invalid conn_id receive crash fix
[cor_2_6_31.git] / arch / powerpc / kvm / e500_tlb.c
blob0e773fc2d5e42d325914bc8831417b0c4a310ed8
1 /*
2 * Copyright (C) 2008 Freescale Semiconductor, Inc. All rights reserved.
4 * Author: Yu Liu, yu.liu@freescale.com
6 * Description:
7 * This file is based on arch/powerpc/kvm/44x_tlb.c,
8 * by Hollis Blanchard <hollisb@us.ibm.com>.
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License, version 2, as
12 * published by the Free Software Foundation.
15 #include <linux/types.h>
16 #include <linux/string.h>
17 #include <linux/kvm.h>
18 #include <linux/kvm_host.h>
19 #include <linux/highmem.h>
20 #include <asm/kvm_ppc.h>
21 #include <asm/kvm_e500.h>
23 #include "../mm/mmu_decl.h"
24 #include "e500_tlb.h"
26 #define to_htlb1_esel(esel) (tlb1_entry_num - (esel) - 1)
28 static unsigned int tlb1_entry_num;
30 void kvmppc_dump_tlbs(struct kvm_vcpu *vcpu)
32 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
33 struct tlbe *tlbe;
34 int i, tlbsel;
36 printk("| %8s | %8s | %8s | %8s | %8s |\n",
37 "nr", "mas1", "mas2", "mas3", "mas7");
39 for (tlbsel = 0; tlbsel < 2; tlbsel++) {
40 printk("Guest TLB%d:\n", tlbsel);
41 for (i = 0; i < vcpu_e500->guest_tlb_size[tlbsel]; i++) {
42 tlbe = &vcpu_e500->guest_tlb[tlbsel][i];
43 if (tlbe->mas1 & MAS1_VALID)
44 printk(" G[%d][%3d] | %08X | %08X | %08X | %08X |\n",
45 tlbsel, i, tlbe->mas1, tlbe->mas2,
46 tlbe->mas3, tlbe->mas7);
50 for (tlbsel = 0; tlbsel < 2; tlbsel++) {
51 printk("Shadow TLB%d:\n", tlbsel);
52 for (i = 0; i < vcpu_e500->shadow_tlb_size[tlbsel]; i++) {
53 tlbe = &vcpu_e500->shadow_tlb[tlbsel][i];
54 if (tlbe->mas1 & MAS1_VALID)
55 printk(" S[%d][%3d] | %08X | %08X | %08X | %08X |\n",
56 tlbsel, i, tlbe->mas1, tlbe->mas2,
57 tlbe->mas3, tlbe->mas7);
62 static inline unsigned int tlb0_get_next_victim(
63 struct kvmppc_vcpu_e500 *vcpu_e500)
65 unsigned int victim;
67 victim = vcpu_e500->guest_tlb_nv[0]++;
68 if (unlikely(vcpu_e500->guest_tlb_nv[0] >= KVM_E500_TLB0_WAY_NUM))
69 vcpu_e500->guest_tlb_nv[0] = 0;
71 return victim;
74 static inline unsigned int tlb1_max_shadow_size(void)
76 return tlb1_entry_num - tlbcam_index;
79 static inline int tlbe_is_writable(struct tlbe *tlbe)
81 return tlbe->mas3 & (MAS3_SW|MAS3_UW);
84 static inline u32 e500_shadow_mas3_attrib(u32 mas3, int usermode)
86 /* Mask off reserved bits. */
87 mas3 &= MAS3_ATTRIB_MASK;
89 if (!usermode) {
90 /* Guest is in supervisor mode,
91 * so we need to translate guest
92 * supervisor permissions into user permissions. */
93 mas3 &= ~E500_TLB_USER_PERM_MASK;
94 mas3 |= (mas3 & E500_TLB_SUPER_PERM_MASK) << 1;
97 return mas3 | E500_TLB_SUPER_PERM_MASK;
100 static inline u32 e500_shadow_mas2_attrib(u32 mas2, int usermode)
102 #ifdef CONFIG_SMP
103 return (mas2 & MAS2_ATTRIB_MASK) | MAS2_M;
104 #else
105 return mas2 & MAS2_ATTRIB_MASK;
106 #endif
110 * writing shadow tlb entry to host TLB
112 static inline void __write_host_tlbe(struct tlbe *stlbe)
114 mtspr(SPRN_MAS1, stlbe->mas1);
115 mtspr(SPRN_MAS2, stlbe->mas2);
116 mtspr(SPRN_MAS3, stlbe->mas3);
117 mtspr(SPRN_MAS7, stlbe->mas7);
118 __asm__ __volatile__ ("tlbwe\n" : : );
121 static inline void write_host_tlbe(struct kvmppc_vcpu_e500 *vcpu_e500,
122 int tlbsel, int esel)
124 struct tlbe *stlbe = &vcpu_e500->shadow_tlb[tlbsel][esel];
126 local_irq_disable();
127 if (tlbsel == 0) {
128 __write_host_tlbe(stlbe);
129 } else {
130 unsigned register mas0;
132 mas0 = mfspr(SPRN_MAS0);
134 mtspr(SPRN_MAS0, MAS0_TLBSEL(1) | MAS0_ESEL(to_htlb1_esel(esel)));
135 __write_host_tlbe(stlbe);
137 mtspr(SPRN_MAS0, mas0);
139 local_irq_enable();
142 void kvmppc_e500_tlb_load(struct kvm_vcpu *vcpu, int cpu)
144 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
145 int i;
146 unsigned register mas0;
148 /* Load all valid TLB1 entries to reduce guest tlb miss fault */
149 local_irq_disable();
150 mas0 = mfspr(SPRN_MAS0);
151 for (i = 0; i < tlb1_max_shadow_size(); i++) {
152 struct tlbe *stlbe = &vcpu_e500->shadow_tlb[1][i];
154 if (get_tlb_v(stlbe)) {
155 mtspr(SPRN_MAS0, MAS0_TLBSEL(1)
156 | MAS0_ESEL(to_htlb1_esel(i)));
157 __write_host_tlbe(stlbe);
160 mtspr(SPRN_MAS0, mas0);
161 local_irq_enable();
164 void kvmppc_e500_tlb_put(struct kvm_vcpu *vcpu)
166 _tlbil_all();
169 /* Search the guest TLB for a matching entry. */
170 static int kvmppc_e500_tlb_index(struct kvmppc_vcpu_e500 *vcpu_e500,
171 gva_t eaddr, int tlbsel, unsigned int pid, int as)
173 int i;
175 /* XXX Replace loop with fancy data structures. */
176 for (i = 0; i < vcpu_e500->guest_tlb_size[tlbsel]; i++) {
177 struct tlbe *tlbe = &vcpu_e500->guest_tlb[tlbsel][i];
178 unsigned int tid;
180 if (eaddr < get_tlb_eaddr(tlbe))
181 continue;
183 if (eaddr > get_tlb_end(tlbe))
184 continue;
186 tid = get_tlb_tid(tlbe);
187 if (tid && (tid != pid))
188 continue;
190 if (!get_tlb_v(tlbe))
191 continue;
193 if (get_tlb_ts(tlbe) != as && as != -1)
194 continue;
196 return i;
199 return -1;
202 static void kvmppc_e500_shadow_release(struct kvmppc_vcpu_e500 *vcpu_e500,
203 int tlbsel, int esel)
205 struct tlbe *stlbe = &vcpu_e500->shadow_tlb[tlbsel][esel];
206 struct page *page = vcpu_e500->shadow_pages[tlbsel][esel];
208 if (page) {
209 vcpu_e500->shadow_pages[tlbsel][esel] = NULL;
211 if (get_tlb_v(stlbe)) {
212 if (tlbe_is_writable(stlbe))
213 kvm_release_page_dirty(page);
214 else
215 kvm_release_page_clean(page);
220 static void kvmppc_e500_stlbe_invalidate(struct kvmppc_vcpu_e500 *vcpu_e500,
221 int tlbsel, int esel)
223 struct tlbe *stlbe = &vcpu_e500->shadow_tlb[tlbsel][esel];
225 kvmppc_e500_shadow_release(vcpu_e500, tlbsel, esel);
226 stlbe->mas1 = 0;
227 KVMTRACE_5D(STLB_INVAL, &vcpu_e500->vcpu, index_of(tlbsel, esel),
228 stlbe->mas1, stlbe->mas2, stlbe->mas3, stlbe->mas7,
229 handler);
232 static void kvmppc_e500_tlb1_invalidate(struct kvmppc_vcpu_e500 *vcpu_e500,
233 gva_t eaddr, gva_t eend, u32 tid)
235 unsigned int pid = tid & 0xff;
236 unsigned int i;
238 /* XXX Replace loop with fancy data structures. */
239 for (i = 0; i < vcpu_e500->guest_tlb_size[1]; i++) {
240 struct tlbe *stlbe = &vcpu_e500->shadow_tlb[1][i];
241 unsigned int tid;
243 if (!get_tlb_v(stlbe))
244 continue;
246 if (eend < get_tlb_eaddr(stlbe))
247 continue;
249 if (eaddr > get_tlb_end(stlbe))
250 continue;
252 tid = get_tlb_tid(stlbe);
253 if (tid && (tid != pid))
254 continue;
256 kvmppc_e500_stlbe_invalidate(vcpu_e500, 1, i);
257 write_host_tlbe(vcpu_e500, 1, i);
261 static inline void kvmppc_e500_deliver_tlb_miss(struct kvm_vcpu *vcpu,
262 unsigned int eaddr, int as)
264 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
265 unsigned int victim, pidsel, tsized;
266 int tlbsel;
268 /* since we only have two TLBs, only lower bit is used. */
269 tlbsel = (vcpu_e500->mas4 >> 28) & 0x1;
270 victim = (tlbsel == 0) ? tlb0_get_next_victim(vcpu_e500) : 0;
271 pidsel = (vcpu_e500->mas4 >> 16) & 0xf;
272 tsized = (vcpu_e500->mas4 >> 8) & 0xf;
274 vcpu_e500->mas0 = MAS0_TLBSEL(tlbsel) | MAS0_ESEL(victim)
275 | MAS0_NV(vcpu_e500->guest_tlb_nv[tlbsel]);
276 vcpu_e500->mas1 = MAS1_VALID | (as ? MAS1_TS : 0)
277 | MAS1_TID(vcpu_e500->pid[pidsel])
278 | MAS1_TSIZE(tsized);
279 vcpu_e500->mas2 = (eaddr & MAS2_EPN)
280 | (vcpu_e500->mas4 & MAS2_ATTRIB_MASK);
281 vcpu_e500->mas3 &= MAS3_U0 | MAS3_U1 | MAS3_U2 | MAS3_U3;
282 vcpu_e500->mas6 = (vcpu_e500->mas6 & MAS6_SPID1)
283 | (get_cur_pid(vcpu) << 16)
284 | (as ? MAS6_SAS : 0);
285 vcpu_e500->mas7 = 0;
288 static inline void kvmppc_e500_shadow_map(struct kvmppc_vcpu_e500 *vcpu_e500,
289 u64 gvaddr, gfn_t gfn, struct tlbe *gtlbe, int tlbsel, int esel)
291 struct page *new_page;
292 struct tlbe *stlbe;
293 hpa_t hpaddr;
295 stlbe = &vcpu_e500->shadow_tlb[tlbsel][esel];
297 /* Get reference to new page. */
298 new_page = gfn_to_page(vcpu_e500->vcpu.kvm, gfn);
299 if (is_error_page(new_page)) {
300 printk(KERN_ERR "Couldn't get guest page for gfn %lx!\n", gfn);
301 kvm_release_page_clean(new_page);
302 return;
304 hpaddr = page_to_phys(new_page);
306 /* Drop reference to old page. */
307 kvmppc_e500_shadow_release(vcpu_e500, tlbsel, esel);
309 vcpu_e500->shadow_pages[tlbsel][esel] = new_page;
311 /* Force TS=1 IPROT=0 TSIZE=4KB for all guest mappings. */
312 stlbe->mas1 = MAS1_TSIZE(BOOKE_PAGESZ_4K)
313 | MAS1_TID(get_tlb_tid(gtlbe)) | MAS1_TS | MAS1_VALID;
314 stlbe->mas2 = (gvaddr & MAS2_EPN)
315 | e500_shadow_mas2_attrib(gtlbe->mas2,
316 vcpu_e500->vcpu.arch.msr & MSR_PR);
317 stlbe->mas3 = (hpaddr & MAS3_RPN)
318 | e500_shadow_mas3_attrib(gtlbe->mas3,
319 vcpu_e500->vcpu.arch.msr & MSR_PR);
320 stlbe->mas7 = (hpaddr >> 32) & MAS7_RPN;
322 KVMTRACE_5D(STLB_WRITE, &vcpu_e500->vcpu, index_of(tlbsel, esel),
323 stlbe->mas1, stlbe->mas2, stlbe->mas3, stlbe->mas7,
324 handler);
327 /* XXX only map the one-one case, for now use TLB0 */
328 static int kvmppc_e500_stlbe_map(struct kvmppc_vcpu_e500 *vcpu_e500,
329 int tlbsel, int esel)
331 struct tlbe *gtlbe;
333 gtlbe = &vcpu_e500->guest_tlb[tlbsel][esel];
335 kvmppc_e500_shadow_map(vcpu_e500, get_tlb_eaddr(gtlbe),
336 get_tlb_raddr(gtlbe) >> PAGE_SHIFT,
337 gtlbe, tlbsel, esel);
339 return esel;
342 /* Caller must ensure that the specified guest TLB entry is safe to insert into
343 * the shadow TLB. */
344 /* XXX for both one-one and one-to-many , for now use TLB1 */
345 static int kvmppc_e500_tlb1_map(struct kvmppc_vcpu_e500 *vcpu_e500,
346 u64 gvaddr, gfn_t gfn, struct tlbe *gtlbe)
348 unsigned int victim;
350 victim = vcpu_e500->guest_tlb_nv[1]++;
352 if (unlikely(vcpu_e500->guest_tlb_nv[1] >= tlb1_max_shadow_size()))
353 vcpu_e500->guest_tlb_nv[1] = 0;
355 kvmppc_e500_shadow_map(vcpu_e500, gvaddr, gfn, gtlbe, 1, victim);
357 return victim;
360 /* Invalidate all guest kernel mappings when enter usermode,
361 * so that when they fault back in they will get the
362 * proper permission bits. */
363 void kvmppc_mmu_priv_switch(struct kvm_vcpu *vcpu, int usermode)
365 if (usermode) {
366 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
367 int i;
369 /* XXX Replace loop with fancy data structures. */
370 for (i = 0; i < tlb1_max_shadow_size(); i++)
371 kvmppc_e500_stlbe_invalidate(vcpu_e500, 1, i);
373 _tlbil_all();
377 static int kvmppc_e500_gtlbe_invalidate(struct kvmppc_vcpu_e500 *vcpu_e500,
378 int tlbsel, int esel)
380 struct tlbe *gtlbe = &vcpu_e500->guest_tlb[tlbsel][esel];
382 if (unlikely(get_tlb_iprot(gtlbe)))
383 return -1;
385 if (tlbsel == 1) {
386 kvmppc_e500_tlb1_invalidate(vcpu_e500, get_tlb_eaddr(gtlbe),
387 get_tlb_end(gtlbe),
388 get_tlb_tid(gtlbe));
389 } else {
390 kvmppc_e500_stlbe_invalidate(vcpu_e500, tlbsel, esel);
393 gtlbe->mas1 = 0;
395 return 0;
398 int kvmppc_e500_emul_mt_mmucsr0(struct kvmppc_vcpu_e500 *vcpu_e500, ulong value)
400 int esel;
402 if (value & MMUCSR0_TLB0FI)
403 for (esel = 0; esel < vcpu_e500->guest_tlb_size[0]; esel++)
404 kvmppc_e500_gtlbe_invalidate(vcpu_e500, 0, esel);
405 if (value & MMUCSR0_TLB1FI)
406 for (esel = 0; esel < vcpu_e500->guest_tlb_size[1]; esel++)
407 kvmppc_e500_gtlbe_invalidate(vcpu_e500, 1, esel);
409 _tlbil_all();
411 return EMULATE_DONE;
414 int kvmppc_e500_emul_tlbivax(struct kvm_vcpu *vcpu, int ra, int rb)
416 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
417 unsigned int ia;
418 int esel, tlbsel;
419 gva_t ea;
421 ea = ((ra) ? vcpu->arch.gpr[ra] : 0) + vcpu->arch.gpr[rb];
423 ia = (ea >> 2) & 0x1;
425 /* since we only have two TLBs, only lower bit is used. */
426 tlbsel = (ea >> 3) & 0x1;
428 if (ia) {
429 /* invalidate all entries */
430 for (esel = 0; esel < vcpu_e500->guest_tlb_size[tlbsel]; esel++)
431 kvmppc_e500_gtlbe_invalidate(vcpu_e500, tlbsel, esel);
432 } else {
433 ea &= 0xfffff000;
434 esel = kvmppc_e500_tlb_index(vcpu_e500, ea, tlbsel,
435 get_cur_pid(vcpu), -1);
436 if (esel >= 0)
437 kvmppc_e500_gtlbe_invalidate(vcpu_e500, tlbsel, esel);
440 _tlbil_all();
442 return EMULATE_DONE;
445 int kvmppc_e500_emul_tlbre(struct kvm_vcpu *vcpu)
447 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
448 int tlbsel, esel;
449 struct tlbe *gtlbe;
451 tlbsel = get_tlb_tlbsel(vcpu_e500);
452 esel = get_tlb_esel(vcpu_e500, tlbsel);
454 gtlbe = &vcpu_e500->guest_tlb[tlbsel][esel];
455 vcpu_e500->mas0 &= ~MAS0_NV(~0);
456 vcpu_e500->mas0 |= MAS0_NV(vcpu_e500->guest_tlb_nv[tlbsel]);
457 vcpu_e500->mas1 = gtlbe->mas1;
458 vcpu_e500->mas2 = gtlbe->mas2;
459 vcpu_e500->mas3 = gtlbe->mas3;
460 vcpu_e500->mas7 = gtlbe->mas7;
462 return EMULATE_DONE;
465 int kvmppc_e500_emul_tlbsx(struct kvm_vcpu *vcpu, int rb)
467 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
468 int as = !!get_cur_sas(vcpu_e500);
469 unsigned int pid = get_cur_spid(vcpu_e500);
470 int esel, tlbsel;
471 struct tlbe *gtlbe = NULL;
472 gva_t ea;
474 ea = vcpu->arch.gpr[rb];
476 for (tlbsel = 0; tlbsel < 2; tlbsel++) {
477 esel = kvmppc_e500_tlb_index(vcpu_e500, ea, tlbsel, pid, as);
478 if (esel >= 0) {
479 gtlbe = &vcpu_e500->guest_tlb[tlbsel][esel];
480 break;
484 if (gtlbe) {
485 vcpu_e500->mas0 = MAS0_TLBSEL(tlbsel) | MAS0_ESEL(esel)
486 | MAS0_NV(vcpu_e500->guest_tlb_nv[tlbsel]);
487 vcpu_e500->mas1 = gtlbe->mas1;
488 vcpu_e500->mas2 = gtlbe->mas2;
489 vcpu_e500->mas3 = gtlbe->mas3;
490 vcpu_e500->mas7 = gtlbe->mas7;
491 } else {
492 int victim;
494 /* since we only have two TLBs, only lower bit is used. */
495 tlbsel = vcpu_e500->mas4 >> 28 & 0x1;
496 victim = (tlbsel == 0) ? tlb0_get_next_victim(vcpu_e500) : 0;
498 vcpu_e500->mas0 = MAS0_TLBSEL(tlbsel) | MAS0_ESEL(victim)
499 | MAS0_NV(vcpu_e500->guest_tlb_nv[tlbsel]);
500 vcpu_e500->mas1 = (vcpu_e500->mas6 & MAS6_SPID0)
501 | (vcpu_e500->mas6 & (MAS6_SAS ? MAS1_TS : 0))
502 | (vcpu_e500->mas4 & MAS4_TSIZED(~0));
503 vcpu_e500->mas2 &= MAS2_EPN;
504 vcpu_e500->mas2 |= vcpu_e500->mas4 & MAS2_ATTRIB_MASK;
505 vcpu_e500->mas3 &= MAS3_U0 | MAS3_U1 | MAS3_U2 | MAS3_U3;
506 vcpu_e500->mas7 = 0;
509 return EMULATE_DONE;
512 int kvmppc_e500_emul_tlbwe(struct kvm_vcpu *vcpu)
514 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
515 u64 eaddr;
516 u64 raddr;
517 u32 tid;
518 struct tlbe *gtlbe;
519 int tlbsel, esel, stlbsel, sesel;
521 tlbsel = get_tlb_tlbsel(vcpu_e500);
522 esel = get_tlb_esel(vcpu_e500, tlbsel);
524 gtlbe = &vcpu_e500->guest_tlb[tlbsel][esel];
526 if (get_tlb_v(gtlbe) && tlbsel == 1) {
527 eaddr = get_tlb_eaddr(gtlbe);
528 tid = get_tlb_tid(gtlbe);
529 kvmppc_e500_tlb1_invalidate(vcpu_e500, eaddr,
530 get_tlb_end(gtlbe), tid);
533 gtlbe->mas1 = vcpu_e500->mas1;
534 gtlbe->mas2 = vcpu_e500->mas2;
535 gtlbe->mas3 = vcpu_e500->mas3;
536 gtlbe->mas7 = vcpu_e500->mas7;
538 KVMTRACE_5D(GTLB_WRITE, vcpu, vcpu_e500->mas0,
539 gtlbe->mas1, gtlbe->mas2, gtlbe->mas3, gtlbe->mas7,
540 handler);
542 /* Invalidate shadow mappings for the about-to-be-clobbered TLBE. */
543 if (tlbe_is_host_safe(vcpu, gtlbe)) {
544 switch (tlbsel) {
545 case 0:
546 /* TLB0 */
547 gtlbe->mas1 &= ~MAS1_TSIZE(~0);
548 gtlbe->mas1 |= MAS1_TSIZE(BOOKE_PAGESZ_4K);
550 stlbsel = 0;
551 sesel = kvmppc_e500_stlbe_map(vcpu_e500, 0, esel);
553 break;
555 case 1:
556 /* TLB1 */
557 eaddr = get_tlb_eaddr(gtlbe);
558 raddr = get_tlb_raddr(gtlbe);
560 /* Create a 4KB mapping on the host.
561 * If the guest wanted a large page,
562 * only the first 4KB is mapped here and the rest
563 * are mapped on the fly. */
564 stlbsel = 1;
565 sesel = kvmppc_e500_tlb1_map(vcpu_e500, eaddr,
566 raddr >> PAGE_SHIFT, gtlbe);
567 break;
569 default:
570 BUG();
572 write_host_tlbe(vcpu_e500, stlbsel, sesel);
575 return EMULATE_DONE;
578 int kvmppc_mmu_itlb_index(struct kvm_vcpu *vcpu, gva_t eaddr)
580 unsigned int as = !!(vcpu->arch.msr & MSR_IS);
582 return kvmppc_e500_tlb_search(vcpu, eaddr, get_cur_pid(vcpu), as);
585 int kvmppc_mmu_dtlb_index(struct kvm_vcpu *vcpu, gva_t eaddr)
587 unsigned int as = !!(vcpu->arch.msr & MSR_DS);
589 return kvmppc_e500_tlb_search(vcpu, eaddr, get_cur_pid(vcpu), as);
592 void kvmppc_mmu_itlb_miss(struct kvm_vcpu *vcpu)
594 unsigned int as = !!(vcpu->arch.msr & MSR_IS);
596 kvmppc_e500_deliver_tlb_miss(vcpu, vcpu->arch.pc, as);
599 void kvmppc_mmu_dtlb_miss(struct kvm_vcpu *vcpu)
601 unsigned int as = !!(vcpu->arch.msr & MSR_DS);
603 kvmppc_e500_deliver_tlb_miss(vcpu, vcpu->arch.fault_dear, as);
606 gpa_t kvmppc_mmu_xlate(struct kvm_vcpu *vcpu, unsigned int index,
607 gva_t eaddr)
609 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
610 struct tlbe *gtlbe =
611 &vcpu_e500->guest_tlb[tlbsel_of(index)][esel_of(index)];
612 u64 pgmask = get_tlb_bytes(gtlbe) - 1;
614 return get_tlb_raddr(gtlbe) | (eaddr & pgmask);
617 void kvmppc_mmu_destroy(struct kvm_vcpu *vcpu)
619 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
620 int tlbsel, i;
622 for (tlbsel = 0; tlbsel < 2; tlbsel++)
623 for (i = 0; i < vcpu_e500->guest_tlb_size[tlbsel]; i++)
624 kvmppc_e500_shadow_release(vcpu_e500, tlbsel, i);
626 /* discard all guest mapping */
627 _tlbil_all();
630 void kvmppc_mmu_map(struct kvm_vcpu *vcpu, u64 eaddr, gpa_t gpaddr,
631 unsigned int index)
633 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
634 int tlbsel = tlbsel_of(index);
635 int esel = esel_of(index);
636 int stlbsel, sesel;
638 switch (tlbsel) {
639 case 0:
640 stlbsel = 0;
641 sesel = esel;
642 break;
644 case 1: {
645 gfn_t gfn = gpaddr >> PAGE_SHIFT;
646 struct tlbe *gtlbe
647 = &vcpu_e500->guest_tlb[tlbsel][esel];
649 stlbsel = 1;
650 sesel = kvmppc_e500_tlb1_map(vcpu_e500, eaddr, gfn, gtlbe);
651 break;
654 default:
655 BUG();
656 break;
658 write_host_tlbe(vcpu_e500, stlbsel, sesel);
661 int kvmppc_e500_tlb_search(struct kvm_vcpu *vcpu,
662 gva_t eaddr, unsigned int pid, int as)
664 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
665 int esel, tlbsel;
667 for (tlbsel = 0; tlbsel < 2; tlbsel++) {
668 esel = kvmppc_e500_tlb_index(vcpu_e500, eaddr, tlbsel, pid, as);
669 if (esel >= 0)
670 return index_of(tlbsel, esel);
673 return -1;
676 void kvmppc_e500_tlb_setup(struct kvmppc_vcpu_e500 *vcpu_e500)
678 struct tlbe *tlbe;
680 /* Insert large initial mapping for guest. */
681 tlbe = &vcpu_e500->guest_tlb[1][0];
682 tlbe->mas1 = MAS1_VALID | MAS1_TSIZE(BOOKE_PAGESZ_256M);
683 tlbe->mas2 = 0;
684 tlbe->mas3 = E500_TLB_SUPER_PERM_MASK;
685 tlbe->mas7 = 0;
687 /* 4K map for serial output. Used by kernel wrapper. */
688 tlbe = &vcpu_e500->guest_tlb[1][1];
689 tlbe->mas1 = MAS1_VALID | MAS1_TSIZE(BOOKE_PAGESZ_4K);
690 tlbe->mas2 = (0xe0004500 & 0xFFFFF000) | MAS2_I | MAS2_G;
691 tlbe->mas3 = (0xe0004500 & 0xFFFFF000) | E500_TLB_SUPER_PERM_MASK;
692 tlbe->mas7 = 0;
695 int kvmppc_e500_tlb_init(struct kvmppc_vcpu_e500 *vcpu_e500)
697 tlb1_entry_num = mfspr(SPRN_TLB1CFG) & 0xFFF;
699 vcpu_e500->guest_tlb_size[0] = KVM_E500_TLB0_SIZE;
700 vcpu_e500->guest_tlb[0] =
701 kzalloc(sizeof(struct tlbe) * KVM_E500_TLB0_SIZE, GFP_KERNEL);
702 if (vcpu_e500->guest_tlb[0] == NULL)
703 goto err_out;
705 vcpu_e500->shadow_tlb_size[0] = KVM_E500_TLB0_SIZE;
706 vcpu_e500->shadow_tlb[0] =
707 kzalloc(sizeof(struct tlbe) * KVM_E500_TLB0_SIZE, GFP_KERNEL);
708 if (vcpu_e500->shadow_tlb[0] == NULL)
709 goto err_out_guest0;
711 vcpu_e500->guest_tlb_size[1] = KVM_E500_TLB1_SIZE;
712 vcpu_e500->guest_tlb[1] =
713 kzalloc(sizeof(struct tlbe) * KVM_E500_TLB1_SIZE, GFP_KERNEL);
714 if (vcpu_e500->guest_tlb[1] == NULL)
715 goto err_out_shadow0;
717 vcpu_e500->shadow_tlb_size[1] = tlb1_entry_num;
718 vcpu_e500->shadow_tlb[1] =
719 kzalloc(sizeof(struct tlbe) * tlb1_entry_num, GFP_KERNEL);
720 if (vcpu_e500->shadow_tlb[1] == NULL)
721 goto err_out_guest1;
723 vcpu_e500->shadow_pages[0] = (struct page **)
724 kzalloc(sizeof(struct page *) * KVM_E500_TLB0_SIZE, GFP_KERNEL);
725 if (vcpu_e500->shadow_pages[0] == NULL)
726 goto err_out_shadow1;
728 vcpu_e500->shadow_pages[1] = (struct page **)
729 kzalloc(sizeof(struct page *) * tlb1_entry_num, GFP_KERNEL);
730 if (vcpu_e500->shadow_pages[1] == NULL)
731 goto err_out_page0;
733 return 0;
735 err_out_page0:
736 kfree(vcpu_e500->shadow_pages[0]);
737 err_out_shadow1:
738 kfree(vcpu_e500->shadow_tlb[1]);
739 err_out_guest1:
740 kfree(vcpu_e500->guest_tlb[1]);
741 err_out_shadow0:
742 kfree(vcpu_e500->shadow_tlb[0]);
743 err_out_guest0:
744 kfree(vcpu_e500->guest_tlb[0]);
745 err_out:
746 return -1;
749 void kvmppc_e500_tlb_uninit(struct kvmppc_vcpu_e500 *vcpu_e500)
751 kfree(vcpu_e500->shadow_pages[1]);
752 kfree(vcpu_e500->shadow_pages[0]);
753 kfree(vcpu_e500->shadow_tlb[1]);
754 kfree(vcpu_e500->guest_tlb[1]);
755 kfree(vcpu_e500->shadow_tlb[0]);
756 kfree(vcpu_e500->guest_tlb[0]);