctlr, int logvol, int withirq,
174 sector_t *total_size, unsigned int *block_size);
175 static void cciss_geometry_inquiry(int ctlr, int logvol,
176 int withirq, sector_t total_size,
177 unsigned int block_size, InquiryData_struct *inq_buff,
178 drive_info_struct *drv);
179 static void __devinit cciss_interrupt_mode(ctlr_info_t *, struct pci_dev *,
180 __u32);
181 static void start_io(ctlr_info_t *h);
182 static int sendcmd(__u8 cmd, int ctlr, void *buff, size_t size,
183 __u8 page_code, unsigned char *scsi3addr, int cmd_type);
184 static int sendcmd_withirq(__u8 cmd, int ctlr, void *buff, size_t size,
185 __u8 page_code, unsigned char scsi3addr[],
186 int cmd_type);
187 static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
188 int attempt_retry);
189 static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c);
191 static void fail_all_cmds(unsigned long ctlr);
192 static int scan_thread(void *data);
193 static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c);
195 #ifdef CONFIG_PROC_FS
196 static void cciss_procinit(int i);
197 #else
198 static void cciss_procinit(int i)
201 #endif /* CONFIG_PROC_FS */
203 #ifdef CONFIG_COMPAT
204 static int cciss_compat_ioctl(struct block_device *, fmode_t,
205 unsigned, unsigned long);
206 #endif
208 static struct block_device_operations cciss_fops = {
209 .owner = THIS_MODULE,
210 .open = cciss_open,
211 .release = cciss_release,
212 .locked_ioctl = cciss_ioctl,
213 .getgeo = cciss_getgeo,
214 #ifdef CONFIG_COMPAT
215 .compat_ioctl = cciss_compat_ioctl,
216 #endif
217 .revalidate_disk = cciss_revalidate,
221 * Enqueuing and dequeuing functions for cmdlists.
223 static inline void addQ(struct hlist_head *list, CommandList_struct *c)
225 hlist_add_head(&c->list, list);
228 static inline void removeQ(CommandList_struct *c)
231 * After kexec/dump some commands might still
232 * be in flight, which the firmware will try
233 * to complete. Resetting the firmware doesn't work
234 * with old fw revisions, so we have to mark
235 * them off as 'stale' to prevent the driver from
236 * falling over.
238 if (WARN_ON(hlist_unhashed(&c->list))) {
239 c->cmd_type = CMD_MSG_STALE;
240 return;
243 hlist_del_init(&c->list);
246 #include "cciss_scsi.c" /* For SCSI tape support */
248 #define RAID_UNKNOWN 6
250 #ifdef CONFIG_PROC_FS
253 * Report information about this controller.
255 #define ENG_GIG 1000000000
256 #define ENG_GIG_FACTOR (ENG_GIG/512)
257 #define ENGAGE_SCSI "engage scsi"
258 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
259 "UNKNOWN"
262 static struct proc_dir_entry *proc_cciss;
264 static void cciss_seq_show_header(struct seq_file *seq)
266 ctlr_info_t *h = seq->private;
268 seq_printf(seq, "%s: HP %s Controller\n"
269 "Board ID: 0x%08lx\n"
270 "Firmware Version: %c%c%c%c\n"
271 "IRQ: %d\n"
272 "Logical drives: %d\n"
273 "Current Q depth: %d\n"
274 "Current # commands on controller: %d\n"
275 "Max Q depth since init: %d\n"
276 "Max # commands on controller since init: %d\n"
277 "Max SG entries since init: %d\n",
278 h->devname,
279 h->product_name,
280 (unsigned long)h->board_id,
281 h->firm_ver[0], h->firm_ver[1], h->firm_ver[2],
282 h->firm_ver[3], (unsigned int)h->intr[SIMPLE_MODE_INT],
283 h->num_luns,
284 h->Qdepth, h->commands_outstanding,
285 h->maxQsinceinit, h->max_outstanding, h->maxSG);
287 #ifdef CONFIG_CISS_SCSI_TAPE
288 cciss_seq_tape_report(seq, h->ctlr);
289 #endif /* CONFIG_CISS_SCSI_TAPE */
292 static void *cciss_seq_start(struct seq_file *seq, loff_t *pos)
294 ctlr_info_t *h = seq->private;
295 unsigned ctlr = h->ctlr;
296 unsigned long flags;
298 /* prevent displaying bogus info during configuration
299 * or deconfiguration of a logical volume
301 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
302 if (h->busy_configuring) {
303 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
304 return ERR_PTR(-EBUSY);
306 h->busy_configuring = 1;
307 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
309 if (*pos == 0)
310 cciss_seq_show_header(seq);
312 return pos;
315 static int cciss_seq_show(struct seq_file *seq, void *v)
317 sector_t vol_sz, vol_sz_frac;
318 ctlr_info_t *h = seq->private;
319 unsigned ctlr = h->ctlr;
320 loff_t *pos = v;
321 drive_info_struct *drv = &h->drv[*pos];
323 if (*pos > h->highest_lun)
324 return 0;
326 if (drv->heads == 0)
327 return 0;
329 vol_sz = drv->nr_blocks;
330 vol_sz_frac = sector_div(vol_sz, ENG_GIG_FACTOR);
331 vol_sz_frac *= 100;
332 sector_div(vol_sz_frac, ENG_GIG_FACTOR);
334 if (drv->raid_level > 5)
335 drv->raid_level = RAID_UNKNOWN;
336 seq_printf(seq, "cciss/c%dd%d:"
337 "\t%4u.%02uGB\tRAID %s\n",
338 ctlr, (int) *pos, (int)vol_sz, (int)vol_sz_frac,
339 raid_label[drv->raid_level]);
340 return 0;
343 static void *cciss_seq_next(struct seq_file *seq, void *v, loff_t *pos)
345 ctlr_info_t *h = seq->private;
347 if (*pos > h->highest_lun)
348 return NULL;
349 *pos += 1;
351 return pos;
354 static void cciss_seq_stop(struct seq_file *seq, void *v)
356 ctlr_info_t *h = seq->private;
358 /* Only reset h->busy_configuring if we succeeded in setting
359 * it during cciss_seq_start. */
360 if (v == ERR_PTR(-EBUSY))
361 return;
363 h->busy_configuring = 0;
366 static struct seq_operations cciss_seq_ops = {
367 .start = cciss_seq_start,
368 .show = cciss_seq_show,
369 .next = cciss_seq_next,
370 .stop = cciss_seq_stop,
373 static int cciss_seq_open(struct inode *inode, struct file *file)
375 int ret = seq_open(file, &cciss_seq_ops);
376 struct seq_file *seq = file->private_data;
378 if (!ret)
379 seq->private = PDE(inode)->data;
381 return ret;
384 static ssize_t
385 cciss_proc_write(struct file *file, const char __user *buf,
386 size_t length, loff_t *ppos)
388 int err;
389 char *buffer;
391 #ifndef CONFIG_CISS_SCSI_TAPE
392 return -EINVAL;
393 #endif
395 if (!buf || length > PAGE_SIZE - 1)
396 return -EINVAL;
398 buffer = (char *)__get_free_page(GFP_KERNEL);
399 if (!buffer)
400 return -ENOMEM;
402 err = -EFAULT;
403 if (copy_from_user(buffer, buf, length))
404 goto out;
405 buffer[length] = '\0';
407 #ifdef CONFIG_CISS_SCSI_TAPE
408 if (strncmp(ENGAGE_SCSI, buffer, sizeof ENGAGE_SCSI - 1) == 0) {
409 struct seq_file *seq = file->private_data;
410 ctlr_info_t *h = seq->private;
411 int rc;
413 rc = cciss_engage_scsi(h->ctlr);
414 if (rc != 0)
415 err = -rc;
416 else
417 err = length;
418 } else
419 #endif /* CONFIG_CISS_SCSI_TAPE */
420 err = -EINVAL;
421 /* might be nice to have "disengage" too, but it's not
422 safely possible. (only 1 module use count, lock issues.) */
424 out:
425 free_page((unsigned long)buffer);
426 return err;
429 static struct file_operations cciss_proc_fops = {
430 .owner = THIS_MODULE,
431 .open = cciss_seq_open,
432 .read = seq_read,
433 .llseek = seq_lseek,
434 .release = seq_release,
435 .write = cciss_proc_write,
438 static void __devinit cciss_procinit(int i)
440 struct proc_dir_entry *pde;
442 if (proc_cciss == NULL)
443 proc_cciss = proc_mkdir("driver/cciss", NULL);
444 if (!proc_cciss)
445 return;
446 pde = proc_create_data(hba[i]->devname, S_IWUSR | S_IRUSR | S_IRGRP |
447 S_IROTH, proc_cciss,
448 &cciss_proc_fops, hba[i]);
450 #endif /* CONFIG_PROC_FS */
452 #define MAX_PRODUCT_NAME_LEN 19
454 #define to_hba(n) container_of(n, struct ctlr_info, dev)
455 #define to_drv(n) container_of(n, drive_info_struct, dev)
457 static struct device_type cciss_host_type = {
458 .name = "cciss_host",
461 static ssize_t dev_show_unique_id(struct device *dev,
462 struct device_attribute *attr,
463 char *buf)
465 drive_info_struct *drv = to_drv(dev);
466 struct ctlr_info *h = to_hba(drv->dev.parent);
467 __u8 sn[16];
468 unsigned long flags;
469 int ret = 0;
471 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
472 if (h->busy_configuring)
473 ret = -EBUSY;
474 else
475 memcpy(sn, drv->serial_no, sizeof(sn));
476 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
478 if (ret)
479 return ret;
480 else
481 return snprintf(buf, 16 * 2 + 2,
482 "%02X%02X%02X%02X%02X%02X%02X%02X"
483 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
484 sn[0], sn[1], sn[2], sn[3],
485 sn[4], sn[5], sn[6], sn[7],
486 sn[8], sn[9], sn[10], sn[11],
487 sn[12], sn[13], sn[14], sn[15]);
489 DEVICE_ATTR(unique_id, S_IRUGO, dev_show_unique_id, NULL);
491 static ssize_t dev_show_vendor(struct device *dev,
492 struct device_attribute *attr,
493 char *buf)
495 drive_info_struct *drv = to_drv(dev);
496 struct ctlr_info *h = to_hba(drv->dev.parent);
497 char vendor[VENDOR_LEN + 1];
498 unsigned long flags;
499 int ret = 0;
501 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
502 if (h->busy_configuring)
503 ret = -EBUSY;
504 else
505 memcpy(vendor, drv->vendor, VENDOR_LEN + 1);
506 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
508 if (ret)
509 return ret;
510 else
511 return snprintf(buf, sizeof(vendor) + 1, "%s\n", drv->vendor);
513 DEVICE_ATTR(vendor, S_IRUGO, dev_show_vendor, NULL);
515 static ssize_t dev_show_model(struct device *dev,
516 struct device_attribute *attr,
517 char *buf)
519 drive_info_struct *drv = to_drv(dev);
520 struct ctlr_info *h = to_hba(drv->dev.parent);
521 char model[MODEL_LEN + 1];
522 unsigned long flags;
523 int ret = 0;
525 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
526 if (h->busy_configuring)
527 ret = -EBUSY;
528 else
529 memcpy(model, drv->model, MODEL_LEN + 1);
530 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
532 if (ret)
533 return ret;
534 else
535 return snprintf(buf, sizeof(model) + 1, "%s\n", drv->model);
537 DEVICE_ATTR(model, S_IRUGO, dev_show_model, NULL);
539 static ssize_t dev_show_rev(struct device *dev,
540 struct device_attribute *attr,
541 char *buf)
543 drive_info_struct *drv = to_drv(dev);
544 struct ctlr_info *h = to_hba(drv->dev.parent);
545 char rev[REV_LEN + 1];
546 unsigned long flags;
547 int ret = 0;
549 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
550 if (h->busy_configuring)
551 ret = -EBUSY;
552 else
553 memcpy(rev, drv->rev, REV_LEN + 1);
554 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
556 if (ret)
557 return ret;
558 else
559 return snprintf(buf, sizeof(rev) + 1, "%s\n", drv->rev);
561 DEVICE_ATTR(rev, S_IRUGO, dev_show_rev, NULL);
563 static struct attribute *cciss_dev_attrs[] = {
564 &dev_attr_unique_id.attr,
565 &dev_attr_model.attr,
566 &dev_attr_vendor.attr,
567 &dev_attr_rev.attr,
568 NULL
571 static struct attribute_group cciss_dev_attr_group = {
572 .attrs = cciss_dev_attrs,
575 static struct attribute_group *cciss_dev_attr_groups[] = {
576 &cciss_dev_attr_group,
577 NULL
580 static struct device_type cciss_dev_type = {
581 .name = "cciss_device",
582 .groups = cciss_dev_attr_groups,
585 static struct bus_type cciss_bus_type = {
586 .name = "cciss",
591 * Initialize sysfs entry for each controller. This sets up and registers
592 * the 'cciss#' directory for each individual controller under
593 * /sys/bus/pci/devices/<dev>/.
595 static int cciss_create_hba_sysfs_entry(struct ctlr_info *h)
597 device_initialize(&h->dev);
598 h->dev.type = &cciss_host_type;
599 h->dev.bus = &cciss_bus_type;
600 dev_set_name(&h->dev, "%s", h->devname);
601 h->dev.parent = &h->pdev->dev;
603 return device_add(&h->dev);
607 * Remove sysfs entries for an hba.
609 static void cciss_destroy_hba_sysfs_entry(struct ctlr_info *h)
611 device_del(&h->dev);
615 * Initialize sysfs for each logical drive. This sets up and registers
616 * the 'c#d#' directory for each individual logical drive under
617 * /sys/bus/pci/devices/<dev/ccis#/. We also create a link from
618 * /sys/block/cciss!c#d# to this entry.
620 static int cciss_create_ld_sysfs_entry(struct ctlr_info *h,
621 drive_info_struct *drv,
622 int drv_index)
624 device_initialize(&drv->dev);
625 drv->dev.type = &cciss_dev_type;
626 drv->dev.bus = &cciss_bus_type;
627 dev_set_name(&drv->dev, "c%dd%d", h->ctlr, drv_index);
628 drv->dev.parent = &h->dev;
629 return device_add(&drv->dev);
633 * Remove sysfs entries for a logical drive.
635 static void cciss_destroy_ld_sysfs_entry(drive_info_struct *drv)
637 device_del(&drv->dev);
641 * For operations that cannot sleep, a command block is allocated at init,
642 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
643 * which ones are free or in use. For operations that can wait for kmalloc
644 * to possible sleep, this routine can be called with get_from_pool set to 0.
645 * cmd_free() MUST be called with a got_from_pool set to 0 if cmd_alloc was.
647 static CommandList_struct *cmd_alloc(ctlr_info_t *h, int get_from_pool)
649 CommandList_struct *c;
650 int i;
651 u64bit temp64;
652 dma_addr_t cmd_dma_handle, err_dma_handle;
654 if (!get_from_pool) {
655 c = (CommandList_struct *) pci_alloc_consistent(h->pdev,
656 sizeof(CommandList_struct), &cmd_dma_handle);
657 if (c == NULL)
658 return NULL;
659 memset(c, 0, sizeof(CommandList_struct));
661 c->cmdindex = -1;
663 c->err_info = (ErrorInfo_struct *)
664 pci_alloc_consistent(h->pdev, sizeof(ErrorInfo_struct),
665 &err_dma_handle);
667 if (c->err_info == NULL) {
668 pci_free_consistent(h->pdev,
669 sizeof(CommandList_struct), c, cmd_dma_handle);
670 return NULL;
672 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
673 } else { /* get it out of the controllers pool */
675 do {
676 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
677 if (i == h->nr_cmds)
678 return NULL;
679 } while (test_and_set_bit
680 (i & (BITS_PER_LONG - 1),
681 h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
682 #ifdef CCISS_DEBUG
683 printk(KERN_DEBUG "cciss: using command buffer %d\n", i);
684 #endif
685 c = h->cmd_pool + i;
686 memset(c, 0, sizeof(CommandList_struct));
687 cmd_dma_handle = h->cmd_pool_dhandle
688 + i * sizeof(CommandList_struct);
689 c->err_info = h->errinfo_pool + i;
690 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
691 err_dma_handle = h->errinfo_pool_dhandle
692 + i * sizeof(ErrorInfo_struct);
693 h->nr_allocs++;
695 c->cmdindex = i;
698 INIT_HLIST_NODE(&c->list);
699 c->busaddr = (__u32) cmd_dma_handle;
700 temp64.val = (__u64) err_dma_handle;
701 c->ErrDesc.Addr.lower = temp64.val32.lower;
702 c->ErrDesc.Addr.upper = temp64.val32.upper;
703 c->ErrDesc.Len = sizeof(ErrorInfo_struct);
705 c->ctlr = h->ctlr;
706 return c;
710 * Frees a command block that was previously allocated with cmd_alloc().
712 static void cmd_free(ctlr_info_t *h, CommandList_struct *c, int got_from_pool)
714 int i;
715 u64bit temp64;
717 if (!got_from_pool) {
718 temp64.val32.lower = c->ErrDesc.Addr.lower;
719 temp64.val32.upper = c->ErrDesc.Addr.upper;
720 pci_free_consistent(h->pdev, sizeof(ErrorInfo_struct),
721 c->err_info, (dma_addr_t) temp64.val);
722 pci_free_consistent(h->pdev, sizeof(CommandList_struct),
723 c, (dma_addr_t) c->busaddr);
724 } else {
725 i = c - h->cmd_pool;
726 clear_bit(i & (BITS_PER_LONG - 1),
727 h->cmd_pool_bits + (i / BITS_PER_LONG));
728 h->nr_frees++;
732 static inline ctlr_info_t *get_host(struct gendisk *disk)
734 return disk->queue->queuedata;
737 static inline drive_info_struct *get_drv(struct gendisk *disk)
739 return disk->private_data;
743 * Open. Make sure the device is really there.
745 static int cciss_open(struct block_device *bdev, fmode_t mode)
747 ctlr_info_t *host = get_host(bdev->bd_disk);
748 drive_info_struct *drv = get_drv(bdev->bd_disk);
750 #ifdef CCISS_DEBUG
751 printk(KERN_DEBUG "cciss_open %s\n", bdev->bd_disk->disk_name);
752 #endif /* CCISS_DEBUG */
754 if (host->busy_initializing || drv->busy_configuring)
755 return -EBUSY;
757 * Root is allowed to open raw volume zero even if it's not configured
758 * so array config can still work. Root is also allowed to open any
759 * volume that has a LUN ID, so it can issue IOCTL to reread the
760 * disk information. I don't think I really like this
761 * but I'm already using way to many device nodes to claim another one
762 * for "raw controller".
764 if (drv->heads == 0) {
765 if (MINOR(bdev->bd_dev) != 0) { /* not node 0? */
766 /* if not node 0 make sure it is a partition = 0 */
767 if (MINOR(bdev->bd_dev) & 0x0f) {
768 return -ENXIO;
769 /* if it is, make sure we have a LUN ID */
770 } else if (drv->LunID == 0) {
771 return -ENXIO;
774 if (!capable(CAP_SYS_ADMIN))
775 return -EPERM;
777 drv->usage_count++;
778 host->usage_count++;
779 return 0;
783 * Close. Sync first.
785 static int cciss_release(struct gendisk *disk, fmode_t mode)
787 ctlr_info_t *host = get_host(disk);
788 drive_info_struct *drv = get_drv(disk);
790 #ifdef CCISS_DEBUG
791 printk(KERN_DEBUG "cciss_release %s\n", disk->disk_name);
792 #endif /* CCISS_DEBUG */
794 drv->usage_count--;
795 host->usage_count--;
796 return 0;
799 #ifdef CONFIG_COMPAT
801 static int do_ioctl(struct block_device *bdev, fmode_t mode,
802 unsigned cmd, unsigned long arg)
804 int ret;
805 lock_kernel();
806 ret = cciss_ioctl(bdev, mode, cmd, arg);
807 unlock_kernel();
808 return ret;
811 static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
812 unsigned cmd, unsigned long arg);
813 static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
814 unsigned cmd, unsigned long arg);
816 static int cciss_compat_ioctl(struct block_device *bdev, fmode_t mode,
817 unsigned cmd, unsigned long arg)
819 switch (cmd) {
820 case CCISS_GETPCIINFO:
821 case CCISS_GETINTINFO:
822 case CCISS_SETINTINFO:
823 case CCISS_GETNODENAME:
824 case CCISS_SETNODENAME:
825 case CCISS_GETHEARTBEAT:
826 case CCISS_GETBUSTYPES:
827 case CCISS_GETFIRMVER:
828 case CCISS_GETDRIVVER:
829 case CCISS_REVALIDVOLS:
830 case CCISS_DEREGDISK:
831 case CCISS_REGNEWDISK:
832 case CCISS_REGNEWD:
833 case CCISS_RESCANDISK:
834 case CCISS_GETLUNINFO:
835 return do_ioctl(bdev, mode, cmd, arg);
837 case CCISS_PASSTHRU32:
838 return cciss_ioctl32_passthru(bdev, mode, cmd, arg);
839 case CCISS_BIG_PASSTHRU32:
840 return cciss_ioctl32_big_passthru(bdev, mode, cmd, arg);
842 default:
843 return -ENOIOCTLCMD;
847 static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
848 unsigned cmd, unsigned long arg)
850 IOCTL32_Command_struct __user *arg32 =
851 (IOCTL32_Command_struct __user *) arg;
852 IOCTL_Command_struct arg64;
853 IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
854 int err;
855 u32 cp;
857 err = 0;
858 err |=
859 copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
860 sizeof(arg64.LUN_info));
861 err |=
862 copy_from_user(&arg64.Request, &arg32->Request,
863 sizeof(arg64.Request));
864 err |=
865 copy_from_user(&arg64.error_info, &arg32->error_info,
866 sizeof(arg64.error_info));
867 err |= get_user(arg64.buf_size, &arg32->buf_size);
868 err |= get_user(cp, &arg32->buf);
869 arg64.buf = compat_ptr(cp);
870 err |= copy_to_user(p, &arg64, sizeof(arg64));
872 if (err)
873 return -EFAULT;
875 err = do_ioctl(bdev, mode, CCISS_PASSTHRU, (unsigned long)p);
876 if (err)
877 return err;
878 err |=
879 copy_in_user(&arg32->error_info, &p->error_info,
880 sizeof(arg32->error_info));
881 if (err)
882 return -EFAULT;
883 return err;
886 static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
887 unsigned cmd, unsigned long arg)
889 BIG_IOCTL32_Command_struct __user *arg32 =
890 (BIG_IOCTL32_Command_struct __user *) arg;
891 BIG_IOCTL_Command_struct arg64;
892 BIG_IOCTL_Command_struct __user *p =
893 compat_alloc_user_space(sizeof(arg64));
894 int err;
895 u32 cp;
897 err = 0;
898 err |=
899 copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
900 sizeof(arg64.LUN_info));
901 err |=
902 copy_from_user(&arg64.Request, &arg32->Request,
903 sizeof(arg64.Request));
904 err |=
905 copy_from_user(&arg64.error_info, &arg32->error_info,
906 sizeof(arg64.error_info));
907 err |= get_user(arg64.buf_size, &arg32->buf_size);
908 err |= get_user(arg64.malloc_size, &arg32->malloc_size);
909 err |= get_user(cp, &arg32->buf);
910 arg64.buf = compat_ptr(cp);
911 err |= copy_to_user(p, &arg64, sizeof(arg64));
913 if (err)
914 return -EFAULT;
916 err = do_ioctl(bdev, mode, CCISS_BIG_PASSTHRU, (unsigned long)p);
917 if (err)
918 return err;
919 err |=
920 copy_in_user(&arg32->error_info, &p->error_info,
921 sizeof(arg32->error_info));
922 if (err)
923 return -EFAULT;
924 return err;
926 #endif
928 static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo)
930 drive_info_struct *drv = get_drv(bdev->bd_disk);
932 if (!drv->cylinders)
933 return -ENXIO;
935 geo->heads = drv->heads;
936 geo->sectors = drv->sectors;
937 geo->cylinders = drv->cylinders;
938 return 0;
941 static void check_ioctl_unit_attention(ctlr_info_t *host, CommandList_struct *c)
943 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
944 c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
945 (void)check_for_unit_attention(host, c);
948 * ioctl
950 static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
951 unsigned int cmd, unsigned long arg)
953 struct gendisk *disk = bdev->bd_disk;
954 ctlr_info_t *host = get_host(disk);
955 drive_info_struct *drv = get_drv(disk);
956 int ctlr = host->ctlr;
957 void __user *argp = (void __user *)arg;
959 #ifdef CCISS_DEBUG
960 printk(KERN_DEBUG "cciss_ioctl: Called with cmd=%x %lx\n", cmd, arg);
961 #endif /* CCISS_DEBUG */
963 switch (cmd) {
964 case CCISS_GETPCIINFO:
966 cciss_pci_info_struct pciinfo;
968 if (!arg)
969 return -EINVAL;
970 pciinfo.domain = pci_domain_nr(host->pdev->bus);
971 pciinfo.bus = host->pdev->bus->number;
972 pciinfo.dev_fn = host->pdev->devfn;
973 pciinfo.board_id = host->board_id;
974 if (copy_to_user
975 (argp, &pciinfo, sizeof(cciss_pci_info_struct)))
976 return -EFAULT;
977 return 0;
979 case CCISS_GETINTINFO:
981 cciss_coalint_struct intinfo;
982 if (!arg)
983 return -EINVAL;
984 intinfo.delay =
985 readl(&host->cfgtable->HostWrite.CoalIntDelay);
986 intinfo.count =
987 readl(&host->cfgtable->HostWrite.CoalIntCount);
988 if (copy_to_user
989 (argp, &intinfo, sizeof(cciss_coalint_struct)))
990 return -EFAULT;
991 return 0;
993 case CCISS_SETINTINFO:
995 cciss_coalint_struct intinfo;
996 unsigned long flags;
997 int i;
999 if (!arg)
1000 return -EINVAL;
1001 if (!capable(CAP_SYS_ADMIN))
1002 return -EPERM;
1003 if (copy_from_user
1004 (&intinfo, argp, sizeof(cciss_coalint_struct)))
1005 return -EFAULT;
1006 if ((intinfo.delay == 0) && (intinfo.count == 0))
1008 // printk("cciss_ioctl: delay and count cannot be 0\n");
1009 return -EINVAL;
1011 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1012 /* Update the field, and then ring the doorbell */
1013 writel(intinfo.delay,
1014 &(host->cfgtable->HostWrite.CoalIntDelay));
1015 writel(intinfo.count,
1016 &(host->cfgtable->HostWrite.CoalIntCount));
1017 writel(CFGTBL_ChangeReq, host->vaddr + SA5_DOORBELL);
1019 for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
1020 if (!(readl(host->vaddr + SA5_DOORBELL)
1021 & CFGTBL_ChangeReq))
1022 break;
1023 /* delay and try again */
1024 udelay(1000);
1026 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1027 if (i >= MAX_IOCTL_CONFIG_WAIT)
1028 return -EAGAIN;
1029 return 0;
1031 case CCISS_GETNODENAME:
1033 NodeName_type NodeName;
1034 int i;
1036 if (!arg)
1037 return -EINVAL;
1038 for (i = 0; i < 16; i++)
1039 NodeName[i] =
1040 readb(&host->cfgtable->ServerName[i]);
1041 if (copy_to_user(argp, NodeName, sizeof(NodeName_type)))
1042 return -EFAULT;
1043 return 0;
1045 case CCISS_SETNODENAME:
1047 NodeName_type NodeName;
1048 unsigned long flags;
1049 int i;
1051 if (!arg)
1052 return -EINVAL;
1053 if (!capable(CAP_SYS_ADMIN))
1054 return -EPERM;
1056 if (copy_from_user
1057 (NodeName, argp, sizeof(NodeName_type)))
1058 return -EFAULT;
1060 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1062 /* Update the field, and then ring the doorbell */
1063 for (i = 0; i < 16; i++)
1064 writeb(NodeName[i],
1065 &host->cfgtable->ServerName[i]);
1067 writel(CFGTBL_ChangeReq, host->vaddr + SA5_DOORBELL);
1069 for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
1070 if (!(readl(host->vaddr + SA5_DOORBELL)
1071 & CFGTBL_ChangeReq))
1072 break;
1073 /* delay and try again */
1074 udelay(1000);
1076 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1077 if (i >= MAX_IOCTL_CONFIG_WAIT)
1078 return -EAGAIN;
1079 return 0;
1082 case CCISS_GETHEARTBEAT:
1084 Heartbeat_type heartbeat;
1086 if (!arg)
1087 return -EINVAL;
1088 heartbeat = readl(&host->cfgtable->HeartBeat);
1089 if (copy_to_user
1090 (argp, &heartbeat, sizeof(Heartbeat_type)))
1091 return -EFAULT;
1092 return 0;
1094 case CCISS_GETBUSTYPES:
1096 BusTypes_type BusTypes;
1098 if (!arg)
1099 return -EINVAL;
1100 BusTypes = readl(&host->cfgtable->BusTypes);
1101 if (copy_to_user
1102 (argp, &BusTypes, sizeof(BusTypes_type)))
1103 return -EFAULT;
1104 return 0;
1106 case CCISS_GETFIRMVER:
1108 FirmwareVer_type firmware;
1110 if (!arg)
1111 return -EINVAL;
1112 memcpy(firmware, host->firm_ver, 4);
1114 if (copy_to_user
1115 (argp, firmware, sizeof(FirmwareVer_type)))
1116 return -EFAULT;
1117 return 0;
1119 case CCISS_GETDRIVVER:
1121 DriverVer_type DriverVer = DRIVER_VERSION;
1123 if (!arg)
1124 return -EINVAL;
1126 if (copy_to_user
1127 (argp, &DriverVer, sizeof(DriverVer_type)))
1128 return -EFAULT;
1129 return 0;
1132 case CCISS_DEREGDISK:
1133 case CCISS_REGNEWD:
1134 case CCISS_REVALIDVOLS:
1135 return rebuild_lun_table(host, 0);
1137 case CCISS_GETLUNINFO:{
1138 LogvolInfo_struct luninfo;
1140 luninfo.LunID = drv->LunID;
1141 luninfo.num_opens = drv->usage_count;
1142 luninfo.num_parts = 0;
1143 if (copy_to_user(argp, &luninfo,
1144 sizeof(LogvolInfo_struct)))
1145 return -EFAULT;
1146 return 0;
1148 case CCISS_PASSTHRU:
1150 IOCTL_Command_struct iocommand;
1151 CommandList_struct *c;
1152 char *buff = NULL;
1153 u64bit temp64;
1154 unsigned long flags;
1155 DECLARE_COMPLETION_ONSTACK(wait);
1157 if (!arg)
1158 return -EINVAL;
1160 if (!capable(CAP_SYS_RAWIO))
1161 return -EPERM;
1163 if (copy_from_user
1164 (&iocommand, argp, sizeof(IOCTL_Command_struct)))
1165 return -EFAULT;
1166 if ((iocommand.buf_size < 1) &&
1167 (iocommand.Request.Type.Direction != XFER_NONE)) {
1168 return -EINVAL;
1170 #if 0 /* 'buf_size' member is 16-bits, and always smaller than kmalloc limit */
1171 /* Check kmalloc limits */
1172 if (iocommand.buf_size > 128000)
1173 return -EINVAL;
1174 #endif
1175 if (iocommand.buf_size > 0) {
1176 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
1177 if (buff == NULL)
1178 return -EFAULT;
1180 if (iocommand.Request.Type.Direction == XFER_WRITE) {
1181 /* Copy the data into the buffer we created */
1182 if (copy_from_user
1183 (buff, iocommand.buf, iocommand.buf_size)) {
1184 kfree(buff);
1185 return -EFAULT;
1187 } else {
1188 memset(buff, 0, iocommand.buf_size);
1190 if ((c = cmd_alloc(host, 0)) == NULL) {
1191 kfree(buff);
1192 return -ENOMEM;
1194 // Fill in the command type
1195 c->cmd_type = CMD_IOCTL_PEND;
1196 // Fill in Command Header
1197 c->Header.ReplyQueue = 0; // unused in simple mode
1198 if (iocommand.buf_size > 0) // buffer to fill
1200 c->Header.SGList = 1;
1201 c->Header.SGTotal = 1;
1202 } else // no buffers to fill
1204 c->Header.SGList = 0;
1205 c->Header.SGTotal = 0;
1207 c->Header.LUN = iocommand.LUN_info;
1208 c->Header.Tag.lower = c->busaddr; // use the kernel address the cmd block for tag
1210 // Fill in Request block
1211 c->Request = iocommand.Request;
1213 // Fill in the scatter gather information
1214 if (iocommand.buf_size > 0) {
1215 temp64.val = pci_map_single(host->pdev, buff,
1216 iocommand.buf_size,
1217 PCI_DMA_BIDIRECTIONAL);
1218 c->SG[0].Addr.lower = temp64.val32.lower;
1219 c->SG[0].Addr.upper = temp64.val32.upper;
1220 c->SG[0].Len = iocommand.buf_size;
1221 c->SG[0].Ext = 0; // we are not chaining
1223 c->waiting = &wait;
1225 /* Put the request on the tail of the request queue */
1226 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1227 addQ(&host->reqQ, c);
1228 host->Qdepth++;
1229 start_io(host);
1230 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1232 wait_for_completion(&wait);
1234 /* unlock the buffers from DMA */
1235 temp64.val32.lower = c->SG[0].Addr.lower;
1236 temp64.val32.upper = c->SG[0].Addr.upper;
1237 pci_unmap_single(host->pdev, (dma_addr_t) temp64.val,
1238 iocommand.buf_size,
1239 PCI_DMA_BIDIRECTIONAL);
1241 check_ioctl_unit_attention(host, c);
1243 /* Copy the error information out */
1244 iocommand.error_info = *(c->err_info);
1245 if (copy_to_user
1246 (argp, &iocommand, sizeof(IOCTL_Command_struct))) {
1247 kfree(buff);
1248 cmd_free(host, c, 0);
1249 return -EFAULT;
1252 if (iocommand.Request.Type.Direction == XFER_READ) {
1253 /* Copy the data out of the buffer we created */
1254 if (copy_to_user
1255 (iocommand.buf, buff, iocommand.buf_size)) {
1256 kfree(buff);
1257 cmd_free(host, c, 0);
1258 return -EFAULT;
1261 kfree(buff);
1262 cmd_free(host, c, 0);
1263 return 0;
1265 case CCISS_BIG_PASSTHRU:{
1266 BIG_IOCTL_Command_struct *ioc;
1267 CommandList_struct *c;
1268 unsigned char **buff = NULL;
1269 int *buff_size = NULL;
1270 u64bit temp64;
1271 unsigned long flags;
1272 BYTE sg_used = 0;
1273 int status = 0;
1274 int i;
1275 DECLARE_COMPLETION_ONSTACK(wait);
1276 __u32 left;
1277 __u32 sz;
1278 BYTE __user *data_ptr;
1280 if (!arg)
1281 return -EINVAL;
1282 if (!capable(CAP_SYS_RAWIO))
1283 return -EPERM;
1284 ioc = (BIG_IOCTL_Command_struct *)
1285 kmalloc(sizeof(*ioc), GFP_KERNEL);
1286 if (!ioc) {
1287 status = -ENOMEM;
1288 goto cleanup1;
1290 if (copy_from_user(ioc, argp, sizeof(*ioc))) {
1291 status = -EFAULT;
1292 goto cleanup1;
1294 if ((ioc->buf_size < 1) &&
1295 (ioc->Request.Type.Direction != XFER_NONE)) {
1296 status = -EINVAL;
1297 goto cleanup1;
1299 /* Check kmalloc limits using all SGs */
1300 if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
1301 status = -EINVAL;
1302 goto cleanup1;
1304 if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
1305 status = -EINVAL;
1306 goto cleanup1;
1308 buff =
1309 kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
1310 if (!buff) {
1311 status = -ENOMEM;
1312 goto cleanup1;
1314 buff_size = kmalloc(MAXSGENTRIES * sizeof(int),
1315 GFP_KERNEL);
1316 if (!buff_size) {
1317 status = -ENOMEM;
1318 goto cleanup1;
1320 left = ioc->buf_size;
1321 data_ptr = ioc->buf;
1322 while (left) {
1323 sz = (left >
1324 ioc->malloc_size) ? ioc->
1325 malloc_size : left;
1326 buff_size[sg_used] = sz;
1327 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
1328 if (buff[sg_used] == NULL) {
1329 status = -ENOMEM;
1330 goto cleanup1;
1332 if (ioc->Request.Type.Direction == XFER_WRITE) {
1333 if (copy_from_user
1334 (buff[sg_used], data_ptr, sz)) {
1335 status = -EFAULT;
1336 goto cleanup1;
1338 } else {
1339 memset(buff[sg_used], 0, sz);
1341 left -= sz;
1342 data_ptr += sz;
1343 sg_used++;
1345 if ((c = cmd_alloc(host, 0)) == NULL) {
1346 status = -ENOMEM;
1347 goto cleanup1;
1349 c->cmd_type = CMD_IOCTL_PEND;
1350 c->Header.ReplyQueue = 0;
1352 if (ioc->buf_size > 0) {
1353 c->Header.SGList = sg_used;
1354 c->Header.SGTotal = sg_used;
1355 } else {
1356 c->Header.SGList = 0;
1357 c->Header.SGTotal = 0;
1359 c->Header.LUN = ioc->LUN_info;
1360 c->Header.Tag.lower = c->busaddr;
1362 c->Request = ioc->Request;
1363 if (ioc->buf_size > 0) {
1364 int i;
1365 for (i = 0; i < sg_used; i++) {
1366 temp64.val =
1367 pci_map_single(host->pdev, buff[i],
1368 buff_size[i],
1369 PCI_DMA_BIDIRECTIONAL);
1370 c->SG[i].Addr.lower =
1371 temp64.val32.lower;
1372 c->SG[i].Addr.upper =
1373 temp64.val32.upper;
1374 c->SG[i].Len = buff_size[i];
1375 c->SG[i].Ext = 0; /* we are not chaining */
1378 c->waiting = &wait;
1379 /* Put the request on the tail of the request queue */
1380 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1381 addQ(&host->reqQ, c);
1382 host->Qdepth++;
1383 start_io(host);
1384 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1385 wait_for_completion(&wait);
1386 /* unlock the buffers from DMA */
1387 for (i = 0; i < sg_used; i++) {
1388 temp64.val32.lower = c->SG[i].Addr.lower;
1389 temp64.val32.upper = c->SG[i].Addr.upper;
1390 pci_unmap_single(host->pdev,
1391 (dma_addr_t) temp64.val, buff_size[i],
1392 PCI_DMA_BIDIRECTIONAL);
1394 check_ioctl_unit_attention(host, c);
1395 /* Copy the error information out */
1396 ioc->error_info = *(c->err_info);
1397 if (copy_to_user(argp, ioc, sizeof(*ioc))) {
1398 cmd_free(host, c, 0);
1399 status = -EFAULT;
1400 goto cleanup1;
1402 if (ioc->Request.Type.Direction == XFER_READ) {
1403 /* Copy the data out of the buffer we created */
1404 BYTE __user *ptr = ioc->buf;
1405 for (i = 0; i < sg_used; i++) {
1406 if (copy_to_user
1407 (ptr, buff[i], buff_size[i])) {
1408 cmd_free(host, c, 0);
1409 status = -EFAULT;
1410 goto cleanup1;
1412 ptr += buff_size[i];
1415 cmd_free(host, c, 0);
1416 status = 0;
1417 cleanup1:
1418 if (buff) {
1419 for (i = 0; i < sg_used; i++)
1420 kfree(buff[i]);
1421 kfree(buff);
1423 kfree(buff_size);
1424 kfree(ioc);
1425 return status;
1428 /* scsi_cmd_ioctl handles these, below, though some are not */
1429 /* very meaningful for cciss. SG_IO is the main one people want. */
1431 case SG_GET_VERSION_NUM:
1432 case SG_SET_TIMEOUT:
1433 case SG_GET_TIMEOUT:
1434 case SG_GET_RESERVED_SIZE:
1435 case SG_SET_RESERVED_SIZE:
1436 case SG_EMULATED_HOST:
1437 case SG_IO:
1438 case SCSI_IOCTL_SEND_COMMAND:
1439 return scsi_cmd_ioctl(disk->queue, disk, mode, cmd, argp);
1441 /* scsi_cmd_ioctl would normally handle these, below, but */
1442 /* they aren't a good fit for cciss, as CD-ROMs are */
1443 /* not supported, and we don't have any bus/target/lun */
1444 /* which we present to the kernel. */
1446 case CDROM_SEND_PACKET:
1447 case CDROMCLOSETRAY:
1448 case CDROMEJECT:
1449 case SCSI_IOCTL_GET_IDLUN:
1450 case SCSI_IOCTL_GET_BUS_NUMBER:
1451 default:
1452 return -ENOTTY;
1456 static void cciss_check_queues(ctlr_info_t *h)
1458 int start_queue = h->next_to_run;
1459 int i;
1461 /* check to see if we have maxed out the number of commands that can
1462 * be placed on the queue. If so then exit. We do this check here
1463 * in case the interrupt we serviced was from an ioctl and did not
1464 * free any new commands.
1466 if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds)
1467 return;
1469 /* We have room on the queue for more commands. Now we need to queue
1470 * them up. We will also keep track of the next queue to run so
1471 * that every queue gets a chance to be started first.
1473 for (i = 0; i < h->highest_lun + 1; i++) {
1474 int curr_queue = (start_queue + i) % (h->highest_lun + 1);
1475 /* make sure the disk has been added and the drive is real
1476 * because this can be called from the middle of init_one.
1478 if (!(h->drv[curr_queue].queue) || !(h->drv[curr_queue].heads))
1479 continue;
1480 blk_start_queue(h->gendisk[curr_queue]->queue);
1482 /* check to see if we have maxed out the number of commands
1483 * that can be placed on the queue.
1485 if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds) {
1486 if (curr_queue == start_queue) {
1487 h->next_to_run =
1488 (start_queue + 1) % (h->highest_lun + 1);
1489 break;
1490 } else {
1491 h->next_to_run = curr_queue;
1492 break;
1498 static void cciss_softirq_done(struct request *rq)
1500 CommandList_struct *cmd = rq->completion_data;
1501 ctlr_info_t *h = hba[cmd->ctlr];
1502 unsigned long flags;
1503 u64bit temp64;
1504 int i, ddir;
1506 if (cmd->Request.Type.Direction == XFER_READ)
1507 ddir = PCI_DMA_FROMDEVICE;
1508 else
1509 ddir = PCI_DMA_TODEVICE;
1511 /* command did not need to be retried */
1512 /* unmap the DMA mapping for all the scatter gather elements */
1513 for (i = 0; i < cmd->Header.SGList; i++) {
1514 temp64.val32.lower = cmd->SG[i].Addr.lower;
1515 temp64.val32.upper = cmd->SG[i].Addr.upper;
1516 pci_unmap_page(h->pdev, temp64.val, cmd->SG[i].Len, ddir);
1519 #ifdef CCISS_DEBUG
1520 printk("Done with %p\n", rq);
1521 #endif /* CCISS_DEBUG */
1523 /* set the residual count for pc requests */
1524 if (blk_pc_request(rq))
1525 rq->resid_len = cmd->err_info->ResidualCnt;
1527 blk_end_request_all(rq, (rq->errors == 0) ? 0 : -EIO);
1529 spin_lock_irqsave(&h->lock, flags);
1530 cmd_free(h, cmd, 1);
1531 cciss_check_queues(h);
1532 spin_unlock_irqrestore(&h->lock, flags);
1535 static void log_unit_to_scsi3addr(ctlr_info_t *h, unsigned char scsi3addr[],
1536 uint32_t log_unit)
1538 log_unit = h->drv[log_unit].LunID & 0x03fff;
1539 memset(&scsi3addr[4], 0, 4);
1540 memcpy(&scsi3addr[0], &log_unit, 4);
1541 scsi3addr[3] |= 0x40;
1544 /* This function gets the SCSI vendor, model, and revision of a logical drive
1545 * via the inquiry page 0. Model, vendor, and rev are set to empty strings if
1546 * they cannot be read.
1548 static void cciss_get_device_descr(int ctlr, int logvol, int withirq,
1549 char *vendor, char *model, char *rev)
1551 int rc;
1552 InquiryData_struct *inq_buf;
1553 unsigned char scsi3addr[8];
1555 *vendor = '\0';
1556 *model = '\0';
1557 *rev = '\0';
1559 inq_buf = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
1560 if (!inq_buf)
1561 return;
1563 log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
1564 if (withirq)
1565 rc = sendcmd_withirq(CISS_INQUIRY, ctlr, inq_buf,
1566 sizeof(InquiryData_struct), 0,
1567 scsi3addr, TYPE_CMD);
1568 else
1569 rc = sendcmd(CISS_INQUIRY, ctlr, inq_buf,
1570 sizeof(InquiryData_struct), 0,
1571 scsi3addr, TYPE_CMD);
1572 if (rc == IO_OK) {
1573 memcpy(vendor, &inq_buf->data_byte[8], VENDOR_LEN);
1574 vendor[VENDOR_LEN] = '\0';
1575 memcpy(model, &inq_buf->data_byte[16], MODEL_LEN);
1576 model[MODEL_LEN] = '\0';
1577 memcpy(rev, &inq_buf->data_byte[32], REV_LEN);
1578 rev[REV_LEN] = '\0';
1581 kfree(inq_buf);
1582 return;
1585 /* This function gets the serial number of a logical drive via
1586 * inquiry page 0x83. Serial no. is 16 bytes. If the serial
1587 * number cannot be had, for whatever reason, 16 bytes of 0xff
1588 * are returned instead.
1590 static void cciss_get_serial_no(int ctlr, int logvol, int withirq,
1591 unsigned char *serial_no, int buflen)
1593 #define PAGE_83_INQ_BYTES 64
1594 int rc;
1595 unsigned char *buf;
1596 unsigned char scsi3addr[8];
1598 if (buflen > 16)
1599 buflen = 16;
1600 memset(serial_no, 0xff, buflen);
1601 buf = kzalloc(PAGE_83_INQ_BYTES, GFP_KERNEL);
1602 if (!buf)
1603 return;
1604 memset(serial_no, 0, buflen);
1605 log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
1606 if (withirq)
1607 rc = sendcmd_withirq(CISS_INQUIRY, ctlr, buf,
1608 PAGE_83_INQ_BYTES, 0x83, scsi3addr, TYPE_CMD);
1609 else
1610 rc = sendcmd(CISS_INQUIRY, ctlr, buf,
1611 PAGE_83_INQ_BYTES, 0x83, scsi3addr, TYPE_CMD);
1612 if (rc == IO_OK)
1613 memcpy(serial_no, &buf[8], buflen);
1614 kfree(buf);
1615 return;
1618 static void cciss_add_disk(ctlr_info_t *h, struct gendisk *disk,
1619 int drv_index)
1621 disk->queue = blk_init_queue(do_cciss_request, &h->lock);
1622 sprintf(disk->disk_name, "cciss/c%dd%d", h->ctlr, drv_index);
1623 disk->major = h->major;
1624 disk->first_minor = drv_index << NWD_SHIFT;
1625 disk->fops = &cciss_fops;
1626 disk->private_data = &h->drv[drv_index];
1627 disk->driverfs_dev = &h->drv[drv_index].dev;
1629 /* Set up queue information */
1630 blk_queue_bounce_limit(disk->queue, h->pdev->dma_mask);
1632 /* This is a hardware imposed limit. */
1633 blk_queue_max_hw_segments(disk->queue, MAXSGENTRIES);
1635 /* This is a limit in the driver and could be eliminated. */
1636 blk_queue_max_phys_segments(disk->queue, MAXSGENTRIES);
1638 blk_queue_max_sectors(disk->queue, h->cciss_max_sectors);
1640 blk_queue_softirq_done(disk->queue, cciss_softirq_done);
1642 disk->queue->queuedata = h;
1644 blk_queue_logical_block_size(disk->queue,
1645 h->drv[drv_index].block_size);
1647 /* Make sure all queue data is written out before */
1648 /* setting h->drv[drv_index].queue, as setting this */
1649 /* allows the interrupt handler to start the queue */
1650 wmb();
1651 h->drv[drv_index].queue = disk->queue;
1652 add_disk(disk);
1655 /* This function will check the usage_count of the drive to be updated/added.
1656 * If the usage_count is zero and it is a heretofore unknown drive, or,
1657 * the drive's capacity, geometry, or serial number has changed,
1658 * then the drive information will be updated and the disk will be
1659 * re-registered with the kernel. If these conditions don't hold,
1660 * then it will be left alone for the next reboot. The exception to this
1661 * is disk 0 which will always be left registered with the kernel since it
1662 * is also the controller node. Any changes to disk 0 will show up on
1663 * the next reboot.
1665 static void cciss_update_drive_info(int ctlr, int drv_index, int first_time)
1667 ctlr_info_t *h = hba[ctlr];
1668 struct gendisk *disk;
1669 InquiryData_struct *inq_buff = NULL;
1670 unsigned int block_size;
1671 sector_t total_size;
1672 unsigned long flags = 0;
1673 int ret = 0;
1674 drive_info_struct *drvinfo;
1675 int was_only_controller_node;
1677 /* Get information about the disk and modify the driver structure */
1678 inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
1679 drvinfo = kmalloc(sizeof(*drvinfo), GFP_KERNEL);
1680 if (inq_buff == NULL || drvinfo == NULL)
1681 goto mem_msg;
1683 /* See if we're trying to update the "controller node"
1684 * this will happen the when the first logical drive gets
1685 * created by ACU.
1687 was_only_controller_node = (drv_index == 0 &&
1688 h->drv[0].raid_level == -1);
1690 /* testing to see if 16-byte CDBs are already being used */
1691 if (h->cciss_read == CCISS_READ_16) {
1692 cciss_read_capacity_16(h->ctlr, drv_index, 1,
1693 &total_size, &block_size);
1695 } else {
1696 cciss_read_capacity(ctlr, drv_index, 1,
1697 &total_size, &block_size);
1699 /* if read_capacity returns all F's this volume is >2TB */
1700 /* in size so we switch to 16-byte CDB's for all */
1701 /* read/write ops */
1702 if (total_size == 0xFFFFFFFFULL) {
1703 cciss_read_capacity_16(ctlr, drv_index, 1,
1704 &total_size, &block_size);
1705 h->cciss_read = CCISS_READ_16;
1706 h->cciss_write = CCISS_WRITE_16;
1707 } else {
1708 h->cciss_read = CCISS_READ_10;
1709 h->cciss_write = CCISS_WRITE_10;
1713 cciss_geometry_inquiry(ctlr, drv_index, 1, total_size, block_size,
1714 inq_buff, drvinfo);
1715 drvinfo->block_size = block_size;
1716 drvinfo->nr_blocks = total_size + 1;
1718 cciss_get_device_descr(ctlr, drv_index, 1, drvinfo->vendor,
1719 drvinfo->model, drvinfo->rev);
1720 cciss_get_serial_no(ctlr, drv_index, 1, drvinfo->serial_no,
1721 sizeof(drvinfo->serial_no));
1723 /* Is it the same disk we already know, and nothing's changed? */
1724 if (h->drv[drv_index].raid_level != -1 &&
1725 ((memcmp(drvinfo->serial_no,
1726 h->drv[drv_index].serial_no, 16) == 0) &&
1727 drvinfo->block_size == h->drv[drv_index].block_size &&
1728 drvinfo->nr_blocks == h->drv[drv_index].nr_blocks &&
1729 drvinfo->heads == h->drv[drv_index].heads &&
1730 drvinfo->sectors == h->drv[drv_index].sectors &&
1731 drvinfo->cylinders == h->drv[drv_index].cylinders))
1732 /* The disk is unchanged, nothing to update */
1733 goto freeret;
1735 /* If we get here it's not the same disk, or something's changed,
1736 * so we need to * deregister it, and re-register it, if it's not
1737 * in use.
1738 * If the disk already exists then deregister it before proceeding
1739 * (unless it's the first disk (for the controller node).
1741 if (h->drv[drv_index].raid_level != -1 && drv_index != 0) {
1742 printk(KERN_WARNING "disk %d has changed.\n", drv_index);
1743 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
1744 h->drv[drv_index].busy_configuring = 1;
1745 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
1747 /* deregister_disk sets h->drv[drv_index].queue = NULL
1748 * which keeps the interrupt handler from starting
1749 * the queue.
1751 ret = deregister_disk(h, drv_index, 0);
1752 h->drv[drv_index].busy_configuring = 0;
1755 /* If the disk is in use return */
1756 if (ret)
1757 goto freeret;
1759 /* Save the new information from cciss_geometry_inquiry
1760 * and serial number inquiry.
1762 h->drv[drv_index].block_size = drvinfo->block_size;
1763 h->drv[drv_index].nr_blocks = drvinfo->nr_blocks;
1764 h->drv[drv_index].heads = drvinfo->heads;
1765 h->drv[drv_index].sectors = drvinfo->sectors;
1766 h->drv[drv_index].cylinders = drvinfo->cylinders;
1767 h->drv[drv_index].raid_level = drvinfo->raid_level;
1768 memcpy(h->drv[drv_index].serial_no, drvinfo->serial_no, 16);
1769 memcpy(h->drv[drv_index].vendor, drvinfo->vendor, VENDOR_LEN + 1);
1770 memcpy(h->drv[drv_index].model, drvinfo->model, MODEL_LEN + 1);
1771 memcpy(h->drv[drv_index].rev, drvinfo->rev, REV_LEN + 1);
1773 ++h->num_luns;
1774 disk = h->gendisk[drv_index];
1775 set_capacity(disk, h->drv[drv_index].nr_blocks);
1777 /* If it's not disk 0 (drv_index != 0)
1778 * or if it was disk 0, but there was previously
1779 * no actual corresponding configured logical drive
1780 * (raid_leve == -1) then we want to update the
1781 * logical drive's information.
1783 if (drv_index || first_time)
1784 cciss_add_disk(h, disk, drv_index);
1786 freeret:
1787 kfree(inq_buff);
1788 kfree(drvinfo);
1789 return;
1790 mem_msg:
1791 printk(KERN_ERR "cciss: out of memory\n");
1792 goto freeret;
1795 /* This function will find the first index of the controllers drive array
1796 * that has a -1 for the raid_level and will return that index. This is
1797 * where new drives will be added. If the index to be returned is greater
1798 * than the highest_lun index for the controller then highest_lun is set
1799 * to this new index. If there are no available indexes then -1 is returned.
1800 * "controller_node" is used to know if this is a real logical drive, or just
1801 * the controller node, which determines if this counts towards highest_lun.
1803 static int cciss_find_free_drive_index(int ctlr, int controller_node)
1805 int i;
1807 for (i = 0; i < CISS_MAX_LUN; i++) {
1808 if (hba[ctlr]->drv[i].raid_level == -1) {
1809 if (i > hba[ctlr]->highest_lun)
1810 if (!controller_node)
1811 hba[ctlr]->highest_lun = i;
1812 return i;
1815 return -1;
1818 /* cciss_add_gendisk finds a free hba[]->drv structure
1819 * and allocates a gendisk if needed, and sets the lunid
1820 * in the drvinfo structure. It returns the index into
1821 * the ->drv[] array, or -1 if none are free.
1822 * is_controller_node indicates whether highest_lun should
1823 * count this disk, or if it's only being added to provide
1824 * a means to talk to the controller in case no logical
1825 * drives have yet been configured.
1827 static int cciss_add_gendisk(ctlr_info_t *h, __u32 lunid, int controller_node)
1829 int drv_index;
1831 drv_index = cciss_find_free_drive_index(h->ctlr, controller_node);
1832 if (drv_index == -1)
1833 return -1;
1834 /*Check if the gendisk needs to be allocated */
1835 if (!h->gendisk[drv_index]) {
1836 h->gendisk[drv_index] =
1837 alloc_disk(1 << NWD_SHIFT);
1838 if (!h->gendisk[drv_index]) {
1839 printk(KERN_ERR "cciss%d: could not "
1840 "allocate a new disk %d\n",
1841 h->ctlr, drv_index);
1842 return -1;
1845 h->drv[drv_index].LunID = lunid;
1846 if (cciss_create_ld_sysfs_entry(h, &h->drv[drv_index], drv_index))
1847 goto err_free_disk;
1849 /* Don't need to mark this busy because nobody */
1850 /* else knows about this disk yet to contend */
1851 /* for access to it. */
1852 h->drv[drv_index].busy_configuring = 0;
1853 wmb();
1854 return drv_index;
1856 err_free_disk:
1857 put_disk(h->gendisk[drv_index]);
1858 h->gendisk[drv_index] = NULL;
1859 return -1;
1862 /* This is for the special case of a controller which
1863 * has no logical drives. In this case, we still need
1864 * to register a disk so the controller can be accessed
1865 * by the Array Config Utility.
1867 static void cciss_add_controller_node(ctlr_info_t *h)
1869 struct gendisk *disk;
1870 int drv_index;
1872 if (h->gendisk[0] != NULL) /* already did this? Then bail. */
1873 return;
1875 drv_index = cciss_add_gendisk(h, 0, 1);
1876 if (drv_index == -1) {
1877 printk(KERN_WARNING "cciss%d: could not "
1878 "add disk 0.\n", h->ctlr);
1879 return;
1881 h->drv[drv_index].block_size = 512;
1882 h->drv[drv_index].nr_blocks = 0;
1883 h->drv[drv_index].heads = 0;
1884 h->drv[drv_index].sectors = 0;
1885 h->drv[drv_index].cylinders = 0;
1886 h->drv[drv_index].raid_level = -1;
1887 memset(h->drv[drv_index].serial_no, 0, 16);
1888 disk = h->gendisk[drv_index];
1889 cciss_add_disk(h, disk, drv_index);
1892 /* This function will add and remove logical drives from the Logical
1893 * drive array of the controller and maintain persistency of ordering
1894 * so that mount points are preserved until the next reboot. This allows
1895 * for the removal of logical drives in the middle of the drive array
1896 * without a re-ordering of those drives.
1897 * INPUT
1898 * h = The controller to perform the operations on
1900 static int rebuild_lun_table(ctlr_info_t *h, int first_time)
1902 int ctlr = h->ctlr;
1903 int num_luns;
1904 ReportLunData_struct *ld_buff = NULL;
1905 int return_code;
1906 int listlength = 0;
1907 int i;
1908 int drv_found;
1909 int drv_index = 0;
1910 __u32 lunid = 0;
1911 unsigned long flags;
1913 if (!capable(CAP_SYS_RAWIO))
1914 return -EPERM;
1916 /* Set busy_configuring flag for this operation */
1917 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
1918 if (h->busy_configuring) {
1919 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
1920 return -EBUSY;
1922 h->busy_configuring = 1;
1923 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
1925 ld_buff = kzalloc(sizeof(ReportLunData_struct), GFP_KERNEL);
1926 if (ld_buff == NULL)
1927 goto mem_msg;
1929 return_code = sendcmd_withirq(CISS_REPORT_LOG, ctlr, ld_buff,
1930 sizeof(ReportLunData_struct),
1931 0, CTLR_LUNID, TYPE_CMD);
1933 if (return_code == IO_OK)
1934 listlength = be32_to_cpu(*(__be32 *) ld_buff->LUNListLength);
1935 else { /* reading number of logical volumes failed */
1936 printk(KERN_WARNING "cciss: report logical volume"
1937 " command failed\n");
1938 listlength = 0;
1939 goto freeret;
1942 num_luns = listlength / 8; /* 8 bytes per entry */
1943 if (num_luns > CISS_MAX_LUN) {
1944 num_luns = CISS_MAX_LUN;
1945 printk(KERN_WARNING "cciss: more luns configured"
1946 " on controller than can be handled by"
1947 " this driver.\n");
1950 if (num_luns == 0)
1951 cciss_add_controller_node(h);
1953 /* Compare controller drive array to driver's drive array
1954 * to see if any drives are missing on the controller due
1955 * to action of Array Config Utility (user deletes drive)
1956 * and deregister logical drives which have disappeared.
1958 for (i = 0; i <= h->highest_lun; i++) {
1959 int j;
1960 drv_found = 0;
1962 /* skip holes in the array from already deleted drives */
1963 if (h->drv[i].raid_level == -1)
1964 continue;
1966 for (j = 0; j < num_luns; j++) {
1967 memcpy(&lunid, &ld_buff->LUN[j][0], 4);
1968 lunid = le32_to_cpu(lunid);
1969 if (h->drv[i].LunID == lunid) {
1970 drv_found = 1;
1971 break;
1974 if (!drv_found) {
1975 /* Deregister it from the OS, it's gone. */
1976 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
1977 h->drv[i].busy_configuring = 1;
1978 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
1979 return_code = deregister_disk(h, i, 1);
1980 cciss_destroy_ld_sysfs_entry(&h->drv[i]);
1981 h->drv[i].busy_configuring = 0;
1985 /* Compare controller drive array to driver's drive array.
1986 * Check for updates in the drive information and any new drives
1987 * on the controller due to ACU adding logical drives, or changing
1988 * a logical drive's size, etc. Reregister any new/changed drives
1990 for (i = 0; i < num_luns; i++) {
1991 int j;
1993 drv_found = 0;
1995 memcpy(&lunid, &ld_buff->LUN[i][0], 4);
1996 lunid = le32_to_cpu(lunid);
1998 /* Find if the LUN is already in the drive array
1999 * of the driver. If so then update its info
2000 * if not in use. If it does not exist then find
2001 * the first free index and add it.
2003 for (j = 0; j <= h->highest_lun; j++) {
2004 if (h->drv[j].raid_level != -1 &&
2005 h->drv[j].LunID == lunid) {
2006 drv_index = j;
2007 drv_found = 1;
2008 break;
2012 /* check if the drive was found already in the array */
2013 if (!drv_found) {
2014 drv_index = cciss_add_gendisk(h, lunid, 0);
2015 if (drv_index == -1)
2016 goto freeret;
2018 cciss_update_drive_info(ctlr, drv_index, first_time);
2019 } /* end for */
2021 freeret:
2022 kfree(ld_buff);
2023 h->busy_configuring = 0;
2024 /* We return -1 here to tell the ACU that we have registered/updated
2025 * all of the drives that we can and to keep it from calling us
2026 * additional times.
2028 return -1;
2029 mem_msg:
2030 printk(KERN_ERR "cciss: out of memory\n");
2031 h->busy_configuring = 0;
2032 goto freeret;
2035 /* This function will deregister the disk and it's queue from the
2036 * kernel. It must be called with the controller lock held and the
2037 * drv structures busy_configuring flag set. It's parameters are:
2039 * disk = This is the disk to be deregistered
2040 * drv = This is the drive_info_struct associated with the disk to be
2041 * deregistered. It contains information about the disk used
2042 * by the driver.
2043 * clear_all = This flag determines whether or not the disk information
2044 * is going to be completely cleared out and the highest_lun
2045 * reset. Sometimes we want to clear out information about
2046 * the disk in preparation for re-adding it. In this case
2047 * the highest_lun should be left unchanged and the LunID
2048 * should not be cleared.
2050 static int deregister_disk(ctlr_info_t *h, int drv_index,
2051 int clear_all)
2053 int i;
2054 struct gendisk *disk;
2055 drive_info_struct *drv;
2057 if (!capable(CAP_SYS_RAWIO))
2058 return -EPERM;
2060 drv = &h->drv[drv_index];
2061 disk = h->gendisk[drv_index];
2063 /* make sure logical volume is NOT is use */
2064 if (clear_all || (h->gendisk[0] == disk)) {
2065 if (drv->usage_count > 1)
2066 return -EBUSY;
2067 } else if (drv->usage_count > 0)
2068 return -EBUSY;
2070 /* invalidate the devices and deregister the disk. If it is disk
2071 * zero do not deregister it but just zero out it's values. This
2072 * allows us to delete disk zero but keep the controller registered.
2074 if (h->gendisk[0] != disk) {
2075 struct request_queue *q = disk->queue;
2076 if (disk->flags & GENHD_FL_UP)
2077 del_gendisk(disk);
2078 if (q) {
2079 blk_cleanup_queue(q);
2080 /* Set drv->queue to NULL so that we do not try
2081 * to call blk_start_queue on this queue in the
2082 * interrupt handler
2084 drv->queue = NULL;
2086 /* If clear_all is set then we are deleting the logical
2087 * drive, not just refreshing its info. For drives
2088 * other than disk 0 we will call put_disk. We do not
2089 * do this for disk 0 as we need it to be able to
2090 * configure the controller.
2092 if (clear_all){
2093 /* This isn't pretty, but we need to find the
2094 * disk in our array and NULL our the pointer.
2095 * This is so that we will call alloc_disk if
2096 * this index is used again later.
2098 for (i=0; i < CISS_MAX_LUN; i++){
2099 if (h->gendisk[i] == disk) {
2100 h->gendisk[i] = NULL;
2101 break;
2104 put_disk(disk);
2106 } else {
2107 set_capacity(disk, 0);
2110 --h->num_luns;
2111 /* zero out the disk size info */
2112 drv->nr_blocks = 0;
2113 drv->block_size = 0;
2114 drv->heads = 0;
2115 drv->sectors = 0;
2116 drv->cylinders = 0;
2117 drv->raid_level = -1; /* This can be used as a flag variable to
2118 * indicate that this element of the drive
2119 * array is free.
2122 if (clear_all) {
2123 /* check to see if it was the last disk */
2124 if (drv == h->drv + h->highest_lun) {
2125 /* if so, find the new hightest lun */
2126 int i, newhighest = -1;
2127 for (i = 0; i <= h->highest_lun; i++) {
2128 /* if the disk has size > 0, it is available */
2129 if (h->drv[i].heads)
2130 newhighest = i;
2132 h->highest_lun = newhighest;
2135 drv->LunID = 0;
2137 return 0;
2140 static int fill_cmd(CommandList_struct *c, __u8 cmd, int ctlr, void *buff,
2141 size_t size, __u8 page_code, unsigned char *scsi3addr,
2142 int cmd_type)
2144 ctlr_info_t *h = hba[ctlr];
2145 u64bit buff_dma_handle;
2146 int status = IO_OK;
2148 c->cmd_type = CMD_IOCTL_PEND;
2149 c->Header.ReplyQueue = 0;
2150 if (buff != NULL) {
2151 c->Header.SGList = 1;
2152 c->Header.SGTotal = 1;
2153 } else {
2154 c->Header.SGList = 0;
2155 c->Header.SGTotal = 0;
2157 c->Header.Tag.lower = c->busaddr;
2158 memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2160 c->Request.Type.Type = cmd_type;
2161 if (cmd_type == TYPE_CMD) {
2162 switch (cmd) {
2163 case CISS_INQUIRY:
2164 /* are we trying to read a vital product page */
2165 if (page_code != 0) {
2166 c->Request.CDB[1] = 0x01;
2167 c->Request.CDB[2] = page_code;
2169 c->Request.CDBLen = 6;
2170 c->Request.Type.Attribute = ATTR_SIMPLE;
2171 c->Request.Type.Direction = XFER_READ;
2172 c->Request.Timeout = 0;
2173 c->Request.CDB[0] = CISS_INQUIRY;
2174 c->Request.CDB[4] = size & 0xFF;
2175 break;
2176 case CISS_REPORT_LOG:
2177 case CISS_REPORT_PHYS:
2178 /* Talking to controller so It's a physical command
2179 mode = 00 target = 0. Nothing to write.
2181 c->Request.CDBLen = 12;
2182 c->Request.Type.Attribute = ATTR_SIMPLE;
2183 c->Request.Type.Direction = XFER_READ;
2184 c->Request.Timeout = 0;
2185 c->Request.CDB[0] = cmd;
2186 c->Request.CDB[6] = (size >> 24) & 0xFF; //MSB
2187 c->Request.CDB[7] = (size >> 16) & 0xFF;
2188 c->Request.CDB[8] = (size >> 8) & 0xFF;
2189 c->Request.CDB[9] = size & 0xFF;
2190 break;
2192 case CCISS_READ_CAPACITY:
2193 c->Request.CDBLen = 10;
2194 c->Request.Type.Attribute = ATTR_SIMPLE;
2195 c->Request.Type.Direction = XFER_READ;
2196 c->Request.Timeout = 0;
2197 c->Request.CDB[0] = cmd;
2198 break;
2199 case CCISS_READ_CAPACITY_16:
2200 c->Request.CDBLen = 16;
2201 c->Request.Type.Attribute = ATTR_SIMPLE;
2202 c->Request.Type.Direction = XFER_READ;
2203 c->Request.Timeout = 0;
2204 c->Request.CDB[0] = cmd;
2205 c->Request.CDB[1] = 0x10;
2206 c->Request.CDB[10] = (size >> 24) & 0xFF;
2207 c->Request.CDB[11] = (size >> 16) & 0xFF;
2208 c->Request.CDB[12] = (size >> 8) & 0xFF;
2209 c->Request.CDB[13] = size & 0xFF;
2210 c->Request.Timeout = 0;
2211 c->Request.CDB[0] = cmd;
2212 break;
2213 case CCISS_CACHE_FLUSH:
2214 c->Request.CDBLen = 12;
2215 c->Request.Type.Attribute = ATTR_SIMPLE;
2216 c->Request.Type.Direction = XFER_WRITE;
2217 c->Request.Timeout = 0;
2218 c->Request.CDB[0] = BMIC_WRITE;
2219 c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2220 break;
2221 case TEST_UNIT_READY:
2222 c->Request.CDBLen = 6;
2223 c->Request.Type.Attribute = ATTR_SIMPLE;
2224 c->Request.Type.Direction = XFER_NONE;
2225 c->Request.Timeout = 0;
2226 break;
2227 default:
2228 printk(KERN_WARNING
2229 "cciss%d: Unknown Command 0x%c\n", ctlr, cmd);
2230 return IO_ERROR;
2232 } else if (cmd_type == TYPE_MSG) {
2233 switch (cmd) {
2234 case 0: /* ABORT message */
2235 c->Request.CDBLen = 12;
2236 c->Request.Type.Attribute = ATTR_SIMPLE;
2237 c->Request.Type.Direction = XFER_WRITE;
2238 c->Request.Timeout = 0;
2239 c->Request.CDB[0] = cmd; /* abort */
2240 c->Request.CDB[1] = 0; /* abort a command */
2241 /* buff contains the tag of the command to abort */
2242 memcpy(&c->Request.CDB[4], buff, 8);
2243 break;
2244 case 1: /* RESET message */
2245 c->Request.CDBLen = 16;
2246 c->Request.Type.Attribute = ATTR_SIMPLE;
2247 c->Request.Type.Direction = XFER_NONE;
2248 c->Request.Timeout = 0;
2249 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
2250 c->Request.CDB[0] = cmd; /* reset */
2251 c->Request.CDB[1] = 0x03; /* reset a target */
2252 break;
2253 case 3: /* No-Op message */
2254 c->Request.CDBLen = 1;
2255 c->Request.Type.Attribute = ATTR_SIMPLE;
2256 c->Request.Type.Direction = XFER_WRITE;
2257 c->Request.Timeout = 0;
2258 c->Request.CDB[0] = cmd;
2259 break;
2260 default:
2261 printk(KERN_WARNING
2262 "cciss%d: unknown message type %d\n", ctlr, cmd);
2263 return IO_ERROR;
2265 } else {
2266 printk(KERN_WARNING
2267 "cciss%d: unknown command type %d\n", ctlr, cmd_type);
2268 return IO_ERROR;
2270 /* Fill in the scatter gather information */
2271 if (size > 0) {
2272 buff_dma_handle.val = (__u64) pci_map_single(h->pdev,
2273 buff, size,
2274 PCI_DMA_BIDIRECTIONAL);
2275 c->SG[0].Addr.lower = buff_dma_handle.val32.lower;
2276 c->SG[0].Addr.upper = buff_dma_handle.val32.upper;
2277 c->SG[0].Len = size;
2278 c->SG[0].Ext = 0; /* we are not chaining */
2280 return status;
2283 static int check_target_status(ctlr_info_t *h, CommandList_struct *c)
2285 switch (c->err_info->ScsiStatus) {
2286 case SAM_STAT_GOOD:
2287 return IO_OK;
2288 case SAM_STAT_CHECK_CONDITION:
2289 switch (0xf & c->err_info->SenseInfo[2]) {
2290 case 0: return IO_OK; /* no sense */
2291 case 1: return IO_OK; /* recovered error */
2292 default:
2293 printk(KERN_WARNING "cciss%d: cmd 0x%02x "
2294 "check condition, sense key = 0x%02x\n",
2295 h->ctlr, c->Request.CDB[0],
2296 c->err_info->SenseInfo[2]);
2298 break;
2299 default:
2300 printk(KERN_WARNING "cciss%d: cmd 0x%02x"
2301 "scsi status = 0x%02x\n", h->ctlr,
2302 c->Request.CDB[0], c->err_info->ScsiStatus);
2303 break;
2305 return IO_ERROR;
2308 static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c)
2310 int return_status = IO_OK;
2312 if (c->err_info->CommandStatus == CMD_SUCCESS)
2313 return IO_OK;
2315 switch (c->err_info->CommandStatus) {
2316 case CMD_TARGET_STATUS:
2317 return_status = check_target_status(h, c);
2318 break;
2319 case CMD_DATA_UNDERRUN:
2320 case CMD_DATA_OVERRUN:
2321 /* expected for inquiry and report lun commands */
2322 break;
2323 case CMD_INVALID:
2324 printk(KERN_WARNING "cciss: cmd 0x%02x is "
2325 "reported invalid\n", c->Request.CDB[0]);
2326 return_status = IO_ERROR;
2327 break;
2328 case CMD_PROTOCOL_ERR:
2329 printk(KERN_WARNING "cciss: cmd 0x%02x has "
2330 "protocol error \n", c->Request.CDB[0]);
2331 return_status = IO_ERROR;
2332 break;
2333 case CMD_HARDWARE_ERR:
2334 printk(KERN_WARNING "cciss: cmd 0x%02x had "
2335 " hardware error\n", c->Request.CDB[0]);
2336 return_status = IO_ERROR;
2337 break;
2338 case CMD_CONNECTION_LOST:
2339 printk(KERN_WARNING "cciss: cmd 0x%02x had "
2340 "connection lost\n", c->Request.CDB[0]);
2341 return_status = IO_ERROR;
2342 break;
2343 case CMD_ABORTED:
2344 printk(KERN_WARNING "cciss: cmd 0x%02x was "
2345 "aborted\n", c->Request.CDB[0]);
2346 return_status = IO_ERROR;
2347 break;
2348 case CMD_ABORT_FAILED:
2349 printk(KERN_WARNING "cciss: cmd 0x%02x reports "
2350 "abort failed\n", c->Request.CDB[0]);
2351 return_status = IO_ERROR;
2352 break;
2353 case CMD_UNSOLICITED_ABORT:
2354 printk(KERN_WARNING
2355 "cciss%d: unsolicited abort 0x%02x\n", h->ctlr,
2356 c->Request.CDB[0]);
2357 return_status = IO_NEEDS_RETRY;
2358 break;
2359 default:
2360 printk(KERN_WARNING "cciss: cmd 0x%02x returned "
2361 "unknown status %x\n", c->Request.CDB[0],
2362 c->err_info->CommandStatus);
2363 return_status = IO_ERROR;
2365 return return_status;
2368 static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
2369 int attempt_retry)
2371 DECLARE_COMPLETION_ONSTACK(wait);
2372 u64bit buff_dma_handle;
2373 unsigned long flags;
2374 int return_status = IO_OK;
2376 resend_cmd2:
2377 c->waiting = &wait;
2378 /* Put the request on the tail of the queue and send it */
2379 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
2380 addQ(&h->reqQ, c);
2381 h->Qdepth++;
2382 start_io(h);
2383 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
2385 wait_for_completion(&wait);
2387 if (c->err_info->CommandStatus == 0 || !attempt_retry)
2388 goto command_done;
2390 return_status = process_sendcmd_error(h, c);
2392 if (return_status == IO_NEEDS_RETRY &&
2393 c->retry_count < MAX_CMD_RETRIES) {
2394 printk(KERN_WARNING "cciss%d: retrying 0x%02x\n", h->ctlr,
2395 c->Request.CDB[0]);
2396 c->retry_count++;
2397 /* erase the old error information */
2398 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
2399 return_status = IO_OK;
2400 INIT_COMPLETION(wait);
2401 goto resend_cmd2;
2404 command_done:
2405 /* unlock the buffers from DMA */
2406 buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
2407 buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
2408 pci_unmap_single(h->pdev, (dma_addr_t) buff_dma_handle.val,
2409 c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
2410 return return_status;
2413 static int sendcmd_withirq(__u8 cmd, int ctlr, void *buff, size_t size,
2414 __u8 page_code, unsigned char scsi3addr[],
2415 int cmd_type)
2417 ctlr_info_t *h = hba[ctlr];
2418 CommandList_struct *c;
2419 int return_status;
2421 c = cmd_alloc(h, 0);
2422 if (!c)
2423 return -ENOMEM;
2424 return_status = fill_cmd(c, cmd, ctlr, buff, size, page_code,
2425 scsi3addr, cmd_type);
2426 if (return_status == IO_OK)
2427 return_status = sendcmd_withirq_core(h, c, 1);
2429 cmd_free(h, c, 0);
2430 return return_status;
2433 static void cciss_geometry_inquiry(int ctlr, int logvol,
2434 int withirq, sector_t total_size,
2435 unsigned int block_size,
2436 InquiryData_struct *inq_buff,
2437 drive_info_struct *drv)
2439 int return_code;
2440 unsigned long t;
2441 unsigned char scsi3addr[8];
2443 memset(inq_buff, 0, sizeof(InquiryData_struct));
2444 log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
2445 if (withirq)
2446 return_code = sendcmd_withirq(CISS_INQUIRY, ctlr,
2447 inq_buff, sizeof(*inq_buff),
2448 0xC1, scsi3addr, TYPE_CMD);
2449 else
2450 return_code = sendcmd(CISS_INQUIRY, ctlr, inq_buff,
2451 sizeof(*inq_buff), 0xC1, scsi3addr,
2452 TYPE_CMD);
2453 if (return_code == IO_OK) {
2454 if (inq_buff->data_byte[8] == 0xFF) {
2455 printk(KERN_WARNING
2456 "cciss: reading geometry failed, volume "
2457 "does not support reading geometry\n");
2458 drv->heads = 255;
2459 drv->sectors = 32; // Sectors per track
2460 drv->cylinders = total_size + 1;
2461 drv->raid_level = RAID_UNKNOWN;
2462 } else {
2463 drv->heads = inq_buff->data_byte[6];
2464 drv->sectors = inq_buff->data_byte[7];
2465 drv->cylinders = (inq_buff->data_byte[4] & 0xff) << 8;
2466 drv->cylinders += inq_buff->data_byte[5];
2467 drv->raid_level = inq_buff->data_byte[8];
2469 drv->block_size = block_size;
2470 drv->nr_blocks = total_size + 1;
2471 t = drv->heads * drv->sectors;
2472 if (t > 1) {
2473 sector_t real_size = total_size + 1;
2474 unsigned long rem = sector_div(real_size, t);
2475 if (rem)
2476 real_size++;
2477 drv->cylinders = real_size;
2479 } else { /* Get geometry failed */
2480 printk(KERN_WARNING "cciss: reading geometry failed\n");
2482 printk(KERN_INFO " heads=%d, sectors=%d, cylinders=%d\n\n",
2483 drv->heads, drv->sectors, drv->cylinders);
2486 static void
2487 cciss_read_capacity(int ctlr, int logvol, int withirq, sector_t *total_size,
2488 unsigned int *block_size)
2490 ReadCapdata_struct *buf;
2491 int return_code;
2492 unsigned char scsi3addr[8];
2494 buf = kzalloc(sizeof(ReadCapdata_struct), GFP_KERNEL);
2495 if (!buf) {
2496 printk(KERN_WARNING "cciss: out of memory\n");
2497 return;
2500 log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
2501 if (withirq)
2502 return_code = sendcmd_withirq(CCISS_READ_CAPACITY,
2503 ctlr, buf, sizeof(ReadCapdata_struct),
2504 0, scsi3addr, TYPE_CMD);
2505 else
2506 return_code = sendcmd(CCISS_READ_CAPACITY,
2507 ctlr, buf, sizeof(ReadCapdata_struct),
2508 0, scsi3addr, TYPE_CMD);
2509 if (return_code == IO_OK) {
2510 *total_size = be32_to_cpu(*(__be32 *) buf->total_size);
2511 *block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2512 } else { /* read capacity command failed */
2513 printk(KERN_WARNING "cciss: read capacity failed\n");
2514 *total_size = 0;
2515 *block_size = BLOCK_SIZE;
2517 if (*total_size != 0)
2518 printk(KERN_INFO " blocks= %llu block_size= %d\n",
2519 (unsigned long long)*total_size+1, *block_size);
2520 kfree(buf);
2523 static void
2524 cciss_read_capacity_16(int ctlr, int logvol, int withirq, sector_t *total_size, unsigned int *block_size)
2526 ReadCapdata_struct_16 *buf;
2527 int return_code;
2528 unsigned char scsi3addr[8];
2530 buf = kzalloc(sizeof(ReadCapdata_struct_16), GFP_KERNEL);
2531 if (!buf) {
2532 printk(KERN_WARNING "cciss: out of memory\n");
2533 return;
2536 log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
2537 if (withirq) {
2538 return_code = sendcmd_withirq(CCISS_READ_CAPACITY_16,
2539 ctlr, buf, sizeof(ReadCapdata_struct_16),
2540 0, scsi3addr, TYPE_CMD);
2542 else {
2543 return_code = sendcmd(CCISS_READ_CAPACITY_16,
2544 ctlr, buf, sizeof(ReadCapdata_struct_16),
2545 0, scsi3addr, TYPE_CMD);
2547 if (return_code == IO_OK) {
2548 *total_size = be64_to_cpu(*(__be64 *) buf->total_size);
2549 *block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2550 } else { /* read capacity command failed */
2551 printk(KERN_WARNING "cciss: read capacity failed\n");
2552 *total_size = 0;
2553 *block_size = BLOCK_SIZE;
2555 printk(KERN_INFO " blocks= %llu block_size= %d\n",
2556 (unsigned long long)*total_size+1, *block_size);
2557 kfree(buf);
2560 static int cciss_revalidate(struct gendisk *disk)
2562 ctlr_info_t *h = get_host(disk);
2563 drive_info_struct *drv = get_drv(disk);
2564 int logvol;
2565 int FOUND = 0;
2566 unsigned int block_size;
2567 sector_t total_size;
2568 InquiryData_struct *inq_buff = NULL;
2570 for (logvol = 0; logvol < CISS_MAX_LUN; logvol++) {
2571 if (h->drv[logvol].LunID == drv->LunID) {
2572 FOUND = 1;
2573 break;
2577 if (!FOUND)
2578 return 1;
2580 inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
2581 if (inq_buff == NULL) {
2582 printk(KERN_WARNING "cciss: out of memory\n");
2583 return 1;
2585 if (h->cciss_read == CCISS_READ_10) {
2586 cciss_read_capacity(h->ctlr, logvol, 1,
2587 &total_size, &block_size);
2588 } else {
2589 cciss_read_capacity_16(h->ctlr, logvol, 1,
2590 &total_size, &block_size);
2592 cciss_geometry_inquiry(h->ctlr, logvol, 1, total_size, block_size,
2593 inq_buff, drv);
2595 blk_queue_logical_block_size(drv->queue, drv->block_size);
2596 set_capacity(disk, drv->nr_blocks);
2598 kfree(inq_buff);
2599 return 0;
2603 * Wait polling for a command to complete.
2604 * The memory mapped FIFO is polled for the completion.
2605 * Used only at init time, interrupts from the HBA are disabled.
2607 static unsigned long pollcomplete(int ctlr)
2609 unsigned long done;
2610 int i;
2612 /* Wait (up to 20 seconds) for a command to complete */
2614 for (i = 20 * HZ; i > 0; i--) {
2615 done = hba[ctlr]->access.command_completed(hba[ctlr]);
2616 if (done == FIFO_EMPTY)
2617 schedule_timeout_uninterruptible(1);
2618 else
2619 return done;
2621 /* Invalid address to tell caller we ran out of time */
2622 return 1;
2625 /* Send command c to controller h and poll for it to complete.
2626 * Turns interrupts off on the board. Used at driver init time
2627 * and during SCSI error recovery.
2629 static int sendcmd_core(ctlr_info_t *h, CommandList_struct *c)
2631 int i;
2632 unsigned long complete;
2633 int status = IO_ERROR;
2634 u64bit buff_dma_handle;
2636 resend_cmd1:
2638 /* Disable interrupt on the board. */
2639 h->access.set_intr_mask(h, CCISS_INTR_OFF);
2641 /* Make sure there is room in the command FIFO */
2642 /* Actually it should be completely empty at this time */
2643 /* unless we are in here doing error handling for the scsi */
2644 /* tape side of the driver. */
2645 for (i = 200000; i > 0; i--) {
2646 /* if fifo isn't full go */
2647 if (!(h->access.fifo_full(h)))
2648 break;
2649 udelay(10);
2650 printk(KERN_WARNING "cciss cciss%d: SendCmd FIFO full,"
2651 " waiting!\n", h->ctlr);
2653 h->access.submit_command(h, c); /* Send the cmd */
2654 do {
2655 complete = pollcomplete(h->ctlr);
2657 #ifdef CCISS_DEBUG
2658 printk(KERN_DEBUG "cciss: command completed\n");
2659 #endif /* CCISS_DEBUG */
2661 if (complete == 1) {
2662 printk(KERN_WARNING
2663 "cciss cciss%d: SendCmd Timeout out, "
2664 "No command list address returned!\n", h->ctlr);
2665 status = IO_ERROR;
2666 break;
2669 /* Make sure it's the command we're expecting. */
2670 if ((complete & ~CISS_ERROR_BIT) != c->busaddr) {
2671 printk(KERN_WARNING "cciss%d: Unexpected command "
2672 "completion.\n", h->ctlr);
2673 continue;
2676 /* It is our command. If no error, we're done. */
2677 if (!(complete & CISS_ERROR_BIT)) {
2678 status = IO_OK;
2679 break;
2682 /* There is an error... */
2684 /* if data overrun or underun on Report command ignore it */
2685 if (((c->Request.CDB[0] == CISS_REPORT_LOG) ||
2686 (c->Request.CDB[0] == CISS_REPORT_PHYS) ||
2687 (c->Request.CDB[0] == CISS_INQUIRY)) &&
2688 ((c->err_info->CommandStatus == CMD_DATA_OVERRUN) ||
2689 (c->err_info->CommandStatus == CMD_DATA_UNDERRUN))) {
2690 complete = c->busaddr;
2691 status = IO_OK;
2692 break;
2695 if (c->err_info->CommandStatus == CMD_UNSOLICITED_ABORT) {
2696 printk(KERN_WARNING "cciss%d: unsolicited abort %p\n",
2697 h->ctlr, c);
2698 if (c->retry_count < MAX_CMD_RETRIES) {
2699 printk(KERN_WARNING "cciss%d: retrying %p\n",
2700 h->ctlr, c);
2701 c->retry_count++;
2702 /* erase the old error information */
2703 memset(c->err_info, 0, sizeof(c->err_info));
2704 goto resend_cmd1;
2706 printk(KERN_WARNING "cciss%d: retried %p too many "
2707 "times\n", h->ctlr, c);
2708 status = IO_ERROR;
2709 break;
2712 if (c->err_info->CommandStatus == CMD_UNABORTABLE) {
2713 printk(KERN_WARNING "cciss%d: command could not be "
2714 "aborted.\n", h->ctlr);
2715 status = IO_ERROR;
2716 break;
2719 if (c->err_info->CommandStatus == CMD_TARGET_STATUS) {
2720 status = check_target_status(h, c);
2721 break;
2724 printk(KERN_WARNING "cciss%d: sendcmd error\n", h->ctlr);
2725 printk(KERN_WARNING "cmd = 0x%02x, CommandStatus = 0x%02x\n",
2726 c->Request.CDB[0], c->err_info->CommandStatus);
2727 status = IO_ERROR;
2728 break;
2730 } while (1);
2732 /* unlock the data buffer from DMA */
2733 buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
2734 buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
2735 pci_unmap_single(h->pdev, (dma_addr_t) buff_dma_handle.val,
2736 c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
2737 return status;
2741 * Send a command to the controller, and wait for it to complete.
2742 * Used at init time, and during SCSI error recovery.
2744 static int sendcmd(__u8 cmd, int ctlr, void *buff, size_t size,
2745 __u8 page_code, unsigned char *scsi3addr, int cmd_type)
2747 CommandList_struct *c;
2748 int status;
2750 c = cmd_alloc(hba[ctlr], 1);
2751 if (!c) {
2752 printk(KERN_WARNING "cciss: unable to get memory");
2753 return IO_ERROR;
2755 status = fill_cmd(c, cmd, ctlr, buff, size, page_code,
2756 scsi3addr, cmd_type);
2757 if (status == IO_OK)
2758 status = sendcmd_core(hba[ctlr], c);
2759 cmd_free(hba[ctlr], c, 1);
2760 return status;
2764 * Map (physical) PCI mem into (virtual) kernel space
2766 static void __iomem *remap_pci_mem(ulong base, ulong size)
2768 ulong page_base = ((ulong) base) & PAGE_MASK;
2769 ulong page_offs = ((ulong) base) - page_base;
2770 void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2772 return page_remapped ? (page_remapped + page_offs) : NULL;
2776 * Takes jobs of the Q and sends them to the hardware, then puts it on
2777 * the Q to wait for completion.
2779 static void start_io(ctlr_info_t *h)
2781 CommandList_struct *c;
2783 while (!hlist_empty(&h->reqQ)) {
2784 c = hlist_entry(h->reqQ.first, CommandList_struct, list);
2785 /* can't do anything if fifo is full */
2786 if ((h->access.fifo_full(h))) {
2787 printk(KERN_WARNING "cciss: fifo full\n");
2788 break;
2791 /* Get the first entry from the Request Q */
2792 removeQ(c);
2793 h->Qdepth--;
2795 /* Tell the controller execute command */
2796 h->access.submit_command(h, c);
2798 /* Put job onto the completed Q */
2799 addQ(&h->cmpQ, c);
2803 /* Assumes that CCISS_LOCK(h->ctlr) is held. */
2804 /* Zeros out the error record and then resends the command back */
2805 /* to the controller */
2806 static inline void resend_cciss_cmd(ctlr_info_t *h, CommandList_struct *c)
2808 /* erase the old error information */
2809 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
2811 /* add it to software queue and then send it to the controller */
2812 addQ(&h->reqQ, c);
2813 h->Qdepth++;
2814 if (h->Qdepth > h->maxQsinceinit)
2815 h->maxQsinceinit = h->Qdepth;
2817 start_io(h);
2820 static inline unsigned int make_status_bytes(unsigned int scsi_status_byte,
2821 unsigned int msg_byte, unsigned int host_byte,
2822 unsigned int driver_byte)
2824 /* inverse of macros in scsi.h */
2825 return (scsi_status_byte & 0xff) |
2826 ((msg_byte & 0xff) << 8) |
2827 ((host_byte & 0xff) << 16) |
2828 ((driver_byte & 0xff) << 24);
2831 static inline int evaluate_target_status(ctlr_info_t *h,
2832 CommandList_struct *cmd, int *retry_cmd)
2834 unsigned char sense_key;
2835 unsigned char status_byte, msg_byte, host_byte, driver_byte;
2836 int error_value;
2838 *retry_cmd = 0;
2839 /* If we get in here, it means we got "target status", that is, scsi status */
2840 status_byte = cmd->err_info->ScsiStatus;
2841 driver_byte = DRIVER_OK;
2842 msg_byte = cmd->err_info->CommandStatus; /* correct? seems too device specific */
2844 if (blk_pc_request(cmd->rq))
2845 host_byte = DID_PASSTHROUGH;
2846 else
2847 host_byte = DID_OK;
2849 error_value = make_status_bytes(status_byte, msg_byte,
2850 host_byte, driver_byte);
2852 if (cmd->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION) {
2853 if (!blk_pc_request(cmd->rq))
2854 printk(KERN_WARNING "cciss: cmd %p "
2855 "has SCSI Status 0x%x\n",
2856 cmd, cmd->err_info->ScsiStatus);
2857 return error_value;
2860 /* check the sense key */
2861 sense_key = 0xf & cmd->err_info->SenseInfo[2];
2862 /* no status or recovered error */
2863 if (((sense_key == 0x0) || (sense_key == 0x1)) && !blk_pc_request(cmd->rq))
2864 error_value = 0;
2866 if (check_for_unit_attention(h, cmd)) {
2867 *retry_cmd = !blk_pc_request(cmd->rq);
2868 return 0;
2871 if (!blk_pc_request(cmd->rq)) { /* Not SG_IO or similar? */
2872 if (error_value != 0)
2873 printk(KERN_WARNING "cciss: cmd %p has CHECK CONDITION"
2874 " sense key = 0x%x\n", cmd, sense_key);
2875 return error_value;
2878 /* SG_IO or similar, copy sense data back */
2879 if (cmd->rq->sense) {
2880 if (cmd->rq->sense_len > cmd->err_info->SenseLen)
2881 cmd->rq->sense_len = cmd->err_info->SenseLen;
2882 memcpy(cmd->rq->sense, cmd->err_info->SenseInfo,
2883 cmd->rq->sense_len);
2884 } else
2885 cmd->rq->sense_len = 0;
2887 return error_value;
2890 /* checks the status of the job and calls complete buffers to mark all
2891 * buffers for the completed job. Note that this function does not need
2892 * to hold the hba/queue lock.
2894 static inline void complete_command(ctlr_info_t *h, CommandList_struct *cmd,
2895 int timeout)
2897 int retry_cmd = 0;
2898 struct request *rq = cmd->rq;
2900 rq->errors = 0;
2902 if (timeout)
2903 rq->errors = make_status_bytes(0, 0, 0, DRIVER_TIMEOUT);
2905 if (cmd->err_info->CommandStatus == 0) /* no error has occurred */
2906 goto after_error_processing;
2908 switch (cmd->err_info->CommandStatus) {
2909 case CMD_TARGET_STATUS:
2910 rq->errors = evaluate_target_status(h, cmd, &retry_cmd);
2911 break;
2912 case CMD_DATA_UNDERRUN:
2913 if (blk_fs_request(cmd->rq)) {
2914 printk(KERN_WARNING "cciss: cmd %p has"
2915 " completed with data underrun "
2916 "reported\n", cmd);
2917 cmd->rq->resid_len = cmd->err_info->ResidualCnt;
2919 break;
2920 case CMD_DATA_OVERRUN:
2921 if (blk_fs_request(cmd->rq))
2922 printk(KERN_WARNING "cciss: cmd %p has"
2923 " completed with data overrun "
2924 "reported\n", cmd);
2925 break;
2926 case CMD_INVALID:
2927 printk(KERN_WARNING "cciss: cmd %p is "
2928 "reported invalid\n", cmd);
2929 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2930 cmd->err_info->CommandStatus, DRIVER_OK,
2931 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
2932 break;
2933 case CMD_PROTOCOL_ERR:
2934 printk(KERN_WARNING "cciss: cmd %p has "
2935 "protocol error \n", cmd);
2936 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2937 cmd->err_info->CommandStatus, DRIVER_OK,
2938 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
2939 break;
2940 case CMD_HARDWARE_ERR:
2941 printk(KERN_WARNING "cciss: cmd %p had "
2942 " hardware error\n", cmd);
2943 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2944 cmd->err_info->CommandStatus, DRIVER_OK,
2945 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
2946 break;
2947 case CMD_CONNECTION_LOST:
2948 printk(KERN_WARNING "cciss: cmd %p had "
2949 "connection lost\n", cmd);
2950 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2951 cmd->err_info->CommandStatus, DRIVER_OK,
2952 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
2953 break;
2954 case CMD_ABORTED:
2955 printk(KERN_WARNING "cciss: cmd %p was "
2956 "aborted\n", cmd);
2957 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2958 cmd->err_info->CommandStatus, DRIVER_OK,
2959 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ABORT);
2960 break;
2961 case CMD_ABORT_FAILED:
2962 printk(KERN_WARNING "cciss: cmd %p reports "
2963 "abort failed\n", cmd);
2964 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2965 cmd->err_info->CommandStatus, DRIVER_OK,
2966 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
2967 break;
2968 case CMD_UNSOLICITED_ABORT:
2969 printk(KERN_WARNING "cciss%d: unsolicited "
2970 "abort %p\n", h->ctlr, cmd);
2971 if (cmd->retry_count < MAX_CMD_RETRIES) {
2972 retry_cmd = 1;
2973 printk(KERN_WARNING
2974 "cciss%d: retrying %p\n", h->ctlr, cmd);
2975 cmd->retry_count++;
2976 } else
2977 printk(KERN_WARNING
2978 "cciss%d: %p retried too "
2979 "many times\n", h->ctlr, cmd);
2980 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2981 cmd->err_info->CommandStatus, DRIVER_OK,
2982 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ABORT);
2983 break;
2984 case CMD_TIMEOUT:
2985 printk(KERN_WARNING "cciss: cmd %p timedout\n", cmd);
2986 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2987 cmd->err_info->CommandStatus, DRIVER_OK,
2988 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
2989 break;
2990 default:
2991 printk(KERN_WARNING "cciss: cmd %p returned "
2992 "unknown status %x\n", cmd,
2993 cmd->err_info->CommandStatus);
2994 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2995 cmd->err_info->CommandStatus, DRIVER_OK,
2996 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
2999 after_error_processing:
3001 /* We need to return this command */
3002 if (retry_cmd) {
3003 resend_cciss_cmd(h, cmd);
3004 return;
3006 cmd->rq->completion_data = cmd;
3007 blk_complete_request(cmd->rq);
3011 * Get a request and submit it to the controller.
3013 static void do_cciss_request(struct request_queue *q)
3015 ctlr_info_t *h = q->queuedata;
3016 CommandList_struct *c;
3017 sector_t start_blk;
3018 int seg;
3019 struct request *creq;
3020 u64bit temp64;
3021 struct scatterlist tmp_sg[MAXSGENTRIES];
3022 drive_info_struct *drv;
3023 int i, dir;
3025 /* We call start_io here in case there is a command waiting on the
3026 * queue that has not been sent.
3028 if (blk_queue_plugged(q))
3029 goto startio;
3031 queue:
3032 creq = blk_peek_request(q);
3033 if (!creq)
3034 goto startio;
3036 BUG_ON(creq->nr_phys_segments > MAXSGENTRIES);
3038 if ((c = cmd_alloc(h, 1)) == NULL)
3039 goto full;
3041 blk_start_request(creq);
3043 spin_unlock_irq(q->queue_lock);
3045 c->cmd_type = CMD_RWREQ;
3046 c->rq = creq;
3048 /* fill in the request */
3049 drv = creq->rq_disk->private_data;
3050 c->Header.ReplyQueue = 0; // unused in simple mode
3051 /* got command from pool, so use the command block index instead */
3052 /* for direct lookups. */
3053 /* The first 2 bits are reserved for controller error reporting. */
3054 c->Header.Tag.lower = (c->cmdindex << 3);
3055 c->Header.Tag.lower |= 0x04; /* flag for direct lookup. */
3056 c->Header.LUN.LogDev.VolId = drv->LunID;
3057 c->Header.LUN.LogDev.Mode = 1;
3058 c->Request.CDBLen = 10; // 12 byte commands not in FW yet;
3059 c->Request.Type.Type = TYPE_CMD; // It is a command.
3060 c->Request.Type.Attribute = ATTR_SIMPLE;
3061 c->Request.Type.Direction =
3062 (rq_data_dir(creq) == READ) ? XFER_READ : XFER_WRITE;
3063 c->Request.Timeout = 0; // Don't time out
3064 c->Request.CDB[0] =
3065 (rq_data_dir(creq) == READ) ? h->cciss_read : h->cciss_write;
3066 start_blk = blk_rq_pos(creq);
3067 #ifdef CCISS_DEBUG
3068 printk(KERN_DEBUG "ciss: sector =%d nr_sectors=%d\n",
3069 (int)blk_rq_pos(creq), (int)blk_rq_sectors(creq));
3070 #endif /* CCISS_DEBUG */
3072 sg_init_table(tmp_sg, MAXSGENTRIES);
3073 seg = blk_rq_map_sg(q, creq, tmp_sg);
3075 /* get the DMA records for the setup */
3076 if (c->Request.Type.Direction == XFER_READ)
3077 dir = PCI_DMA_FROMDEVICE;
3078 else
3079 dir = PCI_DMA_TODEVICE;
3081 for (i = 0; i < seg; i++) {
3082 c->SG[i].Len = tmp_sg[i].length;
3083 temp64.val = (__u64) pci_map_page(h->pdev, sg_page(&tmp_sg[i]),
3084 tmp_sg[i].offset,
3085 tmp_sg[i].length, dir);
3086 c->SG[i].Addr.lower = temp64.val32.lower;
3087 c->SG[i].Addr.upper = temp64.val32.upper;
3088 c->SG[i].Ext = 0; // we are not chaining
3090 /* track how many SG entries we are using */
3091 if (seg > h->maxSG)
3092 h->maxSG = seg;
3094 #ifdef CCISS_DEBUG
3095 printk(KERN_DEBUG "cciss: Submitting %u sectors in %d segments\n",
3096 blk_rq_sectors(creq), seg);
3097 #endif /* CCISS_DEBUG */
3099 c->Header.SGList = c->Header.SGTotal = seg;
3100 if (likely(blk_fs_request(creq))) {
3101 if(h->cciss_read == CCISS_READ_10) {
3102 c->Request.CDB[1] = 0;
3103 c->Request.CDB[2] = (start_blk >> 24) & 0xff; //MSB
3104 c->Request.CDB[3] = (start_blk >> 16) & 0xff;
3105 c->Request.CDB[4] = (start_blk >> 8) & 0xff;
3106 c->Request.CDB[5] = start_blk & 0xff;
3107 c->Request.CDB[6] = 0; // (sect >> 24) & 0xff; MSB
3108 c->Request.CDB[7] = (blk_rq_sectors(creq) >> 8) & 0xff;
3109 c->Request.CDB[8] = blk_rq_sectors(creq) & 0xff;
3110 c->Request.CDB[9] = c->Request.CDB[11] = c->Request.CDB[12] = 0;
3111 } else {
3112 u32 upper32 = upper_32_bits(start_blk);
3114 c->Request.CDBLen = 16;
3115 c->Request.CDB[1]= 0;
3116 c->Request.CDB[2]= (upper32 >> 24) & 0xff; //MSB
3117 c->Request.CDB[3]= (upper32 >> 16) & 0xff;
3118 c->Request.CDB[4]= (upper32 >> 8) & 0xff;
3119 c->Request.CDB[5]= upper32 & 0xff;
3120 c->Request.CDB[6]= (start_blk >> 24) & 0xff;
3121 c->Request.CDB[7]= (start_blk >> 16) & 0xff;
3122 c->Request.CDB[8]= (start_blk >> 8) & 0xff;
3123 c->Request.CDB[9]= start_blk & 0xff;
3124 c->Request.CDB[10]= (blk_rq_sectors(creq) >> 24) & 0xff;
3125 c->Request.CDB[11]= (blk_rq_sectors(creq) >> 16) & 0xff;
3126 c->Request.CDB[12]= (blk_rq_sectors(creq) >> 8) & 0xff;
3127 c->Request.CDB[13]= blk_rq_sectors(creq) & 0xff;
3128 c->Request.CDB[14] = c->Request.CDB[15] = 0;
3130 } else if (blk_pc_request(creq)) {
3131 c->Request.CDBLen = creq->cmd_len;
3132 memcpy(c->Request.CDB, creq->cmd, BLK_MAX_CDB);
3133 } else {
3134 printk(KERN_WARNING "cciss%d: bad request type %d\n", h->ctlr, creq->cmd_type);
3135 BUG();
3138 spin_lock_irq(q->queue_lock);
3140 addQ(&h->reqQ, c);
3141 h->Qdepth++;
3142 if (h->Qdepth > h->maxQsinceinit)
3143 h->maxQsinceinit = h->Qdepth;
3145 goto queue;
3146 full:
3147 blk_stop_queue(q);
3148 startio:
3149 /* We will already have the driver lock here so not need
3150 * to lock it.
3152 start_io(h);
3155 static inline unsigned long get_next_completion(ctlr_info_t *h)
3157 return h->access.command_completed(h);
3160 static inline int interrupt_pending(ctlr_info_t *h)
3162 return h->access.intr_pending(h);
3165 static inline long interrupt_not_for_us(ctlr_info_t *h)
3167 return (((h->access.intr_pending(h) == 0) ||
3168 (h->interrupts_enabled == 0)));
3171 static irqreturn_t do_cciss_intr(int irq, void *dev_id)
3173 ctlr_info_t *h = dev_id;
3174 CommandList_struct *c;
3175 unsigned long flags;
3176 __u32 a, a1, a2;
3178 if (interrupt_not_for_us(h))
3179 return IRQ_NONE;
3181 * If there are completed commands in the completion queue,
3182 * we had better do something about it.
3184 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
3185 while (interrupt_pending(h)) {
3186 while ((a = get_next_completion(h)) != FIFO_EMPTY) {
3187 a1 = a;
3188 if ((a & 0x04)) {
3189 a2 = (a >> 3);
3190 if (a2 >= h->nr_cmds) {
3191 printk(KERN_WARNING
3192 "cciss: controller cciss%d failed, stopping.\n",
3193 h->ctlr);
3194 fail_all_cmds(h->ctlr);
3195 return IRQ_HANDLED;
3198 c = h->cmd_pool + a2;
3199 a = c->busaddr;
3201 } else {
3202 struct hlist_node *tmp;
3204 a &= ~3;
3205 c = NULL;
3206 hlist_for_each_entry(c, tmp, &h->cmpQ, list) {
3207 if (c->busaddr == a)
3208 break;
3212 * If we've found the command, take it off the
3213 * completion Q and free it
3215 if (c && c->busaddr == a) {
3216 removeQ(c);
3217 if (c->cmd_type == CMD_RWREQ) {
3218 complete_command(h, c, 0);
3219 } else if (c->cmd_type == CMD_IOCTL_PEND) {
3220 complete(c->waiting);
3222 # ifdef CONFIG_CISS_SCSI_TAPE
3223 else if (c->cmd_type == CMD_SCSI)
3224 complete_scsi_command(c, 0, a1);
3225 # endif
3226 continue;
3231 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
3232 return IRQ_HANDLED;
3235 static int scan_thread(void *data)
3237 ctlr_info_t *h = data;
3238 int rc;
3239 DECLARE_COMPLETION_ONSTACK(wait);
3240 h->rescan_wait = &wait;
3242 for (;;) {
3243 rc = wait_for_completion_interruptible(&wait);
3244 if (kthread_should_stop())
3245 break;
3246 if (!rc)
3247 rebuild_lun_table(h, 0);
3249 return 0;
3252 static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c)
3254 if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
3255 return 0;
3257 switch (c->err_info->SenseInfo[12]) {
3258 case STATE_CHANGED:
3259 printk(KERN_WARNING "cciss%d: a state change "
3260 "detected, command retried\n", h->ctlr);
3261 return 1;
3262 break;
3263 case LUN_FAILED:
3264 printk(KERN_WARNING "cciss%d: LUN failure "
3265 "detected, action required\n", h->ctlr);
3266 return 1;
3267 break;
3268 case REPORT_LUNS_CHANGED:
3269 printk(KERN_WARNING "cciss%d: report LUN data "
3270 "changed\n", h->ctlr);
3271 if (h->rescan_wait)
3272 complete(h->rescan_wait);
3273 return 1;
3274 break;
3275 case POWER_OR_RESET:
3276 printk(KERN_WARNING "cciss%d: a power on "
3277 "or device reset detected\n", h->ctlr);
3278 return 1;
3279 break;
3280 case UNIT_ATTENTION_CLEARED:
3281 printk(KERN_WARNING "cciss%d: unit attention "
3282 "cleared by another initiator\n", h->ctlr);
3283 return 1;
3284 break;
3285 default:
3286 printk(KERN_WARNING "cciss%d: unknown "
3287 "unit attention detected\n", h->ctlr);
3288 return 1;
3293 * We cannot read the structure directly, for portability we must use
3294 * the io functions.
3295 * This is for debug only.
3297 #ifdef CCISS_DEBUG
3298 static void print_cfg_table(CfgTable_struct *tb)
3300 int i;
3301 char temp_name[17];
3303 printk("Controller Configuration information\n");
3304 printk("------------------------------------\n");
3305 for (i = 0; i < 4; i++)
3306 temp_name[i] = readb(&(tb->Signature[i]));
3307 temp_name[4] = '\0';
3308 printk(" Signature = %s\n", temp_name);
3309 printk(" Spec Number = %d\n", readl(&(tb->SpecValence)));
3310 printk(" Transport methods supported = 0x%x\n",
3311 readl(&(tb->TransportSupport)));
3312 printk(" Transport methods active = 0x%x\n",
3313 readl(&(tb->TransportActive)));
3314 printk(" Requested transport Method = 0x%x\n",
3315 readl(&(tb->HostWrite.TransportRequest)));
3316 printk(" Coalesce Interrupt Delay = 0x%x\n",
3317 readl(&(tb->HostWrite.CoalIntDelay)));
3318 printk(" Coalesce Interrupt Count = 0x%x\n",
3319 readl(&(tb->HostWrite.CoalIntCount)));
3320 printk(" Max outstanding commands = 0x%d\n",
3321 readl(&(tb->CmdsOutMax)));
3322 printk(" Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
3323 for (i = 0; i < 16; i++)
3324 temp_name[i] = readb(&(tb->ServerName[i]));
3325 temp_name[16] = '\0';
3326 printk(" Server Name = %s\n", temp_name);
3327 printk(" Heartbeat Counter = 0x%x\n\n\n", readl(&(tb->HeartBeat)));
3329 #endif /* CCISS_DEBUG */
3331 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3333 int i, offset, mem_type, bar_type;
3334 if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
3335 return 0;
3336 offset = 0;
3337 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3338 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3339 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3340 offset += 4;
3341 else {
3342 mem_type = pci_resource_flags(pdev, i) &
3343 PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3344 switch (mem_type) {
3345 case PCI_BASE_ADDRESS_MEM_TYPE_32:
3346 case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3347 offset += 4; /* 32 bit */
3348 break;
3349 case PCI_BASE_ADDRESS_MEM_TYPE_64:
3350 offset += 8;
3351 break;
3352 default: /* reserved in PCI 2.2 */
3353 printk(KERN_WARNING
3354 "Base address is invalid\n");
3355 return -1;
3356 break;
3359 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3360 return i + 1;
3362 return -1;
3365 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
3366 * controllers that are capable. If not, we use IO-APIC mode.
3369 static void __devinit cciss_interrupt_mode(ctlr_info_t *c,
3370 struct pci_dev *pdev, __u32 board_id)
3372 #ifdef CONFIG_PCI_MSI
3373 int err;
3374 struct msix_entry cciss_msix_entries[4] = { {0, 0}, {0, 1},
3375 {0, 2}, {0, 3}
3378 /* Some boards advertise MSI but don't really support it */
3379 if ((board_id == 0x40700E11) ||
3380 (board_id == 0x40800E11) ||
3381 (board_id == 0x40820E11) || (board_id == 0x40830E11))
3382 goto default_int_mode;
3384 if (pci_find_capability(pdev, PCI_CAP_ID_MSIX)) {
3385 err = pci_enable_msix(pdev, cciss_msix_entries, 4);
3386 if (!err) {
3387 c->intr[0] = cciss_msix_entries[0].vector;
3388 c->intr[1] = cciss_msix_entries[1].vector;
3389 c->intr[2] = cciss_msix_entries[2].vector;
3390 c->intr[3] = cciss_msix_entries[3].vector;
3391 c->msix_vector = 1;
3392 return;
3394 if (err > 0) {
3395 printk(KERN_WARNING "cciss: only %d MSI-X vectors "
3396 "available\n", err);
3397 goto default_int_mode;
3398 } else {
3399 printk(KERN_WARNING "cciss: MSI-X init failed %d\n",
3400 err);
3401 goto default_int_mode;
3404 if (pci_find_capability(pdev, PCI_CAP_ID_MSI)) {
3405 if (!pci_enable_msi(pdev)) {
3406 c->msi_vector = 1;
3407 } else {
3408 printk(KERN_WARNING "cciss: MSI init failed\n");
3411 default_int_mode:
3412 #endif /* CONFIG_PCI_MSI */
3413 /* if we get here we're going to use the default interrupt mode */
3414 c->intr[SIMPLE_MODE_INT] = pdev->irq;
3415 return;
3418 static int __devinit cciss_pci_init(ctlr_info_t *c, struct pci_dev *pdev)
3420 ushort subsystem_vendor_id, subsystem_device_id, command;
3421 __u32 board_id, scratchpad = 0;
3422 __u64 cfg_offset;
3423 __u32 cfg_base_addr;
3424 __u64 cfg_base_addr_index;
3425 int i, err;
3427 /* check to see if controller has been disabled */
3428 /* BEFORE trying to enable it */
3429 (void)pci_read_config_word(pdev, PCI_COMMAND, &command);
3430 if (!(command & 0x02)) {
3431 printk(KERN_WARNING
3432 "cciss: controller appears to be disabled\n");
3433 return -ENODEV;
3436 err = pci_enable_device(pdev);
3437 if (err) {
3438 printk(KERN_ERR "cciss: Unable to Enable PCI device\n");
3439 return err;
3442 err = pci_request_regions(pdev, "cciss");
3443 if (err) {
3444 printk(KERN_ERR "cciss: Cannot obtain PCI resources, "
3445 "aborting\n");
3446 return err;
3449 subsystem_vendor_id = pdev->subsystem_vendor;
3450 subsystem_device_id = pdev->subsystem_device;
3451 board_id = (((__u32) (subsystem_device_id << 16) & 0xffff0000) |
3452 subsystem_vendor_id);
3454 #ifdef CCISS_DEBUG
3455 printk("command = %x\n", command);
3456 printk("irq = %x\n", pdev->irq);
3457 printk("board_id = %x\n", board_id);
3458 #endif /* CCISS_DEBUG */
3460 /* If the kernel supports MSI/MSI-X we will try to enable that functionality,
3461 * else we use the IO-APIC interrupt assigned to us by system ROM.
3463 cciss_interrupt_mode(c, pdev, board_id);
3465 /* find the memory BAR */
3466 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3467 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM)
3468 break;
3470 if (i == DEVICE_COUNT_RESOURCE) {
3471 printk(KERN_WARNING "cciss: No memory BAR found\n");
3472 err = -ENODEV;
3473 goto err_out_free_res;
3476 c->paddr = pci_resource_start(pdev, i); /* addressing mode bits
3477 * already removed
3480 #ifdef CCISS_DEBUG
3481 printk("address 0 = %lx\n", c->paddr);
3482 #endif /* CCISS_DEBUG */
3483 c->vaddr = remap_pci_mem(c->paddr, 0x250);
3485 /* Wait for the board to become ready. (PCI hotplug needs this.)
3486 * We poll for up to 120 secs, once per 100ms. */
3487 for (i = 0; i < 1200; i++) {
3488 scratchpad = readl(c->vaddr + SA5_SCRATCHPAD_OFFSET);
3489 if (scratchpad == CCISS_FIRMWARE_READY)
3490 break;
3491 set_current_state(TASK_INTERRUPTIBLE);
3492 schedule_timeout(HZ / 10); /* wait 100ms */
3494 if (scratchpad != CCISS_FIRMWARE_READY) {
3495 printk(KERN_WARNING "cciss: Board not ready. Timed out.\n");
3496 err = -ENODEV;
3497 goto err_out_free_res;
3500 /* get the address index number */
3501 cfg_base_addr = readl(c->vaddr + SA5_CTCFG_OFFSET);
3502 cfg_base_addr &= (__u32) 0x0000ffff;
3503 #ifdef CCISS_DEBUG
3504 printk("cfg base address = %x\n", cfg_base_addr);
3505 #endif /* CCISS_DEBUG */
3506 cfg_base_addr_index = find_PCI_BAR_index(pdev, cfg_base_addr);
3507 #ifdef CCISS_DEBUG
3508 printk("cfg base address index = %llx\n",
3509 (unsigned long long)cfg_base_addr_index);
3510 #endif /* CCISS_DEBUG */
3511 if (cfg_base_addr_index == -1) {
3512 printk(KERN_WARNING "cciss: Cannot find cfg_base_addr_index\n");
3513 err = -ENODEV;
3514 goto err_out_free_res;
3517 cfg_offset = readl(c->vaddr + SA5_CTMEM_OFFSET);
3518 #ifdef CCISS_DEBUG
3519 printk("cfg offset = %llx\n", (unsigned long long)cfg_offset);
3520 #endif /* CCISS_DEBUG */
3521 c->cfgtable = remap_pci_mem(pci_resource_start(pdev,
3522 cfg_base_addr_index) +
3523 cfg_offset, sizeof(CfgTable_struct));
3524 c->board_id = board_id;
3526 #ifdef CCISS_DEBUG
3527 print_cfg_table(c->cfgtable);
3528 #endif /* CCISS_DEBUG */
3530 /* Some controllers support Zero Memory Raid (ZMR).
3531 * When configured in ZMR mode the number of supported
3532 * commands drops to 64. So instead of just setting an
3533 * arbitrary value we make the driver a little smarter.
3534 * We read the config table to tell us how many commands
3535 * are supported on the controller then subtract 4 to
3536 * leave a little room for ioctl calls.
3538 c->max_commands = readl(&(c->cfgtable->CmdsOutMax));
3539 for (i = 0; i < ARRAY_SIZE(products); i++) {
3540 if (board_id == products[i].board_id) {
3541 c->product_name = products[i].product_name;
3542 c->access = *(products[i].access);
3543 c->nr_cmds = c->max_commands - 4;
3544 break;
3547 if ((readb(&c->cfgtable->Signature[0]) != 'C') ||
3548 (readb(&c->cfgtable->Signature[1]) != 'I') ||
3549 (readb(&c->cfgtable->Signature[2]) != 'S') ||
3550 (readb(&c->cfgtable->Signature[3]) != 'S')) {
3551 printk("Does not appear to be a valid CISS config table\n");
3552 err = -ENODEV;
3553 goto err_out_free_res;
3555 /* We didn't find the controller in our list. We know the
3556 * signature is valid. If it's an HP device let's try to
3557 * bind to the device and fire it up. Otherwise we bail.
3559 if (i == ARRAY_SIZE(products)) {
3560 if (subsystem_vendor_id == PCI_VENDOR_ID_HP) {
3561 c->product_name = products[i-1].product_name;
3562 c->access = *(products[i-1].access);
3563 c->nr_cmds = c->max_commands - 4;
3564 printk(KERN_WARNING "cciss: This is an unknown "
3565 "Smart Array controller.\n"
3566 "cciss: Please update to the latest driver "
3567 "available from www.hp.com.\n");
3568 } else {
3569 printk(KERN_WARNING "cciss: Sorry, I don't know how"
3570 " to access the Smart Array controller %08lx\n"
3571 , (unsigned long)board_id);
3572 err = -ENODEV;
3573 goto err_out_free_res;
3576 #ifdef CONFIG_X86
3578 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
3579 __u32 prefetch;
3580 prefetch = readl(&(c->cfgtable->SCSI_Prefetch));
3581 prefetch |= 0x100;
3582 writel(prefetch, &(c->cfgtable->SCSI_Prefetch));
3584 #endif
3586 /* Disabling DMA prefetch and refetch for the P600.
3587 * An ASIC bug may result in accesses to invalid memory addresses.
3588 * We've disabled prefetch for some time now. Testing with XEN
3589 * kernels revealed a bug in the refetch if dom0 resides on a P600.
3591 if(board_id == 0x3225103C) {
3592 __u32 dma_prefetch;
3593 __u32 dma_refetch;
3594 dma_prefetch = readl(c->vaddr + I2O_DMA1_CFG);
3595 dma_prefetch |= 0x8000;
3596 writel(dma_prefetch, c->vaddr + I2O_DMA1_CFG);
3597 pci_read_config_dword(pdev, PCI_COMMAND_PARITY, &dma_refetch);
3598 dma_refetch |= 0x1;
3599 pci_write_config_dword(pdev, PCI_COMMAND_PARITY, dma_refetch);
3602 #ifdef CCISS_DEBUG
3603 printk("Trying to put board into Simple mode\n");
3604 #endif /* CCISS_DEBUG */
3605 c->max_commands = readl(&(c->cfgtable->CmdsOutMax));
3606 /* Update the field, and then ring the doorbell */
3607 writel(CFGTBL_Trans_Simple, &(c->cfgtable->HostWrite.TransportRequest));
3608 writel(CFGTBL_ChangeReq, c->vaddr + SA5_DOORBELL);
3610 /* under certain very rare conditions, this can take awhile.
3611 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3612 * as we enter this code.) */
3613 for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3614 if (!(readl(c->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
3615 break;
3616 /* delay and try again */
3617 set_current_state(TASK_INTERRUPTIBLE);
3618 schedule_timeout(10);
3621 #ifdef CCISS_DEBUG
3622 printk(KERN_DEBUG "I counter got to %d %x\n", i,
3623 readl(c->vaddr + SA5_DOORBELL));
3624 #endif /* CCISS_DEBUG */
3625 #ifdef CCISS_DEBUG
3626 print_cfg_table(c->cfgtable);
3627 #endif /* CCISS_DEBUG */
3629 if (!(readl(&(c->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
3630 printk(KERN_WARNING "cciss: unable to get board into"
3631 " simple mode\n");
3632 err = -ENODEV;
3633 goto err_out_free_res;
3635 return 0;
3637 err_out_free_res:
3639 * Deliberately omit pci_disable_device(): it does something nasty to
3640 * Smart Array controllers that pci_enable_device does not undo
3642 pci_release_regions(pdev);
3643 return err;
3646 /* Function to find the first free pointer into our hba[] array
3647 * Returns -1 if no free entries are left.
3649 static int alloc_cciss_hba(void)
3651 int i;
3653 for (i = 0; i < MAX_CTLR; i++) {
3654 if (!hba[i]) {
3655 ctlr_info_t *p;
3657 p = kzalloc(sizeof(ctlr_info_t), GFP_KERNEL);
3658 if (!p)
3659 goto Enomem;
3660 hba[i] = p;
3661 return i;
3664 printk(KERN_WARNING "cciss: This driver supports a maximum"
3665 " of %d controllers.\n", MAX_CTLR);
3666 return -1;
3667 Enomem:
3668 printk(KERN_ERR "cciss: out of memory.\n");
3669 return -1;
3672 static void free_hba(int i)
3674 ctlr_info_t *p = hba[i];
3675 int n;
3677 hba[i] = NULL;
3678 for (n = 0; n < CISS_MAX_LUN; n++)
3679 put_disk(p->gendisk[n]);
3680 kfree(p);
3683 /* Send a message CDB to the firmware. */
3684 static __devinit int cciss_message(struct pci_dev *pdev, unsigned char opcode, unsigned char type)
3686 typedef struct {
3687 CommandListHeader_struct CommandHeader;
3688 RequestBlock_struct Request;
3689 ErrDescriptor_struct ErrorDescriptor;
3690 } Command;
3691 static const size_t cmd_sz = sizeof(Command) + sizeof(ErrorInfo_struct);
3692 Command *cmd;
3693 dma_addr_t paddr64;
3694 uint32_t paddr32, tag;
3695 void __iomem *vaddr;
3696 int i, err;
3698 vaddr = ioremap_nocache(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0));
3699 if (vaddr == NULL)
3700 return -ENOMEM;
3702 /* The Inbound Post Queue only accepts 32-bit physical addresses for the
3703 CCISS commands, so they must be allocated from the lower 4GiB of
3704 memory. */
3705 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3706 if (err) {
3707 iounmap(vaddr);
3708 return -ENOMEM;
3711 cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
3712 if (cmd == NULL) {
3713 iounmap(vaddr);
3714 return -ENOMEM;
3717 /* This must fit, because of the 32-bit consistent DMA mask. Also,
3718 although there's no guarantee, we assume that the address is at
3719 least 4-byte aligned (most likely, it's page-aligned). */
3720 paddr32 = paddr64;
3722 cmd->CommandHeader.ReplyQueue = 0;
3723 cmd->CommandHeader.SGList = 0;
3724 cmd->CommandHeader.SGTotal = 0;
3725 cmd->CommandHeader.Tag.lower = paddr32;
3726 cmd->CommandHeader.Tag.upper = 0;
3727 memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
3729 cmd->Request.CDBLen = 16;
3730 cmd->Request.Type.Type = TYPE_MSG;
3731 cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
3732 cmd->Request.Type.Direction = XFER_NONE;
3733 cmd->Request.Timeout = 0; /* Don't time out */
3734 cmd->Request.CDB[0] = opcode;
3735 cmd->Request.CDB[1] = type;
3736 memset(&cmd->Request.CDB[2], 0, 14); /* the rest of the CDB is reserved */
3738 cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(Command);
3739 cmd->ErrorDescriptor.Addr.upper = 0;
3740 cmd->ErrorDescriptor.Len = sizeof(ErrorInfo_struct);
3742 writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
3744 for (i = 0; i < 10; i++) {
3745 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
3746 if ((tag & ~3) == paddr32)
3747 break;
3748 schedule_timeout_uninterruptible(HZ);
3751 iounmap(vaddr);
3753 /* we leak the DMA buffer here ... no choice since the controller could
3754 still complete the command. */
3755 if (i == 10) {
3756 printk(KERN_ERR "cciss: controller message %02x:%02x timed out\n",
3757 opcode, type);
3758 return -ETIMEDOUT;
3761 pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
3763 if (tag & 2) {
3764 printk(KERN_ERR "cciss: controller message %02x:%02x failed\n",
3765 opcode, type);
3766 return -EIO;
3769 printk(KERN_INFO "cciss: controller message %02x:%02x succeeded\n",
3770 opcode, type);
3771 return 0;
3774 #define cciss_soft_reset_controller(p) cciss_message(p, 1, 0)
3775 #define cciss_noop(p) cciss_message(p, 3, 0)
3777 static __devinit int cciss_reset_msi(struct pci_dev *pdev)
3779 /* the #defines are stolen from drivers/pci/msi.h. */
3780 #define msi_control_reg(base) (base + PCI_MSI_FLAGS)
3781 #define PCI_MSIX_FLAGS_ENABLE (1 << 15)
3783 int pos;
3784 u16 control = 0;
3786 pos = pci_find_capability(pdev, PCI_CAP_ID_MSI);
3787 if (pos) {
3788 pci_read_config_word(pdev, msi_control_reg(pos), &control);
3789 if (control & PCI_MSI_FLAGS_ENABLE) {
3790 printk(KERN_INFO "cciss: resetting MSI\n");
3791 pci_write_config_word(pdev, msi_control_reg(pos), control & ~PCI_MSI_FLAGS_ENABLE);
3795 pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
3796 if (pos) {
3797 pci_read_config_word(pdev, msi_control_reg(pos), &control);
3798 if (control & PCI_MSIX_FLAGS_ENABLE) {
3799 printk(KERN_INFO "cciss: resetting MSI-X\n");
3800 pci_write_config_word(pdev, msi_control_reg(pos), control & ~PCI_MSIX_FLAGS_ENABLE);
3804 return 0;
3807 /* This does a hard reset of the controller using PCI power management
3808 * states. */
3809 static __devinit int cciss_hard_reset_controller(struct pci_dev *pdev)
3811 u16 pmcsr, saved_config_space[32];
3812 int i, pos;
3814 printk(KERN_INFO "cciss: using PCI PM to reset controller\n");
3816 /* This is very nearly the same thing as
3818 pci_save_state(pci_dev);
3819 pci_set_power_state(pci_dev, PCI_D3hot);
3820 pci_set_power_state(pci_dev, PCI_D0);
3821 pci_restore_state(pci_dev);
3823 but we can't use these nice canned kernel routines on
3824 kexec, because they also check the MSI/MSI-X state in PCI
3825 configuration space and do the wrong thing when it is
3826 set/cleared. Also, the pci_save/restore_state functions
3827 violate the ordering requirements for restoring the
3828 configuration space from the CCISS document (see the
3829 comment below). So we roll our own .... */
3831 for (i = 0; i < 32; i++)
3832 pci_read_config_word(pdev, 2*i, &saved_config_space[i]);
3834 pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
3835 if (pos == 0) {
3836 printk(KERN_ERR "cciss_reset_controller: PCI PM not supported\n");
3837 return -ENODEV;
3840 /* Quoting from the Open CISS Specification: "The Power
3841 * Management Control/Status Register (CSR) controls the power
3842 * state of the device. The normal operating state is D0,
3843 * CSR=00h. The software off state is D3, CSR=03h. To reset
3844 * the controller, place the interface device in D3 then to
3845 * D0, this causes a secondary PCI reset which will reset the
3846 * controller." */
3848 /* enter the D3hot power management state */
3849 pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
3850 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3851 pmcsr |= PCI_D3hot;
3852 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3854 schedule_timeout_uninterruptible(HZ >> 1);
3856 /* enter the D0 power management state */
3857 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3858 pmcsr |= PCI_D0;
3859 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3861 schedule_timeout_uninterruptible(HZ >> 1);
3863 /* Restore the PCI configuration space. The Open CISS
3864 * Specification says, "Restore the PCI Configuration
3865 * Registers, offsets 00h through 60h. It is important to
3866 * restore the command register, 16-bits at offset 04h,
3867 * last. Do not restore the configuration status register,
3868 * 16-bits at offset 06h." Note that the offset is 2*i. */
3869 for (i = 0; i < 32; i++) {
3870 if (i == 2 || i == 3)
3871 continue;
3872 pci_write_config_word(pdev, 2*i, saved_config_space[i]);
3874 wmb();
3875 pci_write_config_word(pdev, 4, saved_config_space[2]);
3877 return 0;
3881 * This is it. Find all the controllers and register them. I really hate
3882 * stealing all these major device numbers.
3883 * returns the number of block devices registered.
3885 static int __devinit cciss_init_one(struct pci_dev *pdev,
3886 const struct pci_device_id *ent)
3888 int i;
3889 int j = 0;
3890 int rc;
3891 int dac, return_code;
3892 InquiryData_struct *inq_buff = NULL;
3894 if (reset_devices) {
3895 /* Reset the controller with a PCI power-cycle */
3896 if (cciss_hard_reset_controller(pdev) || cciss_reset_msi(pdev))
3897 return -ENODEV;
3899 /* Now try to get the controller to respond to a no-op. Some
3900 devices (notably the HP Smart Array 5i Controller) need
3901 up to 30 seconds to respond. */
3902 for (i=0; i<30; i++) {
3903 if (cciss_noop(pdev) == 0)
3904 break;
3906 schedule_timeout_uninterruptible(HZ);
3908 if (i == 30) {
3909 printk(KERN_ERR "cciss: controller seems dead\n");
3910 return -EBUSY;
3914 i = alloc_cciss_hba();
3915 if (i < 0)
3916 return -1;
3918 hba[i]->busy_initializing = 1;
3919 INIT_HLIST_HEAD(&hba[i]->cmpQ);
3920 INIT_HLIST_HEAD(&hba[i]->reqQ);
3922 if (cciss_pci_init(hba[i], pdev) != 0)
3923 goto clean0;
3925 sprintf(hba[i]->devname, "cciss%d", i);
3926 hba[i]->ctlr = i;
3927 hba[i]->pdev = pdev;
3929 if (cciss_create_hba_sysfs_entry(hba[i]))
3930 goto clean0;
3932 /* configure PCI DMA stuff */
3933 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64)))
3934 dac = 1;
3935 else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))
3936 dac = 0;
3937 else {
3938 printk(KERN_ERR "cciss: no suitable DMA available\n");
3939 goto clean1;
3943 * register with the major number, or get a dynamic major number
3944 * by passing 0 as argument. This is done for greater than
3945 * 8 controller support.
3947 if (i < MAX_CTLR_ORIG)
3948 hba[i]->major = COMPAQ_CISS_MAJOR + i;
3949 rc = register_blkdev(hba[i]->major, hba[i]->devname);
3950 if (rc == -EBUSY || rc == -EINVAL) {
3951 printk(KERN_ERR
3952 "cciss: Unable to get major number %d for %s "
3953 "on hba %d\n", hba[i]->major, hba[i]->devname, i);
3954 goto clean1;
3955 } else {
3956 if (i >= MAX_CTLR_ORIG)
3957 hba[i]->major = rc;
3960 /* make sure the board interrupts are off */
3961 hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_OFF);
3962 if (request_irq(hba[i]->intr[SIMPLE_MODE_INT], do_cciss_intr,
3963 IRQF_DISABLED | IRQF_SHARED, hba[i]->devname, hba[i])) {
3964 printk(KERN_ERR "cciss: Unable to get irq %d for %s\n",
3965 hba[i]->intr[SIMPLE_MODE_INT], hba[i]->devname);
3966 goto clean2;
3969 printk(KERN_INFO "%s: <0x%x> at PCI %s IRQ %d%s using DAC\n",
3970 hba[i]->devname, pdev->device, pci_name(pdev),
3971 hba[i]->intr[SIMPLE_MODE_INT], dac ? "" : " not");
3973 hba[i]->cmd_pool_bits =
3974 kmalloc(DIV_ROUND_UP(hba[i]->nr_cmds, BITS_PER_LONG)
3975 * sizeof(unsigned long), GFP_KERNEL);
3976 hba[i]->cmd_pool = (CommandList_struct *)
3977 pci_alloc_consistent(hba[i]->pdev,
3978 hba[i]->nr_cmds * sizeof(CommandList_struct),
3979 &(hba[i]->cmd_pool_dhandle));
3980 hba[i]->errinfo_pool = (ErrorInfo_struct *)
3981 pci_alloc_consistent(hba[i]->pdev,
3982 hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
3983 &(hba[i]->errinfo_pool_dhandle));
3984 if ((hba[i]->cmd_pool_bits == NULL)
3985 || (hba[i]->cmd_pool == NULL)
3986 || (hba[i]->errinfo_pool == NULL)) {
3987 printk(KERN_ERR "cciss: out of memory");
3988 goto clean4;
3990 spin_lock_init(&hba[i]->lock);
3992 /* Initialize the pdev driver private data.
3993 have it point to hba[i]. */
3994 pci_set_drvdata(pdev, hba[i]);
3995 /* command and error info recs zeroed out before
3996 they are used */
3997 memset(hba[i]->cmd_pool_bits, 0,
3998 DIV_ROUND_UP(hba[i]->nr_cmds, BITS_PER_LONG)
3999 * sizeof(unsigned long));
4001 hba[i]->num_luns = 0;
4002 hba[i]->highest_lun = -1;
4003 for (j = 0; j < CISS_MAX_LUN; j++) {
4004 hba[i]->drv[j].raid_level = -1;
4005 hba[i]->drv[j].queue = NULL;
4006 hba[i]->gendisk[j] = NULL;
4009 cciss_scsi_setup(i);
4011 /* Turn the interrupts on so we can service requests */
4012 hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_ON);
4014 /* Get the firmware version */
4015 inq_buff = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
4016 if (inq_buff == NULL) {
4017 printk(KERN_ERR "cciss: out of memory\n");
4018 goto clean4;
4021 return_code = sendcmd_withirq(CISS_INQUIRY, i, inq_buff,
4022 sizeof(InquiryData_struct), 0, CTLR_LUNID, TYPE_CMD);
4023 if (return_code == IO_OK) {
4024 hba[i]->firm_ver[0] = inq_buff->data_byte[32];
4025 hba[i]->firm_ver[1] = inq_buff->data_byte[33];
4026 hba[i]->firm_ver[2] = inq_buff->data_byte[34];
4027 hba[i]->firm_ver[3] = inq_buff->data_byte[35];
4028 } else { /* send command failed */
4029 printk(KERN_WARNING "cciss: unable to determine firmware"
4030 " version of controller\n");
4033 cciss_procinit(i);
4035 hba[i]->cciss_max_sectors = 2048;
4037 hba[i]->busy_initializing = 0;
4039 rebuild_lun_table(hba[i], 1);
4040 hba[i]->cciss_scan_thread = kthread_run(scan_thread, hba[i],
4041 "cciss_scan%02d", i);
4042 if (IS_ERR(hba[i]->cciss_scan_thread))
4043 return PTR_ERR(hba[i]->cciss_scan_thread);
4045 return 1;
4047 clean4:
4048 kfree(inq_buff);
4049 kfree(hba[i]->cmd_pool_bits);
4050 if (hba[i]->cmd_pool)
4051 pci_free_consistent(hba[i]->pdev,
4052 hba[i]->nr_cmds * sizeof(CommandList_struct),
4053 hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle);
4054 if (hba[i]->errinfo_pool)
4055 pci_free_consistent(hba[i]->pdev,
4056 hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
4057 hba[i]->errinfo_pool,
4058 hba[i]->errinfo_pool_dhandle);
4059 free_irq(hba[i]->intr[SIMPLE_MODE_INT], hba[i]);
4060 clean2:
4061 unregister_blkdev(hba[i]->major, hba[i]->devname);
4062 clean1:
4063 cciss_destroy_hba_sysfs_entry(hba[i]);
4064 clean0:
4065 hba[i]->busy_initializing = 0;
4066 /* cleanup any queues that may have been initialized */
4067 for (j=0; j <= hba[i]->highest_lun; j++){
4068 drive_info_struct *drv = &(hba[i]->drv[j]);
4069 if (drv->queue)
4070 blk_cleanup_queue(drv->queue);
4073 * Deliberately omit pci_disable_device(): it does something nasty to
4074 * Smart Array controllers that pci_enable_device does not undo
4076 pci_release_regions(pdev);
4077 pci_set_drvdata(pdev, NULL);
4078 free_hba(i);
4079 return -1;
4082 static void cciss_shutdown(struct pci_dev *pdev)
4084 ctlr_info_t *tmp_ptr;
4085 int i;
4086 char flush_buf[4];
4087 int return_code;
4089 tmp_ptr = pci_get_drvdata(pdev);
4090 if (tmp_ptr == NULL)
4091 return;
4092 i = tmp_ptr->ctlr;
4093 if (hba[i] == NULL)
4094 return;
4096 /* Turn board interrupts off and send the flush cache command */
4097 /* sendcmd will turn off interrupt, and send the flush...
4098 * To write all data in the battery backed cache to disks */
4099 memset(flush_buf, 0, 4);
4100 return_code = sendcmd(CCISS_CACHE_FLUSH, i, flush_buf, 4, 0,
4101 CTLR_LUNID, TYPE_CMD);
4102 if (return_code == IO_OK) {
4103 printk(KERN_INFO "Completed flushing cache on controller %d\n", i);
4104 } else {
4105 printk(KERN_WARNING "Error flushing cache on controller %d\n", i);
4107 free_irq(hba[i]->intr[2], hba[i]);
4110 static void __devexit cciss_remove_one(struct pci_dev *pdev)
4112 ctlr_info_t *tmp_ptr;
4113 int i, j;
4115 if (pci_get_drvdata(pdev) == NULL) {
4116 printk(KERN_ERR "cciss: Unable to remove device \n");
4117 return;
4120 tmp_ptr = pci_get_drvdata(pdev);
4121 i = tmp_ptr->ctlr;
4122 if (hba[i] == NULL) {
4123 printk(KERN_ERR "cciss: device appears to "
4124 "already be removed \n");
4125 return;
4128 kthread_stop(hba[i]->cciss_scan_thread);
4130 remove_proc_entry(hba[i]->devname, proc_cciss);
4131 unregister_blkdev(hba[i]->major, hba[i]->devname);
4133 /* remove it from the disk list */
4134 for (j = 0; j < CISS_MAX_LUN; j++) {
4135 struct gendisk *disk = hba[i]->gendisk[j];
4136 if (disk) {
4137 struct request_queue *q = disk->queue;
4139 if (disk->flags & GENHD_FL_UP)
4140 del_gendisk(disk);
4141 if (q)
4142 blk_cleanup_queue(q);
4146 #ifdef CONFIG_CISS_SCSI_TAPE
4147 cciss_unregister_scsi(i); /* unhook from SCSI subsystem */
4148 #endif
4150 cciss_shutdown(pdev);
4152 #ifdef CONFIG_PCI_MSI
4153 if (hba[i]->msix_vector)
4154 pci_disable_msix(hba[i]->pdev);
4155 else if (hba[i]->msi_vector)
4156 pci_disable_msi(hba[i]->pdev);
4157 #endif /* CONFIG_PCI_MSI */
4159 iounmap(hba[i]->vaddr);
4161 pci_free_consistent(hba[i]->pdev, hba[i]->nr_cmds * sizeof(CommandList_struct),
4162 hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle);
4163 pci_free_consistent(hba[i]->pdev, hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
4164 hba[i]->errinfo_pool, hba[i]->errinfo_pool_dhandle);
4165 kfree(hba[i]->cmd_pool_bits);
4167 * Deliberately omit pci_disable_device(): it does something nasty to
4168 * Smart Array controllers that pci_enable_device does not undo
4170 pci_release_regions(pdev);
4171 pci_set_drvdata(pdev, NULL);
4172 cciss_destroy_hba_sysfs_entry(hba[i]);
4173 free_hba(i);
4176 static struct pci_driver cciss_pci_driver = {
4177 .name = "cciss",
4178 .probe = cciss_init_one,
4179 .remove = __devexit_p(cciss_remove_one),
4180 .id_table = cciss_pci_device_id, /* id_table */
4181 .shutdown = cciss_shutdown,
4185 * This is it. Register the PCI driver information for the cards we control
4186 * the OS will call our registered routines when it finds one of our cards.
4188 static int __init cciss_init(void)
4190 int err;
4193 * The hardware requires that commands are aligned on a 64-bit
4194 * boundary. Given that we use pci_alloc_consistent() to allocate an
4195 * array of them, the size must be a multiple of 8 bytes.
4197 BUILD_BUG_ON(sizeof(CommandList_struct) % 8);
4199 printk(KERN_INFO DRIVER_NAME "\n");
4201 err = bus_register(&cciss_bus_type);
4202 if (err)
4203 return err;
4205 /* Register for our PCI devices */
4206 err = pci_register_driver(&cciss_pci_driver);
4207 if (err)
4208 goto err_bus_register;
4210 return 0;
4212 err_bus_register:
4213 bus_unregister(&cciss_bus_type);
4214 return err;
4217 static void __exit cciss_cleanup(void)
4219 int i;
4221 pci_unregister_driver(&cciss_pci_driver);
4222 /* double check that all controller entrys have been removed */
4223 for (i = 0; i < MAX_CTLR; i++) {
4224 if (hba[i] != NULL) {
4225 printk(KERN_WARNING "cciss: had to remove"
4226 " controller %d\n", i);
4227 cciss_remove_one(hba[i]->pdev);
4230 remove_proc_entry("driver/cciss", NULL);
4231 bus_unregister(&cciss_bus_type);
4234 static void fail_all_cmds(unsigned long ctlr)
4236 /* If we get here, the board is apparently dead. */
4237 ctlr_info_t *h = hba[ctlr];
4238 CommandList_struct *c;
4239 unsigned long flags;
4241 printk(KERN_WARNING "cciss%d: controller not responding.\n", h->ctlr);
4242 h->alive = 0; /* the controller apparently died... */
4244 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
4246 pci_disable_device(h->pdev); /* Make sure it is really dead. */
4248 /* move everything off the request queue onto the completed queue */
4249 while (!hlist_empty(&h->reqQ)) {
4250 c = hlist_entry(h->reqQ.first, CommandList_struct, list);
4251 removeQ(c);
4252 h->Qdepth--;
4253 addQ(&h->cmpQ, c);
4256 /* Now, fail everything on the completed queue with a HW error */
4257 while (!hlist_empty(&h->cmpQ)) {
4258 c = hlist_entry(h->cmpQ.first, CommandList_struct, list);
4259 removeQ(c);
4260 if (c->cmd_type != CMD_MSG_STALE)
4261 c->err_info->CommandStatus = CMD_HARDWARE_ERR;
4262 if (c->cmd_type == CMD_RWREQ) {
4263 complete_command(h, c, 0);
4264 } else if (c->cmd_type == CMD_IOCTL_PEND)
4265 complete(c->waiting);
4266 #ifdef CONFIG_CISS_SCSI_TAPE
4267 else if (c->cmd_type == CMD_SCSI)
4268 complete_scsi_command(c, 0, 0);
4269 #endif
4271 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
4272 return;
4275 module_init(cciss_init);
4276 module_exit(cciss_cleanup);