2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/init.h>
47 #include <linux/list.h>
49 #include <linux/spinlock.h>
50 #include <linux/blkdev.h>
51 #include <linux/delay.h>
52 #include <linux/timer.h>
53 #include <linux/interrupt.h>
54 #include <linux/completion.h>
55 #include <linux/suspend.h>
56 #include <linux/workqueue.h>
57 #include <linux/scatterlist.h>
59 #include <linux/async.h>
60 #include <linux/log2.h>
61 #include <scsi/scsi.h>
62 #include <scsi/scsi_cmnd.h>
63 #include <scsi/scsi_host.h>
64 #include <linux/libata.h>
65 #include <asm/byteorder.h>
66 #include <linux/cdrom.h>
71 /* debounce timing parameters in msecs { interval, duration, timeout } */
72 const unsigned long sata_deb_timing_normal
[] = { 5, 100, 2000 };
73 const unsigned long sata_deb_timing_hotplug
[] = { 25, 500, 2000 };
74 const unsigned long sata_deb_timing_long
[] = { 100, 2000, 5000 };
76 const struct ata_port_operations ata_base_port_ops
= {
77 .prereset
= ata_std_prereset
,
78 .postreset
= ata_std_postreset
,
79 .error_handler
= ata_std_error_handler
,
82 const struct ata_port_operations sata_port_ops
= {
83 .inherits
= &ata_base_port_ops
,
85 .qc_defer
= ata_std_qc_defer
,
86 .hardreset
= sata_std_hardreset
,
89 static unsigned int ata_dev_init_params(struct ata_device
*dev
,
90 u16 heads
, u16 sectors
);
91 static unsigned int ata_dev_set_xfermode(struct ata_device
*dev
);
92 static unsigned int ata_dev_set_feature(struct ata_device
*dev
,
93 u8 enable
, u8 feature
);
94 static void ata_dev_xfermask(struct ata_device
*dev
);
95 static unsigned long ata_dev_blacklisted(const struct ata_device
*dev
);
97 unsigned int ata_print_id
= 1;
98 static struct workqueue_struct
*ata_wq
;
100 struct workqueue_struct
*ata_aux_wq
;
102 struct ata_force_param
{
106 unsigned long xfer_mask
;
107 unsigned int horkage_on
;
108 unsigned int horkage_off
;
112 struct ata_force_ent
{
115 struct ata_force_param param
;
118 static struct ata_force_ent
*ata_force_tbl
;
119 static int ata_force_tbl_size
;
121 static char ata_force_param_buf
[PAGE_SIZE
] __initdata
;
122 /* param_buf is thrown away after initialization, disallow read */
123 module_param_string(force
, ata_force_param_buf
, sizeof(ata_force_param_buf
), 0);
124 MODULE_PARM_DESC(force
, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
126 static int atapi_enabled
= 1;
127 module_param(atapi_enabled
, int, 0444);
128 MODULE_PARM_DESC(atapi_enabled
, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
130 static int atapi_dmadir
= 0;
131 module_param(atapi_dmadir
, int, 0444);
132 MODULE_PARM_DESC(atapi_dmadir
, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
134 int atapi_passthru16
= 1;
135 module_param(atapi_passthru16
, int, 0444);
136 MODULE_PARM_DESC(atapi_passthru16
, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
139 module_param_named(fua
, libata_fua
, int, 0444);
140 MODULE_PARM_DESC(fua
, "FUA support (0=off [default], 1=on)");
142 static int ata_ignore_hpa
;
143 module_param_named(ignore_hpa
, ata_ignore_hpa
, int, 0644);
144 MODULE_PARM_DESC(ignore_hpa
, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
146 static int libata_dma_mask
= ATA_DMA_MASK_ATA
|ATA_DMA_MASK_ATAPI
|ATA_DMA_MASK_CFA
;
147 module_param_named(dma
, libata_dma_mask
, int, 0444);
148 MODULE_PARM_DESC(dma
, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
150 static int ata_probe_timeout
;
151 module_param(ata_probe_timeout
, int, 0444);
152 MODULE_PARM_DESC(ata_probe_timeout
, "Set ATA probing timeout (seconds)");
154 int libata_noacpi
= 0;
155 module_param_named(noacpi
, libata_noacpi
, int, 0444);
156 MODULE_PARM_DESC(noacpi
, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
158 int libata_allow_tpm
= 0;
159 module_param_named(allow_tpm
, libata_allow_tpm
, int, 0444);
160 MODULE_PARM_DESC(allow_tpm
, "Permit the use of TPM commands (0=off [default], 1=on)");
162 MODULE_AUTHOR("Jeff Garzik");
163 MODULE_DESCRIPTION("Library module for ATA devices");
164 MODULE_LICENSE("GPL");
165 MODULE_VERSION(DRV_VERSION
);
168 static bool ata_sstatus_online(u32 sstatus
)
170 return (sstatus
& 0xf) == 0x3;
174 * ata_link_next - link iteration helper
175 * @link: the previous link, NULL to start
176 * @ap: ATA port containing links to iterate
177 * @mode: iteration mode, one of ATA_LITER_*
180 * Host lock or EH context.
183 * Pointer to the next link.
185 struct ata_link
*ata_link_next(struct ata_link
*link
, struct ata_port
*ap
,
186 enum ata_link_iter_mode mode
)
188 BUG_ON(mode
!= ATA_LITER_EDGE
&&
189 mode
!= ATA_LITER_PMP_FIRST
&& mode
!= ATA_LITER_HOST_FIRST
);
191 /* NULL link indicates start of iteration */
195 case ATA_LITER_PMP_FIRST
:
196 if (sata_pmp_attached(ap
))
199 case ATA_LITER_HOST_FIRST
:
203 /* we just iterated over the host link, what's next? */
204 if (link
== &ap
->link
)
206 case ATA_LITER_HOST_FIRST
:
207 if (sata_pmp_attached(ap
))
210 case ATA_LITER_PMP_FIRST
:
211 if (unlikely(ap
->slave_link
))
212 return ap
->slave_link
;
218 /* slave_link excludes PMP */
219 if (unlikely(link
== ap
->slave_link
))
222 /* we were over a PMP link */
223 if (++link
< ap
->pmp_link
+ ap
->nr_pmp_links
)
226 if (mode
== ATA_LITER_PMP_FIRST
)
233 * ata_dev_next - device iteration helper
234 * @dev: the previous device, NULL to start
235 * @link: ATA link containing devices to iterate
236 * @mode: iteration mode, one of ATA_DITER_*
239 * Host lock or EH context.
242 * Pointer to the next device.
244 struct ata_device
*ata_dev_next(struct ata_device
*dev
, struct ata_link
*link
,
245 enum ata_dev_iter_mode mode
)
247 BUG_ON(mode
!= ATA_DITER_ENABLED
&& mode
!= ATA_DITER_ENABLED_REVERSE
&&
248 mode
!= ATA_DITER_ALL
&& mode
!= ATA_DITER_ALL_REVERSE
);
250 /* NULL dev indicates start of iteration */
253 case ATA_DITER_ENABLED
:
257 case ATA_DITER_ENABLED_REVERSE
:
258 case ATA_DITER_ALL_REVERSE
:
259 dev
= link
->device
+ ata_link_max_devices(link
) - 1;
264 /* move to the next one */
266 case ATA_DITER_ENABLED
:
268 if (++dev
< link
->device
+ ata_link_max_devices(link
))
271 case ATA_DITER_ENABLED_REVERSE
:
272 case ATA_DITER_ALL_REVERSE
:
273 if (--dev
>= link
->device
)
279 if ((mode
== ATA_DITER_ENABLED
|| mode
== ATA_DITER_ENABLED_REVERSE
) &&
280 !ata_dev_enabled(dev
))
286 * ata_dev_phys_link - find physical link for a device
287 * @dev: ATA device to look up physical link for
289 * Look up physical link which @dev is attached to. Note that
290 * this is different from @dev->link only when @dev is on slave
291 * link. For all other cases, it's the same as @dev->link.
297 * Pointer to the found physical link.
299 struct ata_link
*ata_dev_phys_link(struct ata_device
*dev
)
301 struct ata_port
*ap
= dev
->link
->ap
;
307 return ap
->slave_link
;
311 * ata_force_cbl - force cable type according to libata.force
312 * @ap: ATA port of interest
314 * Force cable type according to libata.force and whine about it.
315 * The last entry which has matching port number is used, so it
316 * can be specified as part of device force parameters. For
317 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
323 void ata_force_cbl(struct ata_port
*ap
)
327 for (i
= ata_force_tbl_size
- 1; i
>= 0; i
--) {
328 const struct ata_force_ent
*fe
= &ata_force_tbl
[i
];
330 if (fe
->port
!= -1 && fe
->port
!= ap
->print_id
)
333 if (fe
->param
.cbl
== ATA_CBL_NONE
)
336 ap
->cbl
= fe
->param
.cbl
;
337 ata_port_printk(ap
, KERN_NOTICE
,
338 "FORCE: cable set to %s\n", fe
->param
.name
);
344 * ata_force_link_limits - force link limits according to libata.force
345 * @link: ATA link of interest
347 * Force link flags and SATA spd limit according to libata.force
348 * and whine about it. When only the port part is specified
349 * (e.g. 1:), the limit applies to all links connected to both
350 * the host link and all fan-out ports connected via PMP. If the
351 * device part is specified as 0 (e.g. 1.00:), it specifies the
352 * first fan-out link not the host link. Device number 15 always
353 * points to the host link whether PMP is attached or not. If the
354 * controller has slave link, device number 16 points to it.
359 static void ata_force_link_limits(struct ata_link
*link
)
361 bool did_spd
= false;
362 int linkno
= link
->pmp
;
365 if (ata_is_host_link(link
))
368 for (i
= ata_force_tbl_size
- 1; i
>= 0; i
--) {
369 const struct ata_force_ent
*fe
= &ata_force_tbl
[i
];
371 if (fe
->port
!= -1 && fe
->port
!= link
->ap
->print_id
)
374 if (fe
->device
!= -1 && fe
->device
!= linkno
)
377 /* only honor the first spd limit */
378 if (!did_spd
&& fe
->param
.spd_limit
) {
379 link
->hw_sata_spd_limit
= (1 << fe
->param
.spd_limit
) - 1;
380 ata_link_printk(link
, KERN_NOTICE
,
381 "FORCE: PHY spd limit set to %s\n",
386 /* let lflags stack */
387 if (fe
->param
.lflags
) {
388 link
->flags
|= fe
->param
.lflags
;
389 ata_link_printk(link
, KERN_NOTICE
,
390 "FORCE: link flag 0x%x forced -> 0x%x\n",
391 fe
->param
.lflags
, link
->flags
);
397 * ata_force_xfermask - force xfermask according to libata.force
398 * @dev: ATA device of interest
400 * Force xfer_mask according to libata.force and whine about it.
401 * For consistency with link selection, device number 15 selects
402 * the first device connected to the host link.
407 static void ata_force_xfermask(struct ata_device
*dev
)
409 int devno
= dev
->link
->pmp
+ dev
->devno
;
410 int alt_devno
= devno
;
413 /* allow n.15/16 for devices attached to host port */
414 if (ata_is_host_link(dev
->link
))
417 for (i
= ata_force_tbl_size
- 1; i
>= 0; i
--) {
418 const struct ata_force_ent
*fe
= &ata_force_tbl
[i
];
419 unsigned long pio_mask
, mwdma_mask
, udma_mask
;
421 if (fe
->port
!= -1 && fe
->port
!= dev
->link
->ap
->print_id
)
424 if (fe
->device
!= -1 && fe
->device
!= devno
&&
425 fe
->device
!= alt_devno
)
428 if (!fe
->param
.xfer_mask
)
431 ata_unpack_xfermask(fe
->param
.xfer_mask
,
432 &pio_mask
, &mwdma_mask
, &udma_mask
);
434 dev
->udma_mask
= udma_mask
;
435 else if (mwdma_mask
) {
437 dev
->mwdma_mask
= mwdma_mask
;
441 dev
->pio_mask
= pio_mask
;
444 ata_dev_printk(dev
, KERN_NOTICE
,
445 "FORCE: xfer_mask set to %s\n", fe
->param
.name
);
451 * ata_force_horkage - force horkage according to libata.force
452 * @dev: ATA device of interest
454 * Force horkage according to libata.force and whine about it.
455 * For consistency with link selection, device number 15 selects
456 * the first device connected to the host link.
461 static void ata_force_horkage(struct ata_device
*dev
)
463 int devno
= dev
->link
->pmp
+ dev
->devno
;
464 int alt_devno
= devno
;
467 /* allow n.15/16 for devices attached to host port */
468 if (ata_is_host_link(dev
->link
))
471 for (i
= 0; i
< ata_force_tbl_size
; i
++) {
472 const struct ata_force_ent
*fe
= &ata_force_tbl
[i
];
474 if (fe
->port
!= -1 && fe
->port
!= dev
->link
->ap
->print_id
)
477 if (fe
->device
!= -1 && fe
->device
!= devno
&&
478 fe
->device
!= alt_devno
)
481 if (!(~dev
->horkage
& fe
->param
.horkage_on
) &&
482 !(dev
->horkage
& fe
->param
.horkage_off
))
485 dev
->horkage
|= fe
->param
.horkage_on
;
486 dev
->horkage
&= ~fe
->param
.horkage_off
;
488 ata_dev_printk(dev
, KERN_NOTICE
,
489 "FORCE: horkage modified (%s)\n", fe
->param
.name
);
494 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
495 * @opcode: SCSI opcode
497 * Determine ATAPI command type from @opcode.
503 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
505 int atapi_cmd_type(u8 opcode
)
514 case GPCMD_WRITE_AND_VERIFY_10
:
518 case GPCMD_READ_CD_MSF
:
519 return ATAPI_READ_CD
;
523 if (atapi_passthru16
)
524 return ATAPI_PASS_THRU
;
532 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
533 * @tf: Taskfile to convert
534 * @pmp: Port multiplier port
535 * @is_cmd: This FIS is for command
536 * @fis: Buffer into which data will output
538 * Converts a standard ATA taskfile to a Serial ATA
539 * FIS structure (Register - Host to Device).
542 * Inherited from caller.
544 void ata_tf_to_fis(const struct ata_taskfile
*tf
, u8 pmp
, int is_cmd
, u8
*fis
)
546 fis
[0] = 0x27; /* Register - Host to Device FIS */
547 fis
[1] = pmp
& 0xf; /* Port multiplier number*/
549 fis
[1] |= (1 << 7); /* bit 7 indicates Command FIS */
551 fis
[2] = tf
->command
;
552 fis
[3] = tf
->feature
;
559 fis
[8] = tf
->hob_lbal
;
560 fis
[9] = tf
->hob_lbam
;
561 fis
[10] = tf
->hob_lbah
;
562 fis
[11] = tf
->hob_feature
;
565 fis
[13] = tf
->hob_nsect
;
576 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
577 * @fis: Buffer from which data will be input
578 * @tf: Taskfile to output
580 * Converts a serial ATA FIS structure to a standard ATA taskfile.
583 * Inherited from caller.
586 void ata_tf_from_fis(const u8
*fis
, struct ata_taskfile
*tf
)
588 tf
->command
= fis
[2]; /* status */
589 tf
->feature
= fis
[3]; /* error */
596 tf
->hob_lbal
= fis
[8];
597 tf
->hob_lbam
= fis
[9];
598 tf
->hob_lbah
= fis
[10];
601 tf
->hob_nsect
= fis
[13];
604 static const u8 ata_rw_cmds
[] = {
608 ATA_CMD_READ_MULTI_EXT
,
609 ATA_CMD_WRITE_MULTI_EXT
,
613 ATA_CMD_WRITE_MULTI_FUA_EXT
,
617 ATA_CMD_PIO_READ_EXT
,
618 ATA_CMD_PIO_WRITE_EXT
,
631 ATA_CMD_WRITE_FUA_EXT
635 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
636 * @tf: command to examine and configure
637 * @dev: device tf belongs to
639 * Examine the device configuration and tf->flags to calculate
640 * the proper read/write commands and protocol to use.
645 static int ata_rwcmd_protocol(struct ata_taskfile
*tf
, struct ata_device
*dev
)
649 int index
, fua
, lba48
, write
;
651 fua
= (tf
->flags
& ATA_TFLAG_FUA
) ? 4 : 0;
652 lba48
= (tf
->flags
& ATA_TFLAG_LBA48
) ? 2 : 0;
653 write
= (tf
->flags
& ATA_TFLAG_WRITE
) ? 1 : 0;
655 if (dev
->flags
& ATA_DFLAG_PIO
) {
656 tf
->protocol
= ATA_PROT_PIO
;
657 index
= dev
->multi_count
? 0 : 8;
658 } else if (lba48
&& (dev
->link
->ap
->flags
& ATA_FLAG_PIO_LBA48
)) {
659 /* Unable to use DMA due to host limitation */
660 tf
->protocol
= ATA_PROT_PIO
;
661 index
= dev
->multi_count
? 0 : 8;
663 tf
->protocol
= ATA_PROT_DMA
;
667 cmd
= ata_rw_cmds
[index
+ fua
+ lba48
+ write
];
676 * ata_tf_read_block - Read block address from ATA taskfile
677 * @tf: ATA taskfile of interest
678 * @dev: ATA device @tf belongs to
683 * Read block address from @tf. This function can handle all
684 * three address formats - LBA, LBA48 and CHS. tf->protocol and
685 * flags select the address format to use.
688 * Block address read from @tf.
690 u64
ata_tf_read_block(struct ata_taskfile
*tf
, struct ata_device
*dev
)
694 if (tf
->flags
& ATA_TFLAG_LBA
) {
695 if (tf
->flags
& ATA_TFLAG_LBA48
) {
696 block
|= (u64
)tf
->hob_lbah
<< 40;
697 block
|= (u64
)tf
->hob_lbam
<< 32;
698 block
|= (u64
)tf
->hob_lbal
<< 24;
700 block
|= (tf
->device
& 0xf) << 24;
702 block
|= tf
->lbah
<< 16;
703 block
|= tf
->lbam
<< 8;
708 cyl
= tf
->lbam
| (tf
->lbah
<< 8);
709 head
= tf
->device
& 0xf;
712 block
= (cyl
* dev
->heads
+ head
) * dev
->sectors
+ sect
;
719 * ata_build_rw_tf - Build ATA taskfile for given read/write request
720 * @tf: Target ATA taskfile
721 * @dev: ATA device @tf belongs to
722 * @block: Block address
723 * @n_block: Number of blocks
724 * @tf_flags: RW/FUA etc...
730 * Build ATA taskfile @tf for read/write request described by
731 * @block, @n_block, @tf_flags and @tag on @dev.
735 * 0 on success, -ERANGE if the request is too large for @dev,
736 * -EINVAL if the request is invalid.
738 int ata_build_rw_tf(struct ata_taskfile
*tf
, struct ata_device
*dev
,
739 u64 block
, u32 n_block
, unsigned int tf_flags
,
742 tf
->flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
743 tf
->flags
|= tf_flags
;
745 if (ata_ncq_enabled(dev
) && likely(tag
!= ATA_TAG_INTERNAL
)) {
747 if (!lba_48_ok(block
, n_block
))
750 tf
->protocol
= ATA_PROT_NCQ
;
751 tf
->flags
|= ATA_TFLAG_LBA
| ATA_TFLAG_LBA48
;
753 if (tf
->flags
& ATA_TFLAG_WRITE
)
754 tf
->command
= ATA_CMD_FPDMA_WRITE
;
756 tf
->command
= ATA_CMD_FPDMA_READ
;
758 tf
->nsect
= tag
<< 3;
759 tf
->hob_feature
= (n_block
>> 8) & 0xff;
760 tf
->feature
= n_block
& 0xff;
762 tf
->hob_lbah
= (block
>> 40) & 0xff;
763 tf
->hob_lbam
= (block
>> 32) & 0xff;
764 tf
->hob_lbal
= (block
>> 24) & 0xff;
765 tf
->lbah
= (block
>> 16) & 0xff;
766 tf
->lbam
= (block
>> 8) & 0xff;
767 tf
->lbal
= block
& 0xff;
770 if (tf
->flags
& ATA_TFLAG_FUA
)
771 tf
->device
|= 1 << 7;
772 } else if (dev
->flags
& ATA_DFLAG_LBA
) {
773 tf
->flags
|= ATA_TFLAG_LBA
;
775 if (lba_28_ok(block
, n_block
)) {
777 tf
->device
|= (block
>> 24) & 0xf;
778 } else if (lba_48_ok(block
, n_block
)) {
779 if (!(dev
->flags
& ATA_DFLAG_LBA48
))
783 tf
->flags
|= ATA_TFLAG_LBA48
;
785 tf
->hob_nsect
= (n_block
>> 8) & 0xff;
787 tf
->hob_lbah
= (block
>> 40) & 0xff;
788 tf
->hob_lbam
= (block
>> 32) & 0xff;
789 tf
->hob_lbal
= (block
>> 24) & 0xff;
791 /* request too large even for LBA48 */
794 if (unlikely(ata_rwcmd_protocol(tf
, dev
) < 0))
797 tf
->nsect
= n_block
& 0xff;
799 tf
->lbah
= (block
>> 16) & 0xff;
800 tf
->lbam
= (block
>> 8) & 0xff;
801 tf
->lbal
= block
& 0xff;
803 tf
->device
|= ATA_LBA
;
806 u32 sect
, head
, cyl
, track
;
808 /* The request -may- be too large for CHS addressing. */
809 if (!lba_28_ok(block
, n_block
))
812 if (unlikely(ata_rwcmd_protocol(tf
, dev
) < 0))
815 /* Convert LBA to CHS */
816 track
= (u32
)block
/ dev
->sectors
;
817 cyl
= track
/ dev
->heads
;
818 head
= track
% dev
->heads
;
819 sect
= (u32
)block
% dev
->sectors
+ 1;
821 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
822 (u32
)block
, track
, cyl
, head
, sect
);
824 /* Check whether the converted CHS can fit.
828 if ((cyl
>> 16) || (head
>> 4) || (sect
>> 8) || (!sect
))
831 tf
->nsect
= n_block
& 0xff; /* Sector count 0 means 256 sectors */
842 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
843 * @pio_mask: pio_mask
844 * @mwdma_mask: mwdma_mask
845 * @udma_mask: udma_mask
847 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
848 * unsigned int xfer_mask.
856 unsigned long ata_pack_xfermask(unsigned long pio_mask
,
857 unsigned long mwdma_mask
,
858 unsigned long udma_mask
)
860 return ((pio_mask
<< ATA_SHIFT_PIO
) & ATA_MASK_PIO
) |
861 ((mwdma_mask
<< ATA_SHIFT_MWDMA
) & ATA_MASK_MWDMA
) |
862 ((udma_mask
<< ATA_SHIFT_UDMA
) & ATA_MASK_UDMA
);
866 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
867 * @xfer_mask: xfer_mask to unpack
868 * @pio_mask: resulting pio_mask
869 * @mwdma_mask: resulting mwdma_mask
870 * @udma_mask: resulting udma_mask
872 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
873 * Any NULL distination masks will be ignored.
875 void ata_unpack_xfermask(unsigned long xfer_mask
, unsigned long *pio_mask
,
876 unsigned long *mwdma_mask
, unsigned long *udma_mask
)
879 *pio_mask
= (xfer_mask
& ATA_MASK_PIO
) >> ATA_SHIFT_PIO
;
881 *mwdma_mask
= (xfer_mask
& ATA_MASK_MWDMA
) >> ATA_SHIFT_MWDMA
;
883 *udma_mask
= (xfer_mask
& ATA_MASK_UDMA
) >> ATA_SHIFT_UDMA
;
886 static const struct ata_xfer_ent
{
890 { ATA_SHIFT_PIO
, ATA_NR_PIO_MODES
, XFER_PIO_0
},
891 { ATA_SHIFT_MWDMA
, ATA_NR_MWDMA_MODES
, XFER_MW_DMA_0
},
892 { ATA_SHIFT_UDMA
, ATA_NR_UDMA_MODES
, XFER_UDMA_0
},
897 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
898 * @xfer_mask: xfer_mask of interest
900 * Return matching XFER_* value for @xfer_mask. Only the highest
901 * bit of @xfer_mask is considered.
907 * Matching XFER_* value, 0xff if no match found.
909 u8
ata_xfer_mask2mode(unsigned long xfer_mask
)
911 int highbit
= fls(xfer_mask
) - 1;
912 const struct ata_xfer_ent
*ent
;
914 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
915 if (highbit
>= ent
->shift
&& highbit
< ent
->shift
+ ent
->bits
)
916 return ent
->base
+ highbit
- ent
->shift
;
921 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
922 * @xfer_mode: XFER_* of interest
924 * Return matching xfer_mask for @xfer_mode.
930 * Matching xfer_mask, 0 if no match found.
932 unsigned long ata_xfer_mode2mask(u8 xfer_mode
)
934 const struct ata_xfer_ent
*ent
;
936 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
937 if (xfer_mode
>= ent
->base
&& xfer_mode
< ent
->base
+ ent
->bits
)
938 return ((2 << (ent
->shift
+ xfer_mode
- ent
->base
)) - 1)
939 & ~((1 << ent
->shift
) - 1);
944 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
945 * @xfer_mode: XFER_* of interest
947 * Return matching xfer_shift for @xfer_mode.
953 * Matching xfer_shift, -1 if no match found.
955 int ata_xfer_mode2shift(unsigned long xfer_mode
)
957 const struct ata_xfer_ent
*ent
;
959 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
960 if (xfer_mode
>= ent
->base
&& xfer_mode
< ent
->base
+ ent
->bits
)
966 * ata_mode_string - convert xfer_mask to string
967 * @xfer_mask: mask of bits supported; only highest bit counts.
969 * Determine string which represents the highest speed
970 * (highest bit in @modemask).
976 * Constant C string representing highest speed listed in
977 * @mode_mask, or the constant C string "<n/a>".
979 const char *ata_mode_string(unsigned long xfer_mask
)
981 static const char * const xfer_mode_str
[] = {
1005 highbit
= fls(xfer_mask
) - 1;
1006 if (highbit
>= 0 && highbit
< ARRAY_SIZE(xfer_mode_str
))
1007 return xfer_mode_str
[highbit
];
1011 static const char *sata_spd_string(unsigned int spd
)
1013 static const char * const spd_str
[] = {
1019 if (spd
== 0 || (spd
- 1) >= ARRAY_SIZE(spd_str
))
1021 return spd_str
[spd
- 1];
1024 static int ata_dev_set_dipm(struct ata_device
*dev
, enum link_pm policy
)
1026 struct ata_link
*link
= dev
->link
;
1027 struct ata_port
*ap
= link
->ap
;
1029 unsigned int err_mask
;
1033 * disallow DIPM for drivers which haven't set
1034 * ATA_FLAG_IPM. This is because when DIPM is enabled,
1035 * phy ready will be set in the interrupt status on
1036 * state changes, which will cause some drivers to
1037 * think there are errors - additionally drivers will
1038 * need to disable hot plug.
1040 if (!(ap
->flags
& ATA_FLAG_IPM
) || !ata_dev_enabled(dev
)) {
1041 ap
->pm_policy
= NOT_AVAILABLE
;
1046 * For DIPM, we will only enable it for the
1047 * min_power setting.
1049 * Why? Because Disks are too stupid to know that
1050 * If the host rejects a request to go to SLUMBER
1051 * they should retry at PARTIAL, and instead it
1052 * just would give up. So, for medium_power to
1053 * work at all, we need to only allow HIPM.
1055 rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
);
1061 /* no restrictions on IPM transitions */
1062 scontrol
&= ~(0x3 << 8);
1063 rc
= sata_scr_write(link
, SCR_CONTROL
, scontrol
);
1068 if (dev
->flags
& ATA_DFLAG_DIPM
)
1069 err_mask
= ata_dev_set_feature(dev
,
1070 SETFEATURES_SATA_ENABLE
, SATA_DIPM
);
1073 /* allow IPM to PARTIAL */
1074 scontrol
&= ~(0x1 << 8);
1075 scontrol
|= (0x2 << 8);
1076 rc
= sata_scr_write(link
, SCR_CONTROL
, scontrol
);
1081 * we don't have to disable DIPM since IPM flags
1082 * disallow transitions to SLUMBER, which effectively
1083 * disable DIPM if it does not support PARTIAL
1087 case MAX_PERFORMANCE
:
1088 /* disable all IPM transitions */
1089 scontrol
|= (0x3 << 8);
1090 rc
= sata_scr_write(link
, SCR_CONTROL
, scontrol
);
1095 * we don't have to disable DIPM since IPM flags
1096 * disallow all transitions which effectively
1097 * disable DIPM anyway.
1102 /* FIXME: handle SET FEATURES failure */
1109 * ata_dev_enable_pm - enable SATA interface power management
1110 * @dev: device to enable power management
1111 * @policy: the link power management policy
1113 * Enable SATA Interface power management. This will enable
1114 * Device Interface Power Management (DIPM) for min_power
1115 * policy, and then call driver specific callbacks for
1116 * enabling Host Initiated Power management.
1119 * Returns: -EINVAL if IPM is not supported, 0 otherwise.
1121 void ata_dev_enable_pm(struct ata_device
*dev
, enum link_pm policy
)
1124 struct ata_port
*ap
= dev
->link
->ap
;
1126 /* set HIPM first, then DIPM */
1127 if (ap
->ops
->enable_pm
)
1128 rc
= ap
->ops
->enable_pm(ap
, policy
);
1131 rc
= ata_dev_set_dipm(dev
, policy
);
1135 ap
->pm_policy
= MAX_PERFORMANCE
;
1137 ap
->pm_policy
= policy
;
1138 return /* rc */; /* hopefully we can use 'rc' eventually */
1143 * ata_dev_disable_pm - disable SATA interface power management
1144 * @dev: device to disable power management
1146 * Disable SATA Interface power management. This will disable
1147 * Device Interface Power Management (DIPM) without changing
1148 * policy, call driver specific callbacks for disabling Host
1149 * Initiated Power management.
1154 static void ata_dev_disable_pm(struct ata_device
*dev
)
1156 struct ata_port
*ap
= dev
->link
->ap
;
1158 ata_dev_set_dipm(dev
, MAX_PERFORMANCE
);
1159 if (ap
->ops
->disable_pm
)
1160 ap
->ops
->disable_pm(ap
);
1162 #endif /* CONFIG_PM */
1164 void ata_lpm_schedule(struct ata_port
*ap
, enum link_pm policy
)
1166 ap
->pm_policy
= policy
;
1167 ap
->link
.eh_info
.action
|= ATA_EH_LPM
;
1168 ap
->link
.eh_info
.flags
|= ATA_EHI_NO_AUTOPSY
;
1169 ata_port_schedule_eh(ap
);
1173 static void ata_lpm_enable(struct ata_host
*host
)
1175 struct ata_link
*link
;
1176 struct ata_port
*ap
;
1177 struct ata_device
*dev
;
1180 for (i
= 0; i
< host
->n_ports
; i
++) {
1181 ap
= host
->ports
[i
];
1182 ata_for_each_link(link
, ap
, EDGE
) {
1183 ata_for_each_dev(dev
, link
, ALL
)
1184 ata_dev_disable_pm(dev
);
1189 static void ata_lpm_disable(struct ata_host
*host
)
1193 for (i
= 0; i
< host
->n_ports
; i
++) {
1194 struct ata_port
*ap
= host
->ports
[i
];
1195 ata_lpm_schedule(ap
, ap
->pm_policy
);
1198 #endif /* CONFIG_PM */
1201 * ata_dev_classify - determine device type based on ATA-spec signature
1202 * @tf: ATA taskfile register set for device to be identified
1204 * Determine from taskfile register contents whether a device is
1205 * ATA or ATAPI, as per "Signature and persistence" section
1206 * of ATA/PI spec (volume 1, sect 5.14).
1212 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
1213 * %ATA_DEV_UNKNOWN the event of failure.
1215 unsigned int ata_dev_classify(const struct ata_taskfile
*tf
)
1217 /* Apple's open source Darwin code hints that some devices only
1218 * put a proper signature into the LBA mid/high registers,
1219 * So, we only check those. It's sufficient for uniqueness.
1221 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1222 * signatures for ATA and ATAPI devices attached on SerialATA,
1223 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1224 * spec has never mentioned about using different signatures
1225 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1226 * Multiplier specification began to use 0x69/0x96 to identify
1227 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1228 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1229 * 0x69/0x96 shortly and described them as reserved for
1232 * We follow the current spec and consider that 0x69/0x96
1233 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1234 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1235 * SEMB signature. This is worked around in
1236 * ata_dev_read_id().
1238 if ((tf
->lbam
== 0) && (tf
->lbah
== 0)) {
1239 DPRINTK("found ATA device by sig\n");
1243 if ((tf
->lbam
== 0x14) && (tf
->lbah
== 0xeb)) {
1244 DPRINTK("found ATAPI device by sig\n");
1245 return ATA_DEV_ATAPI
;
1248 if ((tf
->lbam
== 0x69) && (tf
->lbah
== 0x96)) {
1249 DPRINTK("found PMP device by sig\n");
1253 if ((tf
->lbam
== 0x3c) && (tf
->lbah
== 0xc3)) {
1254 DPRINTK("found SEMB device by sig (could be ATA device)\n");
1255 return ATA_DEV_SEMB
;
1258 DPRINTK("unknown device\n");
1259 return ATA_DEV_UNKNOWN
;
1263 * ata_id_string - Convert IDENTIFY DEVICE page into string
1264 * @id: IDENTIFY DEVICE results we will examine
1265 * @s: string into which data is output
1266 * @ofs: offset into identify device page
1267 * @len: length of string to return. must be an even number.
1269 * The strings in the IDENTIFY DEVICE page are broken up into
1270 * 16-bit chunks. Run through the string, and output each
1271 * 8-bit chunk linearly, regardless of platform.
1277 void ata_id_string(const u16
*id
, unsigned char *s
,
1278 unsigned int ofs
, unsigned int len
)
1299 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1300 * @id: IDENTIFY DEVICE results we will examine
1301 * @s: string into which data is output
1302 * @ofs: offset into identify device page
1303 * @len: length of string to return. must be an odd number.
1305 * This function is identical to ata_id_string except that it
1306 * trims trailing spaces and terminates the resulting string with
1307 * null. @len must be actual maximum length (even number) + 1.
1312 void ata_id_c_string(const u16
*id
, unsigned char *s
,
1313 unsigned int ofs
, unsigned int len
)
1317 ata_id_string(id
, s
, ofs
, len
- 1);
1319 p
= s
+ strnlen(s
, len
- 1);
1320 while (p
> s
&& p
[-1] == ' ')
1325 static u64
ata_id_n_sectors(const u16
*id
)
1327 if (ata_id_has_lba(id
)) {
1328 if (ata_id_has_lba48(id
))
1329 return ata_id_u64(id
, ATA_ID_LBA_CAPACITY_2
);
1331 return ata_id_u32(id
, ATA_ID_LBA_CAPACITY
);
1333 if (ata_id_current_chs_valid(id
))
1334 return id
[ATA_ID_CUR_CYLS
] * id
[ATA_ID_CUR_HEADS
] *
1335 id
[ATA_ID_CUR_SECTORS
];
1337 return id
[ATA_ID_CYLS
] * id
[ATA_ID_HEADS
] *
1342 u64
ata_tf_to_lba48(const struct ata_taskfile
*tf
)
1346 sectors
|= ((u64
)(tf
->hob_lbah
& 0xff)) << 40;
1347 sectors
|= ((u64
)(tf
->hob_lbam
& 0xff)) << 32;
1348 sectors
|= ((u64
)(tf
->hob_lbal
& 0xff)) << 24;
1349 sectors
|= (tf
->lbah
& 0xff) << 16;
1350 sectors
|= (tf
->lbam
& 0xff) << 8;
1351 sectors
|= (tf
->lbal
& 0xff);
1356 u64
ata_tf_to_lba(const struct ata_taskfile
*tf
)
1360 sectors
|= (tf
->device
& 0x0f) << 24;
1361 sectors
|= (tf
->lbah
& 0xff) << 16;
1362 sectors
|= (tf
->lbam
& 0xff) << 8;
1363 sectors
|= (tf
->lbal
& 0xff);
1369 * ata_read_native_max_address - Read native max address
1370 * @dev: target device
1371 * @max_sectors: out parameter for the result native max address
1373 * Perform an LBA48 or LBA28 native size query upon the device in
1377 * 0 on success, -EACCES if command is aborted by the drive.
1378 * -EIO on other errors.
1380 static int ata_read_native_max_address(struct ata_device
*dev
, u64
*max_sectors
)
1382 unsigned int err_mask
;
1383 struct ata_taskfile tf
;
1384 int lba48
= ata_id_has_lba48(dev
->id
);
1386 ata_tf_init(dev
, &tf
);
1388 /* always clear all address registers */
1389 tf
.flags
|= ATA_TFLAG_DEVICE
| ATA_TFLAG_ISADDR
;
1392 tf
.command
= ATA_CMD_READ_NATIVE_MAX_EXT
;
1393 tf
.flags
|= ATA_TFLAG_LBA48
;
1395 tf
.command
= ATA_CMD_READ_NATIVE_MAX
;
1397 tf
.protocol
|= ATA_PROT_NODATA
;
1398 tf
.device
|= ATA_LBA
;
1400 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
1402 ata_dev_printk(dev
, KERN_WARNING
, "failed to read native "
1403 "max address (err_mask=0x%x)\n", err_mask
);
1404 if (err_mask
== AC_ERR_DEV
&& (tf
.feature
& ATA_ABORTED
))
1410 *max_sectors
= ata_tf_to_lba48(&tf
) + 1;
1412 *max_sectors
= ata_tf_to_lba(&tf
) + 1;
1413 if (dev
->horkage
& ATA_HORKAGE_HPA_SIZE
)
1419 * ata_set_max_sectors - Set max sectors
1420 * @dev: target device
1421 * @new_sectors: new max sectors value to set for the device
1423 * Set max sectors of @dev to @new_sectors.
1426 * 0 on success, -EACCES if command is aborted or denied (due to
1427 * previous non-volatile SET_MAX) by the drive. -EIO on other
1430 static int ata_set_max_sectors(struct ata_device
*dev
, u64 new_sectors
)
1432 unsigned int err_mask
;
1433 struct ata_taskfile tf
;
1434 int lba48
= ata_id_has_lba48(dev
->id
);
1438 ata_tf_init(dev
, &tf
);
1440 tf
.flags
|= ATA_TFLAG_DEVICE
| ATA_TFLAG_ISADDR
;
1443 tf
.command
= ATA_CMD_SET_MAX_EXT
;
1444 tf
.flags
|= ATA_TFLAG_LBA48
;
1446 tf
.hob_lbal
= (new_sectors
>> 24) & 0xff;
1447 tf
.hob_lbam
= (new_sectors
>> 32) & 0xff;
1448 tf
.hob_lbah
= (new_sectors
>> 40) & 0xff;
1450 tf
.command
= ATA_CMD_SET_MAX
;
1452 tf
.device
|= (new_sectors
>> 24) & 0xf;
1455 tf
.protocol
|= ATA_PROT_NODATA
;
1456 tf
.device
|= ATA_LBA
;
1458 tf
.lbal
= (new_sectors
>> 0) & 0xff;
1459 tf
.lbam
= (new_sectors
>> 8) & 0xff;
1460 tf
.lbah
= (new_sectors
>> 16) & 0xff;
1462 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
1464 ata_dev_printk(dev
, KERN_WARNING
, "failed to set "
1465 "max address (err_mask=0x%x)\n", err_mask
);
1466 if (err_mask
== AC_ERR_DEV
&&
1467 (tf
.feature
& (ATA_ABORTED
| ATA_IDNF
)))
1476 * ata_hpa_resize - Resize a device with an HPA set
1477 * @dev: Device to resize
1479 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1480 * it if required to the full size of the media. The caller must check
1481 * the drive has the HPA feature set enabled.
1484 * 0 on success, -errno on failure.
1486 static int ata_hpa_resize(struct ata_device
*dev
)
1488 struct ata_eh_context
*ehc
= &dev
->link
->eh_context
;
1489 int print_info
= ehc
->i
.flags
& ATA_EHI_PRINTINFO
;
1490 u64 sectors
= ata_id_n_sectors(dev
->id
);
1494 /* do we need to do it? */
1495 if (dev
->class != ATA_DEV_ATA
||
1496 !ata_id_has_lba(dev
->id
) || !ata_id_hpa_enabled(dev
->id
) ||
1497 (dev
->horkage
& ATA_HORKAGE_BROKEN_HPA
))
1500 /* read native max address */
1501 rc
= ata_read_native_max_address(dev
, &native_sectors
);
1503 /* If device aborted the command or HPA isn't going to
1504 * be unlocked, skip HPA resizing.
1506 if (rc
== -EACCES
|| !ata_ignore_hpa
) {
1507 ata_dev_printk(dev
, KERN_WARNING
, "HPA support seems "
1508 "broken, skipping HPA handling\n");
1509 dev
->horkage
|= ATA_HORKAGE_BROKEN_HPA
;
1511 /* we can continue if device aborted the command */
1518 dev
->n_native_sectors
= native_sectors
;
1520 /* nothing to do? */
1521 if (native_sectors
<= sectors
|| !ata_ignore_hpa
) {
1522 if (!print_info
|| native_sectors
== sectors
)
1525 if (native_sectors
> sectors
)
1526 ata_dev_printk(dev
, KERN_INFO
,
1527 "HPA detected: current %llu, native %llu\n",
1528 (unsigned long long)sectors
,
1529 (unsigned long long)native_sectors
);
1530 else if (native_sectors
< sectors
)
1531 ata_dev_printk(dev
, KERN_WARNING
,
1532 "native sectors (%llu) is smaller than "
1534 (unsigned long long)native_sectors
,
1535 (unsigned long long)sectors
);
1539 /* let's unlock HPA */
1540 rc
= ata_set_max_sectors(dev
, native_sectors
);
1541 if (rc
== -EACCES
) {
1542 /* if device aborted the command, skip HPA resizing */
1543 ata_dev_printk(dev
, KERN_WARNING
, "device aborted resize "
1544 "(%llu -> %llu), skipping HPA handling\n",
1545 (unsigned long long)sectors
,
1546 (unsigned long long)native_sectors
);
1547 dev
->horkage
|= ATA_HORKAGE_BROKEN_HPA
;
1552 /* re-read IDENTIFY data */
1553 rc
= ata_dev_reread_id(dev
, 0);
1555 ata_dev_printk(dev
, KERN_ERR
, "failed to re-read IDENTIFY "
1556 "data after HPA resizing\n");
1561 u64 new_sectors
= ata_id_n_sectors(dev
->id
);
1562 ata_dev_printk(dev
, KERN_INFO
,
1563 "HPA unlocked: %llu -> %llu, native %llu\n",
1564 (unsigned long long)sectors
,
1565 (unsigned long long)new_sectors
,
1566 (unsigned long long)native_sectors
);
1573 * ata_dump_id - IDENTIFY DEVICE info debugging output
1574 * @id: IDENTIFY DEVICE page to dump
1576 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1583 static inline void ata_dump_id(const u16
*id
)
1585 DPRINTK("49==0x%04x "
1595 DPRINTK("80==0x%04x "
1605 DPRINTK("88==0x%04x "
1612 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1613 * @id: IDENTIFY data to compute xfer mask from
1615 * Compute the xfermask for this device. This is not as trivial
1616 * as it seems if we must consider early devices correctly.
1618 * FIXME: pre IDE drive timing (do we care ?).
1626 unsigned long ata_id_xfermask(const u16
*id
)
1628 unsigned long pio_mask
, mwdma_mask
, udma_mask
;
1630 /* Usual case. Word 53 indicates word 64 is valid */
1631 if (id
[ATA_ID_FIELD_VALID
] & (1 << 1)) {
1632 pio_mask
= id
[ATA_ID_PIO_MODES
] & 0x03;
1636 /* If word 64 isn't valid then Word 51 high byte holds
1637 * the PIO timing number for the maximum. Turn it into
1640 u8 mode
= (id
[ATA_ID_OLD_PIO_MODES
] >> 8) & 0xFF;
1641 if (mode
< 5) /* Valid PIO range */
1642 pio_mask
= (2 << mode
) - 1;
1646 /* But wait.. there's more. Design your standards by
1647 * committee and you too can get a free iordy field to
1648 * process. However its the speeds not the modes that
1649 * are supported... Note drivers using the timing API
1650 * will get this right anyway
1654 mwdma_mask
= id
[ATA_ID_MWDMA_MODES
] & 0x07;
1656 if (ata_id_is_cfa(id
)) {
1658 * Process compact flash extended modes
1660 int pio
= (id
[ATA_ID_CFA_MODES
] >> 0) & 0x7;
1661 int dma
= (id
[ATA_ID_CFA_MODES
] >> 3) & 0x7;
1664 pio_mask
|= (1 << 5);
1666 pio_mask
|= (1 << 6);
1668 mwdma_mask
|= (1 << 3);
1670 mwdma_mask
|= (1 << 4);
1674 if (id
[ATA_ID_FIELD_VALID
] & (1 << 2))
1675 udma_mask
= id
[ATA_ID_UDMA_MODES
] & 0xff;
1677 return ata_pack_xfermask(pio_mask
, mwdma_mask
, udma_mask
);
1681 * ata_pio_queue_task - Queue port_task
1682 * @ap: The ata_port to queue port_task for
1683 * @data: data for @fn to use
1684 * @delay: delay time in msecs for workqueue function
1686 * Schedule @fn(@data) for execution after @delay jiffies using
1687 * port_task. There is one port_task per port and it's the
1688 * user(low level driver)'s responsibility to make sure that only
1689 * one task is active at any given time.
1691 * libata core layer takes care of synchronization between
1692 * port_task and EH. ata_pio_queue_task() may be ignored for EH
1696 * Inherited from caller.
1698 void ata_pio_queue_task(struct ata_port
*ap
, void *data
, unsigned long delay
)
1700 ap
->port_task_data
= data
;
1702 /* may fail if ata_port_flush_task() in progress */
1703 queue_delayed_work(ata_wq
, &ap
->port_task
, msecs_to_jiffies(delay
));
1707 * ata_port_flush_task - Flush port_task
1708 * @ap: The ata_port to flush port_task for
1710 * After this function completes, port_task is guranteed not to
1711 * be running or scheduled.
1714 * Kernel thread context (may sleep)
1716 void ata_port_flush_task(struct ata_port
*ap
)
1720 cancel_rearming_delayed_work(&ap
->port_task
);
1722 if (ata_msg_ctl(ap
))
1723 ata_port_printk(ap
, KERN_DEBUG
, "%s: EXIT\n", __func__
);
1726 static void ata_qc_complete_internal(struct ata_queued_cmd
*qc
)
1728 struct completion
*waiting
= qc
->private_data
;
1734 * ata_exec_internal_sg - execute libata internal command
1735 * @dev: Device to which the command is sent
1736 * @tf: Taskfile registers for the command and the result
1737 * @cdb: CDB for packet command
1738 * @dma_dir: Data tranfer direction of the command
1739 * @sgl: sg list for the data buffer of the command
1740 * @n_elem: Number of sg entries
1741 * @timeout: Timeout in msecs (0 for default)
1743 * Executes libata internal command with timeout. @tf contains
1744 * command on entry and result on return. Timeout and error
1745 * conditions are reported via return value. No recovery action
1746 * is taken after a command times out. It's caller's duty to
1747 * clean up after timeout.
1750 * None. Should be called with kernel context, might sleep.
1753 * Zero on success, AC_ERR_* mask on failure
1755 unsigned ata_exec_internal_sg(struct ata_device
*dev
,
1756 struct ata_taskfile
*tf
, const u8
*cdb
,
1757 int dma_dir
, struct scatterlist
*sgl
,
1758 unsigned int n_elem
, unsigned long timeout
)
1760 struct ata_link
*link
= dev
->link
;
1761 struct ata_port
*ap
= link
->ap
;
1762 u8 command
= tf
->command
;
1763 int auto_timeout
= 0;
1764 struct ata_queued_cmd
*qc
;
1765 unsigned int tag
, preempted_tag
;
1766 u32 preempted_sactive
, preempted_qc_active
;
1767 int preempted_nr_active_links
;
1768 DECLARE_COMPLETION_ONSTACK(wait
);
1769 unsigned long flags
;
1770 unsigned int err_mask
;
1773 spin_lock_irqsave(ap
->lock
, flags
);
1775 /* no internal command while frozen */
1776 if (ap
->pflags
& ATA_PFLAG_FROZEN
) {
1777 spin_unlock_irqrestore(ap
->lock
, flags
);
1778 return AC_ERR_SYSTEM
;
1781 /* initialize internal qc */
1783 /* XXX: Tag 0 is used for drivers with legacy EH as some
1784 * drivers choke if any other tag is given. This breaks
1785 * ata_tag_internal() test for those drivers. Don't use new
1786 * EH stuff without converting to it.
1788 if (ap
->ops
->error_handler
)
1789 tag
= ATA_TAG_INTERNAL
;
1793 if (test_and_set_bit(tag
, &ap
->qc_allocated
))
1795 qc
= __ata_qc_from_tag(ap
, tag
);
1803 preempted_tag
= link
->active_tag
;
1804 preempted_sactive
= link
->sactive
;
1805 preempted_qc_active
= ap
->qc_active
;
1806 preempted_nr_active_links
= ap
->nr_active_links
;
1807 link
->active_tag
= ATA_TAG_POISON
;
1810 ap
->nr_active_links
= 0;
1812 /* prepare & issue qc */
1815 memcpy(qc
->cdb
, cdb
, ATAPI_CDB_LEN
);
1816 qc
->flags
|= ATA_QCFLAG_RESULT_TF
;
1817 qc
->dma_dir
= dma_dir
;
1818 if (dma_dir
!= DMA_NONE
) {
1819 unsigned int i
, buflen
= 0;
1820 struct scatterlist
*sg
;
1822 for_each_sg(sgl
, sg
, n_elem
, i
)
1823 buflen
+= sg
->length
;
1825 ata_sg_init(qc
, sgl
, n_elem
);
1826 qc
->nbytes
= buflen
;
1829 qc
->private_data
= &wait
;
1830 qc
->complete_fn
= ata_qc_complete_internal
;
1834 spin_unlock_irqrestore(ap
->lock
, flags
);
1837 if (ata_probe_timeout
)
1838 timeout
= ata_probe_timeout
* 1000;
1840 timeout
= ata_internal_cmd_timeout(dev
, command
);
1845 rc
= wait_for_completion_timeout(&wait
, msecs_to_jiffies(timeout
));
1847 ata_port_flush_task(ap
);
1850 spin_lock_irqsave(ap
->lock
, flags
);
1852 /* We're racing with irq here. If we lose, the
1853 * following test prevents us from completing the qc
1854 * twice. If we win, the port is frozen and will be
1855 * cleaned up by ->post_internal_cmd().
1857 if (qc
->flags
& ATA_QCFLAG_ACTIVE
) {
1858 qc
->err_mask
|= AC_ERR_TIMEOUT
;
1860 if (ap
->ops
->error_handler
)
1861 ata_port_freeze(ap
);
1863 ata_qc_complete(qc
);
1865 if (ata_msg_warn(ap
))
1866 ata_dev_printk(dev
, KERN_WARNING
,
1867 "qc timeout (cmd 0x%x)\n", command
);
1870 spin_unlock_irqrestore(ap
->lock
, flags
);
1873 /* do post_internal_cmd */
1874 if (ap
->ops
->post_internal_cmd
)
1875 ap
->ops
->post_internal_cmd(qc
);
1877 /* perform minimal error analysis */
1878 if (qc
->flags
& ATA_QCFLAG_FAILED
) {
1879 if (qc
->result_tf
.command
& (ATA_ERR
| ATA_DF
))
1880 qc
->err_mask
|= AC_ERR_DEV
;
1883 qc
->err_mask
|= AC_ERR_OTHER
;
1885 if (qc
->err_mask
& ~AC_ERR_OTHER
)
1886 qc
->err_mask
&= ~AC_ERR_OTHER
;
1890 spin_lock_irqsave(ap
->lock
, flags
);
1892 *tf
= qc
->result_tf
;
1893 err_mask
= qc
->err_mask
;
1896 link
->active_tag
= preempted_tag
;
1897 link
->sactive
= preempted_sactive
;
1898 ap
->qc_active
= preempted_qc_active
;
1899 ap
->nr_active_links
= preempted_nr_active_links
;
1901 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1902 * Until those drivers are fixed, we detect the condition
1903 * here, fail the command with AC_ERR_SYSTEM and reenable the
1906 * Note that this doesn't change any behavior as internal
1907 * command failure results in disabling the device in the
1908 * higher layer for LLDDs without new reset/EH callbacks.
1910 * Kill the following code as soon as those drivers are fixed.
1912 if (ap
->flags
& ATA_FLAG_DISABLED
) {
1913 err_mask
|= AC_ERR_SYSTEM
;
1917 spin_unlock_irqrestore(ap
->lock
, flags
);
1919 if ((err_mask
& AC_ERR_TIMEOUT
) && auto_timeout
)
1920 ata_internal_cmd_timed_out(dev
, command
);
1926 * ata_exec_internal - execute libata internal command
1927 * @dev: Device to which the command is sent
1928 * @tf: Taskfile registers for the command and the result
1929 * @cdb: CDB for packet command
1930 * @dma_dir: Data tranfer direction of the command
1931 * @buf: Data buffer of the command
1932 * @buflen: Length of data buffer
1933 * @timeout: Timeout in msecs (0 for default)
1935 * Wrapper around ata_exec_internal_sg() which takes simple
1936 * buffer instead of sg list.
1939 * None. Should be called with kernel context, might sleep.
1942 * Zero on success, AC_ERR_* mask on failure
1944 unsigned ata_exec_internal(struct ata_device
*dev
,
1945 struct ata_taskfile
*tf
, const u8
*cdb
,
1946 int dma_dir
, void *buf
, unsigned int buflen
,
1947 unsigned long timeout
)
1949 struct scatterlist
*psg
= NULL
, sg
;
1950 unsigned int n_elem
= 0;
1952 if (dma_dir
!= DMA_NONE
) {
1954 sg_init_one(&sg
, buf
, buflen
);
1959 return ata_exec_internal_sg(dev
, tf
, cdb
, dma_dir
, psg
, n_elem
,
1964 * ata_do_simple_cmd - execute simple internal command
1965 * @dev: Device to which the command is sent
1966 * @cmd: Opcode to execute
1968 * Execute a 'simple' command, that only consists of the opcode
1969 * 'cmd' itself, without filling any other registers
1972 * Kernel thread context (may sleep).
1975 * Zero on success, AC_ERR_* mask on failure
1977 unsigned int ata_do_simple_cmd(struct ata_device
*dev
, u8 cmd
)
1979 struct ata_taskfile tf
;
1981 ata_tf_init(dev
, &tf
);
1984 tf
.flags
|= ATA_TFLAG_DEVICE
;
1985 tf
.protocol
= ATA_PROT_NODATA
;
1987 return ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
1991 * ata_pio_need_iordy - check if iordy needed
1994 * Check if the current speed of the device requires IORDY. Used
1995 * by various controllers for chip configuration.
1997 unsigned int ata_pio_need_iordy(const struct ata_device
*adev
)
1999 /* Don't set IORDY if we're preparing for reset. IORDY may
2000 * lead to controller lock up on certain controllers if the
2001 * port is not occupied. See bko#11703 for details.
2003 if (adev
->link
->ap
->pflags
& ATA_PFLAG_RESETTING
)
2005 /* Controller doesn't support IORDY. Probably a pointless
2006 * check as the caller should know this.
2008 if (adev
->link
->ap
->flags
& ATA_FLAG_NO_IORDY
)
2010 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */
2011 if (ata_id_is_cfa(adev
->id
)
2012 && (adev
->pio_mode
== XFER_PIO_5
|| adev
->pio_mode
== XFER_PIO_6
))
2014 /* PIO3 and higher it is mandatory */
2015 if (adev
->pio_mode
> XFER_PIO_2
)
2017 /* We turn it on when possible */
2018 if (ata_id_has_iordy(adev
->id
))
2024 * ata_pio_mask_no_iordy - Return the non IORDY mask
2027 * Compute the highest mode possible if we are not using iordy. Return
2028 * -1 if no iordy mode is available.
2030 static u32
ata_pio_mask_no_iordy(const struct ata_device
*adev
)
2032 /* If we have no drive specific rule, then PIO 2 is non IORDY */
2033 if (adev
->id
[ATA_ID_FIELD_VALID
] & 2) { /* EIDE */
2034 u16 pio
= adev
->id
[ATA_ID_EIDE_PIO
];
2035 /* Is the speed faster than the drive allows non IORDY ? */
2037 /* This is cycle times not frequency - watch the logic! */
2038 if (pio
> 240) /* PIO2 is 240nS per cycle */
2039 return 3 << ATA_SHIFT_PIO
;
2040 return 7 << ATA_SHIFT_PIO
;
2043 return 3 << ATA_SHIFT_PIO
;
2047 * ata_do_dev_read_id - default ID read method
2049 * @tf: proposed taskfile
2052 * Issue the identify taskfile and hand back the buffer containing
2053 * identify data. For some RAID controllers and for pre ATA devices
2054 * this function is wrapped or replaced by the driver
2056 unsigned int ata_do_dev_read_id(struct ata_device
*dev
,
2057 struct ata_taskfile
*tf
, u16
*id
)
2059 return ata_exec_internal(dev
, tf
, NULL
, DMA_FROM_DEVICE
,
2060 id
, sizeof(id
[0]) * ATA_ID_WORDS
, 0);
2064 * ata_dev_read_id - Read ID data from the specified device
2065 * @dev: target device
2066 * @p_class: pointer to class of the target device (may be changed)
2067 * @flags: ATA_READID_* flags
2068 * @id: buffer to read IDENTIFY data into
2070 * Read ID data from the specified device. ATA_CMD_ID_ATA is
2071 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
2072 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
2073 * for pre-ATA4 drives.
2075 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
2076 * now we abort if we hit that case.
2079 * Kernel thread context (may sleep)
2082 * 0 on success, -errno otherwise.
2084 int ata_dev_read_id(struct ata_device
*dev
, unsigned int *p_class
,
2085 unsigned int flags
, u16
*id
)
2087 struct ata_port
*ap
= dev
->link
->ap
;
2088 unsigned int class = *p_class
;
2089 struct ata_taskfile tf
;
2090 unsigned int err_mask
= 0;
2092 bool is_semb
= class == ATA_DEV_SEMB
;
2093 int may_fallback
= 1, tried_spinup
= 0;
2096 if (ata_msg_ctl(ap
))
2097 ata_dev_printk(dev
, KERN_DEBUG
, "%s: ENTER\n", __func__
);
2100 ata_tf_init(dev
, &tf
);
2104 class = ATA_DEV_ATA
; /* some hard drives report SEMB sig */
2106 tf
.command
= ATA_CMD_ID_ATA
;
2109 tf
.command
= ATA_CMD_ID_ATAPI
;
2113 reason
= "unsupported class";
2117 tf
.protocol
= ATA_PROT_PIO
;
2119 /* Some devices choke if TF registers contain garbage. Make
2120 * sure those are properly initialized.
2122 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
2124 /* Device presence detection is unreliable on some
2125 * controllers. Always poll IDENTIFY if available.
2127 tf
.flags
|= ATA_TFLAG_POLLING
;
2129 if (ap
->ops
->read_id
)
2130 err_mask
= ap
->ops
->read_id(dev
, &tf
, id
);
2132 err_mask
= ata_do_dev_read_id(dev
, &tf
, id
);
2135 if (err_mask
& AC_ERR_NODEV_HINT
) {
2136 ata_dev_printk(dev
, KERN_DEBUG
,
2137 "NODEV after polling detection\n");
2142 ata_dev_printk(dev
, KERN_INFO
, "IDENTIFY failed on "
2143 "device w/ SEMB sig, disabled\n");
2144 /* SEMB is not supported yet */
2145 *p_class
= ATA_DEV_SEMB_UNSUP
;
2149 if ((err_mask
== AC_ERR_DEV
) && (tf
.feature
& ATA_ABORTED
)) {
2150 /* Device or controller might have reported
2151 * the wrong device class. Give a shot at the
2152 * other IDENTIFY if the current one is
2153 * aborted by the device.
2158 if (class == ATA_DEV_ATA
)
2159 class = ATA_DEV_ATAPI
;
2161 class = ATA_DEV_ATA
;
2165 /* Control reaches here iff the device aborted
2166 * both flavors of IDENTIFYs which happens
2167 * sometimes with phantom devices.
2169 ata_dev_printk(dev
, KERN_DEBUG
,
2170 "both IDENTIFYs aborted, assuming NODEV\n");
2175 reason
= "I/O error";
2179 /* Falling back doesn't make sense if ID data was read
2180 * successfully at least once.
2184 swap_buf_le16(id
, ATA_ID_WORDS
);
2188 reason
= "device reports invalid type";
2190 if (class == ATA_DEV_ATA
) {
2191 if (!ata_id_is_ata(id
) && !ata_id_is_cfa(id
))
2194 if (ata_id_is_ata(id
))
2198 if (!tried_spinup
&& (id
[2] == 0x37c8 || id
[2] == 0x738c)) {
2201 * Drive powered-up in standby mode, and requires a specific
2202 * SET_FEATURES spin-up subcommand before it will accept
2203 * anything other than the original IDENTIFY command.
2205 err_mask
= ata_dev_set_feature(dev
, SETFEATURES_SPINUP
, 0);
2206 if (err_mask
&& id
[2] != 0x738c) {
2208 reason
= "SPINUP failed";
2212 * If the drive initially returned incomplete IDENTIFY info,
2213 * we now must reissue the IDENTIFY command.
2215 if (id
[2] == 0x37c8)
2219 if ((flags
& ATA_READID_POSTRESET
) && class == ATA_DEV_ATA
) {
2221 * The exact sequence expected by certain pre-ATA4 drives is:
2223 * IDENTIFY (optional in early ATA)
2224 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2226 * Some drives were very specific about that exact sequence.
2228 * Note that ATA4 says lba is mandatory so the second check
2229 * shoud never trigger.
2231 if (ata_id_major_version(id
) < 4 || !ata_id_has_lba(id
)) {
2232 err_mask
= ata_dev_init_params(dev
, id
[3], id
[6]);
2235 reason
= "INIT_DEV_PARAMS failed";
2239 /* current CHS translation info (id[53-58]) might be
2240 * changed. reread the identify device info.
2242 flags
&= ~ATA_READID_POSTRESET
;
2252 if (ata_msg_warn(ap
))
2253 ata_dev_printk(dev
, KERN_WARNING
, "failed to IDENTIFY "
2254 "(%s, err_mask=0x%x)\n", reason
, err_mask
);
2258 static int ata_do_link_spd_horkage(struct ata_device
*dev
)
2260 struct ata_link
*plink
= ata_dev_phys_link(dev
);
2261 u32 target
, target_limit
;
2263 if (!sata_scr_valid(plink
))
2266 if (dev
->horkage
& ATA_HORKAGE_1_5_GBPS
)
2271 target_limit
= (1 << target
) - 1;
2273 /* if already on stricter limit, no need to push further */
2274 if (plink
->sata_spd_limit
<= target_limit
)
2277 plink
->sata_spd_limit
= target_limit
;
2279 /* Request another EH round by returning -EAGAIN if link is
2280 * going faster than the target speed. Forward progress is
2281 * guaranteed by setting sata_spd_limit to target_limit above.
2283 if (plink
->sata_spd
> target
) {
2284 ata_dev_printk(dev
, KERN_INFO
,
2285 "applying link speed limit horkage to %s\n",
2286 sata_spd_string(target
));
2292 static inline u8
ata_dev_knobble(struct ata_device
*dev
)
2294 struct ata_port
*ap
= dev
->link
->ap
;
2296 if (ata_dev_blacklisted(dev
) & ATA_HORKAGE_BRIDGE_OK
)
2299 return ((ap
->cbl
== ATA_CBL_SATA
) && (!ata_id_is_sata(dev
->id
)));
2302 static void ata_dev_config_ncq(struct ata_device
*dev
,
2303 char *desc
, size_t desc_sz
)
2305 struct ata_port
*ap
= dev
->link
->ap
;
2306 int hdepth
= 0, ddepth
= ata_id_queue_depth(dev
->id
);
2308 if (!ata_id_has_ncq(dev
->id
)) {
2312 if (dev
->horkage
& ATA_HORKAGE_NONCQ
) {
2313 snprintf(desc
, desc_sz
, "NCQ (not used)");
2316 if (ap
->flags
& ATA_FLAG_NCQ
) {
2317 hdepth
= min(ap
->scsi_host
->can_queue
, ATA_MAX_QUEUE
- 1);
2318 dev
->flags
|= ATA_DFLAG_NCQ
;
2321 if (hdepth
>= ddepth
)
2322 snprintf(desc
, desc_sz
, "NCQ (depth %d)", ddepth
);
2324 snprintf(desc
, desc_sz
, "NCQ (depth %d/%d)", hdepth
, ddepth
);
2328 * ata_dev_configure - Configure the specified ATA/ATAPI device
2329 * @dev: Target device to configure
2331 * Configure @dev according to @dev->id. Generic and low-level
2332 * driver specific fixups are also applied.
2335 * Kernel thread context (may sleep)
2338 * 0 on success, -errno otherwise
2340 int ata_dev_configure(struct ata_device
*dev
)
2342 struct ata_port
*ap
= dev
->link
->ap
;
2343 struct ata_eh_context
*ehc
= &dev
->link
->eh_context
;
2344 int print_info
= ehc
->i
.flags
& ATA_EHI_PRINTINFO
;
2345 const u16
*id
= dev
->id
;
2346 unsigned long xfer_mask
;
2347 char revbuf
[7]; /* XYZ-99\0 */
2348 char fwrevbuf
[ATA_ID_FW_REV_LEN
+1];
2349 char modelbuf
[ATA_ID_PROD_LEN
+1];
2352 if (!ata_dev_enabled(dev
) && ata_msg_info(ap
)) {
2353 ata_dev_printk(dev
, KERN_INFO
, "%s: ENTER/EXIT -- nodev\n",
2358 if (ata_msg_probe(ap
))
2359 ata_dev_printk(dev
, KERN_DEBUG
, "%s: ENTER\n", __func__
);
2362 dev
->horkage
|= ata_dev_blacklisted(dev
);
2363 ata_force_horkage(dev
);
2365 if (dev
->horkage
& ATA_HORKAGE_DISABLE
) {
2366 ata_dev_printk(dev
, KERN_INFO
,
2367 "unsupported device, disabling\n");
2368 ata_dev_disable(dev
);
2372 if ((!atapi_enabled
|| (ap
->flags
& ATA_FLAG_NO_ATAPI
)) &&
2373 dev
->class == ATA_DEV_ATAPI
) {
2374 ata_dev_printk(dev
, KERN_WARNING
,
2375 "WARNING: ATAPI is %s, device ignored.\n",
2376 atapi_enabled
? "not supported with this driver"
2378 ata_dev_disable(dev
);
2382 rc
= ata_do_link_spd_horkage(dev
);
2386 /* let ACPI work its magic */
2387 rc
= ata_acpi_on_devcfg(dev
);
2391 /* massage HPA, do it early as it might change IDENTIFY data */
2392 rc
= ata_hpa_resize(dev
);
2396 /* print device capabilities */
2397 if (ata_msg_probe(ap
))
2398 ata_dev_printk(dev
, KERN_DEBUG
,
2399 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2400 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2402 id
[49], id
[82], id
[83], id
[84],
2403 id
[85], id
[86], id
[87], id
[88]);
2405 /* initialize to-be-configured parameters */
2406 dev
->flags
&= ~ATA_DFLAG_CFG_MASK
;
2407 dev
->max_sectors
= 0;
2413 dev
->multi_count
= 0;
2416 * common ATA, ATAPI feature tests
2419 /* find max transfer mode; for printk only */
2420 xfer_mask
= ata_id_xfermask(id
);
2422 if (ata_msg_probe(ap
))
2425 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2426 ata_id_c_string(dev
->id
, fwrevbuf
, ATA_ID_FW_REV
,
2429 ata_id_c_string(dev
->id
, modelbuf
, ATA_ID_PROD
,
2432 /* ATA-specific feature tests */
2433 if (dev
->class == ATA_DEV_ATA
) {
2434 if (ata_id_is_cfa(id
)) {
2435 /* CPRM may make this media unusable */
2436 if (id
[ATA_ID_CFA_KEY_MGMT
] & 1)
2437 ata_dev_printk(dev
, KERN_WARNING
,
2438 "supports DRM functions and may "
2439 "not be fully accessable.\n");
2440 snprintf(revbuf
, 7, "CFA");
2442 snprintf(revbuf
, 7, "ATA-%d", ata_id_major_version(id
));
2443 /* Warn the user if the device has TPM extensions */
2444 if (ata_id_has_tpm(id
))
2445 ata_dev_printk(dev
, KERN_WARNING
,
2446 "supports DRM functions and may "
2447 "not be fully accessable.\n");
2450 dev
->n_sectors
= ata_id_n_sectors(id
);
2452 /* get current R/W Multiple count setting */
2453 if ((dev
->id
[47] >> 8) == 0x80 && (dev
->id
[59] & 0x100)) {
2454 unsigned int max
= dev
->id
[47] & 0xff;
2455 unsigned int cnt
= dev
->id
[59] & 0xff;
2456 /* only recognize/allow powers of two here */
2457 if (is_power_of_2(max
) && is_power_of_2(cnt
))
2459 dev
->multi_count
= cnt
;
2462 if (ata_id_has_lba(id
)) {
2463 const char *lba_desc
;
2467 dev
->flags
|= ATA_DFLAG_LBA
;
2468 if (ata_id_has_lba48(id
)) {
2469 dev
->flags
|= ATA_DFLAG_LBA48
;
2472 if (dev
->n_sectors
>= (1UL << 28) &&
2473 ata_id_has_flush_ext(id
))
2474 dev
->flags
|= ATA_DFLAG_FLUSH_EXT
;
2478 ata_dev_config_ncq(dev
, ncq_desc
, sizeof(ncq_desc
));
2480 /* print device info to dmesg */
2481 if (ata_msg_drv(ap
) && print_info
) {
2482 ata_dev_printk(dev
, KERN_INFO
,
2483 "%s: %s, %s, max %s\n",
2484 revbuf
, modelbuf
, fwrevbuf
,
2485 ata_mode_string(xfer_mask
));
2486 ata_dev_printk(dev
, KERN_INFO
,
2487 "%Lu sectors, multi %u: %s %s\n",
2488 (unsigned long long)dev
->n_sectors
,
2489 dev
->multi_count
, lba_desc
, ncq_desc
);
2494 /* Default translation */
2495 dev
->cylinders
= id
[1];
2497 dev
->sectors
= id
[6];
2499 if (ata_id_current_chs_valid(id
)) {
2500 /* Current CHS translation is valid. */
2501 dev
->cylinders
= id
[54];
2502 dev
->heads
= id
[55];
2503 dev
->sectors
= id
[56];
2506 /* print device info to dmesg */
2507 if (ata_msg_drv(ap
) && print_info
) {
2508 ata_dev_printk(dev
, KERN_INFO
,
2509 "%s: %s, %s, max %s\n",
2510 revbuf
, modelbuf
, fwrevbuf
,
2511 ata_mode_string(xfer_mask
));
2512 ata_dev_printk(dev
, KERN_INFO
,
2513 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
2514 (unsigned long long)dev
->n_sectors
,
2515 dev
->multi_count
, dev
->cylinders
,
2516 dev
->heads
, dev
->sectors
);
2523 /* ATAPI-specific feature tests */
2524 else if (dev
->class == ATA_DEV_ATAPI
) {
2525 const char *cdb_intr_string
= "";
2526 const char *atapi_an_string
= "";
2527 const char *dma_dir_string
= "";
2530 rc
= atapi_cdb_len(id
);
2531 if ((rc
< 12) || (rc
> ATAPI_CDB_LEN
)) {
2532 if (ata_msg_warn(ap
))
2533 ata_dev_printk(dev
, KERN_WARNING
,
2534 "unsupported CDB len\n");
2538 dev
->cdb_len
= (unsigned int) rc
;
2540 /* Enable ATAPI AN if both the host and device have
2541 * the support. If PMP is attached, SNTF is required
2542 * to enable ATAPI AN to discern between PHY status
2543 * changed notifications and ATAPI ANs.
2545 if ((ap
->flags
& ATA_FLAG_AN
) && ata_id_has_atapi_AN(id
) &&
2546 (!sata_pmp_attached(ap
) ||
2547 sata_scr_read(&ap
->link
, SCR_NOTIFICATION
, &sntf
) == 0)) {
2548 unsigned int err_mask
;
2550 /* issue SET feature command to turn this on */
2551 err_mask
= ata_dev_set_feature(dev
,
2552 SETFEATURES_SATA_ENABLE
, SATA_AN
);
2554 ata_dev_printk(dev
, KERN_ERR
,
2555 "failed to enable ATAPI AN "
2556 "(err_mask=0x%x)\n", err_mask
);
2558 dev
->flags
|= ATA_DFLAG_AN
;
2559 atapi_an_string
= ", ATAPI AN";
2563 if (ata_id_cdb_intr(dev
->id
)) {
2564 dev
->flags
|= ATA_DFLAG_CDB_INTR
;
2565 cdb_intr_string
= ", CDB intr";
2568 if (atapi_dmadir
|| atapi_id_dmadir(dev
->id
)) {
2569 dev
->flags
|= ATA_DFLAG_DMADIR
;
2570 dma_dir_string
= ", DMADIR";
2573 /* print device info to dmesg */
2574 if (ata_msg_drv(ap
) && print_info
)
2575 ata_dev_printk(dev
, KERN_INFO
,
2576 "ATAPI: %s, %s, max %s%s%s%s\n",
2578 ata_mode_string(xfer_mask
),
2579 cdb_intr_string
, atapi_an_string
,
2583 /* determine max_sectors */
2584 dev
->max_sectors
= ATA_MAX_SECTORS
;
2585 if (dev
->flags
& ATA_DFLAG_LBA48
)
2586 dev
->max_sectors
= ATA_MAX_SECTORS_LBA48
;
2588 if (!(dev
->horkage
& ATA_HORKAGE_IPM
)) {
2589 if (ata_id_has_hipm(dev
->id
))
2590 dev
->flags
|= ATA_DFLAG_HIPM
;
2591 if (ata_id_has_dipm(dev
->id
))
2592 dev
->flags
|= ATA_DFLAG_DIPM
;
2595 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2597 if (ata_dev_knobble(dev
)) {
2598 if (ata_msg_drv(ap
) && print_info
)
2599 ata_dev_printk(dev
, KERN_INFO
,
2600 "applying bridge limits\n");
2601 dev
->udma_mask
&= ATA_UDMA5
;
2602 dev
->max_sectors
= ATA_MAX_SECTORS
;
2605 if ((dev
->class == ATA_DEV_ATAPI
) &&
2606 (atapi_command_packet_set(id
) == TYPE_TAPE
)) {
2607 dev
->max_sectors
= ATA_MAX_SECTORS_TAPE
;
2608 dev
->horkage
|= ATA_HORKAGE_STUCK_ERR
;
2611 if (dev
->horkage
& ATA_HORKAGE_MAX_SEC_128
)
2612 dev
->max_sectors
= min_t(unsigned int, ATA_MAX_SECTORS_128
,
2615 if (ata_dev_blacklisted(dev
) & ATA_HORKAGE_IPM
) {
2616 dev
->horkage
|= ATA_HORKAGE_IPM
;
2618 /* reset link pm_policy for this port to no pm */
2619 ap
->pm_policy
= MAX_PERFORMANCE
;
2622 if (ap
->ops
->dev_config
)
2623 ap
->ops
->dev_config(dev
);
2625 if (dev
->horkage
& ATA_HORKAGE_DIAGNOSTIC
) {
2626 /* Let the user know. We don't want to disallow opens for
2627 rescue purposes, or in case the vendor is just a blithering
2628 idiot. Do this after the dev_config call as some controllers
2629 with buggy firmware may want to avoid reporting false device
2633 ata_dev_printk(dev
, KERN_WARNING
,
2634 "Drive reports diagnostics failure. This may indicate a drive\n");
2635 ata_dev_printk(dev
, KERN_WARNING
,
2636 "fault or invalid emulation. Contact drive vendor for information.\n");
2640 if ((dev
->horkage
& ATA_HORKAGE_FIRMWARE_WARN
) && print_info
) {
2641 ata_dev_printk(dev
, KERN_WARNING
, "WARNING: device requires "
2642 "firmware update to be fully functional.\n");
2643 ata_dev_printk(dev
, KERN_WARNING
, " contact the vendor "
2644 "or visit http://ata.wiki.kernel.org.\n");
2650 if (ata_msg_probe(ap
))
2651 ata_dev_printk(dev
, KERN_DEBUG
,
2652 "%s: EXIT, err\n", __func__
);
2657 * ata_cable_40wire - return 40 wire cable type
2660 * Helper method for drivers which want to hardwire 40 wire cable
2664 int ata_cable_40wire(struct ata_port
*ap
)
2666 return ATA_CBL_PATA40
;
2670 * ata_cable_80wire - return 80 wire cable type
2673 * Helper method for drivers which want to hardwire 80 wire cable
2677 int ata_cable_80wire(struct ata_port
*ap
)
2679 return ATA_CBL_PATA80
;
2683 * ata_cable_unknown - return unknown PATA cable.
2686 * Helper method for drivers which have no PATA cable detection.
2689 int ata_cable_unknown(struct ata_port
*ap
)
2691 return ATA_CBL_PATA_UNK
;
2695 * ata_cable_ignore - return ignored PATA cable.
2698 * Helper method for drivers which don't use cable type to limit
2701 int ata_cable_ignore(struct ata_port
*ap
)
2703 return ATA_CBL_PATA_IGN
;
2707 * ata_cable_sata - return SATA cable type
2710 * Helper method for drivers which have SATA cables
2713 int ata_cable_sata(struct ata_port
*ap
)
2715 return ATA_CBL_SATA
;
2719 * ata_bus_probe - Reset and probe ATA bus
2722 * Master ATA bus probing function. Initiates a hardware-dependent
2723 * bus reset, then attempts to identify any devices found on
2727 * PCI/etc. bus probe sem.
2730 * Zero on success, negative errno otherwise.
2733 int ata_bus_probe(struct ata_port
*ap
)
2735 unsigned int classes
[ATA_MAX_DEVICES
];
2736 int tries
[ATA_MAX_DEVICES
];
2738 struct ata_device
*dev
;
2742 ata_for_each_dev(dev
, &ap
->link
, ALL
)
2743 tries
[dev
->devno
] = ATA_PROBE_MAX_TRIES
;
2746 ata_for_each_dev(dev
, &ap
->link
, ALL
) {
2747 /* If we issue an SRST then an ATA drive (not ATAPI)
2748 * may change configuration and be in PIO0 timing. If
2749 * we do a hard reset (or are coming from power on)
2750 * this is true for ATA or ATAPI. Until we've set a
2751 * suitable controller mode we should not touch the
2752 * bus as we may be talking too fast.
2754 dev
->pio_mode
= XFER_PIO_0
;
2756 /* If the controller has a pio mode setup function
2757 * then use it to set the chipset to rights. Don't
2758 * touch the DMA setup as that will be dealt with when
2759 * configuring devices.
2761 if (ap
->ops
->set_piomode
)
2762 ap
->ops
->set_piomode(ap
, dev
);
2765 /* reset and determine device classes */
2766 ap
->ops
->phy_reset(ap
);
2768 ata_for_each_dev(dev
, &ap
->link
, ALL
) {
2769 if (!(ap
->flags
& ATA_FLAG_DISABLED
) &&
2770 dev
->class != ATA_DEV_UNKNOWN
)
2771 classes
[dev
->devno
] = dev
->class;
2773 classes
[dev
->devno
] = ATA_DEV_NONE
;
2775 dev
->class = ATA_DEV_UNKNOWN
;
2780 /* read IDENTIFY page and configure devices. We have to do the identify
2781 specific sequence bass-ackwards so that PDIAG- is released by
2784 ata_for_each_dev(dev
, &ap
->link
, ALL_REVERSE
) {
2785 if (tries
[dev
->devno
])
2786 dev
->class = classes
[dev
->devno
];
2788 if (!ata_dev_enabled(dev
))
2791 rc
= ata_dev_read_id(dev
, &dev
->class, ATA_READID_POSTRESET
,
2797 /* Now ask for the cable type as PDIAG- should have been released */
2798 if (ap
->ops
->cable_detect
)
2799 ap
->cbl
= ap
->ops
->cable_detect(ap
);
2801 /* We may have SATA bridge glue hiding here irrespective of
2802 * the reported cable types and sensed types. When SATA
2803 * drives indicate we have a bridge, we don't know which end
2804 * of the link the bridge is which is a problem.
2806 ata_for_each_dev(dev
, &ap
->link
, ENABLED
)
2807 if (ata_id_is_sata(dev
->id
))
2808 ap
->cbl
= ATA_CBL_SATA
;
2810 /* After the identify sequence we can now set up the devices. We do
2811 this in the normal order so that the user doesn't get confused */
2813 ata_for_each_dev(dev
, &ap
->link
, ENABLED
) {
2814 ap
->link
.eh_context
.i
.flags
|= ATA_EHI_PRINTINFO
;
2815 rc
= ata_dev_configure(dev
);
2816 ap
->link
.eh_context
.i
.flags
&= ~ATA_EHI_PRINTINFO
;
2821 /* configure transfer mode */
2822 rc
= ata_set_mode(&ap
->link
, &dev
);
2826 ata_for_each_dev(dev
, &ap
->link
, ENABLED
)
2829 /* no device present, disable port */
2830 ata_port_disable(ap
);
2834 tries
[dev
->devno
]--;
2838 /* eeek, something went very wrong, give up */
2839 tries
[dev
->devno
] = 0;
2843 /* give it just one more chance */
2844 tries
[dev
->devno
] = min(tries
[dev
->devno
], 1);
2846 if (tries
[dev
->devno
] == 1) {
2847 /* This is the last chance, better to slow
2848 * down than lose it.
2850 sata_down_spd_limit(&ap
->link
, 0);
2851 ata_down_xfermask_limit(dev
, ATA_DNXFER_PIO
);
2855 if (!tries
[dev
->devno
])
2856 ata_dev_disable(dev
);
2862 * ata_port_probe - Mark port as enabled
2863 * @ap: Port for which we indicate enablement
2865 * Modify @ap data structure such that the system
2866 * thinks that the entire port is enabled.
2868 * LOCKING: host lock, or some other form of
2872 void ata_port_probe(struct ata_port
*ap
)
2874 ap
->flags
&= ~ATA_FLAG_DISABLED
;
2878 * sata_print_link_status - Print SATA link status
2879 * @link: SATA link to printk link status about
2881 * This function prints link speed and status of a SATA link.
2886 static void sata_print_link_status(struct ata_link
*link
)
2888 u32 sstatus
, scontrol
, tmp
;
2890 if (sata_scr_read(link
, SCR_STATUS
, &sstatus
))
2892 sata_scr_read(link
, SCR_CONTROL
, &scontrol
);
2894 if (ata_phys_link_online(link
)) {
2895 tmp
= (sstatus
>> 4) & 0xf;
2896 ata_link_printk(link
, KERN_INFO
,
2897 "SATA link up %s (SStatus %X SControl %X)\n",
2898 sata_spd_string(tmp
), sstatus
, scontrol
);
2900 ata_link_printk(link
, KERN_INFO
,
2901 "SATA link down (SStatus %X SControl %X)\n",
2907 * ata_dev_pair - return other device on cable
2910 * Obtain the other device on the same cable, or if none is
2911 * present NULL is returned
2914 struct ata_device
*ata_dev_pair(struct ata_device
*adev
)
2916 struct ata_link
*link
= adev
->link
;
2917 struct ata_device
*pair
= &link
->device
[1 - adev
->devno
];
2918 if (!ata_dev_enabled(pair
))
2924 * ata_port_disable - Disable port.
2925 * @ap: Port to be disabled.
2927 * Modify @ap data structure such that the system
2928 * thinks that the entire port is disabled, and should
2929 * never attempt to probe or communicate with devices
2932 * LOCKING: host lock, or some other form of
2936 void ata_port_disable(struct ata_port
*ap
)
2938 ap
->link
.device
[0].class = ATA_DEV_NONE
;
2939 ap
->link
.device
[1].class = ATA_DEV_NONE
;
2940 ap
->flags
|= ATA_FLAG_DISABLED
;
2944 * sata_down_spd_limit - adjust SATA spd limit downward
2945 * @link: Link to adjust SATA spd limit for
2946 * @spd_limit: Additional limit
2948 * Adjust SATA spd limit of @link downward. Note that this
2949 * function only adjusts the limit. The change must be applied
2950 * using sata_set_spd().
2952 * If @spd_limit is non-zero, the speed is limited to equal to or
2953 * lower than @spd_limit if such speed is supported. If
2954 * @spd_limit is slower than any supported speed, only the lowest
2955 * supported speed is allowed.
2958 * Inherited from caller.
2961 * 0 on success, negative errno on failure
2963 int sata_down_spd_limit(struct ata_link
*link
, u32 spd_limit
)
2965 u32 sstatus
, spd
, mask
;
2968 if (!sata_scr_valid(link
))
2971 /* If SCR can be read, use it to determine the current SPD.
2972 * If not, use cached value in link->sata_spd.
2974 rc
= sata_scr_read(link
, SCR_STATUS
, &sstatus
);
2975 if (rc
== 0 && ata_sstatus_online(sstatus
))
2976 spd
= (sstatus
>> 4) & 0xf;
2978 spd
= link
->sata_spd
;
2980 mask
= link
->sata_spd_limit
;
2984 /* unconditionally mask off the highest bit */
2985 bit
= fls(mask
) - 1;
2986 mask
&= ~(1 << bit
);
2988 /* Mask off all speeds higher than or equal to the current
2989 * one. Force 1.5Gbps if current SPD is not available.
2992 mask
&= (1 << (spd
- 1)) - 1;
2996 /* were we already at the bottom? */
3001 if (mask
& ((1 << spd_limit
) - 1))
3002 mask
&= (1 << spd_limit
) - 1;
3004 bit
= ffs(mask
) - 1;
3009 link
->sata_spd_limit
= mask
;
3011 ata_link_printk(link
, KERN_WARNING
, "limiting SATA link speed to %s\n",
3012 sata_spd_string(fls(mask
)));
3017 static int __sata_set_spd_needed(struct ata_link
*link
, u32
*scontrol
)
3019 struct ata_link
*host_link
= &link
->ap
->link
;
3020 u32 limit
, target
, spd
;
3022 limit
= link
->sata_spd_limit
;
3024 /* Don't configure downstream link faster than upstream link.
3025 * It doesn't speed up anything and some PMPs choke on such
3028 if (!ata_is_host_link(link
) && host_link
->sata_spd
)
3029 limit
&= (1 << host_link
->sata_spd
) - 1;
3031 if (limit
== UINT_MAX
)
3034 target
= fls(limit
);
3036 spd
= (*scontrol
>> 4) & 0xf;
3037 *scontrol
= (*scontrol
& ~0xf0) | ((target
& 0xf) << 4);
3039 return spd
!= target
;
3043 * sata_set_spd_needed - is SATA spd configuration needed
3044 * @link: Link in question
3046 * Test whether the spd limit in SControl matches
3047 * @link->sata_spd_limit. This function is used to determine
3048 * whether hardreset is necessary to apply SATA spd
3052 * Inherited from caller.
3055 * 1 if SATA spd configuration is needed, 0 otherwise.
3057 static int sata_set_spd_needed(struct ata_link
*link
)
3061 if (sata_scr_read(link
, SCR_CONTROL
, &scontrol
))
3064 return __sata_set_spd_needed(link
, &scontrol
);
3068 * sata_set_spd - set SATA spd according to spd limit
3069 * @link: Link to set SATA spd for
3071 * Set SATA spd of @link according to sata_spd_limit.
3074 * Inherited from caller.
3077 * 0 if spd doesn't need to be changed, 1 if spd has been
3078 * changed. Negative errno if SCR registers are inaccessible.
3080 int sata_set_spd(struct ata_link
*link
)
3085 if ((rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
)))
3088 if (!__sata_set_spd_needed(link
, &scontrol
))
3091 if ((rc
= sata_scr_write(link
, SCR_CONTROL
, scontrol
)))
3098 * This mode timing computation functionality is ported over from
3099 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
3102 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
3103 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
3104 * for UDMA6, which is currently supported only by Maxtor drives.
3106 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
3109 static const struct ata_timing ata_timing
[] = {
3110 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */
3111 { XFER_PIO_0
, 70, 290, 240, 600, 165, 150, 0, 600, 0 },
3112 { XFER_PIO_1
, 50, 290, 93, 383, 125, 100, 0, 383, 0 },
3113 { XFER_PIO_2
, 30, 290, 40, 330, 100, 90, 0, 240, 0 },
3114 { XFER_PIO_3
, 30, 80, 70, 180, 80, 70, 0, 180, 0 },
3115 { XFER_PIO_4
, 25, 70, 25, 120, 70, 25, 0, 120, 0 },
3116 { XFER_PIO_5
, 15, 65, 25, 100, 65, 25, 0, 100, 0 },
3117 { XFER_PIO_6
, 10, 55, 20, 80, 55, 20, 0, 80, 0 },
3119 { XFER_SW_DMA_0
, 120, 0, 0, 0, 480, 480, 50, 960, 0 },
3120 { XFER_SW_DMA_1
, 90, 0, 0, 0, 240, 240, 30, 480, 0 },
3121 { XFER_SW_DMA_2
, 60, 0, 0, 0, 120, 120, 20, 240, 0 },
3123 { XFER_MW_DMA_0
, 60, 0, 0, 0, 215, 215, 20, 480, 0 },
3124 { XFER_MW_DMA_1
, 45, 0, 0, 0, 80, 50, 5, 150, 0 },
3125 { XFER_MW_DMA_2
, 25, 0, 0, 0, 70, 25, 5, 120, 0 },
3126 { XFER_MW_DMA_3
, 25, 0, 0, 0, 65, 25, 5, 100, 0 },
3127 { XFER_MW_DMA_4
, 25, 0, 0, 0, 55, 20, 5, 80, 0 },
3129 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */
3130 { XFER_UDMA_0
, 0, 0, 0, 0, 0, 0, 0, 0, 120 },
3131 { XFER_UDMA_1
, 0, 0, 0, 0, 0, 0, 0, 0, 80 },
3132 { XFER_UDMA_2
, 0, 0, 0, 0, 0, 0, 0, 0, 60 },
3133 { XFER_UDMA_3
, 0, 0, 0, 0, 0, 0, 0, 0, 45 },
3134 { XFER_UDMA_4
, 0, 0, 0, 0, 0, 0, 0, 0, 30 },
3135 { XFER_UDMA_5
, 0, 0, 0, 0, 0, 0, 0, 0, 20 },
3136 { XFER_UDMA_6
, 0, 0, 0, 0, 0, 0, 0, 0, 15 },
3141 #define ENOUGH(v, unit) (((v)-1)/(unit)+1)
3142 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
3144 static void ata_timing_quantize(const struct ata_timing
*t
, struct ata_timing
*q
, int T
, int UT
)
3146 q
->setup
= EZ(t
->setup
* 1000, T
);
3147 q
->act8b
= EZ(t
->act8b
* 1000, T
);
3148 q
->rec8b
= EZ(t
->rec8b
* 1000, T
);
3149 q
->cyc8b
= EZ(t
->cyc8b
* 1000, T
);
3150 q
->active
= EZ(t
->active
* 1000, T
);
3151 q
->recover
= EZ(t
->recover
* 1000, T
);
3152 q
->dmack_hold
= EZ(t
->dmack_hold
* 1000, T
);
3153 q
->cycle
= EZ(t
->cycle
* 1000, T
);
3154 q
->udma
= EZ(t
->udma
* 1000, UT
);
3157 void ata_timing_merge(const struct ata_timing
*a
, const struct ata_timing
*b
,
3158 struct ata_timing
*m
, unsigned int what
)
3160 if (what
& ATA_TIMING_SETUP
) m
->setup
= max(a
->setup
, b
->setup
);
3161 if (what
& ATA_TIMING_ACT8B
) m
->act8b
= max(a
->act8b
, b
->act8b
);
3162 if (what
& ATA_TIMING_REC8B
) m
->rec8b
= max(a
->rec8b
, b
->rec8b
);
3163 if (what
& ATA_TIMING_CYC8B
) m
->cyc8b
= max(a
->cyc8b
, b
->cyc8b
);
3164 if (what
& ATA_TIMING_ACTIVE
) m
->active
= max(a
->active
, b
->active
);
3165 if (what
& ATA_TIMING_RECOVER
) m
->recover
= max(a
->recover
, b
->recover
);
3166 if (what
& ATA_TIMING_DMACK_HOLD
) m
->dmack_hold
= max(a
->dmack_hold
, b
->dmack_hold
);
3167 if (what
& ATA_TIMING_CYCLE
) m
->cycle
= max(a
->cycle
, b
->cycle
);
3168 if (what
& ATA_TIMING_UDMA
) m
->udma
= max(a
->udma
, b
->udma
);
3171 const struct ata_timing
*ata_timing_find_mode(u8 xfer_mode
)
3173 const struct ata_timing
*t
= ata_timing
;
3175 while (xfer_mode
> t
->mode
)
3178 if (xfer_mode
== t
->mode
)
3183 int ata_timing_compute(struct ata_device
*adev
, unsigned short speed
,
3184 struct ata_timing
*t
, int T
, int UT
)
3186 const struct ata_timing
*s
;
3187 struct ata_timing p
;
3193 if (!(s
= ata_timing_find_mode(speed
)))
3196 memcpy(t
, s
, sizeof(*s
));
3199 * If the drive is an EIDE drive, it can tell us it needs extended
3200 * PIO/MW_DMA cycle timing.
3203 if (adev
->id
[ATA_ID_FIELD_VALID
] & 2) { /* EIDE drive */
3204 memset(&p
, 0, sizeof(p
));
3205 if (speed
>= XFER_PIO_0
&& speed
<= XFER_SW_DMA_0
) {
3206 if (speed
<= XFER_PIO_2
) p
.cycle
= p
.cyc8b
= adev
->id
[ATA_ID_EIDE_PIO
];
3207 else p
.cycle
= p
.cyc8b
= adev
->id
[ATA_ID_EIDE_PIO_IORDY
];
3208 } else if (speed
>= XFER_MW_DMA_0
&& speed
<= XFER_MW_DMA_2
) {
3209 p
.cycle
= adev
->id
[ATA_ID_EIDE_DMA_MIN
];
3211 ata_timing_merge(&p
, t
, t
, ATA_TIMING_CYCLE
| ATA_TIMING_CYC8B
);
3215 * Convert the timing to bus clock counts.
3218 ata_timing_quantize(t
, t
, T
, UT
);
3221 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3222 * S.M.A.R.T * and some other commands. We have to ensure that the
3223 * DMA cycle timing is slower/equal than the fastest PIO timing.
3226 if (speed
> XFER_PIO_6
) {
3227 ata_timing_compute(adev
, adev
->pio_mode
, &p
, T
, UT
);
3228 ata_timing_merge(&p
, t
, t
, ATA_TIMING_ALL
);
3232 * Lengthen active & recovery time so that cycle time is correct.
3235 if (t
->act8b
+ t
->rec8b
< t
->cyc8b
) {
3236 t
->act8b
+= (t
->cyc8b
- (t
->act8b
+ t
->rec8b
)) / 2;
3237 t
->rec8b
= t
->cyc8b
- t
->act8b
;
3240 if (t
->active
+ t
->recover
< t
->cycle
) {
3241 t
->active
+= (t
->cycle
- (t
->active
+ t
->recover
)) / 2;
3242 t
->recover
= t
->cycle
- t
->active
;
3245 /* In a few cases quantisation may produce enough errors to
3246 leave t->cycle too low for the sum of active and recovery
3247 if so we must correct this */
3248 if (t
->active
+ t
->recover
> t
->cycle
)
3249 t
->cycle
= t
->active
+ t
->recover
;
3255 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3256 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3257 * @cycle: cycle duration in ns
3259 * Return matching xfer mode for @cycle. The returned mode is of
3260 * the transfer type specified by @xfer_shift. If @cycle is too
3261 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3262 * than the fastest known mode, the fasted mode is returned.
3268 * Matching xfer_mode, 0xff if no match found.
3270 u8
ata_timing_cycle2mode(unsigned int xfer_shift
, int cycle
)
3272 u8 base_mode
= 0xff, last_mode
= 0xff;
3273 const struct ata_xfer_ent
*ent
;
3274 const struct ata_timing
*t
;
3276 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
3277 if (ent
->shift
== xfer_shift
)
3278 base_mode
= ent
->base
;
3280 for (t
= ata_timing_find_mode(base_mode
);
3281 t
&& ata_xfer_mode2shift(t
->mode
) == xfer_shift
; t
++) {
3282 unsigned short this_cycle
;
3284 switch (xfer_shift
) {
3286 case ATA_SHIFT_MWDMA
:
3287 this_cycle
= t
->cycle
;
3289 case ATA_SHIFT_UDMA
:
3290 this_cycle
= t
->udma
;
3296 if (cycle
> this_cycle
)
3299 last_mode
= t
->mode
;
3306 * ata_down_xfermask_limit - adjust dev xfer masks downward
3307 * @dev: Device to adjust xfer masks
3308 * @sel: ATA_DNXFER_* selector
3310 * Adjust xfer masks of @dev downward. Note that this function
3311 * does not apply the change. Invoking ata_set_mode() afterwards
3312 * will apply the limit.
3315 * Inherited from caller.
3318 * 0 on success, negative errno on failure
3320 int ata_down_xfermask_limit(struct ata_device
*dev
, unsigned int sel
)
3323 unsigned long orig_mask
, xfer_mask
;
3324 unsigned long pio_mask
, mwdma_mask
, udma_mask
;
3327 quiet
= !!(sel
& ATA_DNXFER_QUIET
);
3328 sel
&= ~ATA_DNXFER_QUIET
;
3330 xfer_mask
= orig_mask
= ata_pack_xfermask(dev
->pio_mask
,
3333 ata_unpack_xfermask(xfer_mask
, &pio_mask
, &mwdma_mask
, &udma_mask
);
3336 case ATA_DNXFER_PIO
:
3337 highbit
= fls(pio_mask
) - 1;
3338 pio_mask
&= ~(1 << highbit
);
3341 case ATA_DNXFER_DMA
:
3343 highbit
= fls(udma_mask
) - 1;
3344 udma_mask
&= ~(1 << highbit
);
3347 } else if (mwdma_mask
) {
3348 highbit
= fls(mwdma_mask
) - 1;
3349 mwdma_mask
&= ~(1 << highbit
);
3355 case ATA_DNXFER_40C
:
3356 udma_mask
&= ATA_UDMA_MASK_40C
;
3359 case ATA_DNXFER_FORCE_PIO0
:
3361 case ATA_DNXFER_FORCE_PIO
:
3370 xfer_mask
&= ata_pack_xfermask(pio_mask
, mwdma_mask
, udma_mask
);
3372 if (!(xfer_mask
& ATA_MASK_PIO
) || xfer_mask
== orig_mask
)
3376 if (xfer_mask
& (ATA_MASK_MWDMA
| ATA_MASK_UDMA
))
3377 snprintf(buf
, sizeof(buf
), "%s:%s",
3378 ata_mode_string(xfer_mask
),
3379 ata_mode_string(xfer_mask
& ATA_MASK_PIO
));
3381 snprintf(buf
, sizeof(buf
), "%s",
3382 ata_mode_string(xfer_mask
));
3384 ata_dev_printk(dev
, KERN_WARNING
,
3385 "limiting speed to %s\n", buf
);
3388 ata_unpack_xfermask(xfer_mask
, &dev
->pio_mask
, &dev
->mwdma_mask
,
3394 static int ata_dev_set_mode(struct ata_device
*dev
)
3396 struct ata_port
*ap
= dev
->link
->ap
;
3397 struct ata_eh_context
*ehc
= &dev
->link
->eh_context
;
3398 const bool nosetxfer
= dev
->horkage
& ATA_HORKAGE_NOSETXFER
;
3399 const char *dev_err_whine
= "";
3400 int ign_dev_err
= 0;
3401 unsigned int err_mask
= 0;
3404 dev
->flags
&= ~ATA_DFLAG_PIO
;
3405 if (dev
->xfer_shift
== ATA_SHIFT_PIO
)
3406 dev
->flags
|= ATA_DFLAG_PIO
;
3408 if (nosetxfer
&& ap
->flags
& ATA_FLAG_SATA
&& ata_id_is_sata(dev
->id
))
3409 dev_err_whine
= " (SET_XFERMODE skipped)";
3412 ata_dev_printk(dev
, KERN_WARNING
,
3413 "NOSETXFER but PATA detected - can't "
3414 "skip SETXFER, might malfunction\n");
3415 err_mask
= ata_dev_set_xfermode(dev
);
3418 if (err_mask
& ~AC_ERR_DEV
)
3422 ehc
->i
.flags
|= ATA_EHI_POST_SETMODE
;
3423 rc
= ata_dev_revalidate(dev
, ATA_DEV_UNKNOWN
, 0);
3424 ehc
->i
.flags
&= ~ATA_EHI_POST_SETMODE
;
3428 if (dev
->xfer_shift
== ATA_SHIFT_PIO
) {
3429 /* Old CFA may refuse this command, which is just fine */
3430 if (ata_id_is_cfa(dev
->id
))
3432 /* Catch several broken garbage emulations plus some pre
3434 if (ata_id_major_version(dev
->id
) == 0 &&
3435 dev
->pio_mode
<= XFER_PIO_2
)
3437 /* Some very old devices and some bad newer ones fail
3438 any kind of SET_XFERMODE request but support PIO0-2
3439 timings and no IORDY */
3440 if (!ata_id_has_iordy(dev
->id
) && dev
->pio_mode
<= XFER_PIO_2
)
3443 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3444 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3445 if (dev
->xfer_shift
== ATA_SHIFT_MWDMA
&&
3446 dev
->dma_mode
== XFER_MW_DMA_0
&&
3447 (dev
->id
[63] >> 8) & 1)
3450 /* if the device is actually configured correctly, ignore dev err */
3451 if (dev
->xfer_mode
== ata_xfer_mask2mode(ata_id_xfermask(dev
->id
)))
3454 if (err_mask
& AC_ERR_DEV
) {
3458 dev_err_whine
= " (device error ignored)";
3461 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3462 dev
->xfer_shift
, (int)dev
->xfer_mode
);
3464 ata_dev_printk(dev
, KERN_INFO
, "configured for %s%s\n",
3465 ata_mode_string(ata_xfer_mode2mask(dev
->xfer_mode
)),
3471 ata_dev_printk(dev
, KERN_ERR
, "failed to set xfermode "
3472 "(err_mask=0x%x)\n", err_mask
);
3477 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3478 * @link: link on which timings will be programmed
3479 * @r_failed_dev: out parameter for failed device
3481 * Standard implementation of the function used to tune and set
3482 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3483 * ata_dev_set_mode() fails, pointer to the failing device is
3484 * returned in @r_failed_dev.
3487 * PCI/etc. bus probe sem.
3490 * 0 on success, negative errno otherwise
3493 int ata_do_set_mode(struct ata_link
*link
, struct ata_device
**r_failed_dev
)
3495 struct ata_port
*ap
= link
->ap
;
3496 struct ata_device
*dev
;
3497 int rc
= 0, used_dma
= 0, found
= 0;
3499 /* step 1: calculate xfer_mask */
3500 ata_for_each_dev(dev
, link
, ENABLED
) {
3501 unsigned long pio_mask
, dma_mask
;
3502 unsigned int mode_mask
;
3504 mode_mask
= ATA_DMA_MASK_ATA
;
3505 if (dev
->class == ATA_DEV_ATAPI
)
3506 mode_mask
= ATA_DMA_MASK_ATAPI
;
3507 else if (ata_id_is_cfa(dev
->id
))
3508 mode_mask
= ATA_DMA_MASK_CFA
;
3510 ata_dev_xfermask(dev
);
3511 ata_force_xfermask(dev
);
3513 pio_mask
= ata_pack_xfermask(dev
->pio_mask
, 0, 0);
3514 dma_mask
= ata_pack_xfermask(0, dev
->mwdma_mask
, dev
->udma_mask
);
3516 if (libata_dma_mask
& mode_mask
)
3517 dma_mask
= ata_pack_xfermask(0, dev
->mwdma_mask
, dev
->udma_mask
);
3521 dev
->pio_mode
= ata_xfer_mask2mode(pio_mask
);
3522 dev
->dma_mode
= ata_xfer_mask2mode(dma_mask
);
3525 if (ata_dma_enabled(dev
))
3531 /* step 2: always set host PIO timings */
3532 ata_for_each_dev(dev
, link
, ENABLED
) {
3533 if (dev
->pio_mode
== 0xff) {
3534 ata_dev_printk(dev
, KERN_WARNING
, "no PIO support\n");
3539 dev
->xfer_mode
= dev
->pio_mode
;
3540 dev
->xfer_shift
= ATA_SHIFT_PIO
;
3541 if (ap
->ops
->set_piomode
)
3542 ap
->ops
->set_piomode(ap
, dev
);
3545 /* step 3: set host DMA timings */
3546 ata_for_each_dev(dev
, link
, ENABLED
) {
3547 if (!ata_dma_enabled(dev
))
3550 dev
->xfer_mode
= dev
->dma_mode
;
3551 dev
->xfer_shift
= ata_xfer_mode2shift(dev
->dma_mode
);
3552 if (ap
->ops
->set_dmamode
)
3553 ap
->ops
->set_dmamode(ap
, dev
);
3556 /* step 4: update devices' xfer mode */
3557 ata_for_each_dev(dev
, link
, ENABLED
) {
3558 rc
= ata_dev_set_mode(dev
);
3563 /* Record simplex status. If we selected DMA then the other
3564 * host channels are not permitted to do so.
3566 if (used_dma
&& (ap
->host
->flags
& ATA_HOST_SIMPLEX
))
3567 ap
->host
->simplex_claimed
= ap
;
3571 *r_failed_dev
= dev
;
3576 * ata_wait_ready - wait for link to become ready
3577 * @link: link to be waited on
3578 * @deadline: deadline jiffies for the operation
3579 * @check_ready: callback to check link readiness
3581 * Wait for @link to become ready. @check_ready should return
3582 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3583 * link doesn't seem to be occupied, other errno for other error
3586 * Transient -ENODEV conditions are allowed for
3587 * ATA_TMOUT_FF_WAIT.
3593 * 0 if @linke is ready before @deadline; otherwise, -errno.
3595 int ata_wait_ready(struct ata_link
*link
, unsigned long deadline
,
3596 int (*check_ready
)(struct ata_link
*link
))
3598 unsigned long start
= jiffies
;
3599 unsigned long nodev_deadline
= ata_deadline(start
, ATA_TMOUT_FF_WAIT
);
3602 /* Slave readiness can't be tested separately from master. On
3603 * M/S emulation configuration, this function should be called
3604 * only on the master and it will handle both master and slave.
3606 WARN_ON(link
== link
->ap
->slave_link
);
3608 if (time_after(nodev_deadline
, deadline
))
3609 nodev_deadline
= deadline
;
3612 unsigned long now
= jiffies
;
3615 ready
= tmp
= check_ready(link
);
3619 /* -ENODEV could be transient. Ignore -ENODEV if link
3620 * is online. Also, some SATA devices take a long
3621 * time to clear 0xff after reset. For example,
3622 * HHD424020F7SV00 iVDR needs >= 800ms while Quantum
3623 * GoVault needs even more than that. Wait for
3624 * ATA_TMOUT_FF_WAIT on -ENODEV if link isn't offline.
3626 * Note that some PATA controllers (pata_ali) explode
3627 * if status register is read more than once when
3628 * there's no device attached.
3630 if (ready
== -ENODEV
) {
3631 if (ata_link_online(link
))
3633 else if ((link
->ap
->flags
& ATA_FLAG_SATA
) &&
3634 !ata_link_offline(link
) &&
3635 time_before(now
, nodev_deadline
))
3641 if (time_after(now
, deadline
))
3644 if (!warned
&& time_after(now
, start
+ 5 * HZ
) &&
3645 (deadline
- now
> 3 * HZ
)) {
3646 ata_link_printk(link
, KERN_WARNING
,
3647 "link is slow to respond, please be patient "
3648 "(ready=%d)\n", tmp
);
3657 * ata_wait_after_reset - wait for link to become ready after reset
3658 * @link: link to be waited on
3659 * @deadline: deadline jiffies for the operation
3660 * @check_ready: callback to check link readiness
3662 * Wait for @link to become ready after reset.
3668 * 0 if @linke is ready before @deadline; otherwise, -errno.
3670 int ata_wait_after_reset(struct ata_link
*link
, unsigned long deadline
,
3671 int (*check_ready
)(struct ata_link
*link
))
3673 msleep(ATA_WAIT_AFTER_RESET
);
3675 return ata_wait_ready(link
, deadline
, check_ready
);
3679 * sata_link_debounce - debounce SATA phy status
3680 * @link: ATA link to debounce SATA phy status for
3681 * @params: timing parameters { interval, duratinon, timeout } in msec
3682 * @deadline: deadline jiffies for the operation
3684 * Make sure SStatus of @link reaches stable state, determined by
3685 * holding the same value where DET is not 1 for @duration polled
3686 * every @interval, before @timeout. Timeout constraints the
3687 * beginning of the stable state. Because DET gets stuck at 1 on
3688 * some controllers after hot unplugging, this functions waits
3689 * until timeout then returns 0 if DET is stable at 1.
3691 * @timeout is further limited by @deadline. The sooner of the
3695 * Kernel thread context (may sleep)
3698 * 0 on success, -errno on failure.
3700 int sata_link_debounce(struct ata_link
*link
, const unsigned long *params
,
3701 unsigned long deadline
)
3703 unsigned long interval
= params
[0];
3704 unsigned long duration
= params
[1];
3705 unsigned long last_jiffies
, t
;
3709 t
= ata_deadline(jiffies
, params
[2]);
3710 if (time_before(t
, deadline
))
3713 if ((rc
= sata_scr_read(link
, SCR_STATUS
, &cur
)))
3718 last_jiffies
= jiffies
;
3722 if ((rc
= sata_scr_read(link
, SCR_STATUS
, &cur
)))
3728 if (cur
== 1 && time_before(jiffies
, deadline
))
3730 if (time_after(jiffies
,
3731 ata_deadline(last_jiffies
, duration
)))
3736 /* unstable, start over */
3738 last_jiffies
= jiffies
;
3740 /* Check deadline. If debouncing failed, return
3741 * -EPIPE to tell upper layer to lower link speed.
3743 if (time_after(jiffies
, deadline
))
3749 * sata_link_resume - resume SATA link
3750 * @link: ATA link to resume SATA
3751 * @params: timing parameters { interval, duratinon, timeout } in msec
3752 * @deadline: deadline jiffies for the operation
3754 * Resume SATA phy @link and debounce it.
3757 * Kernel thread context (may sleep)
3760 * 0 on success, -errno on failure.
3762 int sata_link_resume(struct ata_link
*link
, const unsigned long *params
,
3763 unsigned long deadline
)
3765 u32 scontrol
, serror
;
3768 if ((rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
)))
3771 scontrol
= (scontrol
& 0x0f0) | 0x300;
3773 if ((rc
= sata_scr_write(link
, SCR_CONTROL
, scontrol
)))
3776 /* Some PHYs react badly if SStatus is pounded immediately
3777 * after resuming. Delay 200ms before debouncing.
3781 if ((rc
= sata_link_debounce(link
, params
, deadline
)))
3784 /* clear SError, some PHYs require this even for SRST to work */
3785 if (!(rc
= sata_scr_read(link
, SCR_ERROR
, &serror
)))
3786 rc
= sata_scr_write(link
, SCR_ERROR
, serror
);
3788 return rc
!= -EINVAL
? rc
: 0;
3792 * ata_std_prereset - prepare for reset
3793 * @link: ATA link to be reset
3794 * @deadline: deadline jiffies for the operation
3796 * @link is about to be reset. Initialize it. Failure from
3797 * prereset makes libata abort whole reset sequence and give up
3798 * that port, so prereset should be best-effort. It does its
3799 * best to prepare for reset sequence but if things go wrong, it
3800 * should just whine, not fail.
3803 * Kernel thread context (may sleep)
3806 * 0 on success, -errno otherwise.
3808 int ata_std_prereset(struct ata_link
*link
, unsigned long deadline
)
3810 struct ata_port
*ap
= link
->ap
;
3811 struct ata_eh_context
*ehc
= &link
->eh_context
;
3812 const unsigned long *timing
= sata_ehc_deb_timing(ehc
);
3815 /* if we're about to do hardreset, nothing more to do */
3816 if (ehc
->i
.action
& ATA_EH_HARDRESET
)
3819 /* if SATA, resume link */
3820 if (ap
->flags
& ATA_FLAG_SATA
) {
3821 rc
= sata_link_resume(link
, timing
, deadline
);
3822 /* whine about phy resume failure but proceed */
3823 if (rc
&& rc
!= -EOPNOTSUPP
)
3824 ata_link_printk(link
, KERN_WARNING
, "failed to resume "
3825 "link for reset (errno=%d)\n", rc
);
3828 /* no point in trying softreset on offline link */
3829 if (ata_phys_link_offline(link
))
3830 ehc
->i
.action
&= ~ATA_EH_SOFTRESET
;
3836 * sata_link_hardreset - reset link via SATA phy reset
3837 * @link: link to reset
3838 * @timing: timing parameters { interval, duratinon, timeout } in msec
3839 * @deadline: deadline jiffies for the operation
3840 * @online: optional out parameter indicating link onlineness
3841 * @check_ready: optional callback to check link readiness
3843 * SATA phy-reset @link using DET bits of SControl register.
3844 * After hardreset, link readiness is waited upon using
3845 * ata_wait_ready() if @check_ready is specified. LLDs are
3846 * allowed to not specify @check_ready and wait itself after this
3847 * function returns. Device classification is LLD's
3850 * *@online is set to one iff reset succeeded and @link is online
3854 * Kernel thread context (may sleep)
3857 * 0 on success, -errno otherwise.
3859 int sata_link_hardreset(struct ata_link
*link
, const unsigned long *timing
,
3860 unsigned long deadline
,
3861 bool *online
, int (*check_ready
)(struct ata_link
*))
3871 if (sata_set_spd_needed(link
)) {
3872 /* SATA spec says nothing about how to reconfigure
3873 * spd. To be on the safe side, turn off phy during
3874 * reconfiguration. This works for at least ICH7 AHCI
3877 if ((rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
)))
3880 scontrol
= (scontrol
& 0x0f0) | 0x304;
3882 if ((rc
= sata_scr_write(link
, SCR_CONTROL
, scontrol
)))
3888 /* issue phy wake/reset */
3889 if ((rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
)))
3892 scontrol
= (scontrol
& 0x0f0) | 0x301;
3894 if ((rc
= sata_scr_write_flush(link
, SCR_CONTROL
, scontrol
)))
3897 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3898 * 10.4.2 says at least 1 ms.
3902 /* bring link back */
3903 rc
= sata_link_resume(link
, timing
, deadline
);
3906 /* if link is offline nothing more to do */
3907 if (ata_phys_link_offline(link
))
3910 /* Link is online. From this point, -ENODEV too is an error. */
3914 if (sata_pmp_supported(link
->ap
) && ata_is_host_link(link
)) {
3915 /* If PMP is supported, we have to do follow-up SRST.
3916 * Some PMPs don't send D2H Reg FIS after hardreset if
3917 * the first port is empty. Wait only for
3918 * ATA_TMOUT_PMP_SRST_WAIT.
3921 unsigned long pmp_deadline
;
3923 pmp_deadline
= ata_deadline(jiffies
,
3924 ATA_TMOUT_PMP_SRST_WAIT
);
3925 if (time_after(pmp_deadline
, deadline
))
3926 pmp_deadline
= deadline
;
3927 ata_wait_ready(link
, pmp_deadline
, check_ready
);
3935 rc
= ata_wait_ready(link
, deadline
, check_ready
);
3937 if (rc
&& rc
!= -EAGAIN
) {
3938 /* online is set iff link is online && reset succeeded */
3941 ata_link_printk(link
, KERN_ERR
,
3942 "COMRESET failed (errno=%d)\n", rc
);
3944 DPRINTK("EXIT, rc=%d\n", rc
);
3949 * sata_std_hardreset - COMRESET w/o waiting or classification
3950 * @link: link to reset
3951 * @class: resulting class of attached device
3952 * @deadline: deadline jiffies for the operation
3954 * Standard SATA COMRESET w/o waiting or classification.
3957 * Kernel thread context (may sleep)
3960 * 0 if link offline, -EAGAIN if link online, -errno on errors.
3962 int sata_std_hardreset(struct ata_link
*link
, unsigned int *class,
3963 unsigned long deadline
)
3965 const unsigned long *timing
= sata_ehc_deb_timing(&link
->eh_context
);
3970 rc
= sata_link_hardreset(link
, timing
, deadline
, &online
, NULL
);
3971 return online
? -EAGAIN
: rc
;
3975 * ata_std_postreset - standard postreset callback
3976 * @link: the target ata_link
3977 * @classes: classes of attached devices
3979 * This function is invoked after a successful reset. Note that
3980 * the device might have been reset more than once using
3981 * different reset methods before postreset is invoked.
3984 * Kernel thread context (may sleep)
3986 void ata_std_postreset(struct ata_link
*link
, unsigned int *classes
)
3992 /* reset complete, clear SError */
3993 if (!sata_scr_read(link
, SCR_ERROR
, &serror
))
3994 sata_scr_write(link
, SCR_ERROR
, serror
);
3996 /* print link status */
3997 sata_print_link_status(link
);
4003 * ata_dev_same_device - Determine whether new ID matches configured device
4004 * @dev: device to compare against
4005 * @new_class: class of the new device
4006 * @new_id: IDENTIFY page of the new device
4008 * Compare @new_class and @new_id against @dev and determine
4009 * whether @dev is the device indicated by @new_class and
4016 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
4018 static int ata_dev_same_device(struct ata_device
*dev
, unsigned int new_class
,
4021 const u16
*old_id
= dev
->id
;
4022 unsigned char model
[2][ATA_ID_PROD_LEN
+ 1];
4023 unsigned char serial
[2][ATA_ID_SERNO_LEN
+ 1];
4025 if (dev
->class != new_class
) {
4026 ata_dev_printk(dev
, KERN_INFO
, "class mismatch %d != %d\n",
4027 dev
->class, new_class
);
4031 ata_id_c_string(old_id
, model
[0], ATA_ID_PROD
, sizeof(model
[0]));
4032 ata_id_c_string(new_id
, model
[1], ATA_ID_PROD
, sizeof(model
[1]));
4033 ata_id_c_string(old_id
, serial
[0], ATA_ID_SERNO
, sizeof(serial
[0]));
4034 ata_id_c_string(new_id
, serial
[1], ATA_ID_SERNO
, sizeof(serial
[1]));
4036 if (strcmp(model
[0], model
[1])) {
4037 ata_dev_printk(dev
, KERN_INFO
, "model number mismatch "
4038 "'%s' != '%s'\n", model
[0], model
[1]);
4042 if (strcmp(serial
[0], serial
[1])) {
4043 ata_dev_printk(dev
, KERN_INFO
, "serial number mismatch "
4044 "'%s' != '%s'\n", serial
[0], serial
[1]);
4052 * ata_dev_reread_id - Re-read IDENTIFY data
4053 * @dev: target ATA device
4054 * @readid_flags: read ID flags
4056 * Re-read IDENTIFY page and make sure @dev is still attached to
4060 * Kernel thread context (may sleep)
4063 * 0 on success, negative errno otherwise
4065 int ata_dev_reread_id(struct ata_device
*dev
, unsigned int readid_flags
)
4067 unsigned int class = dev
->class;
4068 u16
*id
= (void *)dev
->link
->ap
->sector_buf
;
4072 rc
= ata_dev_read_id(dev
, &class, readid_flags
, id
);
4076 /* is the device still there? */
4077 if (!ata_dev_same_device(dev
, class, id
))
4080 memcpy(dev
->id
, id
, sizeof(id
[0]) * ATA_ID_WORDS
);
4085 * ata_dev_revalidate - Revalidate ATA device
4086 * @dev: device to revalidate
4087 * @new_class: new class code
4088 * @readid_flags: read ID flags
4090 * Re-read IDENTIFY page, make sure @dev is still attached to the
4091 * port and reconfigure it according to the new IDENTIFY page.
4094 * Kernel thread context (may sleep)
4097 * 0 on success, negative errno otherwise
4099 int ata_dev_revalidate(struct ata_device
*dev
, unsigned int new_class
,
4100 unsigned int readid_flags
)
4102 u64 n_sectors
= dev
->n_sectors
;
4103 u64 n_native_sectors
= dev
->n_native_sectors
;
4106 if (!ata_dev_enabled(dev
))
4109 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4110 if (ata_class_enabled(new_class
) &&
4111 new_class
!= ATA_DEV_ATA
&&
4112 new_class
!= ATA_DEV_ATAPI
&&
4113 new_class
!= ATA_DEV_SEMB
) {
4114 ata_dev_printk(dev
, KERN_INFO
, "class mismatch %u != %u\n",
4115 dev
->class, new_class
);
4121 rc
= ata_dev_reread_id(dev
, readid_flags
);
4125 /* configure device according to the new ID */
4126 rc
= ata_dev_configure(dev
);
4130 /* verify n_sectors hasn't changed */
4131 if (dev
->class == ATA_DEV_ATA
&& n_sectors
&&
4132 dev
->n_sectors
!= n_sectors
) {
4133 ata_dev_printk(dev
, KERN_WARNING
, "n_sectors mismatch "
4135 (unsigned long long)n_sectors
,
4136 (unsigned long long)dev
->n_sectors
);
4138 * Something could have caused HPA to be unlocked
4139 * involuntarily. If n_native_sectors hasn't changed
4140 * and the new size matches it, keep the device.
4142 if (dev
->n_native_sectors
== n_native_sectors
&&
4143 dev
->n_sectors
> n_sectors
&&
4144 dev
->n_sectors
== n_native_sectors
) {
4145 ata_dev_printk(dev
, KERN_WARNING
,
4146 "new n_sectors matches native, probably "
4147 "late HPA unlock, continuing\n");
4148 /* keep using the old n_sectors */
4149 dev
->n_sectors
= n_sectors
;
4151 /* restore original n_[native]_sectors and fail */
4152 dev
->n_native_sectors
= n_native_sectors
;
4153 dev
->n_sectors
= n_sectors
;
4162 ata_dev_printk(dev
, KERN_ERR
, "revalidation failed (errno=%d)\n", rc
);
4166 struct ata_blacklist_entry
{
4167 const char *model_num
;
4168 const char *model_rev
;
4169 unsigned long horkage
;
4172 static const struct ata_blacklist_entry ata_device_blacklist
[] = {
4173 /* Devices with DMA related problems under Linux */
4174 { "WDC AC11000H", NULL
, ATA_HORKAGE_NODMA
},
4175 { "WDC AC22100H", NULL
, ATA_HORKAGE_NODMA
},
4176 { "WDC AC32500H", NULL
, ATA_HORKAGE_NODMA
},
4177 { "WDC AC33100H", NULL
, ATA_HORKAGE_NODMA
},
4178 { "WDC AC31600H", NULL
, ATA_HORKAGE_NODMA
},
4179 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA
},
4180 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA
},
4181 { "Compaq CRD-8241B", NULL
, ATA_HORKAGE_NODMA
},
4182 { "CRD-8400B", NULL
, ATA_HORKAGE_NODMA
},
4183 { "CRD-8480B", NULL
, ATA_HORKAGE_NODMA
},
4184 { "CRD-8482B", NULL
, ATA_HORKAGE_NODMA
},
4185 { "CRD-84", NULL
, ATA_HORKAGE_NODMA
},
4186 { "SanDisk SDP3B", NULL
, ATA_HORKAGE_NODMA
},
4187 { "SanDisk SDP3B-64", NULL
, ATA_HORKAGE_NODMA
},
4188 { "SANYO CD-ROM CRD", NULL
, ATA_HORKAGE_NODMA
},
4189 { "HITACHI CDR-8", NULL
, ATA_HORKAGE_NODMA
},
4190 { "HITACHI CDR-8335", NULL
, ATA_HORKAGE_NODMA
},
4191 { "HITACHI CDR-8435", NULL
, ATA_HORKAGE_NODMA
},
4192 { "Toshiba CD-ROM XM-6202B", NULL
, ATA_HORKAGE_NODMA
},
4193 { "TOSHIBA CD-ROM XM-1702BC", NULL
, ATA_HORKAGE_NODMA
},
4194 { "CD-532E-A", NULL
, ATA_HORKAGE_NODMA
},
4195 { "E-IDE CD-ROM CR-840",NULL
, ATA_HORKAGE_NODMA
},
4196 { "CD-ROM Drive/F5A", NULL
, ATA_HORKAGE_NODMA
},
4197 { "WPI CDD-820", NULL
, ATA_HORKAGE_NODMA
},
4198 { "SAMSUNG CD-ROM SC-148C", NULL
, ATA_HORKAGE_NODMA
},
4199 { "SAMSUNG CD-ROM SC", NULL
, ATA_HORKAGE_NODMA
},
4200 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL
,ATA_HORKAGE_NODMA
},
4201 { "_NEC DV5800A", NULL
, ATA_HORKAGE_NODMA
},
4202 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA
},
4203 { "Seagate STT20000A", NULL
, ATA_HORKAGE_NODMA
},
4204 /* Odd clown on sil3726/4726 PMPs */
4205 { "Config Disk", NULL
, ATA_HORKAGE_DISABLE
},
4207 /* Weird ATAPI devices */
4208 { "TORiSAN DVD-ROM DRD-N216", NULL
, ATA_HORKAGE_MAX_SEC_128
},
4209 { "QUANTUM DAT DAT72-000", NULL
, ATA_HORKAGE_ATAPI_MOD16_DMA
},
4211 /* Devices we expect to fail diagnostics */
4213 /* Devices where NCQ should be avoided */
4215 { "WDC WD740ADFD-00", NULL
, ATA_HORKAGE_NONCQ
},
4216 { "WDC WD740ADFD-00NLR1", NULL
, ATA_HORKAGE_NONCQ
, },
4217 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4218 { "FUJITSU MHT2060BH", NULL
, ATA_HORKAGE_NONCQ
},
4220 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ
},
4221 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ
},
4222 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ
},
4223 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ
},
4224 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ
},
4226 /* Seagate NCQ + FLUSH CACHE firmware bug */
4227 { "ST31500341AS", "SD15", ATA_HORKAGE_NONCQ
|
4228 ATA_HORKAGE_FIRMWARE_WARN
},
4229 { "ST31500341AS", "SD16", ATA_HORKAGE_NONCQ
|
4230 ATA_HORKAGE_FIRMWARE_WARN
},
4231 { "ST31500341AS", "SD17", ATA_HORKAGE_NONCQ
|
4232 ATA_HORKAGE_FIRMWARE_WARN
},
4233 { "ST31500341AS", "SD18", ATA_HORKAGE_NONCQ
|
4234 ATA_HORKAGE_FIRMWARE_WARN
},
4235 { "ST31500341AS", "SD19", ATA_HORKAGE_NONCQ
|
4236 ATA_HORKAGE_FIRMWARE_WARN
},
4238 { "ST31000333AS", "SD15", ATA_HORKAGE_NONCQ
|
4239 ATA_HORKAGE_FIRMWARE_WARN
},
4240 { "ST31000333AS", "SD16", ATA_HORKAGE_NONCQ
|
4241 ATA_HORKAGE_FIRMWARE_WARN
},
4242 { "ST31000333AS", "SD17", ATA_HORKAGE_NONCQ
|
4243 ATA_HORKAGE_FIRMWARE_WARN
},
4244 { "ST31000333AS", "SD18", ATA_HORKAGE_NONCQ
|
4245 ATA_HORKAGE_FIRMWARE_WARN
},
4246 { "ST31000333AS", "SD19", ATA_HORKAGE_NONCQ
|
4247 ATA_HORKAGE_FIRMWARE_WARN
},
4249 { "ST3640623AS", "SD15", ATA_HORKAGE_NONCQ
|
4250 ATA_HORKAGE_FIRMWARE_WARN
},
4251 { "ST3640623AS", "SD16", ATA_HORKAGE_NONCQ
|
4252 ATA_HORKAGE_FIRMWARE_WARN
},
4253 { "ST3640623AS", "SD17", ATA_HORKAGE_NONCQ
|
4254 ATA_HORKAGE_FIRMWARE_WARN
},
4255 { "ST3640623AS", "SD18", ATA_HORKAGE_NONCQ
|
4256 ATA_HORKAGE_FIRMWARE_WARN
},
4257 { "ST3640623AS", "SD19", ATA_HORKAGE_NONCQ
|
4258 ATA_HORKAGE_FIRMWARE_WARN
},
4260 { "ST3640323AS", "SD15", ATA_HORKAGE_NONCQ
|
4261 ATA_HORKAGE_FIRMWARE_WARN
},
4262 { "ST3640323AS", "SD16", ATA_HORKAGE_NONCQ
|
4263 ATA_HORKAGE_FIRMWARE_WARN
},
4264 { "ST3640323AS", "SD17", ATA_HORKAGE_NONCQ
|
4265 ATA_HORKAGE_FIRMWARE_WARN
},
4266 { "ST3640323AS", "SD18", ATA_HORKAGE_NONCQ
|
4267 ATA_HORKAGE_FIRMWARE_WARN
},
4268 { "ST3640323AS", "SD19", ATA_HORKAGE_NONCQ
|
4269 ATA_HORKAGE_FIRMWARE_WARN
},
4271 { "ST3320813AS", "SD15", ATA_HORKAGE_NONCQ
|
4272 ATA_HORKAGE_FIRMWARE_WARN
},
4273 { "ST3320813AS", "SD16", ATA_HORKAGE_NONCQ
|
4274 ATA_HORKAGE_FIRMWARE_WARN
},
4275 { "ST3320813AS", "SD17", ATA_HORKAGE_NONCQ
|
4276 ATA_HORKAGE_FIRMWARE_WARN
},
4277 { "ST3320813AS", "SD18", ATA_HORKAGE_NONCQ
|
4278 ATA_HORKAGE_FIRMWARE_WARN
},
4279 { "ST3320813AS", "SD19", ATA_HORKAGE_NONCQ
|
4280 ATA_HORKAGE_FIRMWARE_WARN
},
4282 { "ST3320613AS", "SD15", ATA_HORKAGE_NONCQ
|
4283 ATA_HORKAGE_FIRMWARE_WARN
},
4284 { "ST3320613AS", "SD16", ATA_HORKAGE_NONCQ
|
4285 ATA_HORKAGE_FIRMWARE_WARN
},
4286 { "ST3320613AS", "SD17", ATA_HORKAGE_NONCQ
|
4287 ATA_HORKAGE_FIRMWARE_WARN
},
4288 { "ST3320613AS", "SD18", ATA_HORKAGE_NONCQ
|
4289 ATA_HORKAGE_FIRMWARE_WARN
},
4290 { "ST3320613AS", "SD19", ATA_HORKAGE_NONCQ
|
4291 ATA_HORKAGE_FIRMWARE_WARN
},
4293 /* Blacklist entries taken from Silicon Image 3124/3132
4294 Windows driver .inf file - also several Linux problem reports */
4295 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ
, },
4296 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ
, },
4297 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ
, },
4299 /* devices which puke on READ_NATIVE_MAX */
4300 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA
, },
4301 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA
},
4302 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA
},
4303 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA
},
4305 /* Devices which report 1 sector over size HPA */
4306 { "ST340823A", NULL
, ATA_HORKAGE_HPA_SIZE
, },
4307 { "ST320413A", NULL
, ATA_HORKAGE_HPA_SIZE
, },
4308 { "ST310211A", NULL
, ATA_HORKAGE_HPA_SIZE
, },
4310 /* Devices which get the IVB wrong */
4311 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB
, },
4312 /* Maybe we should just blacklist TSSTcorp... */
4313 { "TSSTcorp CDDVDW SH-S202H", "SB00", ATA_HORKAGE_IVB
, },
4314 { "TSSTcorp CDDVDW SH-S202H", "SB01", ATA_HORKAGE_IVB
, },
4315 { "TSSTcorp CDDVDW SH-S202J", "SB00", ATA_HORKAGE_IVB
, },
4316 { "TSSTcorp CDDVDW SH-S202J", "SB01", ATA_HORKAGE_IVB
, },
4317 { "TSSTcorp CDDVDW SH-S202N", "SB00", ATA_HORKAGE_IVB
, },
4318 { "TSSTcorp CDDVDW SH-S202N", "SB01", ATA_HORKAGE_IVB
, },
4320 /* Devices that do not need bridging limits applied */
4321 { "MTRON MSP-SATA*", NULL
, ATA_HORKAGE_BRIDGE_OK
, },
4323 /* Devices which aren't very happy with higher link speeds */
4324 { "WD My Book", NULL
, ATA_HORKAGE_1_5_GBPS
, },
4327 * Devices which choke on SETXFER. Applies only if both the
4328 * device and controller are SATA.
4330 { "PIONEER DVD-RW DVRTD08", "1.00", ATA_HORKAGE_NOSETXFER
},
4336 static int strn_pattern_cmp(const char *patt
, const char *name
, int wildchar
)
4342 * check for trailing wildcard: *\0
4344 p
= strchr(patt
, wildchar
);
4345 if (p
&& ((*(p
+ 1)) == 0))
4356 return strncmp(patt
, name
, len
);
4359 static unsigned long ata_dev_blacklisted(const struct ata_device
*dev
)
4361 unsigned char model_num
[ATA_ID_PROD_LEN
+ 1];
4362 unsigned char model_rev
[ATA_ID_FW_REV_LEN
+ 1];
4363 const struct ata_blacklist_entry
*ad
= ata_device_blacklist
;
4365 ata_id_c_string(dev
->id
, model_num
, ATA_ID_PROD
, sizeof(model_num
));
4366 ata_id_c_string(dev
->id
, model_rev
, ATA_ID_FW_REV
, sizeof(model_rev
));
4368 while (ad
->model_num
) {
4369 if (!strn_pattern_cmp(ad
->model_num
, model_num
, '*')) {
4370 if (ad
->model_rev
== NULL
)
4372 if (!strn_pattern_cmp(ad
->model_rev
, model_rev
, '*'))
4380 static int ata_dma_blacklisted(const struct ata_device
*dev
)
4382 /* We don't support polling DMA.
4383 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4384 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4386 if ((dev
->link
->ap
->flags
& ATA_FLAG_PIO_POLLING
) &&
4387 (dev
->flags
& ATA_DFLAG_CDB_INTR
))
4389 return (dev
->horkage
& ATA_HORKAGE_NODMA
) ? 1 : 0;
4393 * ata_is_40wire - check drive side detection
4396 * Perform drive side detection decoding, allowing for device vendors
4397 * who can't follow the documentation.
4400 static int ata_is_40wire(struct ata_device
*dev
)
4402 if (dev
->horkage
& ATA_HORKAGE_IVB
)
4403 return ata_drive_40wire_relaxed(dev
->id
);
4404 return ata_drive_40wire(dev
->id
);
4408 * cable_is_40wire - 40/80/SATA decider
4409 * @ap: port to consider
4411 * This function encapsulates the policy for speed management
4412 * in one place. At the moment we don't cache the result but
4413 * there is a good case for setting ap->cbl to the result when
4414 * we are called with unknown cables (and figuring out if it
4415 * impacts hotplug at all).
4417 * Return 1 if the cable appears to be 40 wire.
4420 static int cable_is_40wire(struct ata_port
*ap
)
4422 struct ata_link
*link
;
4423 struct ata_device
*dev
;
4425 /* If the controller thinks we are 40 wire, we are. */
4426 if (ap
->cbl
== ATA_CBL_PATA40
)
4429 /* If the controller thinks we are 80 wire, we are. */
4430 if (ap
->cbl
== ATA_CBL_PATA80
|| ap
->cbl
== ATA_CBL_SATA
)
4433 /* If the system is known to be 40 wire short cable (eg
4434 * laptop), then we allow 80 wire modes even if the drive
4437 if (ap
->cbl
== ATA_CBL_PATA40_SHORT
)
4440 /* If the controller doesn't know, we scan.
4442 * Note: We look for all 40 wire detects at this point. Any
4443 * 80 wire detect is taken to be 80 wire cable because
4444 * - in many setups only the one drive (slave if present) will
4445 * give a valid detect
4446 * - if you have a non detect capable drive you don't want it
4447 * to colour the choice
4449 ata_for_each_link(link
, ap
, EDGE
) {
4450 ata_for_each_dev(dev
, link
, ENABLED
) {
4451 if (!ata_is_40wire(dev
))
4459 * ata_dev_xfermask - Compute supported xfermask of the given device
4460 * @dev: Device to compute xfermask for
4462 * Compute supported xfermask of @dev and store it in
4463 * dev->*_mask. This function is responsible for applying all
4464 * known limits including host controller limits, device
4470 static void ata_dev_xfermask(struct ata_device
*dev
)
4472 struct ata_link
*link
= dev
->link
;
4473 struct ata_port
*ap
= link
->ap
;
4474 struct ata_host
*host
= ap
->host
;
4475 unsigned long xfer_mask
;
4477 /* controller modes available */
4478 xfer_mask
= ata_pack_xfermask(ap
->pio_mask
,
4479 ap
->mwdma_mask
, ap
->udma_mask
);
4481 /* drive modes available */
4482 xfer_mask
&= ata_pack_xfermask(dev
->pio_mask
,
4483 dev
->mwdma_mask
, dev
->udma_mask
);
4484 xfer_mask
&= ata_id_xfermask(dev
->id
);
4487 * CFA Advanced TrueIDE timings are not allowed on a shared
4490 if (ata_dev_pair(dev
)) {
4491 /* No PIO5 or PIO6 */
4492 xfer_mask
&= ~(0x03 << (ATA_SHIFT_PIO
+ 5));
4493 /* No MWDMA3 or MWDMA 4 */
4494 xfer_mask
&= ~(0x03 << (ATA_SHIFT_MWDMA
+ 3));
4497 if (ata_dma_blacklisted(dev
)) {
4498 xfer_mask
&= ~(ATA_MASK_MWDMA
| ATA_MASK_UDMA
);
4499 ata_dev_printk(dev
, KERN_WARNING
,
4500 "device is on DMA blacklist, disabling DMA\n");
4503 if ((host
->flags
& ATA_HOST_SIMPLEX
) &&
4504 host
->simplex_claimed
&& host
->simplex_claimed
!= ap
) {
4505 xfer_mask
&= ~(ATA_MASK_MWDMA
| ATA_MASK_UDMA
);
4506 ata_dev_printk(dev
, KERN_WARNING
, "simplex DMA is claimed by "
4507 "other device, disabling DMA\n");
4510 if (ap
->flags
& ATA_FLAG_NO_IORDY
)
4511 xfer_mask
&= ata_pio_mask_no_iordy(dev
);
4513 if (ap
->ops
->mode_filter
)
4514 xfer_mask
= ap
->ops
->mode_filter(dev
, xfer_mask
);
4516 /* Apply cable rule here. Don't apply it early because when
4517 * we handle hot plug the cable type can itself change.
4518 * Check this last so that we know if the transfer rate was
4519 * solely limited by the cable.
4520 * Unknown or 80 wire cables reported host side are checked
4521 * drive side as well. Cases where we know a 40wire cable
4522 * is used safely for 80 are not checked here.
4524 if (xfer_mask
& (0xF8 << ATA_SHIFT_UDMA
))
4525 /* UDMA/44 or higher would be available */
4526 if (cable_is_40wire(ap
)) {
4527 ata_dev_printk(dev
, KERN_WARNING
,
4528 "limited to UDMA/33 due to 40-wire cable\n");
4529 xfer_mask
&= ~(0xF8 << ATA_SHIFT_UDMA
);
4532 ata_unpack_xfermask(xfer_mask
, &dev
->pio_mask
,
4533 &dev
->mwdma_mask
, &dev
->udma_mask
);
4537 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4538 * @dev: Device to which command will be sent
4540 * Issue SET FEATURES - XFER MODE command to device @dev
4544 * PCI/etc. bus probe sem.
4547 * 0 on success, AC_ERR_* mask otherwise.
4550 static unsigned int ata_dev_set_xfermode(struct ata_device
*dev
)
4552 struct ata_taskfile tf
;
4553 unsigned int err_mask
;
4555 /* set up set-features taskfile */
4556 DPRINTK("set features - xfer mode\n");
4558 /* Some controllers and ATAPI devices show flaky interrupt
4559 * behavior after setting xfer mode. Use polling instead.
4561 ata_tf_init(dev
, &tf
);
4562 tf
.command
= ATA_CMD_SET_FEATURES
;
4563 tf
.feature
= SETFEATURES_XFER
;
4564 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
| ATA_TFLAG_POLLING
;
4565 tf
.protocol
= ATA_PROT_NODATA
;
4566 /* If we are using IORDY we must send the mode setting command */
4567 if (ata_pio_need_iordy(dev
))
4568 tf
.nsect
= dev
->xfer_mode
;
4569 /* If the device has IORDY and the controller does not - turn it off */
4570 else if (ata_id_has_iordy(dev
->id
))
4572 else /* In the ancient relic department - skip all of this */
4575 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
4577 DPRINTK("EXIT, err_mask=%x\n", err_mask
);
4581 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4582 * @dev: Device to which command will be sent
4583 * @enable: Whether to enable or disable the feature
4584 * @feature: The sector count represents the feature to set
4586 * Issue SET FEATURES - SATA FEATURES command to device @dev
4587 * on port @ap with sector count
4590 * PCI/etc. bus probe sem.
4593 * 0 on success, AC_ERR_* mask otherwise.
4595 static unsigned int ata_dev_set_feature(struct ata_device
*dev
, u8 enable
,
4598 struct ata_taskfile tf
;
4599 unsigned int err_mask
;
4601 /* set up set-features taskfile */
4602 DPRINTK("set features - SATA features\n");
4604 ata_tf_init(dev
, &tf
);
4605 tf
.command
= ATA_CMD_SET_FEATURES
;
4606 tf
.feature
= enable
;
4607 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
4608 tf
.protocol
= ATA_PROT_NODATA
;
4611 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
4613 DPRINTK("EXIT, err_mask=%x\n", err_mask
);
4618 * ata_dev_init_params - Issue INIT DEV PARAMS command
4619 * @dev: Device to which command will be sent
4620 * @heads: Number of heads (taskfile parameter)
4621 * @sectors: Number of sectors (taskfile parameter)
4624 * Kernel thread context (may sleep)
4627 * 0 on success, AC_ERR_* mask otherwise.
4629 static unsigned int ata_dev_init_params(struct ata_device
*dev
,
4630 u16 heads
, u16 sectors
)
4632 struct ata_taskfile tf
;
4633 unsigned int err_mask
;
4635 /* Number of sectors per track 1-255. Number of heads 1-16 */
4636 if (sectors
< 1 || sectors
> 255 || heads
< 1 || heads
> 16)
4637 return AC_ERR_INVALID
;
4639 /* set up init dev params taskfile */
4640 DPRINTK("init dev params \n");
4642 ata_tf_init(dev
, &tf
);
4643 tf
.command
= ATA_CMD_INIT_DEV_PARAMS
;
4644 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
4645 tf
.protocol
= ATA_PROT_NODATA
;
4647 tf
.device
|= (heads
- 1) & 0x0f; /* max head = num. of heads - 1 */
4649 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
4650 /* A clean abort indicates an original or just out of spec drive
4651 and we should continue as we issue the setup based on the
4652 drive reported working geometry */
4653 if (err_mask
== AC_ERR_DEV
&& (tf
.feature
& ATA_ABORTED
))
4656 DPRINTK("EXIT, err_mask=%x\n", err_mask
);
4661 * ata_sg_clean - Unmap DMA memory associated with command
4662 * @qc: Command containing DMA memory to be released
4664 * Unmap all mapped DMA memory associated with this command.
4667 * spin_lock_irqsave(host lock)
4669 void ata_sg_clean(struct ata_queued_cmd
*qc
)
4671 struct ata_port
*ap
= qc
->ap
;
4672 struct scatterlist
*sg
= qc
->sg
;
4673 int dir
= qc
->dma_dir
;
4675 WARN_ON_ONCE(sg
== NULL
);
4677 VPRINTK("unmapping %u sg elements\n", qc
->n_elem
);
4680 dma_unmap_sg(ap
->dev
, sg
, qc
->orig_n_elem
, dir
);
4682 qc
->flags
&= ~ATA_QCFLAG_DMAMAP
;
4687 * atapi_check_dma - Check whether ATAPI DMA can be supported
4688 * @qc: Metadata associated with taskfile to check
4690 * Allow low-level driver to filter ATA PACKET commands, returning
4691 * a status indicating whether or not it is OK to use DMA for the
4692 * supplied PACKET command.
4695 * spin_lock_irqsave(host lock)
4697 * RETURNS: 0 when ATAPI DMA can be used
4700 int atapi_check_dma(struct ata_queued_cmd
*qc
)
4702 struct ata_port
*ap
= qc
->ap
;
4704 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4705 * few ATAPI devices choke on such DMA requests.
4707 if (!(qc
->dev
->horkage
& ATA_HORKAGE_ATAPI_MOD16_DMA
) &&
4708 unlikely(qc
->nbytes
& 15))
4711 if (ap
->ops
->check_atapi_dma
)
4712 return ap
->ops
->check_atapi_dma(qc
);
4718 * ata_std_qc_defer - Check whether a qc needs to be deferred
4719 * @qc: ATA command in question
4721 * Non-NCQ commands cannot run with any other command, NCQ or
4722 * not. As upper layer only knows the queue depth, we are
4723 * responsible for maintaining exclusion. This function checks
4724 * whether a new command @qc can be issued.
4727 * spin_lock_irqsave(host lock)
4730 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4732 int ata_std_qc_defer(struct ata_queued_cmd
*qc
)
4734 struct ata_link
*link
= qc
->dev
->link
;
4736 if (qc
->tf
.protocol
== ATA_PROT_NCQ
) {
4737 if (!ata_tag_valid(link
->active_tag
))
4740 if (!ata_tag_valid(link
->active_tag
) && !link
->sactive
)
4744 return ATA_DEFER_LINK
;
4747 void ata_noop_qc_prep(struct ata_queued_cmd
*qc
) { }
4750 * ata_sg_init - Associate command with scatter-gather table.
4751 * @qc: Command to be associated
4752 * @sg: Scatter-gather table.
4753 * @n_elem: Number of elements in s/g table.
4755 * Initialize the data-related elements of queued_cmd @qc
4756 * to point to a scatter-gather table @sg, containing @n_elem
4760 * spin_lock_irqsave(host lock)
4762 void ata_sg_init(struct ata_queued_cmd
*qc
, struct scatterlist
*sg
,
4763 unsigned int n_elem
)
4766 qc
->n_elem
= n_elem
;
4771 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4772 * @qc: Command with scatter-gather table to be mapped.
4774 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4777 * spin_lock_irqsave(host lock)
4780 * Zero on success, negative on error.
4783 static int ata_sg_setup(struct ata_queued_cmd
*qc
)
4785 struct ata_port
*ap
= qc
->ap
;
4786 unsigned int n_elem
;
4788 VPRINTK("ENTER, ata%u\n", ap
->print_id
);
4790 n_elem
= dma_map_sg(ap
->dev
, qc
->sg
, qc
->n_elem
, qc
->dma_dir
);
4794 DPRINTK("%d sg elements mapped\n", n_elem
);
4795 qc
->orig_n_elem
= qc
->n_elem
;
4796 qc
->n_elem
= n_elem
;
4797 qc
->flags
|= ATA_QCFLAG_DMAMAP
;
4803 * swap_buf_le16 - swap halves of 16-bit words in place
4804 * @buf: Buffer to swap
4805 * @buf_words: Number of 16-bit words in buffer.
4807 * Swap halves of 16-bit words if needed to convert from
4808 * little-endian byte order to native cpu byte order, or
4812 * Inherited from caller.
4814 void swap_buf_le16(u16
*buf
, unsigned int buf_words
)
4819 for (i
= 0; i
< buf_words
; i
++)
4820 buf
[i
] = le16_to_cpu(buf
[i
]);
4821 #endif /* __BIG_ENDIAN */
4825 * ata_qc_new - Request an available ATA command, for queueing
4832 static struct ata_queued_cmd
*ata_qc_new(struct ata_port
*ap
)
4834 struct ata_queued_cmd
*qc
= NULL
;
4837 /* no command while frozen */
4838 if (unlikely(ap
->pflags
& ATA_PFLAG_FROZEN
))
4841 /* the last tag is reserved for internal command. */
4842 for (i
= 0; i
< ATA_MAX_QUEUE
- 1; i
++)
4843 if (!test_and_set_bit(i
, &ap
->qc_allocated
)) {
4844 qc
= __ata_qc_from_tag(ap
, i
);
4855 * ata_qc_new_init - Request an available ATA command, and initialize it
4856 * @dev: Device from whom we request an available command structure
4862 struct ata_queued_cmd
*ata_qc_new_init(struct ata_device
*dev
)
4864 struct ata_port
*ap
= dev
->link
->ap
;
4865 struct ata_queued_cmd
*qc
;
4867 qc
= ata_qc_new(ap
);
4880 * ata_qc_free - free unused ata_queued_cmd
4881 * @qc: Command to complete
4883 * Designed to free unused ata_queued_cmd object
4884 * in case something prevents using it.
4887 * spin_lock_irqsave(host lock)
4889 void ata_qc_free(struct ata_queued_cmd
*qc
)
4891 struct ata_port
*ap
= qc
->ap
;
4894 WARN_ON_ONCE(qc
== NULL
); /* ata_qc_from_tag _might_ return NULL */
4898 if (likely(ata_tag_valid(tag
))) {
4899 qc
->tag
= ATA_TAG_POISON
;
4900 clear_bit(tag
, &ap
->qc_allocated
);
4904 void __ata_qc_complete(struct ata_queued_cmd
*qc
)
4906 struct ata_port
*ap
= qc
->ap
;
4907 struct ata_link
*link
= qc
->dev
->link
;
4909 WARN_ON_ONCE(qc
== NULL
); /* ata_qc_from_tag _might_ return NULL */
4910 WARN_ON_ONCE(!(qc
->flags
& ATA_QCFLAG_ACTIVE
));
4912 if (likely(qc
->flags
& ATA_QCFLAG_DMAMAP
))
4915 /* command should be marked inactive atomically with qc completion */
4916 if (qc
->tf
.protocol
== ATA_PROT_NCQ
) {
4917 link
->sactive
&= ~(1 << qc
->tag
);
4919 ap
->nr_active_links
--;
4921 link
->active_tag
= ATA_TAG_POISON
;
4922 ap
->nr_active_links
--;
4925 /* clear exclusive status */
4926 if (unlikely(qc
->flags
& ATA_QCFLAG_CLEAR_EXCL
&&
4927 ap
->excl_link
== link
))
4928 ap
->excl_link
= NULL
;
4930 /* atapi: mark qc as inactive to prevent the interrupt handler
4931 * from completing the command twice later, before the error handler
4932 * is called. (when rc != 0 and atapi request sense is needed)
4934 qc
->flags
&= ~ATA_QCFLAG_ACTIVE
;
4935 ap
->qc_active
&= ~(1 << qc
->tag
);
4937 /* call completion callback */
4938 qc
->complete_fn(qc
);
4941 static void fill_result_tf(struct ata_queued_cmd
*qc
)
4943 struct ata_port
*ap
= qc
->ap
;
4945 qc
->result_tf
.flags
= qc
->tf
.flags
;
4946 ap
->ops
->qc_fill_rtf(qc
);
4949 static void ata_verify_xfer(struct ata_queued_cmd
*qc
)
4951 struct ata_device
*dev
= qc
->dev
;
4953 if (ata_tag_internal(qc
->tag
))
4956 if (ata_is_nodata(qc
->tf
.protocol
))
4959 if ((dev
->mwdma_mask
|| dev
->udma_mask
) && ata_is_pio(qc
->tf
.protocol
))
4962 dev
->flags
&= ~ATA_DFLAG_DUBIOUS_XFER
;
4966 * ata_qc_complete - Complete an active ATA command
4967 * @qc: Command to complete
4969 * Indicate to the mid and upper layers that an ATA
4970 * command has completed, with either an ok or not-ok status.
4973 * spin_lock_irqsave(host lock)
4975 void ata_qc_complete(struct ata_queued_cmd
*qc
)
4977 struct ata_port
*ap
= qc
->ap
;
4979 /* XXX: New EH and old EH use different mechanisms to
4980 * synchronize EH with regular execution path.
4982 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4983 * Normal execution path is responsible for not accessing a
4984 * failed qc. libata core enforces the rule by returning NULL
4985 * from ata_qc_from_tag() for failed qcs.
4987 * Old EH depends on ata_qc_complete() nullifying completion
4988 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4989 * not synchronize with interrupt handler. Only PIO task is
4992 if (ap
->ops
->error_handler
) {
4993 struct ata_device
*dev
= qc
->dev
;
4994 struct ata_eh_info
*ehi
= &dev
->link
->eh_info
;
4996 WARN_ON_ONCE(ap
->pflags
& ATA_PFLAG_FROZEN
);
4998 if (unlikely(qc
->err_mask
))
4999 qc
->flags
|= ATA_QCFLAG_FAILED
;
5001 if (unlikely(qc
->flags
& ATA_QCFLAG_FAILED
)) {
5002 if (!ata_tag_internal(qc
->tag
)) {
5003 /* always fill result TF for failed qc */
5005 ata_qc_schedule_eh(qc
);
5010 /* read result TF if requested */
5011 if (qc
->flags
& ATA_QCFLAG_RESULT_TF
)
5014 /* Some commands need post-processing after successful
5017 switch (qc
->tf
.command
) {
5018 case ATA_CMD_SET_FEATURES
:
5019 if (qc
->tf
.feature
!= SETFEATURES_WC_ON
&&
5020 qc
->tf
.feature
!= SETFEATURES_WC_OFF
)
5023 case ATA_CMD_INIT_DEV_PARAMS
: /* CHS translation changed */
5024 case ATA_CMD_SET_MULTI
: /* multi_count changed */
5025 /* revalidate device */
5026 ehi
->dev_action
[dev
->devno
] |= ATA_EH_REVALIDATE
;
5027 ata_port_schedule_eh(ap
);
5031 dev
->flags
|= ATA_DFLAG_SLEEPING
;
5035 if (unlikely(dev
->flags
& ATA_DFLAG_DUBIOUS_XFER
))
5036 ata_verify_xfer(qc
);
5038 __ata_qc_complete(qc
);
5040 if (qc
->flags
& ATA_QCFLAG_EH_SCHEDULED
)
5043 /* read result TF if failed or requested */
5044 if (qc
->err_mask
|| qc
->flags
& ATA_QCFLAG_RESULT_TF
)
5047 __ata_qc_complete(qc
);
5052 * ata_qc_complete_multiple - Complete multiple qcs successfully
5053 * @ap: port in question
5054 * @qc_active: new qc_active mask
5056 * Complete in-flight commands. This functions is meant to be
5057 * called from low-level driver's interrupt routine to complete
5058 * requests normally. ap->qc_active and @qc_active is compared
5059 * and commands are completed accordingly.
5062 * spin_lock_irqsave(host lock)
5065 * Number of completed commands on success, -errno otherwise.
5067 int ata_qc_complete_multiple(struct ata_port
*ap
, u32 qc_active
)
5072 done_mask
= ap
->qc_active
^ qc_active
;
5074 if (unlikely(done_mask
& qc_active
)) {
5075 ata_port_printk(ap
, KERN_ERR
, "illegal qc_active transition "
5076 "(%08x->%08x)\n", ap
->qc_active
, qc_active
);
5081 struct ata_queued_cmd
*qc
;
5082 unsigned int tag
= __ffs(done_mask
);
5084 qc
= ata_qc_from_tag(ap
, tag
);
5086 ata_qc_complete(qc
);
5089 done_mask
&= ~(1 << tag
);
5096 * ata_qc_issue - issue taskfile to device
5097 * @qc: command to issue to device
5099 * Prepare an ATA command to submission to device.
5100 * This includes mapping the data into a DMA-able
5101 * area, filling in the S/G table, and finally
5102 * writing the taskfile to hardware, starting the command.
5105 * spin_lock_irqsave(host lock)
5107 void ata_qc_issue(struct ata_queued_cmd
*qc
)
5109 struct ata_port
*ap
= qc
->ap
;
5110 struct ata_link
*link
= qc
->dev
->link
;
5111 u8 prot
= qc
->tf
.protocol
;
5113 /* Make sure only one non-NCQ command is outstanding. The
5114 * check is skipped for old EH because it reuses active qc to
5115 * request ATAPI sense.
5117 WARN_ON_ONCE(ap
->ops
->error_handler
&& ata_tag_valid(link
->active_tag
));
5119 if (ata_is_ncq(prot
)) {
5120 WARN_ON_ONCE(link
->sactive
& (1 << qc
->tag
));
5123 ap
->nr_active_links
++;
5124 link
->sactive
|= 1 << qc
->tag
;
5126 WARN_ON_ONCE(link
->sactive
);
5128 ap
->nr_active_links
++;
5129 link
->active_tag
= qc
->tag
;
5132 qc
->flags
|= ATA_QCFLAG_ACTIVE
;
5133 ap
->qc_active
|= 1 << qc
->tag
;
5135 /* We guarantee to LLDs that they will have at least one
5136 * non-zero sg if the command is a data command.
5138 BUG_ON(ata_is_data(prot
) && (!qc
->sg
|| !qc
->n_elem
|| !qc
->nbytes
));
5140 if (ata_is_dma(prot
) || (ata_is_pio(prot
) &&
5141 (ap
->flags
& ATA_FLAG_PIO_DMA
)))
5142 if (ata_sg_setup(qc
))
5145 /* if device is sleeping, schedule reset and abort the link */
5146 if (unlikely(qc
->dev
->flags
& ATA_DFLAG_SLEEPING
)) {
5147 link
->eh_info
.action
|= ATA_EH_RESET
;
5148 ata_ehi_push_desc(&link
->eh_info
, "waking up from sleep");
5149 ata_link_abort(link
);
5153 ap
->ops
->qc_prep(qc
);
5155 qc
->err_mask
|= ap
->ops
->qc_issue(qc
);
5156 if (unlikely(qc
->err_mask
))
5161 qc
->err_mask
|= AC_ERR_SYSTEM
;
5163 ata_qc_complete(qc
);
5167 * sata_scr_valid - test whether SCRs are accessible
5168 * @link: ATA link to test SCR accessibility for
5170 * Test whether SCRs are accessible for @link.
5176 * 1 if SCRs are accessible, 0 otherwise.
5178 int sata_scr_valid(struct ata_link
*link
)
5180 struct ata_port
*ap
= link
->ap
;
5182 return (ap
->flags
& ATA_FLAG_SATA
) && ap
->ops
->scr_read
;
5186 * sata_scr_read - read SCR register of the specified port
5187 * @link: ATA link to read SCR for
5189 * @val: Place to store read value
5191 * Read SCR register @reg of @link into *@val. This function is
5192 * guaranteed to succeed if @link is ap->link, the cable type of
5193 * the port is SATA and the port implements ->scr_read.
5196 * None if @link is ap->link. Kernel thread context otherwise.
5199 * 0 on success, negative errno on failure.
5201 int sata_scr_read(struct ata_link
*link
, int reg
, u32
*val
)
5203 if (ata_is_host_link(link
)) {
5204 if (sata_scr_valid(link
))
5205 return link
->ap
->ops
->scr_read(link
, reg
, val
);
5209 return sata_pmp_scr_read(link
, reg
, val
);
5213 * sata_scr_write - write SCR register of the specified port
5214 * @link: ATA link to write SCR for
5215 * @reg: SCR to write
5216 * @val: value to write
5218 * Write @val to SCR register @reg of @link. This function is
5219 * guaranteed to succeed if @link is ap->link, the cable type of
5220 * the port is SATA and the port implements ->scr_read.
5223 * None if @link is ap->link. Kernel thread context otherwise.
5226 * 0 on success, negative errno on failure.
5228 int sata_scr_write(struct ata_link
*link
, int reg
, u32 val
)
5230 if (ata_is_host_link(link
)) {
5231 if (sata_scr_valid(link
))
5232 return link
->ap
->ops
->scr_write(link
, reg
, val
);
5236 return sata_pmp_scr_write(link
, reg
, val
);
5240 * sata_scr_write_flush - write SCR register of the specified port and flush
5241 * @link: ATA link to write SCR for
5242 * @reg: SCR to write
5243 * @val: value to write
5245 * This function is identical to sata_scr_write() except that this
5246 * function performs flush after writing to the register.
5249 * None if @link is ap->link. Kernel thread context otherwise.
5252 * 0 on success, negative errno on failure.
5254 int sata_scr_write_flush(struct ata_link
*link
, int reg
, u32 val
)
5256 if (ata_is_host_link(link
)) {
5259 if (sata_scr_valid(link
)) {
5260 rc
= link
->ap
->ops
->scr_write(link
, reg
, val
);
5262 rc
= link
->ap
->ops
->scr_read(link
, reg
, &val
);
5268 return sata_pmp_scr_write(link
, reg
, val
);
5272 * ata_phys_link_online - test whether the given link is online
5273 * @link: ATA link to test
5275 * Test whether @link is online. Note that this function returns
5276 * 0 if online status of @link cannot be obtained, so
5277 * ata_link_online(link) != !ata_link_offline(link).
5283 * True if the port online status is available and online.
5285 bool ata_phys_link_online(struct ata_link
*link
)
5289 if (sata_scr_read(link
, SCR_STATUS
, &sstatus
) == 0 &&
5290 ata_sstatus_online(sstatus
))
5296 * ata_phys_link_offline - test whether the given link is offline
5297 * @link: ATA link to test
5299 * Test whether @link is offline. Note that this function
5300 * returns 0 if offline status of @link cannot be obtained, so
5301 * ata_link_online(link) != !ata_link_offline(link).
5307 * True if the port offline status is available and offline.
5309 bool ata_phys_link_offline(struct ata_link
*link
)
5313 if (sata_scr_read(link
, SCR_STATUS
, &sstatus
) == 0 &&
5314 !ata_sstatus_online(sstatus
))
5320 * ata_link_online - test whether the given link is online
5321 * @link: ATA link to test
5323 * Test whether @link is online. This is identical to
5324 * ata_phys_link_online() when there's no slave link. When
5325 * there's a slave link, this function should only be called on
5326 * the master link and will return true if any of M/S links is
5333 * True if the port online status is available and online.
5335 bool ata_link_online(struct ata_link
*link
)
5337 struct ata_link
*slave
= link
->ap
->slave_link
;
5339 WARN_ON(link
== slave
); /* shouldn't be called on slave link */
5341 return ata_phys_link_online(link
) ||
5342 (slave
&& ata_phys_link_online(slave
));
5346 * ata_link_offline - test whether the given link is offline
5347 * @link: ATA link to test
5349 * Test whether @link is offline. This is identical to
5350 * ata_phys_link_offline() when there's no slave link. When
5351 * there's a slave link, this function should only be called on
5352 * the master link and will return true if both M/S links are
5359 * True if the port offline status is available and offline.
5361 bool ata_link_offline(struct ata_link
*link
)
5363 struct ata_link
*slave
= link
->ap
->slave_link
;
5365 WARN_ON(link
== slave
); /* shouldn't be called on slave link */
5367 return ata_phys_link_offline(link
) &&
5368 (!slave
|| ata_phys_link_offline(slave
));
5372 static int ata_host_request_pm(struct ata_host
*host
, pm_message_t mesg
,
5373 unsigned int action
, unsigned int ehi_flags
,
5376 unsigned long flags
;
5379 for (i
= 0; i
< host
->n_ports
; i
++) {
5380 struct ata_port
*ap
= host
->ports
[i
];
5381 struct ata_link
*link
;
5383 /* Previous resume operation might still be in
5384 * progress. Wait for PM_PENDING to clear.
5386 if (ap
->pflags
& ATA_PFLAG_PM_PENDING
) {
5387 ata_port_wait_eh(ap
);
5388 WARN_ON(ap
->pflags
& ATA_PFLAG_PM_PENDING
);
5391 /* request PM ops to EH */
5392 spin_lock_irqsave(ap
->lock
, flags
);
5397 ap
->pm_result
= &rc
;
5400 ap
->pflags
|= ATA_PFLAG_PM_PENDING
;
5401 ata_for_each_link(link
, ap
, HOST_FIRST
) {
5402 link
->eh_info
.action
|= action
;
5403 link
->eh_info
.flags
|= ehi_flags
;
5406 ata_port_schedule_eh(ap
);
5408 spin_unlock_irqrestore(ap
->lock
, flags
);
5410 /* wait and check result */
5412 ata_port_wait_eh(ap
);
5413 WARN_ON(ap
->pflags
& ATA_PFLAG_PM_PENDING
);
5423 * ata_host_suspend - suspend host
5424 * @host: host to suspend
5427 * Suspend @host. Actual operation is performed by EH. This
5428 * function requests EH to perform PM operations and waits for EH
5432 * Kernel thread context (may sleep).
5435 * 0 on success, -errno on failure.
5437 int ata_host_suspend(struct ata_host
*host
, pm_message_t mesg
)
5442 * disable link pm on all ports before requesting
5445 ata_lpm_enable(host
);
5447 rc
= ata_host_request_pm(host
, mesg
, 0, ATA_EHI_QUIET
, 1);
5449 host
->dev
->power
.power_state
= mesg
;
5454 * ata_host_resume - resume host
5455 * @host: host to resume
5457 * Resume @host. Actual operation is performed by EH. This
5458 * function requests EH to perform PM operations and returns.
5459 * Note that all resume operations are performed parallely.
5462 * Kernel thread context (may sleep).
5464 void ata_host_resume(struct ata_host
*host
)
5466 ata_host_request_pm(host
, PMSG_ON
, ATA_EH_RESET
,
5467 ATA_EHI_NO_AUTOPSY
| ATA_EHI_QUIET
, 0);
5468 host
->dev
->power
.power_state
= PMSG_ON
;
5470 /* reenable link pm */
5471 ata_lpm_disable(host
);
5476 * ata_port_start - Set port up for dma.
5477 * @ap: Port to initialize
5479 * Called just after data structures for each port are
5480 * initialized. Allocates space for PRD table.
5482 * May be used as the port_start() entry in ata_port_operations.
5485 * Inherited from caller.
5487 int ata_port_start(struct ata_port
*ap
)
5489 struct device
*dev
= ap
->dev
;
5491 ap
->prd
= dmam_alloc_coherent(dev
, ATA_PRD_TBL_SZ
, &ap
->prd_dma
,
5500 * ata_dev_init - Initialize an ata_device structure
5501 * @dev: Device structure to initialize
5503 * Initialize @dev in preparation for probing.
5506 * Inherited from caller.
5508 void ata_dev_init(struct ata_device
*dev
)
5510 struct ata_link
*link
= ata_dev_phys_link(dev
);
5511 struct ata_port
*ap
= link
->ap
;
5512 unsigned long flags
;
5514 /* SATA spd limit is bound to the attached device, reset together */
5515 link
->sata_spd_limit
= link
->hw_sata_spd_limit
;
5518 /* High bits of dev->flags are used to record warm plug
5519 * requests which occur asynchronously. Synchronize using
5522 spin_lock_irqsave(ap
->lock
, flags
);
5523 dev
->flags
&= ~ATA_DFLAG_INIT_MASK
;
5525 spin_unlock_irqrestore(ap
->lock
, flags
);
5527 memset((void *)dev
+ ATA_DEVICE_CLEAR_BEGIN
, 0,
5528 ATA_DEVICE_CLEAR_END
- ATA_DEVICE_CLEAR_BEGIN
);
5529 dev
->pio_mask
= UINT_MAX
;
5530 dev
->mwdma_mask
= UINT_MAX
;
5531 dev
->udma_mask
= UINT_MAX
;
5535 * ata_link_init - Initialize an ata_link structure
5536 * @ap: ATA port link is attached to
5537 * @link: Link structure to initialize
5538 * @pmp: Port multiplier port number
5543 * Kernel thread context (may sleep)
5545 void ata_link_init(struct ata_port
*ap
, struct ata_link
*link
, int pmp
)
5549 /* clear everything except for devices */
5550 memset(link
, 0, offsetof(struct ata_link
, device
[0]));
5554 link
->active_tag
= ATA_TAG_POISON
;
5555 link
->hw_sata_spd_limit
= UINT_MAX
;
5557 /* can't use iterator, ap isn't initialized yet */
5558 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++) {
5559 struct ata_device
*dev
= &link
->device
[i
];
5562 dev
->devno
= dev
- link
->device
;
5568 * sata_link_init_spd - Initialize link->sata_spd_limit
5569 * @link: Link to configure sata_spd_limit for
5571 * Initialize @link->[hw_]sata_spd_limit to the currently
5575 * Kernel thread context (may sleep).
5578 * 0 on success, -errno on failure.
5580 int sata_link_init_spd(struct ata_link
*link
)
5585 rc
= sata_scr_read(link
, SCR_CONTROL
, &link
->saved_scontrol
);
5589 spd
= (link
->saved_scontrol
>> 4) & 0xf;
5591 link
->hw_sata_spd_limit
&= (1 << spd
) - 1;
5593 ata_force_link_limits(link
);
5595 link
->sata_spd_limit
= link
->hw_sata_spd_limit
;
5601 * ata_port_alloc - allocate and initialize basic ATA port resources
5602 * @host: ATA host this allocated port belongs to
5604 * Allocate and initialize basic ATA port resources.
5607 * Allocate ATA port on success, NULL on failure.
5610 * Inherited from calling layer (may sleep).
5612 struct ata_port
*ata_port_alloc(struct ata_host
*host
)
5614 struct ata_port
*ap
;
5618 ap
= kzalloc(sizeof(*ap
), GFP_KERNEL
);
5622 ap
->pflags
|= ATA_PFLAG_INITIALIZING
;
5623 ap
->lock
= &host
->lock
;
5624 ap
->flags
= ATA_FLAG_DISABLED
;
5626 ap
->ctl
= ATA_DEVCTL_OBS
;
5628 ap
->dev
= host
->dev
;
5629 ap
->last_ctl
= 0xFF;
5631 #if defined(ATA_VERBOSE_DEBUG)
5632 /* turn on all debugging levels */
5633 ap
->msg_enable
= 0x00FF;
5634 #elif defined(ATA_DEBUG)
5635 ap
->msg_enable
= ATA_MSG_DRV
| ATA_MSG_INFO
| ATA_MSG_CTL
| ATA_MSG_WARN
| ATA_MSG_ERR
;
5637 ap
->msg_enable
= ATA_MSG_DRV
| ATA_MSG_ERR
| ATA_MSG_WARN
;
5640 #ifdef CONFIG_ATA_SFF
5641 INIT_DELAYED_WORK(&ap
->port_task
, ata_pio_task
);
5643 INIT_DELAYED_WORK(&ap
->port_task
, NULL
);
5645 INIT_DELAYED_WORK(&ap
->hotplug_task
, ata_scsi_hotplug
);
5646 INIT_WORK(&ap
->scsi_rescan_task
, ata_scsi_dev_rescan
);
5647 INIT_LIST_HEAD(&ap
->eh_done_q
);
5648 init_waitqueue_head(&ap
->eh_wait_q
);
5649 init_completion(&ap
->park_req_pending
);
5650 init_timer_deferrable(&ap
->fastdrain_timer
);
5651 ap
->fastdrain_timer
.function
= ata_eh_fastdrain_timerfn
;
5652 ap
->fastdrain_timer
.data
= (unsigned long)ap
;
5654 ap
->cbl
= ATA_CBL_NONE
;
5656 ata_link_init(ap
, &ap
->link
, 0);
5659 ap
->stats
.unhandled_irq
= 1;
5660 ap
->stats
.idle_irq
= 1;
5665 static void ata_host_release(struct device
*gendev
, void *res
)
5667 struct ata_host
*host
= dev_get_drvdata(gendev
);
5670 for (i
= 0; i
< host
->n_ports
; i
++) {
5671 struct ata_port
*ap
= host
->ports
[i
];
5677 scsi_host_put(ap
->scsi_host
);
5679 kfree(ap
->pmp_link
);
5680 kfree(ap
->slave_link
);
5682 host
->ports
[i
] = NULL
;
5685 dev_set_drvdata(gendev
, NULL
);
5689 * ata_host_alloc - allocate and init basic ATA host resources
5690 * @dev: generic device this host is associated with
5691 * @max_ports: maximum number of ATA ports associated with this host
5693 * Allocate and initialize basic ATA host resources. LLD calls
5694 * this function to allocate a host, initializes it fully and
5695 * attaches it using ata_host_register().
5697 * @max_ports ports are allocated and host->n_ports is
5698 * initialized to @max_ports. The caller is allowed to decrease
5699 * host->n_ports before calling ata_host_register(). The unused
5700 * ports will be automatically freed on registration.
5703 * Allocate ATA host on success, NULL on failure.
5706 * Inherited from calling layer (may sleep).
5708 struct ata_host
*ata_host_alloc(struct device
*dev
, int max_ports
)
5710 struct ata_host
*host
;
5716 if (!devres_open_group(dev
, NULL
, GFP_KERNEL
))
5719 /* alloc a container for our list of ATA ports (buses) */
5720 sz
= sizeof(struct ata_host
) + (max_ports
+ 1) * sizeof(void *);
5721 /* alloc a container for our list of ATA ports (buses) */
5722 host
= devres_alloc(ata_host_release
, sz
, GFP_KERNEL
);
5726 devres_add(dev
, host
);
5727 dev_set_drvdata(dev
, host
);
5729 spin_lock_init(&host
->lock
);
5731 host
->n_ports
= max_ports
;
5733 /* allocate ports bound to this host */
5734 for (i
= 0; i
< max_ports
; i
++) {
5735 struct ata_port
*ap
;
5737 ap
= ata_port_alloc(host
);
5742 host
->ports
[i
] = ap
;
5745 devres_remove_group(dev
, NULL
);
5749 devres_release_group(dev
, NULL
);
5754 * ata_host_alloc_pinfo - alloc host and init with port_info array
5755 * @dev: generic device this host is associated with
5756 * @ppi: array of ATA port_info to initialize host with
5757 * @n_ports: number of ATA ports attached to this host
5759 * Allocate ATA host and initialize with info from @ppi. If NULL
5760 * terminated, @ppi may contain fewer entries than @n_ports. The
5761 * last entry will be used for the remaining ports.
5764 * Allocate ATA host on success, NULL on failure.
5767 * Inherited from calling layer (may sleep).
5769 struct ata_host
*ata_host_alloc_pinfo(struct device
*dev
,
5770 const struct ata_port_info
* const * ppi
,
5773 const struct ata_port_info
*pi
;
5774 struct ata_host
*host
;
5777 host
= ata_host_alloc(dev
, n_ports
);
5781 for (i
= 0, j
= 0, pi
= NULL
; i
< host
->n_ports
; i
++) {
5782 struct ata_port
*ap
= host
->ports
[i
];
5787 ap
->pio_mask
= pi
->pio_mask
;
5788 ap
->mwdma_mask
= pi
->mwdma_mask
;
5789 ap
->udma_mask
= pi
->udma_mask
;
5790 ap
->flags
|= pi
->flags
;
5791 ap
->link
.flags
|= pi
->link_flags
;
5792 ap
->ops
= pi
->port_ops
;
5794 if (!host
->ops
&& (pi
->port_ops
!= &ata_dummy_port_ops
))
5795 host
->ops
= pi
->port_ops
;
5802 * ata_slave_link_init - initialize slave link
5803 * @ap: port to initialize slave link for
5805 * Create and initialize slave link for @ap. This enables slave
5806 * link handling on the port.
5808 * In libata, a port contains links and a link contains devices.
5809 * There is single host link but if a PMP is attached to it,
5810 * there can be multiple fan-out links. On SATA, there's usually
5811 * a single device connected to a link but PATA and SATA
5812 * controllers emulating TF based interface can have two - master
5815 * However, there are a few controllers which don't fit into this
5816 * abstraction too well - SATA controllers which emulate TF
5817 * interface with both master and slave devices but also have
5818 * separate SCR register sets for each device. These controllers
5819 * need separate links for physical link handling
5820 * (e.g. onlineness, link speed) but should be treated like a
5821 * traditional M/S controller for everything else (e.g. command
5822 * issue, softreset).
5824 * slave_link is libata's way of handling this class of
5825 * controllers without impacting core layer too much. For
5826 * anything other than physical link handling, the default host
5827 * link is used for both master and slave. For physical link
5828 * handling, separate @ap->slave_link is used. All dirty details
5829 * are implemented inside libata core layer. From LLD's POV, the
5830 * only difference is that prereset, hardreset and postreset are
5831 * called once more for the slave link, so the reset sequence
5832 * looks like the following.
5834 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
5835 * softreset(M) -> postreset(M) -> postreset(S)
5837 * Note that softreset is called only for the master. Softreset
5838 * resets both M/S by definition, so SRST on master should handle
5839 * both (the standard method will work just fine).
5842 * Should be called before host is registered.
5845 * 0 on success, -errno on failure.
5847 int ata_slave_link_init(struct ata_port
*ap
)
5849 struct ata_link
*link
;
5851 WARN_ON(ap
->slave_link
);
5852 WARN_ON(ap
->flags
& ATA_FLAG_PMP
);
5854 link
= kzalloc(sizeof(*link
), GFP_KERNEL
);
5858 ata_link_init(ap
, link
, 1);
5859 ap
->slave_link
= link
;
5863 static void ata_host_stop(struct device
*gendev
, void *res
)
5865 struct ata_host
*host
= dev_get_drvdata(gendev
);
5868 WARN_ON(!(host
->flags
& ATA_HOST_STARTED
));
5870 for (i
= 0; i
< host
->n_ports
; i
++) {
5871 struct ata_port
*ap
= host
->ports
[i
];
5873 if (ap
->ops
->port_stop
)
5874 ap
->ops
->port_stop(ap
);
5877 if (host
->ops
->host_stop
)
5878 host
->ops
->host_stop(host
);
5882 * ata_finalize_port_ops - finalize ata_port_operations
5883 * @ops: ata_port_operations to finalize
5885 * An ata_port_operations can inherit from another ops and that
5886 * ops can again inherit from another. This can go on as many
5887 * times as necessary as long as there is no loop in the
5888 * inheritance chain.
5890 * Ops tables are finalized when the host is started. NULL or
5891 * unspecified entries are inherited from the closet ancestor
5892 * which has the method and the entry is populated with it.
5893 * After finalization, the ops table directly points to all the
5894 * methods and ->inherits is no longer necessary and cleared.
5896 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5901 static void ata_finalize_port_ops(struct ata_port_operations
*ops
)
5903 static DEFINE_SPINLOCK(lock
);
5904 const struct ata_port_operations
*cur
;
5905 void **begin
= (void **)ops
;
5906 void **end
= (void **)&ops
->inherits
;
5909 if (!ops
|| !ops
->inherits
)
5914 for (cur
= ops
->inherits
; cur
; cur
= cur
->inherits
) {
5915 void **inherit
= (void **)cur
;
5917 for (pp
= begin
; pp
< end
; pp
++, inherit
++)
5922 for (pp
= begin
; pp
< end
; pp
++)
5926 ops
->inherits
= NULL
;
5932 * ata_host_start - start and freeze ports of an ATA host
5933 * @host: ATA host to start ports for
5935 * Start and then freeze ports of @host. Started status is
5936 * recorded in host->flags, so this function can be called
5937 * multiple times. Ports are guaranteed to get started only
5938 * once. If host->ops isn't initialized yet, its set to the
5939 * first non-dummy port ops.
5942 * Inherited from calling layer (may sleep).
5945 * 0 if all ports are started successfully, -errno otherwise.
5947 int ata_host_start(struct ata_host
*host
)
5950 void *start_dr
= NULL
;
5953 if (host
->flags
& ATA_HOST_STARTED
)
5956 ata_finalize_port_ops(host
->ops
);
5958 for (i
= 0; i
< host
->n_ports
; i
++) {
5959 struct ata_port
*ap
= host
->ports
[i
];
5961 ata_finalize_port_ops(ap
->ops
);
5963 if (!host
->ops
&& !ata_port_is_dummy(ap
))
5964 host
->ops
= ap
->ops
;
5966 if (ap
->ops
->port_stop
)
5970 if (host
->ops
->host_stop
)
5974 start_dr
= devres_alloc(ata_host_stop
, 0, GFP_KERNEL
);
5979 for (i
= 0; i
< host
->n_ports
; i
++) {
5980 struct ata_port
*ap
= host
->ports
[i
];
5982 if (ap
->ops
->port_start
) {
5983 rc
= ap
->ops
->port_start(ap
);
5986 dev_printk(KERN_ERR
, host
->dev
,
5987 "failed to start port %d "
5988 "(errno=%d)\n", i
, rc
);
5992 ata_eh_freeze_port(ap
);
5996 devres_add(host
->dev
, start_dr
);
5997 host
->flags
|= ATA_HOST_STARTED
;
6002 struct ata_port
*ap
= host
->ports
[i
];
6004 if (ap
->ops
->port_stop
)
6005 ap
->ops
->port_stop(ap
);
6007 devres_free(start_dr
);
6012 * ata_sas_host_init - Initialize a host struct
6013 * @host: host to initialize
6014 * @dev: device host is attached to
6015 * @flags: host flags
6019 * PCI/etc. bus probe sem.
6022 /* KILLME - the only user left is ipr */
6023 void ata_host_init(struct ata_host
*host
, struct device
*dev
,
6024 unsigned long flags
, struct ata_port_operations
*ops
)
6026 spin_lock_init(&host
->lock
);
6028 host
->flags
= flags
;
6033 static void async_port_probe(void *data
, async_cookie_t cookie
)
6036 struct ata_port
*ap
= data
;
6039 * If we're not allowed to scan this host in parallel,
6040 * we need to wait until all previous scans have completed
6041 * before going further.
6042 * Jeff Garzik says this is only within a controller, so we
6043 * don't need to wait for port 0, only for later ports.
6045 if (!(ap
->host
->flags
& ATA_HOST_PARALLEL_SCAN
) && ap
->port_no
!= 0)
6046 async_synchronize_cookie(cookie
);
6049 if (ap
->ops
->error_handler
) {
6050 struct ata_eh_info
*ehi
= &ap
->link
.eh_info
;
6051 unsigned long flags
;
6055 /* kick EH for boot probing */
6056 spin_lock_irqsave(ap
->lock
, flags
);
6058 ehi
->probe_mask
|= ATA_ALL_DEVICES
;
6059 ehi
->action
|= ATA_EH_RESET
| ATA_EH_LPM
;
6060 ehi
->flags
|= ATA_EHI_NO_AUTOPSY
| ATA_EHI_QUIET
;
6062 ap
->pflags
&= ~ATA_PFLAG_INITIALIZING
;
6063 ap
->pflags
|= ATA_PFLAG_LOADING
;
6064 ata_port_schedule_eh(ap
);
6066 spin_unlock_irqrestore(ap
->lock
, flags
);
6068 /* wait for EH to finish */
6069 ata_port_wait_eh(ap
);
6071 DPRINTK("ata%u: bus probe begin\n", ap
->print_id
);
6072 rc
= ata_bus_probe(ap
);
6073 DPRINTK("ata%u: bus probe end\n", ap
->print_id
);
6076 /* FIXME: do something useful here?
6077 * Current libata behavior will
6078 * tear down everything when
6079 * the module is removed
6080 * or the h/w is unplugged.
6085 /* in order to keep device order, we need to synchronize at this point */
6086 async_synchronize_cookie(cookie
);
6088 ata_scsi_scan_host(ap
, 1);
6092 * ata_host_register - register initialized ATA host
6093 * @host: ATA host to register
6094 * @sht: template for SCSI host
6096 * Register initialized ATA host. @host is allocated using
6097 * ata_host_alloc() and fully initialized by LLD. This function
6098 * starts ports, registers @host with ATA and SCSI layers and
6099 * probe registered devices.
6102 * Inherited from calling layer (may sleep).
6105 * 0 on success, -errno otherwise.
6107 int ata_host_register(struct ata_host
*host
, struct scsi_host_template
*sht
)
6111 /* host must have been started */
6112 if (!(host
->flags
& ATA_HOST_STARTED
)) {
6113 dev_printk(KERN_ERR
, host
->dev
,
6114 "BUG: trying to register unstarted host\n");
6119 /* Blow away unused ports. This happens when LLD can't
6120 * determine the exact number of ports to allocate at
6123 for (i
= host
->n_ports
; host
->ports
[i
]; i
++)
6124 kfree(host
->ports
[i
]);
6126 /* give ports names and add SCSI hosts */
6127 for (i
= 0; i
< host
->n_ports
; i
++)
6128 host
->ports
[i
]->print_id
= ata_print_id
++;
6130 rc
= ata_scsi_add_hosts(host
, sht
);
6134 /* associate with ACPI nodes */
6135 ata_acpi_associate(host
);
6137 /* set cable, sata_spd_limit and report */
6138 for (i
= 0; i
< host
->n_ports
; i
++) {
6139 struct ata_port
*ap
= host
->ports
[i
];
6140 unsigned long xfer_mask
;
6142 /* set SATA cable type if still unset */
6143 if (ap
->cbl
== ATA_CBL_NONE
&& (ap
->flags
& ATA_FLAG_SATA
))
6144 ap
->cbl
= ATA_CBL_SATA
;
6146 /* init sata_spd_limit to the current value */
6147 sata_link_init_spd(&ap
->link
);
6149 sata_link_init_spd(ap
->slave_link
);
6151 /* print per-port info to dmesg */
6152 xfer_mask
= ata_pack_xfermask(ap
->pio_mask
, ap
->mwdma_mask
,
6155 if (!ata_port_is_dummy(ap
)) {
6156 ata_port_printk(ap
, KERN_INFO
,
6157 "%cATA max %s %s\n",
6158 (ap
->flags
& ATA_FLAG_SATA
) ? 'S' : 'P',
6159 ata_mode_string(xfer_mask
),
6160 ap
->link
.eh_info
.desc
);
6161 ata_ehi_clear_desc(&ap
->link
.eh_info
);
6163 ata_port_printk(ap
, KERN_INFO
, "DUMMY\n");
6166 /* perform each probe asynchronously */
6167 for (i
= 0; i
< host
->n_ports
; i
++) {
6168 struct ata_port
*ap
= host
->ports
[i
];
6169 async_schedule(async_port_probe
, ap
);
6176 * ata_host_activate - start host, request IRQ and register it
6177 * @host: target ATA host
6178 * @irq: IRQ to request
6179 * @irq_handler: irq_handler used when requesting IRQ
6180 * @irq_flags: irq_flags used when requesting IRQ
6181 * @sht: scsi_host_template to use when registering the host
6183 * After allocating an ATA host and initializing it, most libata
6184 * LLDs perform three steps to activate the host - start host,
6185 * request IRQ and register it. This helper takes necessasry
6186 * arguments and performs the three steps in one go.
6188 * An invalid IRQ skips the IRQ registration and expects the host to
6189 * have set polling mode on the port. In this case, @irq_handler
6193 * Inherited from calling layer (may sleep).
6196 * 0 on success, -errno otherwise.
6198 int ata_host_activate(struct ata_host
*host
, int irq
,
6199 irq_handler_t irq_handler
, unsigned long irq_flags
,
6200 struct scsi_host_template
*sht
)
6204 rc
= ata_host_start(host
);
6208 /* Special case for polling mode */
6210 WARN_ON(irq_handler
);
6211 return ata_host_register(host
, sht
);
6214 rc
= devm_request_irq(host
->dev
, irq
, irq_handler
, irq_flags
,
6215 dev_driver_string(host
->dev
), host
);
6219 for (i
= 0; i
< host
->n_ports
; i
++)
6220 ata_port_desc(host
->ports
[i
], "irq %d", irq
);
6222 rc
= ata_host_register(host
, sht
);
6223 /* if failed, just free the IRQ and leave ports alone */
6225 devm_free_irq(host
->dev
, irq
, host
);
6231 * ata_port_detach - Detach ATA port in prepration of device removal
6232 * @ap: ATA port to be detached
6234 * Detach all ATA devices and the associated SCSI devices of @ap;
6235 * then, remove the associated SCSI host. @ap is guaranteed to
6236 * be quiescent on return from this function.
6239 * Kernel thread context (may sleep).
6241 static void ata_port_detach(struct ata_port
*ap
)
6243 unsigned long flags
;
6245 if (!ap
->ops
->error_handler
)
6248 /* tell EH we're leaving & flush EH */
6249 spin_lock_irqsave(ap
->lock
, flags
);
6250 ap
->pflags
|= ATA_PFLAG_UNLOADING
;
6251 ata_port_schedule_eh(ap
);
6252 spin_unlock_irqrestore(ap
->lock
, flags
);
6254 /* wait till EH commits suicide */
6255 ata_port_wait_eh(ap
);
6257 /* it better be dead now */
6258 WARN_ON(!(ap
->pflags
& ATA_PFLAG_UNLOADED
));
6260 cancel_rearming_delayed_work(&ap
->hotplug_task
);
6263 /* remove the associated SCSI host */
6264 scsi_remove_host(ap
->scsi_host
);
6268 * ata_host_detach - Detach all ports of an ATA host
6269 * @host: Host to detach
6271 * Detach all ports of @host.
6274 * Kernel thread context (may sleep).
6276 void ata_host_detach(struct ata_host
*host
)
6280 for (i
= 0; i
< host
->n_ports
; i
++)
6281 ata_port_detach(host
->ports
[i
]);
6283 /* the host is dead now, dissociate ACPI */
6284 ata_acpi_dissociate(host
);
6290 * ata_pci_remove_one - PCI layer callback for device removal
6291 * @pdev: PCI device that was removed
6293 * PCI layer indicates to libata via this hook that hot-unplug or
6294 * module unload event has occurred. Detach all ports. Resource
6295 * release is handled via devres.
6298 * Inherited from PCI layer (may sleep).
6300 void ata_pci_remove_one(struct pci_dev
*pdev
)
6302 struct device
*dev
= &pdev
->dev
;
6303 struct ata_host
*host
= dev_get_drvdata(dev
);
6305 ata_host_detach(host
);
6308 /* move to PCI subsystem */
6309 int pci_test_config_bits(struct pci_dev
*pdev
, const struct pci_bits
*bits
)
6311 unsigned long tmp
= 0;
6313 switch (bits
->width
) {
6316 pci_read_config_byte(pdev
, bits
->reg
, &tmp8
);
6322 pci_read_config_word(pdev
, bits
->reg
, &tmp16
);
6328 pci_read_config_dword(pdev
, bits
->reg
, &tmp32
);
6339 return (tmp
== bits
->val
) ? 1 : 0;
6343 void ata_pci_device_do_suspend(struct pci_dev
*pdev
, pm_message_t mesg
)
6345 pci_save_state(pdev
);
6346 pci_disable_device(pdev
);
6348 if (mesg
.event
& PM_EVENT_SLEEP
)
6349 pci_set_power_state(pdev
, PCI_D3hot
);
6352 int ata_pci_device_do_resume(struct pci_dev
*pdev
)
6356 pci_set_power_state(pdev
, PCI_D0
);
6357 pci_restore_state(pdev
);
6359 rc
= pcim_enable_device(pdev
);
6361 dev_printk(KERN_ERR
, &pdev
->dev
,
6362 "failed to enable device after resume (%d)\n", rc
);
6366 pci_set_master(pdev
);
6370 int ata_pci_device_suspend(struct pci_dev
*pdev
, pm_message_t mesg
)
6372 struct ata_host
*host
= dev_get_drvdata(&pdev
->dev
);
6375 rc
= ata_host_suspend(host
, mesg
);
6379 ata_pci_device_do_suspend(pdev
, mesg
);
6384 int ata_pci_device_resume(struct pci_dev
*pdev
)
6386 struct ata_host
*host
= dev_get_drvdata(&pdev
->dev
);
6389 rc
= ata_pci_device_do_resume(pdev
);
6391 ata_host_resume(host
);
6394 #endif /* CONFIG_PM */
6396 #endif /* CONFIG_PCI */
6398 static int __init
ata_parse_force_one(char **cur
,
6399 struct ata_force_ent
*force_ent
,
6400 const char **reason
)
6402 /* FIXME: Currently, there's no way to tag init const data and
6403 * using __initdata causes build failure on some versions of
6404 * gcc. Once __initdataconst is implemented, add const to the
6405 * following structure.
6407 static struct ata_force_param force_tbl
[] __initdata
= {
6408 { "40c", .cbl
= ATA_CBL_PATA40
},
6409 { "80c", .cbl
= ATA_CBL_PATA80
},
6410 { "short40c", .cbl
= ATA_CBL_PATA40_SHORT
},
6411 { "unk", .cbl
= ATA_CBL_PATA_UNK
},
6412 { "ign", .cbl
= ATA_CBL_PATA_IGN
},
6413 { "sata", .cbl
= ATA_CBL_SATA
},
6414 { "1.5Gbps", .spd_limit
= 1 },
6415 { "3.0Gbps", .spd_limit
= 2 },
6416 { "noncq", .horkage_on
= ATA_HORKAGE_NONCQ
},
6417 { "ncq", .horkage_off
= ATA_HORKAGE_NONCQ
},
6418 { "pio0", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 0) },
6419 { "pio1", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 1) },
6420 { "pio2", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 2) },
6421 { "pio3", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 3) },
6422 { "pio4", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 4) },
6423 { "pio5", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 5) },
6424 { "pio6", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 6) },
6425 { "mwdma0", .xfer_mask
= 1 << (ATA_SHIFT_MWDMA
+ 0) },
6426 { "mwdma1", .xfer_mask
= 1 << (ATA_SHIFT_MWDMA
+ 1) },
6427 { "mwdma2", .xfer_mask
= 1 << (ATA_SHIFT_MWDMA
+ 2) },
6428 { "mwdma3", .xfer_mask
= 1 << (ATA_SHIFT_MWDMA
+ 3) },
6429 { "mwdma4", .xfer_mask
= 1 << (ATA_SHIFT_MWDMA
+ 4) },
6430 { "udma0", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 0) },
6431 { "udma16", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 0) },
6432 { "udma/16", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 0) },
6433 { "udma1", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 1) },
6434 { "udma25", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 1) },
6435 { "udma/25", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 1) },
6436 { "udma2", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 2) },
6437 { "udma33", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 2) },
6438 { "udma/33", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 2) },
6439 { "udma3", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 3) },
6440 { "udma44", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 3) },
6441 { "udma/44", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 3) },
6442 { "udma4", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 4) },
6443 { "udma66", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 4) },
6444 { "udma/66", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 4) },
6445 { "udma5", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 5) },
6446 { "udma100", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 5) },
6447 { "udma/100", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 5) },
6448 { "udma6", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 6) },
6449 { "udma133", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 6) },
6450 { "udma/133", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 6) },
6451 { "udma7", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 7) },
6452 { "nohrst", .lflags
= ATA_LFLAG_NO_HRST
},
6453 { "nosrst", .lflags
= ATA_LFLAG_NO_SRST
},
6454 { "norst", .lflags
= ATA_LFLAG_NO_HRST
| ATA_LFLAG_NO_SRST
},
6456 char *start
= *cur
, *p
= *cur
;
6457 char *id
, *val
, *endp
;
6458 const struct ata_force_param
*match_fp
= NULL
;
6459 int nr_matches
= 0, i
;
6461 /* find where this param ends and update *cur */
6462 while (*p
!= '\0' && *p
!= ',')
6473 p
= strchr(start
, ':');
6475 val
= strstrip(start
);
6480 id
= strstrip(start
);
6481 val
= strstrip(p
+ 1);
6484 p
= strchr(id
, '.');
6487 force_ent
->device
= simple_strtoul(p
, &endp
, 10);
6488 if (p
== endp
|| *endp
!= '\0') {
6489 *reason
= "invalid device";
6494 force_ent
->port
= simple_strtoul(id
, &endp
, 10);
6495 if (p
== endp
|| *endp
!= '\0') {
6496 *reason
= "invalid port/link";
6501 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6502 for (i
= 0; i
< ARRAY_SIZE(force_tbl
); i
++) {
6503 const struct ata_force_param
*fp
= &force_tbl
[i
];
6505 if (strncasecmp(val
, fp
->name
, strlen(val
)))
6511 if (strcasecmp(val
, fp
->name
) == 0) {
6518 *reason
= "unknown value";
6521 if (nr_matches
> 1) {
6522 *reason
= "ambigious value";
6526 force_ent
->param
= *match_fp
;
6531 static void __init
ata_parse_force_param(void)
6533 int idx
= 0, size
= 1;
6534 int last_port
= -1, last_device
= -1;
6535 char *p
, *cur
, *next
;
6537 /* calculate maximum number of params and allocate force_tbl */
6538 for (p
= ata_force_param_buf
; *p
; p
++)
6542 ata_force_tbl
= kzalloc(sizeof(ata_force_tbl
[0]) * size
, GFP_KERNEL
);
6543 if (!ata_force_tbl
) {
6544 printk(KERN_WARNING
"ata: failed to extend force table, "
6545 "libata.force ignored\n");
6549 /* parse and populate the table */
6550 for (cur
= ata_force_param_buf
; *cur
!= '\0'; cur
= next
) {
6551 const char *reason
= "";
6552 struct ata_force_ent te
= { .port
= -1, .device
= -1 };
6555 if (ata_parse_force_one(&next
, &te
, &reason
)) {
6556 printk(KERN_WARNING
"ata: failed to parse force "
6557 "parameter \"%s\" (%s)\n",
6562 if (te
.port
== -1) {
6563 te
.port
= last_port
;
6564 te
.device
= last_device
;
6567 ata_force_tbl
[idx
++] = te
;
6569 last_port
= te
.port
;
6570 last_device
= te
.device
;
6573 ata_force_tbl_size
= idx
;
6576 static int __init
ata_init(void)
6578 ata_parse_force_param();
6580 ata_wq
= create_workqueue("ata");
6582 goto free_force_tbl
;
6584 ata_aux_wq
= create_singlethread_workqueue("ata_aux");
6588 printk(KERN_DEBUG
"libata version " DRV_VERSION
" loaded.\n");
6592 destroy_workqueue(ata_wq
);
6594 kfree(ata_force_tbl
);
6598 static void __exit
ata_exit(void)
6600 kfree(ata_force_tbl
);
6601 destroy_workqueue(ata_wq
);
6602 destroy_workqueue(ata_aux_wq
);
6605 subsys_initcall(ata_init
);
6606 module_exit(ata_exit
);
6608 static unsigned long ratelimit_time
;
6609 static DEFINE_SPINLOCK(ata_ratelimit_lock
);
6611 int ata_ratelimit(void)
6614 unsigned long flags
;
6616 spin_lock_irqsave(&ata_ratelimit_lock
, flags
);
6618 if (time_after(jiffies
, ratelimit_time
)) {
6620 ratelimit_time
= jiffies
+ (HZ
/5);
6624 spin_unlock_irqrestore(&ata_ratelimit_lock
, flags
);
6630 * ata_wait_register - wait until register value changes
6631 * @reg: IO-mapped register
6632 * @mask: Mask to apply to read register value
6633 * @val: Wait condition
6634 * @interval: polling interval in milliseconds
6635 * @timeout: timeout in milliseconds
6637 * Waiting for some bits of register to change is a common
6638 * operation for ATA controllers. This function reads 32bit LE
6639 * IO-mapped register @reg and tests for the following condition.
6641 * (*@reg & mask) != val
6643 * If the condition is met, it returns; otherwise, the process is
6644 * repeated after @interval_msec until timeout.
6647 * Kernel thread context (may sleep)
6650 * The final register value.
6652 u32
ata_wait_register(void __iomem
*reg
, u32 mask
, u32 val
,
6653 unsigned long interval
, unsigned long timeout
)
6655 unsigned long deadline
;
6658 tmp
= ioread32(reg
);
6660 /* Calculate timeout _after_ the first read to make sure
6661 * preceding writes reach the controller before starting to
6662 * eat away the timeout.
6664 deadline
= ata_deadline(jiffies
, timeout
);
6666 while ((tmp
& mask
) == val
&& time_before(jiffies
, deadline
)) {
6668 tmp
= ioread32(reg
);
6677 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd
*qc
)
6679 return AC_ERR_SYSTEM
;
6682 static void ata_dummy_error_handler(struct ata_port
*ap
)
6687 struct ata_port_operations ata_dummy_port_ops
= {
6688 .qc_prep
= ata_noop_qc_prep
,
6689 .qc_issue
= ata_dummy_qc_issue
,
6690 .error_handler
= ata_dummy_error_handler
,
6693 const struct ata_port_info ata_dummy_port_info
= {
6694 .port_ops
= &ata_dummy_port_ops
,
6698 * libata is essentially a library of internal helper functions for
6699 * low-level ATA host controller drivers. As such, the API/ABI is
6700 * likely to change as new drivers are added and updated.
6701 * Do not depend on ABI/API stability.
6703 EXPORT_SYMBOL_GPL(sata_deb_timing_normal
);
6704 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug
);
6705 EXPORT_SYMBOL_GPL(sata_deb_timing_long
);
6706 EXPORT_SYMBOL_GPL(ata_base_port_ops
);
6707 EXPORT_SYMBOL_GPL(sata_port_ops
);
6708 EXPORT_SYMBOL_GPL(ata_dummy_port_ops
);
6709 EXPORT_SYMBOL_GPL(ata_dummy_port_info
);
6710 EXPORT_SYMBOL_GPL(ata_link_next
);
6711 EXPORT_SYMBOL_GPL(ata_dev_next
);
6712 EXPORT_SYMBOL_GPL(ata_std_bios_param
);
6713 EXPORT_SYMBOL_GPL(ata_host_init
);
6714 EXPORT_SYMBOL_GPL(ata_host_alloc
);
6715 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo
);
6716 EXPORT_SYMBOL_GPL(ata_slave_link_init
);
6717 EXPORT_SYMBOL_GPL(ata_host_start
);
6718 EXPORT_SYMBOL_GPL(ata_host_register
);
6719 EXPORT_SYMBOL_GPL(ata_host_activate
);
6720 EXPORT_SYMBOL_GPL(ata_host_detach
);
6721 EXPORT_SYMBOL_GPL(ata_sg_init
);
6722 EXPORT_SYMBOL_GPL(ata_qc_complete
);
6723 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple
);
6724 EXPORT_SYMBOL_GPL(atapi_cmd_type
);
6725 EXPORT_SYMBOL_GPL(ata_tf_to_fis
);
6726 EXPORT_SYMBOL_GPL(ata_tf_from_fis
);
6727 EXPORT_SYMBOL_GPL(ata_pack_xfermask
);
6728 EXPORT_SYMBOL_GPL(ata_unpack_xfermask
);
6729 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode
);
6730 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask
);
6731 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift
);
6732 EXPORT_SYMBOL_GPL(ata_mode_string
);
6733 EXPORT_SYMBOL_GPL(ata_id_xfermask
);
6734 EXPORT_SYMBOL_GPL(ata_port_start
);
6735 EXPORT_SYMBOL_GPL(ata_do_set_mode
);
6736 EXPORT_SYMBOL_GPL(ata_std_qc_defer
);
6737 EXPORT_SYMBOL_GPL(ata_noop_qc_prep
);
6738 EXPORT_SYMBOL_GPL(ata_port_probe
);
6739 EXPORT_SYMBOL_GPL(ata_dev_disable
);
6740 EXPORT_SYMBOL_GPL(sata_set_spd
);
6741 EXPORT_SYMBOL_GPL(ata_wait_after_reset
);
6742 EXPORT_SYMBOL_GPL(sata_link_debounce
);
6743 EXPORT_SYMBOL_GPL(sata_link_resume
);
6744 EXPORT_SYMBOL_GPL(ata_std_prereset
);
6745 EXPORT_SYMBOL_GPL(sata_link_hardreset
);
6746 EXPORT_SYMBOL_GPL(sata_std_hardreset
);
6747 EXPORT_SYMBOL_GPL(ata_std_postreset
);
6748 EXPORT_SYMBOL_GPL(ata_dev_classify
);
6749 EXPORT_SYMBOL_GPL(ata_dev_pair
);
6750 EXPORT_SYMBOL_GPL(ata_port_disable
);
6751 EXPORT_SYMBOL_GPL(ata_ratelimit
);
6752 EXPORT_SYMBOL_GPL(ata_wait_register
);
6753 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd
);
6754 EXPORT_SYMBOL_GPL(ata_scsi_slave_config
);
6755 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy
);
6756 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth
);
6757 EXPORT_SYMBOL_GPL(sata_scr_valid
);
6758 EXPORT_SYMBOL_GPL(sata_scr_read
);
6759 EXPORT_SYMBOL_GPL(sata_scr_write
);
6760 EXPORT_SYMBOL_GPL(sata_scr_write_flush
);
6761 EXPORT_SYMBOL_GPL(ata_link_online
);
6762 EXPORT_SYMBOL_GPL(ata_link_offline
);
6764 EXPORT_SYMBOL_GPL(ata_host_suspend
);
6765 EXPORT_SYMBOL_GPL(ata_host_resume
);
6766 #endif /* CONFIG_PM */
6767 EXPORT_SYMBOL_GPL(ata_id_string
);
6768 EXPORT_SYMBOL_GPL(ata_id_c_string
);
6769 EXPORT_SYMBOL_GPL(ata_do_dev_read_id
);
6770 EXPORT_SYMBOL_GPL(ata_scsi_simulate
);
6772 EXPORT_SYMBOL_GPL(ata_pio_queue_task
);
6773 EXPORT_SYMBOL_GPL(ata_pio_need_iordy
);
6774 EXPORT_SYMBOL_GPL(ata_timing_find_mode
);
6775 EXPORT_SYMBOL_GPL(ata_timing_compute
);
6776 EXPORT_SYMBOL_GPL(ata_timing_merge
);
6777 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode
);
6780 EXPORT_SYMBOL_GPL(pci_test_config_bits
);
6781 EXPORT_SYMBOL_GPL(ata_pci_remove_one
);
6783 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend
);
6784 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume
);
6785 EXPORT_SYMBOL_GPL(ata_pci_device_suspend
);
6786 EXPORT_SYMBOL_GPL(ata_pci_device_resume
);
6787 #endif /* CONFIG_PM */
6788 #endif /* CONFIG_PCI */
6790 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc
);
6791 EXPORT_SYMBOL_GPL(ata_ehi_push_desc
);
6792 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc
);
6793 EXPORT_SYMBOL_GPL(ata_port_desc
);
6795 EXPORT_SYMBOL_GPL(ata_port_pbar_desc
);
6796 #endif /* CONFIG_PCI */
6797 EXPORT_SYMBOL_GPL(ata_port_schedule_eh
);
6798 EXPORT_SYMBOL_GPL(ata_link_abort
);
6799 EXPORT_SYMBOL_GPL(ata_port_abort
);
6800 EXPORT_SYMBOL_GPL(ata_port_freeze
);
6801 EXPORT_SYMBOL_GPL(sata_async_notification
);
6802 EXPORT_SYMBOL_GPL(ata_eh_freeze_port
);
6803 EXPORT_SYMBOL_GPL(ata_eh_thaw_port
);
6804 EXPORT_SYMBOL_GPL(ata_eh_qc_complete
);
6805 EXPORT_SYMBOL_GPL(ata_eh_qc_retry
);
6806 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error
);
6807 EXPORT_SYMBOL_GPL(ata_do_eh
);
6808 EXPORT_SYMBOL_GPL(ata_std_error_handler
);
6810 EXPORT_SYMBOL_GPL(ata_cable_40wire
);
6811 EXPORT_SYMBOL_GPL(ata_cable_80wire
);
6812 EXPORT_SYMBOL_GPL(ata_cable_unknown
);
6813 EXPORT_SYMBOL_GPL(ata_cable_ignore
);
6814 EXPORT_SYMBOL_GPL(ata_cable_sata
);