2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
21 #include <linux/kvm_host.h>
22 #include <linux/module.h>
23 #include <linux/kernel.h>
25 #include <linux/highmem.h>
26 #include <linux/sched.h>
27 #include <linux/moduleparam.h>
28 #include "kvm_cache_regs.h"
34 #include <asm/virtext.h>
37 #define __ex(x) __kvm_handle_fault_on_reboot(x)
39 MODULE_AUTHOR("Qumranet");
40 MODULE_LICENSE("GPL");
42 static int __read_mostly bypass_guest_pf
= 1;
43 module_param(bypass_guest_pf
, bool, S_IRUGO
);
45 static int __read_mostly enable_vpid
= 1;
46 module_param_named(vpid
, enable_vpid
, bool, 0444);
48 static int __read_mostly flexpriority_enabled
= 1;
49 module_param_named(flexpriority
, flexpriority_enabled
, bool, S_IRUGO
);
51 static int __read_mostly enable_ept
= 1;
52 module_param_named(ept
, enable_ept
, bool, S_IRUGO
);
54 static int __read_mostly emulate_invalid_guest_state
= 0;
55 module_param(emulate_invalid_guest_state
, bool, S_IRUGO
);
65 struct list_head local_vcpus_link
;
66 unsigned long host_rsp
;
69 u32 idt_vectoring_info
;
70 struct kvm_msr_entry
*guest_msrs
;
71 struct kvm_msr_entry
*host_msrs
;
76 int msr_offset_kernel_gs_base
;
81 u16 fs_sel
, gs_sel
, ldt_sel
;
82 int gs_ldt_reload_needed
;
84 int guest_efer_loaded
;
94 bool emulation_required
;
95 enum emulation_result invalid_state_emulation_result
;
97 /* Support for vnmi-less CPUs */
98 int soft_vnmi_blocked
;
100 s64 vnmi_blocked_time
;
104 static inline struct vcpu_vmx
*to_vmx(struct kvm_vcpu
*vcpu
)
106 return container_of(vcpu
, struct vcpu_vmx
, vcpu
);
109 static int init_rmode(struct kvm
*kvm
);
110 static u64
construct_eptp(unsigned long root_hpa
);
112 static DEFINE_PER_CPU(struct vmcs
*, vmxarea
);
113 static DEFINE_PER_CPU(struct vmcs
*, current_vmcs
);
114 static DEFINE_PER_CPU(struct list_head
, vcpus_on_cpu
);
116 static unsigned long *vmx_io_bitmap_a
;
117 static unsigned long *vmx_io_bitmap_b
;
118 static unsigned long *vmx_msr_bitmap_legacy
;
119 static unsigned long *vmx_msr_bitmap_longmode
;
121 static DECLARE_BITMAP(vmx_vpid_bitmap
, VMX_NR_VPIDS
);
122 static DEFINE_SPINLOCK(vmx_vpid_lock
);
124 static struct vmcs_config
{
128 u32 pin_based_exec_ctrl
;
129 u32 cpu_based_exec_ctrl
;
130 u32 cpu_based_2nd_exec_ctrl
;
135 static struct vmx_capability
{
140 #define VMX_SEGMENT_FIELD(seg) \
141 [VCPU_SREG_##seg] = { \
142 .selector = GUEST_##seg##_SELECTOR, \
143 .base = GUEST_##seg##_BASE, \
144 .limit = GUEST_##seg##_LIMIT, \
145 .ar_bytes = GUEST_##seg##_AR_BYTES, \
148 static struct kvm_vmx_segment_field
{
153 } kvm_vmx_segment_fields
[] = {
154 VMX_SEGMENT_FIELD(CS
),
155 VMX_SEGMENT_FIELD(DS
),
156 VMX_SEGMENT_FIELD(ES
),
157 VMX_SEGMENT_FIELD(FS
),
158 VMX_SEGMENT_FIELD(GS
),
159 VMX_SEGMENT_FIELD(SS
),
160 VMX_SEGMENT_FIELD(TR
),
161 VMX_SEGMENT_FIELD(LDTR
),
165 * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
166 * away by decrementing the array size.
168 static const u32 vmx_msr_index
[] = {
170 MSR_SYSCALL_MASK
, MSR_LSTAR
, MSR_CSTAR
, MSR_KERNEL_GS_BASE
,
172 MSR_EFER
, MSR_K6_STAR
,
174 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
176 static void load_msrs(struct kvm_msr_entry
*e
, int n
)
180 for (i
= 0; i
< n
; ++i
)
181 wrmsrl(e
[i
].index
, e
[i
].data
);
184 static void save_msrs(struct kvm_msr_entry
*e
, int n
)
188 for (i
= 0; i
< n
; ++i
)
189 rdmsrl(e
[i
].index
, e
[i
].data
);
192 static inline int is_page_fault(u32 intr_info
)
194 return (intr_info
& (INTR_INFO_INTR_TYPE_MASK
| INTR_INFO_VECTOR_MASK
|
195 INTR_INFO_VALID_MASK
)) ==
196 (INTR_TYPE_HARD_EXCEPTION
| PF_VECTOR
| INTR_INFO_VALID_MASK
);
199 static inline int is_no_device(u32 intr_info
)
201 return (intr_info
& (INTR_INFO_INTR_TYPE_MASK
| INTR_INFO_VECTOR_MASK
|
202 INTR_INFO_VALID_MASK
)) ==
203 (INTR_TYPE_HARD_EXCEPTION
| NM_VECTOR
| INTR_INFO_VALID_MASK
);
206 static inline int is_invalid_opcode(u32 intr_info
)
208 return (intr_info
& (INTR_INFO_INTR_TYPE_MASK
| INTR_INFO_VECTOR_MASK
|
209 INTR_INFO_VALID_MASK
)) ==
210 (INTR_TYPE_HARD_EXCEPTION
| UD_VECTOR
| INTR_INFO_VALID_MASK
);
213 static inline int is_external_interrupt(u32 intr_info
)
215 return (intr_info
& (INTR_INFO_INTR_TYPE_MASK
| INTR_INFO_VALID_MASK
))
216 == (INTR_TYPE_EXT_INTR
| INTR_INFO_VALID_MASK
);
219 static inline int is_machine_check(u32 intr_info
)
221 return (intr_info
& (INTR_INFO_INTR_TYPE_MASK
| INTR_INFO_VECTOR_MASK
|
222 INTR_INFO_VALID_MASK
)) ==
223 (INTR_TYPE_HARD_EXCEPTION
| MC_VECTOR
| INTR_INFO_VALID_MASK
);
226 static inline int cpu_has_vmx_msr_bitmap(void)
228 return vmcs_config
.cpu_based_exec_ctrl
& CPU_BASED_USE_MSR_BITMAPS
;
231 static inline int cpu_has_vmx_tpr_shadow(void)
233 return vmcs_config
.cpu_based_exec_ctrl
& CPU_BASED_TPR_SHADOW
;
236 static inline int vm_need_tpr_shadow(struct kvm
*kvm
)
238 return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm
));
241 static inline int cpu_has_secondary_exec_ctrls(void)
243 return vmcs_config
.cpu_based_exec_ctrl
&
244 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS
;
247 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
249 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
250 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
;
253 static inline bool cpu_has_vmx_flexpriority(void)
255 return cpu_has_vmx_tpr_shadow() &&
256 cpu_has_vmx_virtualize_apic_accesses();
259 static inline int cpu_has_vmx_invept_individual_addr(void)
261 return !!(vmx_capability
.ept
& VMX_EPT_EXTENT_INDIVIDUAL_BIT
);
264 static inline int cpu_has_vmx_invept_context(void)
266 return !!(vmx_capability
.ept
& VMX_EPT_EXTENT_CONTEXT_BIT
);
269 static inline int cpu_has_vmx_invept_global(void)
271 return !!(vmx_capability
.ept
& VMX_EPT_EXTENT_GLOBAL_BIT
);
274 static inline int cpu_has_vmx_ept(void)
276 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
277 SECONDARY_EXEC_ENABLE_EPT
;
280 static inline int vm_need_virtualize_apic_accesses(struct kvm
*kvm
)
282 return flexpriority_enabled
&&
283 (cpu_has_vmx_virtualize_apic_accesses()) &&
284 (irqchip_in_kernel(kvm
));
287 static inline int cpu_has_vmx_vpid(void)
289 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
290 SECONDARY_EXEC_ENABLE_VPID
;
293 static inline int cpu_has_virtual_nmis(void)
295 return vmcs_config
.pin_based_exec_ctrl
& PIN_BASED_VIRTUAL_NMIS
;
298 static inline bool report_flexpriority(void)
300 return flexpriority_enabled
;
303 static int __find_msr_index(struct vcpu_vmx
*vmx
, u32 msr
)
307 for (i
= 0; i
< vmx
->nmsrs
; ++i
)
308 if (vmx
->guest_msrs
[i
].index
== msr
)
313 static inline void __invvpid(int ext
, u16 vpid
, gva_t gva
)
319 } operand
= { vpid
, 0, gva
};
321 asm volatile (__ex(ASM_VMX_INVVPID
)
322 /* CF==1 or ZF==1 --> rc = -1 */
324 : : "a"(&operand
), "c"(ext
) : "cc", "memory");
327 static inline void __invept(int ext
, u64 eptp
, gpa_t gpa
)
331 } operand
= {eptp
, gpa
};
333 asm volatile (__ex(ASM_VMX_INVEPT
)
334 /* CF==1 or ZF==1 --> rc = -1 */
335 "; ja 1f ; ud2 ; 1:\n"
336 : : "a" (&operand
), "c" (ext
) : "cc", "memory");
339 static struct kvm_msr_entry
*find_msr_entry(struct vcpu_vmx
*vmx
, u32 msr
)
343 i
= __find_msr_index(vmx
, msr
);
345 return &vmx
->guest_msrs
[i
];
349 static void vmcs_clear(struct vmcs
*vmcs
)
351 u64 phys_addr
= __pa(vmcs
);
354 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX
) "; setna %0"
355 : "=g"(error
) : "a"(&phys_addr
), "m"(phys_addr
)
358 printk(KERN_ERR
"kvm: vmclear fail: %p/%llx\n",
362 static void __vcpu_clear(void *arg
)
364 struct vcpu_vmx
*vmx
= arg
;
365 int cpu
= raw_smp_processor_id();
367 if (vmx
->vcpu
.cpu
== cpu
)
368 vmcs_clear(vmx
->vmcs
);
369 if (per_cpu(current_vmcs
, cpu
) == vmx
->vmcs
)
370 per_cpu(current_vmcs
, cpu
) = NULL
;
371 rdtscll(vmx
->vcpu
.arch
.host_tsc
);
372 list_del(&vmx
->local_vcpus_link
);
377 static void vcpu_clear(struct vcpu_vmx
*vmx
)
379 if (vmx
->vcpu
.cpu
== -1)
381 smp_call_function_single(vmx
->vcpu
.cpu
, __vcpu_clear
, vmx
, 1);
384 static inline void vpid_sync_vcpu_all(struct vcpu_vmx
*vmx
)
389 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT
, vmx
->vpid
, 0);
392 static inline void ept_sync_global(void)
394 if (cpu_has_vmx_invept_global())
395 __invept(VMX_EPT_EXTENT_GLOBAL
, 0, 0);
398 static inline void ept_sync_context(u64 eptp
)
401 if (cpu_has_vmx_invept_context())
402 __invept(VMX_EPT_EXTENT_CONTEXT
, eptp
, 0);
408 static inline void ept_sync_individual_addr(u64 eptp
, gpa_t gpa
)
411 if (cpu_has_vmx_invept_individual_addr())
412 __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR
,
415 ept_sync_context(eptp
);
419 static unsigned long vmcs_readl(unsigned long field
)
423 asm volatile (__ex(ASM_VMX_VMREAD_RDX_RAX
)
424 : "=a"(value
) : "d"(field
) : "cc");
428 static u16
vmcs_read16(unsigned long field
)
430 return vmcs_readl(field
);
433 static u32
vmcs_read32(unsigned long field
)
435 return vmcs_readl(field
);
438 static u64
vmcs_read64(unsigned long field
)
441 return vmcs_readl(field
);
443 return vmcs_readl(field
) | ((u64
)vmcs_readl(field
+1) << 32);
447 static noinline
void vmwrite_error(unsigned long field
, unsigned long value
)
449 printk(KERN_ERR
"vmwrite error: reg %lx value %lx (err %d)\n",
450 field
, value
, vmcs_read32(VM_INSTRUCTION_ERROR
));
454 static void vmcs_writel(unsigned long field
, unsigned long value
)
458 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX
) "; setna %0"
459 : "=q"(error
) : "a"(value
), "d"(field
) : "cc");
461 vmwrite_error(field
, value
);
464 static void vmcs_write16(unsigned long field
, u16 value
)
466 vmcs_writel(field
, value
);
469 static void vmcs_write32(unsigned long field
, u32 value
)
471 vmcs_writel(field
, value
);
474 static void vmcs_write64(unsigned long field
, u64 value
)
476 vmcs_writel(field
, value
);
477 #ifndef CONFIG_X86_64
479 vmcs_writel(field
+1, value
>> 32);
483 static void vmcs_clear_bits(unsigned long field
, u32 mask
)
485 vmcs_writel(field
, vmcs_readl(field
) & ~mask
);
488 static void vmcs_set_bits(unsigned long field
, u32 mask
)
490 vmcs_writel(field
, vmcs_readl(field
) | mask
);
493 static void update_exception_bitmap(struct kvm_vcpu
*vcpu
)
497 eb
= (1u << PF_VECTOR
) | (1u << UD_VECTOR
) | (1u << MC_VECTOR
);
498 if (!vcpu
->fpu_active
)
499 eb
|= 1u << NM_VECTOR
;
500 if (vcpu
->guest_debug
& KVM_GUESTDBG_ENABLE
) {
501 if (vcpu
->guest_debug
&
502 (KVM_GUESTDBG_SINGLESTEP
| KVM_GUESTDBG_USE_HW_BP
))
503 eb
|= 1u << DB_VECTOR
;
504 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_SW_BP
)
505 eb
|= 1u << BP_VECTOR
;
507 if (vcpu
->arch
.rmode
.vm86_active
)
510 eb
&= ~(1u << PF_VECTOR
); /* bypass_guest_pf = 0 */
511 vmcs_write32(EXCEPTION_BITMAP
, eb
);
514 static void reload_tss(void)
517 * VT restores TR but not its size. Useless.
519 struct descriptor_table gdt
;
520 struct desc_struct
*descs
;
523 descs
= (void *)gdt
.base
;
524 descs
[GDT_ENTRY_TSS
].type
= 9; /* available TSS */
528 static void load_transition_efer(struct vcpu_vmx
*vmx
)
530 int efer_offset
= vmx
->msr_offset_efer
;
531 u64 host_efer
= vmx
->host_msrs
[efer_offset
].data
;
532 u64 guest_efer
= vmx
->guest_msrs
[efer_offset
].data
;
538 * NX is emulated; LMA and LME handled by hardware; SCE meaninless
541 ignore_bits
= EFER_NX
| EFER_SCE
;
543 ignore_bits
|= EFER_LMA
| EFER_LME
;
544 /* SCE is meaningful only in long mode on Intel */
545 if (guest_efer
& EFER_LMA
)
546 ignore_bits
&= ~(u64
)EFER_SCE
;
548 if ((guest_efer
& ~ignore_bits
) == (host_efer
& ~ignore_bits
))
551 vmx
->host_state
.guest_efer_loaded
= 1;
552 guest_efer
&= ~ignore_bits
;
553 guest_efer
|= host_efer
& ignore_bits
;
554 wrmsrl(MSR_EFER
, guest_efer
);
555 vmx
->vcpu
.stat
.efer_reload
++;
558 static void reload_host_efer(struct vcpu_vmx
*vmx
)
560 if (vmx
->host_state
.guest_efer_loaded
) {
561 vmx
->host_state
.guest_efer_loaded
= 0;
562 load_msrs(vmx
->host_msrs
+ vmx
->msr_offset_efer
, 1);
566 static void vmx_save_host_state(struct kvm_vcpu
*vcpu
)
568 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
570 if (vmx
->host_state
.loaded
)
573 vmx
->host_state
.loaded
= 1;
575 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
576 * allow segment selectors with cpl > 0 or ti == 1.
578 vmx
->host_state
.ldt_sel
= kvm_read_ldt();
579 vmx
->host_state
.gs_ldt_reload_needed
= vmx
->host_state
.ldt_sel
;
580 vmx
->host_state
.fs_sel
= kvm_read_fs();
581 if (!(vmx
->host_state
.fs_sel
& 7)) {
582 vmcs_write16(HOST_FS_SELECTOR
, vmx
->host_state
.fs_sel
);
583 vmx
->host_state
.fs_reload_needed
= 0;
585 vmcs_write16(HOST_FS_SELECTOR
, 0);
586 vmx
->host_state
.fs_reload_needed
= 1;
588 vmx
->host_state
.gs_sel
= kvm_read_gs();
589 if (!(vmx
->host_state
.gs_sel
& 7))
590 vmcs_write16(HOST_GS_SELECTOR
, vmx
->host_state
.gs_sel
);
592 vmcs_write16(HOST_GS_SELECTOR
, 0);
593 vmx
->host_state
.gs_ldt_reload_needed
= 1;
597 vmcs_writel(HOST_FS_BASE
, read_msr(MSR_FS_BASE
));
598 vmcs_writel(HOST_GS_BASE
, read_msr(MSR_GS_BASE
));
600 vmcs_writel(HOST_FS_BASE
, segment_base(vmx
->host_state
.fs_sel
));
601 vmcs_writel(HOST_GS_BASE
, segment_base(vmx
->host_state
.gs_sel
));
605 if (is_long_mode(&vmx
->vcpu
))
606 save_msrs(vmx
->host_msrs
+
607 vmx
->msr_offset_kernel_gs_base
, 1);
610 load_msrs(vmx
->guest_msrs
, vmx
->save_nmsrs
);
611 load_transition_efer(vmx
);
614 static void __vmx_load_host_state(struct vcpu_vmx
*vmx
)
618 if (!vmx
->host_state
.loaded
)
621 ++vmx
->vcpu
.stat
.host_state_reload
;
622 vmx
->host_state
.loaded
= 0;
623 if (vmx
->host_state
.fs_reload_needed
)
624 kvm_load_fs(vmx
->host_state
.fs_sel
);
625 if (vmx
->host_state
.gs_ldt_reload_needed
) {
626 kvm_load_ldt(vmx
->host_state
.ldt_sel
);
628 * If we have to reload gs, we must take care to
629 * preserve our gs base.
631 local_irq_save(flags
);
632 kvm_load_gs(vmx
->host_state
.gs_sel
);
634 wrmsrl(MSR_GS_BASE
, vmcs_readl(HOST_GS_BASE
));
636 local_irq_restore(flags
);
639 save_msrs(vmx
->guest_msrs
, vmx
->save_nmsrs
);
640 load_msrs(vmx
->host_msrs
, vmx
->save_nmsrs
);
641 reload_host_efer(vmx
);
644 static void vmx_load_host_state(struct vcpu_vmx
*vmx
)
647 __vmx_load_host_state(vmx
);
652 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
653 * vcpu mutex is already taken.
655 static void vmx_vcpu_load(struct kvm_vcpu
*vcpu
, int cpu
)
657 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
658 u64 phys_addr
= __pa(vmx
->vmcs
);
659 u64 tsc_this
, delta
, new_offset
;
661 if (vcpu
->cpu
!= cpu
) {
663 kvm_migrate_timers(vcpu
);
664 vpid_sync_vcpu_all(vmx
);
666 list_add(&vmx
->local_vcpus_link
,
667 &per_cpu(vcpus_on_cpu
, cpu
));
671 if (per_cpu(current_vmcs
, cpu
) != vmx
->vmcs
) {
674 per_cpu(current_vmcs
, cpu
) = vmx
->vmcs
;
675 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX
) "; setna %0"
676 : "=g"(error
) : "a"(&phys_addr
), "m"(phys_addr
)
679 printk(KERN_ERR
"kvm: vmptrld %p/%llx fail\n",
680 vmx
->vmcs
, phys_addr
);
683 if (vcpu
->cpu
!= cpu
) {
684 struct descriptor_table dt
;
685 unsigned long sysenter_esp
;
689 * Linux uses per-cpu TSS and GDT, so set these when switching
692 vmcs_writel(HOST_TR_BASE
, kvm_read_tr_base()); /* 22.2.4 */
694 vmcs_writel(HOST_GDTR_BASE
, dt
.base
); /* 22.2.4 */
696 rdmsrl(MSR_IA32_SYSENTER_ESP
, sysenter_esp
);
697 vmcs_writel(HOST_IA32_SYSENTER_ESP
, sysenter_esp
); /* 22.2.3 */
700 * Make sure the time stamp counter is monotonous.
703 if (tsc_this
< vcpu
->arch
.host_tsc
) {
704 delta
= vcpu
->arch
.host_tsc
- tsc_this
;
705 new_offset
= vmcs_read64(TSC_OFFSET
) + delta
;
706 vmcs_write64(TSC_OFFSET
, new_offset
);
711 static void vmx_vcpu_put(struct kvm_vcpu
*vcpu
)
713 __vmx_load_host_state(to_vmx(vcpu
));
716 static void vmx_fpu_activate(struct kvm_vcpu
*vcpu
)
718 if (vcpu
->fpu_active
)
720 vcpu
->fpu_active
= 1;
721 vmcs_clear_bits(GUEST_CR0
, X86_CR0_TS
);
722 if (vcpu
->arch
.cr0
& X86_CR0_TS
)
723 vmcs_set_bits(GUEST_CR0
, X86_CR0_TS
);
724 update_exception_bitmap(vcpu
);
727 static void vmx_fpu_deactivate(struct kvm_vcpu
*vcpu
)
729 if (!vcpu
->fpu_active
)
731 vcpu
->fpu_active
= 0;
732 vmcs_set_bits(GUEST_CR0
, X86_CR0_TS
);
733 update_exception_bitmap(vcpu
);
736 static unsigned long vmx_get_rflags(struct kvm_vcpu
*vcpu
)
738 return vmcs_readl(GUEST_RFLAGS
);
741 static void vmx_set_rflags(struct kvm_vcpu
*vcpu
, unsigned long rflags
)
743 if (vcpu
->arch
.rmode
.vm86_active
)
744 rflags
|= X86_EFLAGS_IOPL
| X86_EFLAGS_VM
;
745 vmcs_writel(GUEST_RFLAGS
, rflags
);
748 static u32
vmx_get_interrupt_shadow(struct kvm_vcpu
*vcpu
, int mask
)
750 u32 interruptibility
= vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
);
753 if (interruptibility
& GUEST_INTR_STATE_STI
)
754 ret
|= X86_SHADOW_INT_STI
;
755 if (interruptibility
& GUEST_INTR_STATE_MOV_SS
)
756 ret
|= X86_SHADOW_INT_MOV_SS
;
761 static void vmx_set_interrupt_shadow(struct kvm_vcpu
*vcpu
, int mask
)
763 u32 interruptibility_old
= vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
);
764 u32 interruptibility
= interruptibility_old
;
766 interruptibility
&= ~(GUEST_INTR_STATE_STI
| GUEST_INTR_STATE_MOV_SS
);
768 if (mask
& X86_SHADOW_INT_MOV_SS
)
769 interruptibility
|= GUEST_INTR_STATE_MOV_SS
;
770 if (mask
& X86_SHADOW_INT_STI
)
771 interruptibility
|= GUEST_INTR_STATE_STI
;
773 if ((interruptibility
!= interruptibility_old
))
774 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO
, interruptibility
);
777 static void skip_emulated_instruction(struct kvm_vcpu
*vcpu
)
781 rip
= kvm_rip_read(vcpu
);
782 rip
+= vmcs_read32(VM_EXIT_INSTRUCTION_LEN
);
783 kvm_rip_write(vcpu
, rip
);
785 /* skipping an emulated instruction also counts */
786 vmx_set_interrupt_shadow(vcpu
, 0);
789 static void vmx_queue_exception(struct kvm_vcpu
*vcpu
, unsigned nr
,
790 bool has_error_code
, u32 error_code
)
792 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
793 u32 intr_info
= nr
| INTR_INFO_VALID_MASK
;
795 if (has_error_code
) {
796 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE
, error_code
);
797 intr_info
|= INTR_INFO_DELIVER_CODE_MASK
;
800 if (vcpu
->arch
.rmode
.vm86_active
) {
801 vmx
->rmode
.irq
.pending
= true;
802 vmx
->rmode
.irq
.vector
= nr
;
803 vmx
->rmode
.irq
.rip
= kvm_rip_read(vcpu
);
804 if (nr
== BP_VECTOR
|| nr
== OF_VECTOR
)
805 vmx
->rmode
.irq
.rip
++;
806 intr_info
|= INTR_TYPE_SOFT_INTR
;
807 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
, intr_info
);
808 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN
, 1);
809 kvm_rip_write(vcpu
, vmx
->rmode
.irq
.rip
- 1);
813 if (kvm_exception_is_soft(nr
)) {
814 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN
,
815 vmx
->vcpu
.arch
.event_exit_inst_len
);
816 intr_info
|= INTR_TYPE_SOFT_EXCEPTION
;
818 intr_info
|= INTR_TYPE_HARD_EXCEPTION
;
820 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
, intr_info
);
824 * Swap MSR entry in host/guest MSR entry array.
827 static void move_msr_up(struct vcpu_vmx
*vmx
, int from
, int to
)
829 struct kvm_msr_entry tmp
;
831 tmp
= vmx
->guest_msrs
[to
];
832 vmx
->guest_msrs
[to
] = vmx
->guest_msrs
[from
];
833 vmx
->guest_msrs
[from
] = tmp
;
834 tmp
= vmx
->host_msrs
[to
];
835 vmx
->host_msrs
[to
] = vmx
->host_msrs
[from
];
836 vmx
->host_msrs
[from
] = tmp
;
841 * Set up the vmcs to automatically save and restore system
842 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
843 * mode, as fiddling with msrs is very expensive.
845 static void setup_msrs(struct vcpu_vmx
*vmx
)
848 unsigned long *msr_bitmap
;
850 vmx_load_host_state(vmx
);
853 if (is_long_mode(&vmx
->vcpu
)) {
856 index
= __find_msr_index(vmx
, MSR_SYSCALL_MASK
);
858 move_msr_up(vmx
, index
, save_nmsrs
++);
859 index
= __find_msr_index(vmx
, MSR_LSTAR
);
861 move_msr_up(vmx
, index
, save_nmsrs
++);
862 index
= __find_msr_index(vmx
, MSR_CSTAR
);
864 move_msr_up(vmx
, index
, save_nmsrs
++);
865 index
= __find_msr_index(vmx
, MSR_KERNEL_GS_BASE
);
867 move_msr_up(vmx
, index
, save_nmsrs
++);
869 * MSR_K6_STAR is only needed on long mode guests, and only
870 * if efer.sce is enabled.
872 index
= __find_msr_index(vmx
, MSR_K6_STAR
);
873 if ((index
>= 0) && (vmx
->vcpu
.arch
.shadow_efer
& EFER_SCE
))
874 move_msr_up(vmx
, index
, save_nmsrs
++);
877 vmx
->save_nmsrs
= save_nmsrs
;
880 vmx
->msr_offset_kernel_gs_base
=
881 __find_msr_index(vmx
, MSR_KERNEL_GS_BASE
);
883 vmx
->msr_offset_efer
= __find_msr_index(vmx
, MSR_EFER
);
885 if (cpu_has_vmx_msr_bitmap()) {
886 if (is_long_mode(&vmx
->vcpu
))
887 msr_bitmap
= vmx_msr_bitmap_longmode
;
889 msr_bitmap
= vmx_msr_bitmap_legacy
;
891 vmcs_write64(MSR_BITMAP
, __pa(msr_bitmap
));
896 * reads and returns guest's timestamp counter "register"
897 * guest_tsc = host_tsc + tsc_offset -- 21.3
899 static u64
guest_read_tsc(void)
901 u64 host_tsc
, tsc_offset
;
904 tsc_offset
= vmcs_read64(TSC_OFFSET
);
905 return host_tsc
+ tsc_offset
;
909 * writes 'guest_tsc' into guest's timestamp counter "register"
910 * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
912 static void guest_write_tsc(u64 guest_tsc
, u64 host_tsc
)
914 vmcs_write64(TSC_OFFSET
, guest_tsc
- host_tsc
);
918 * Reads an msr value (of 'msr_index') into 'pdata'.
919 * Returns 0 on success, non-0 otherwise.
920 * Assumes vcpu_load() was already called.
922 static int vmx_get_msr(struct kvm_vcpu
*vcpu
, u32 msr_index
, u64
*pdata
)
925 struct kvm_msr_entry
*msr
;
928 printk(KERN_ERR
"BUG: get_msr called with NULL pdata\n");
935 data
= vmcs_readl(GUEST_FS_BASE
);
938 data
= vmcs_readl(GUEST_GS_BASE
);
941 return kvm_get_msr_common(vcpu
, msr_index
, pdata
);
943 case MSR_IA32_TIME_STAMP_COUNTER
:
944 data
= guest_read_tsc();
946 case MSR_IA32_SYSENTER_CS
:
947 data
= vmcs_read32(GUEST_SYSENTER_CS
);
949 case MSR_IA32_SYSENTER_EIP
:
950 data
= vmcs_readl(GUEST_SYSENTER_EIP
);
952 case MSR_IA32_SYSENTER_ESP
:
953 data
= vmcs_readl(GUEST_SYSENTER_ESP
);
956 vmx_load_host_state(to_vmx(vcpu
));
957 msr
= find_msr_entry(to_vmx(vcpu
), msr_index
);
962 return kvm_get_msr_common(vcpu
, msr_index
, pdata
);
970 * Writes msr value into into the appropriate "register".
971 * Returns 0 on success, non-0 otherwise.
972 * Assumes vcpu_load() was already called.
974 static int vmx_set_msr(struct kvm_vcpu
*vcpu
, u32 msr_index
, u64 data
)
976 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
977 struct kvm_msr_entry
*msr
;
983 vmx_load_host_state(vmx
);
984 ret
= kvm_set_msr_common(vcpu
, msr_index
, data
);
988 vmcs_writel(GUEST_FS_BASE
, data
);
991 vmcs_writel(GUEST_GS_BASE
, data
);
994 case MSR_IA32_SYSENTER_CS
:
995 vmcs_write32(GUEST_SYSENTER_CS
, data
);
997 case MSR_IA32_SYSENTER_EIP
:
998 vmcs_writel(GUEST_SYSENTER_EIP
, data
);
1000 case MSR_IA32_SYSENTER_ESP
:
1001 vmcs_writel(GUEST_SYSENTER_ESP
, data
);
1003 case MSR_IA32_TIME_STAMP_COUNTER
:
1005 guest_write_tsc(data
, host_tsc
);
1007 case MSR_P6_PERFCTR0
:
1008 case MSR_P6_PERFCTR1
:
1009 case MSR_P6_EVNTSEL0
:
1010 case MSR_P6_EVNTSEL1
:
1012 * Just discard all writes to the performance counters; this
1013 * should keep both older linux and windows 64-bit guests
1016 pr_unimpl(vcpu
, "unimplemented perfctr wrmsr: 0x%x data 0x%llx\n", msr_index
, data
);
1019 case MSR_IA32_CR_PAT
:
1020 if (vmcs_config
.vmentry_ctrl
& VM_ENTRY_LOAD_IA32_PAT
) {
1021 vmcs_write64(GUEST_IA32_PAT
, data
);
1022 vcpu
->arch
.pat
= data
;
1025 /* Otherwise falls through to kvm_set_msr_common */
1027 vmx_load_host_state(vmx
);
1028 msr
= find_msr_entry(vmx
, msr_index
);
1033 ret
= kvm_set_msr_common(vcpu
, msr_index
, data
);
1039 static void vmx_cache_reg(struct kvm_vcpu
*vcpu
, enum kvm_reg reg
)
1041 __set_bit(reg
, (unsigned long *)&vcpu
->arch
.regs_avail
);
1044 vcpu
->arch
.regs
[VCPU_REGS_RSP
] = vmcs_readl(GUEST_RSP
);
1047 vcpu
->arch
.regs
[VCPU_REGS_RIP
] = vmcs_readl(GUEST_RIP
);
1054 static int set_guest_debug(struct kvm_vcpu
*vcpu
, struct kvm_guest_debug
*dbg
)
1056 int old_debug
= vcpu
->guest_debug
;
1057 unsigned long flags
;
1059 vcpu
->guest_debug
= dbg
->control
;
1060 if (!(vcpu
->guest_debug
& KVM_GUESTDBG_ENABLE
))
1061 vcpu
->guest_debug
= 0;
1063 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
)
1064 vmcs_writel(GUEST_DR7
, dbg
->arch
.debugreg
[7]);
1066 vmcs_writel(GUEST_DR7
, vcpu
->arch
.dr7
);
1068 flags
= vmcs_readl(GUEST_RFLAGS
);
1069 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
)
1070 flags
|= X86_EFLAGS_TF
| X86_EFLAGS_RF
;
1071 else if (old_debug
& KVM_GUESTDBG_SINGLESTEP
)
1072 flags
&= ~(X86_EFLAGS_TF
| X86_EFLAGS_RF
);
1073 vmcs_writel(GUEST_RFLAGS
, flags
);
1075 update_exception_bitmap(vcpu
);
1080 static __init
int cpu_has_kvm_support(void)
1082 return cpu_has_vmx();
1085 static __init
int vmx_disabled_by_bios(void)
1089 rdmsrl(MSR_IA32_FEATURE_CONTROL
, msr
);
1090 return (msr
& (FEATURE_CONTROL_LOCKED
|
1091 FEATURE_CONTROL_VMXON_ENABLED
))
1092 == FEATURE_CONTROL_LOCKED
;
1093 /* locked but not enabled */
1096 static void hardware_enable(void *garbage
)
1098 int cpu
= raw_smp_processor_id();
1099 u64 phys_addr
= __pa(per_cpu(vmxarea
, cpu
));
1102 INIT_LIST_HEAD(&per_cpu(vcpus_on_cpu
, cpu
));
1103 rdmsrl(MSR_IA32_FEATURE_CONTROL
, old
);
1104 if ((old
& (FEATURE_CONTROL_LOCKED
|
1105 FEATURE_CONTROL_VMXON_ENABLED
))
1106 != (FEATURE_CONTROL_LOCKED
|
1107 FEATURE_CONTROL_VMXON_ENABLED
))
1108 /* enable and lock */
1109 wrmsrl(MSR_IA32_FEATURE_CONTROL
, old
|
1110 FEATURE_CONTROL_LOCKED
|
1111 FEATURE_CONTROL_VMXON_ENABLED
);
1112 write_cr4(read_cr4() | X86_CR4_VMXE
); /* FIXME: not cpu hotplug safe */
1113 asm volatile (ASM_VMX_VMXON_RAX
1114 : : "a"(&phys_addr
), "m"(phys_addr
)
1118 static void vmclear_local_vcpus(void)
1120 int cpu
= raw_smp_processor_id();
1121 struct vcpu_vmx
*vmx
, *n
;
1123 list_for_each_entry_safe(vmx
, n
, &per_cpu(vcpus_on_cpu
, cpu
),
1129 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
1132 static void kvm_cpu_vmxoff(void)
1134 asm volatile (__ex(ASM_VMX_VMXOFF
) : : : "cc");
1135 write_cr4(read_cr4() & ~X86_CR4_VMXE
);
1138 static void hardware_disable(void *garbage
)
1140 vmclear_local_vcpus();
1144 static __init
int adjust_vmx_controls(u32 ctl_min
, u32 ctl_opt
,
1145 u32 msr
, u32
*result
)
1147 u32 vmx_msr_low
, vmx_msr_high
;
1148 u32 ctl
= ctl_min
| ctl_opt
;
1150 rdmsr(msr
, vmx_msr_low
, vmx_msr_high
);
1152 ctl
&= vmx_msr_high
; /* bit == 0 in high word ==> must be zero */
1153 ctl
|= vmx_msr_low
; /* bit == 1 in low word ==> must be one */
1155 /* Ensure minimum (required) set of control bits are supported. */
1163 static __init
int setup_vmcs_config(struct vmcs_config
*vmcs_conf
)
1165 u32 vmx_msr_low
, vmx_msr_high
;
1166 u32 min
, opt
, min2
, opt2
;
1167 u32 _pin_based_exec_control
= 0;
1168 u32 _cpu_based_exec_control
= 0;
1169 u32 _cpu_based_2nd_exec_control
= 0;
1170 u32 _vmexit_control
= 0;
1171 u32 _vmentry_control
= 0;
1173 min
= PIN_BASED_EXT_INTR_MASK
| PIN_BASED_NMI_EXITING
;
1174 opt
= PIN_BASED_VIRTUAL_NMIS
;
1175 if (adjust_vmx_controls(min
, opt
, MSR_IA32_VMX_PINBASED_CTLS
,
1176 &_pin_based_exec_control
) < 0)
1179 min
= CPU_BASED_HLT_EXITING
|
1180 #ifdef CONFIG_X86_64
1181 CPU_BASED_CR8_LOAD_EXITING
|
1182 CPU_BASED_CR8_STORE_EXITING
|
1184 CPU_BASED_CR3_LOAD_EXITING
|
1185 CPU_BASED_CR3_STORE_EXITING
|
1186 CPU_BASED_USE_IO_BITMAPS
|
1187 CPU_BASED_MOV_DR_EXITING
|
1188 CPU_BASED_USE_TSC_OFFSETING
|
1189 CPU_BASED_INVLPG_EXITING
;
1190 opt
= CPU_BASED_TPR_SHADOW
|
1191 CPU_BASED_USE_MSR_BITMAPS
|
1192 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS
;
1193 if (adjust_vmx_controls(min
, opt
, MSR_IA32_VMX_PROCBASED_CTLS
,
1194 &_cpu_based_exec_control
) < 0)
1196 #ifdef CONFIG_X86_64
1197 if ((_cpu_based_exec_control
& CPU_BASED_TPR_SHADOW
))
1198 _cpu_based_exec_control
&= ~CPU_BASED_CR8_LOAD_EXITING
&
1199 ~CPU_BASED_CR8_STORE_EXITING
;
1201 if (_cpu_based_exec_control
& CPU_BASED_ACTIVATE_SECONDARY_CONTROLS
) {
1203 opt2
= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
|
1204 SECONDARY_EXEC_WBINVD_EXITING
|
1205 SECONDARY_EXEC_ENABLE_VPID
|
1206 SECONDARY_EXEC_ENABLE_EPT
;
1207 if (adjust_vmx_controls(min2
, opt2
,
1208 MSR_IA32_VMX_PROCBASED_CTLS2
,
1209 &_cpu_based_2nd_exec_control
) < 0)
1212 #ifndef CONFIG_X86_64
1213 if (!(_cpu_based_2nd_exec_control
&
1214 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
))
1215 _cpu_based_exec_control
&= ~CPU_BASED_TPR_SHADOW
;
1217 if (_cpu_based_2nd_exec_control
& SECONDARY_EXEC_ENABLE_EPT
) {
1218 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
1220 min
&= ~(CPU_BASED_CR3_LOAD_EXITING
|
1221 CPU_BASED_CR3_STORE_EXITING
|
1222 CPU_BASED_INVLPG_EXITING
);
1223 if (adjust_vmx_controls(min
, opt
, MSR_IA32_VMX_PROCBASED_CTLS
,
1224 &_cpu_based_exec_control
) < 0)
1226 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP
,
1227 vmx_capability
.ept
, vmx_capability
.vpid
);
1231 #ifdef CONFIG_X86_64
1232 min
|= VM_EXIT_HOST_ADDR_SPACE_SIZE
;
1234 opt
= VM_EXIT_SAVE_IA32_PAT
| VM_EXIT_LOAD_IA32_PAT
;
1235 if (adjust_vmx_controls(min
, opt
, MSR_IA32_VMX_EXIT_CTLS
,
1236 &_vmexit_control
) < 0)
1240 opt
= VM_ENTRY_LOAD_IA32_PAT
;
1241 if (adjust_vmx_controls(min
, opt
, MSR_IA32_VMX_ENTRY_CTLS
,
1242 &_vmentry_control
) < 0)
1245 rdmsr(MSR_IA32_VMX_BASIC
, vmx_msr_low
, vmx_msr_high
);
1247 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
1248 if ((vmx_msr_high
& 0x1fff) > PAGE_SIZE
)
1251 #ifdef CONFIG_X86_64
1252 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
1253 if (vmx_msr_high
& (1u<<16))
1257 /* Require Write-Back (WB) memory type for VMCS accesses. */
1258 if (((vmx_msr_high
>> 18) & 15) != 6)
1261 vmcs_conf
->size
= vmx_msr_high
& 0x1fff;
1262 vmcs_conf
->order
= get_order(vmcs_config
.size
);
1263 vmcs_conf
->revision_id
= vmx_msr_low
;
1265 vmcs_conf
->pin_based_exec_ctrl
= _pin_based_exec_control
;
1266 vmcs_conf
->cpu_based_exec_ctrl
= _cpu_based_exec_control
;
1267 vmcs_conf
->cpu_based_2nd_exec_ctrl
= _cpu_based_2nd_exec_control
;
1268 vmcs_conf
->vmexit_ctrl
= _vmexit_control
;
1269 vmcs_conf
->vmentry_ctrl
= _vmentry_control
;
1274 static struct vmcs
*alloc_vmcs_cpu(int cpu
)
1276 int node
= cpu_to_node(cpu
);
1280 pages
= alloc_pages_exact_node(node
, GFP_KERNEL
, vmcs_config
.order
);
1283 vmcs
= page_address(pages
);
1284 memset(vmcs
, 0, vmcs_config
.size
);
1285 vmcs
->revision_id
= vmcs_config
.revision_id
; /* vmcs revision id */
1289 static struct vmcs
*alloc_vmcs(void)
1291 return alloc_vmcs_cpu(raw_smp_processor_id());
1294 static void free_vmcs(struct vmcs
*vmcs
)
1296 free_pages((unsigned long)vmcs
, vmcs_config
.order
);
1299 static void free_kvm_area(void)
1303 for_each_online_cpu(cpu
)
1304 free_vmcs(per_cpu(vmxarea
, cpu
));
1307 static __init
int alloc_kvm_area(void)
1311 for_each_online_cpu(cpu
) {
1314 vmcs
= alloc_vmcs_cpu(cpu
);
1320 per_cpu(vmxarea
, cpu
) = vmcs
;
1325 static __init
int hardware_setup(void)
1327 if (setup_vmcs_config(&vmcs_config
) < 0)
1330 if (boot_cpu_has(X86_FEATURE_NX
))
1331 kvm_enable_efer_bits(EFER_NX
);
1333 if (!cpu_has_vmx_vpid())
1336 if (!cpu_has_vmx_ept())
1339 if (!cpu_has_vmx_flexpriority())
1340 flexpriority_enabled
= 0;
1342 if (!cpu_has_vmx_tpr_shadow())
1343 kvm_x86_ops
->update_cr8_intercept
= NULL
;
1345 return alloc_kvm_area();
1348 static __exit
void hardware_unsetup(void)
1353 static void fix_pmode_dataseg(int seg
, struct kvm_save_segment
*save
)
1355 struct kvm_vmx_segment_field
*sf
= &kvm_vmx_segment_fields
[seg
];
1357 if (vmcs_readl(sf
->base
) == save
->base
&& (save
->base
& AR_S_MASK
)) {
1358 vmcs_write16(sf
->selector
, save
->selector
);
1359 vmcs_writel(sf
->base
, save
->base
);
1360 vmcs_write32(sf
->limit
, save
->limit
);
1361 vmcs_write32(sf
->ar_bytes
, save
->ar
);
1363 u32 dpl
= (vmcs_read16(sf
->selector
) & SELECTOR_RPL_MASK
)
1365 vmcs_write32(sf
->ar_bytes
, 0x93 | dpl
);
1369 static void enter_pmode(struct kvm_vcpu
*vcpu
)
1371 unsigned long flags
;
1372 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
1374 vmx
->emulation_required
= 1;
1375 vcpu
->arch
.rmode
.vm86_active
= 0;
1377 vmcs_writel(GUEST_TR_BASE
, vcpu
->arch
.rmode
.tr
.base
);
1378 vmcs_write32(GUEST_TR_LIMIT
, vcpu
->arch
.rmode
.tr
.limit
);
1379 vmcs_write32(GUEST_TR_AR_BYTES
, vcpu
->arch
.rmode
.tr
.ar
);
1381 flags
= vmcs_readl(GUEST_RFLAGS
);
1382 flags
&= ~(X86_EFLAGS_IOPL
| X86_EFLAGS_VM
);
1383 flags
|= (vcpu
->arch
.rmode
.save_iopl
<< IOPL_SHIFT
);
1384 vmcs_writel(GUEST_RFLAGS
, flags
);
1386 vmcs_writel(GUEST_CR4
, (vmcs_readl(GUEST_CR4
) & ~X86_CR4_VME
) |
1387 (vmcs_readl(CR4_READ_SHADOW
) & X86_CR4_VME
));
1389 update_exception_bitmap(vcpu
);
1391 if (emulate_invalid_guest_state
)
1394 fix_pmode_dataseg(VCPU_SREG_ES
, &vcpu
->arch
.rmode
.es
);
1395 fix_pmode_dataseg(VCPU_SREG_DS
, &vcpu
->arch
.rmode
.ds
);
1396 fix_pmode_dataseg(VCPU_SREG_GS
, &vcpu
->arch
.rmode
.gs
);
1397 fix_pmode_dataseg(VCPU_SREG_FS
, &vcpu
->arch
.rmode
.fs
);
1399 vmcs_write16(GUEST_SS_SELECTOR
, 0);
1400 vmcs_write32(GUEST_SS_AR_BYTES
, 0x93);
1402 vmcs_write16(GUEST_CS_SELECTOR
,
1403 vmcs_read16(GUEST_CS_SELECTOR
) & ~SELECTOR_RPL_MASK
);
1404 vmcs_write32(GUEST_CS_AR_BYTES
, 0x9b);
1407 static gva_t
rmode_tss_base(struct kvm
*kvm
)
1409 if (!kvm
->arch
.tss_addr
) {
1410 gfn_t base_gfn
= kvm
->memslots
[0].base_gfn
+
1411 kvm
->memslots
[0].npages
- 3;
1412 return base_gfn
<< PAGE_SHIFT
;
1414 return kvm
->arch
.tss_addr
;
1417 static void fix_rmode_seg(int seg
, struct kvm_save_segment
*save
)
1419 struct kvm_vmx_segment_field
*sf
= &kvm_vmx_segment_fields
[seg
];
1421 save
->selector
= vmcs_read16(sf
->selector
);
1422 save
->base
= vmcs_readl(sf
->base
);
1423 save
->limit
= vmcs_read32(sf
->limit
);
1424 save
->ar
= vmcs_read32(sf
->ar_bytes
);
1425 vmcs_write16(sf
->selector
, save
->base
>> 4);
1426 vmcs_write32(sf
->base
, save
->base
& 0xfffff);
1427 vmcs_write32(sf
->limit
, 0xffff);
1428 vmcs_write32(sf
->ar_bytes
, 0xf3);
1431 static void enter_rmode(struct kvm_vcpu
*vcpu
)
1433 unsigned long flags
;
1434 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
1436 vmx
->emulation_required
= 1;
1437 vcpu
->arch
.rmode
.vm86_active
= 1;
1439 vcpu
->arch
.rmode
.tr
.base
= vmcs_readl(GUEST_TR_BASE
);
1440 vmcs_writel(GUEST_TR_BASE
, rmode_tss_base(vcpu
->kvm
));
1442 vcpu
->arch
.rmode
.tr
.limit
= vmcs_read32(GUEST_TR_LIMIT
);
1443 vmcs_write32(GUEST_TR_LIMIT
, RMODE_TSS_SIZE
- 1);
1445 vcpu
->arch
.rmode
.tr
.ar
= vmcs_read32(GUEST_TR_AR_BYTES
);
1446 vmcs_write32(GUEST_TR_AR_BYTES
, 0x008b);
1448 flags
= vmcs_readl(GUEST_RFLAGS
);
1449 vcpu
->arch
.rmode
.save_iopl
1450 = (flags
& X86_EFLAGS_IOPL
) >> IOPL_SHIFT
;
1452 flags
|= X86_EFLAGS_IOPL
| X86_EFLAGS_VM
;
1454 vmcs_writel(GUEST_RFLAGS
, flags
);
1455 vmcs_writel(GUEST_CR4
, vmcs_readl(GUEST_CR4
) | X86_CR4_VME
);
1456 update_exception_bitmap(vcpu
);
1458 if (emulate_invalid_guest_state
)
1459 goto continue_rmode
;
1461 vmcs_write16(GUEST_SS_SELECTOR
, vmcs_readl(GUEST_SS_BASE
) >> 4);
1462 vmcs_write32(GUEST_SS_LIMIT
, 0xffff);
1463 vmcs_write32(GUEST_SS_AR_BYTES
, 0xf3);
1465 vmcs_write32(GUEST_CS_AR_BYTES
, 0xf3);
1466 vmcs_write32(GUEST_CS_LIMIT
, 0xffff);
1467 if (vmcs_readl(GUEST_CS_BASE
) == 0xffff0000)
1468 vmcs_writel(GUEST_CS_BASE
, 0xf0000);
1469 vmcs_write16(GUEST_CS_SELECTOR
, vmcs_readl(GUEST_CS_BASE
) >> 4);
1471 fix_rmode_seg(VCPU_SREG_ES
, &vcpu
->arch
.rmode
.es
);
1472 fix_rmode_seg(VCPU_SREG_DS
, &vcpu
->arch
.rmode
.ds
);
1473 fix_rmode_seg(VCPU_SREG_GS
, &vcpu
->arch
.rmode
.gs
);
1474 fix_rmode_seg(VCPU_SREG_FS
, &vcpu
->arch
.rmode
.fs
);
1477 kvm_mmu_reset_context(vcpu
);
1478 init_rmode(vcpu
->kvm
);
1481 static void vmx_set_efer(struct kvm_vcpu
*vcpu
, u64 efer
)
1483 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
1484 struct kvm_msr_entry
*msr
= find_msr_entry(vmx
, MSR_EFER
);
1486 vcpu
->arch
.shadow_efer
= efer
;
1489 if (efer
& EFER_LMA
) {
1490 vmcs_write32(VM_ENTRY_CONTROLS
,
1491 vmcs_read32(VM_ENTRY_CONTROLS
) |
1492 VM_ENTRY_IA32E_MODE
);
1495 vmcs_write32(VM_ENTRY_CONTROLS
,
1496 vmcs_read32(VM_ENTRY_CONTROLS
) &
1497 ~VM_ENTRY_IA32E_MODE
);
1499 msr
->data
= efer
& ~EFER_LME
;
1504 #ifdef CONFIG_X86_64
1506 static void enter_lmode(struct kvm_vcpu
*vcpu
)
1510 guest_tr_ar
= vmcs_read32(GUEST_TR_AR_BYTES
);
1511 if ((guest_tr_ar
& AR_TYPE_MASK
) != AR_TYPE_BUSY_64_TSS
) {
1512 printk(KERN_DEBUG
"%s: tss fixup for long mode. \n",
1514 vmcs_write32(GUEST_TR_AR_BYTES
,
1515 (guest_tr_ar
& ~AR_TYPE_MASK
)
1516 | AR_TYPE_BUSY_64_TSS
);
1518 vcpu
->arch
.shadow_efer
|= EFER_LMA
;
1519 vmx_set_efer(vcpu
, vcpu
->arch
.shadow_efer
);
1522 static void exit_lmode(struct kvm_vcpu
*vcpu
)
1524 vcpu
->arch
.shadow_efer
&= ~EFER_LMA
;
1526 vmcs_write32(VM_ENTRY_CONTROLS
,
1527 vmcs_read32(VM_ENTRY_CONTROLS
)
1528 & ~VM_ENTRY_IA32E_MODE
);
1533 static void vmx_flush_tlb(struct kvm_vcpu
*vcpu
)
1535 vpid_sync_vcpu_all(to_vmx(vcpu
));
1537 ept_sync_context(construct_eptp(vcpu
->arch
.mmu
.root_hpa
));
1540 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu
*vcpu
)
1542 vcpu
->arch
.cr4
&= KVM_GUEST_CR4_MASK
;
1543 vcpu
->arch
.cr4
|= vmcs_readl(GUEST_CR4
) & ~KVM_GUEST_CR4_MASK
;
1546 static void ept_load_pdptrs(struct kvm_vcpu
*vcpu
)
1548 if (is_paging(vcpu
) && is_pae(vcpu
) && !is_long_mode(vcpu
)) {
1549 if (!load_pdptrs(vcpu
, vcpu
->arch
.cr3
)) {
1550 printk(KERN_ERR
"EPT: Fail to load pdptrs!\n");
1553 vmcs_write64(GUEST_PDPTR0
, vcpu
->arch
.pdptrs
[0]);
1554 vmcs_write64(GUEST_PDPTR1
, vcpu
->arch
.pdptrs
[1]);
1555 vmcs_write64(GUEST_PDPTR2
, vcpu
->arch
.pdptrs
[2]);
1556 vmcs_write64(GUEST_PDPTR3
, vcpu
->arch
.pdptrs
[3]);
1560 static void vmx_set_cr4(struct kvm_vcpu
*vcpu
, unsigned long cr4
);
1562 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0
,
1564 struct kvm_vcpu
*vcpu
)
1566 if (!(cr0
& X86_CR0_PG
)) {
1567 /* From paging/starting to nonpaging */
1568 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
,
1569 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
) |
1570 (CPU_BASED_CR3_LOAD_EXITING
|
1571 CPU_BASED_CR3_STORE_EXITING
));
1572 vcpu
->arch
.cr0
= cr0
;
1573 vmx_set_cr4(vcpu
, vcpu
->arch
.cr4
);
1574 *hw_cr0
|= X86_CR0_PE
| X86_CR0_PG
;
1575 *hw_cr0
&= ~X86_CR0_WP
;
1576 } else if (!is_paging(vcpu
)) {
1577 /* From nonpaging to paging */
1578 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
,
1579 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
) &
1580 ~(CPU_BASED_CR3_LOAD_EXITING
|
1581 CPU_BASED_CR3_STORE_EXITING
));
1582 vcpu
->arch
.cr0
= cr0
;
1583 vmx_set_cr4(vcpu
, vcpu
->arch
.cr4
);
1584 if (!(vcpu
->arch
.cr0
& X86_CR0_WP
))
1585 *hw_cr0
&= ~X86_CR0_WP
;
1589 static void ept_update_paging_mode_cr4(unsigned long *hw_cr4
,
1590 struct kvm_vcpu
*vcpu
)
1592 if (!is_paging(vcpu
)) {
1593 *hw_cr4
&= ~X86_CR4_PAE
;
1594 *hw_cr4
|= X86_CR4_PSE
;
1595 } else if (!(vcpu
->arch
.cr4
& X86_CR4_PAE
))
1596 *hw_cr4
&= ~X86_CR4_PAE
;
1599 static void vmx_set_cr0(struct kvm_vcpu
*vcpu
, unsigned long cr0
)
1601 unsigned long hw_cr0
= (cr0
& ~KVM_GUEST_CR0_MASK
) |
1602 KVM_VM_CR0_ALWAYS_ON
;
1604 vmx_fpu_deactivate(vcpu
);
1606 if (vcpu
->arch
.rmode
.vm86_active
&& (cr0
& X86_CR0_PE
))
1609 if (!vcpu
->arch
.rmode
.vm86_active
&& !(cr0
& X86_CR0_PE
))
1612 #ifdef CONFIG_X86_64
1613 if (vcpu
->arch
.shadow_efer
& EFER_LME
) {
1614 if (!is_paging(vcpu
) && (cr0
& X86_CR0_PG
))
1616 if (is_paging(vcpu
) && !(cr0
& X86_CR0_PG
))
1622 ept_update_paging_mode_cr0(&hw_cr0
, cr0
, vcpu
);
1624 vmcs_writel(CR0_READ_SHADOW
, cr0
);
1625 vmcs_writel(GUEST_CR0
, hw_cr0
);
1626 vcpu
->arch
.cr0
= cr0
;
1628 if (!(cr0
& X86_CR0_TS
) || !(cr0
& X86_CR0_PE
))
1629 vmx_fpu_activate(vcpu
);
1632 static u64
construct_eptp(unsigned long root_hpa
)
1636 /* TODO write the value reading from MSR */
1637 eptp
= VMX_EPT_DEFAULT_MT
|
1638 VMX_EPT_DEFAULT_GAW
<< VMX_EPT_GAW_EPTP_SHIFT
;
1639 eptp
|= (root_hpa
& PAGE_MASK
);
1644 static void vmx_set_cr3(struct kvm_vcpu
*vcpu
, unsigned long cr3
)
1646 unsigned long guest_cr3
;
1651 eptp
= construct_eptp(cr3
);
1652 vmcs_write64(EPT_POINTER
, eptp
);
1653 ept_sync_context(eptp
);
1654 ept_load_pdptrs(vcpu
);
1655 guest_cr3
= is_paging(vcpu
) ? vcpu
->arch
.cr3
:
1656 VMX_EPT_IDENTITY_PAGETABLE_ADDR
;
1659 vmx_flush_tlb(vcpu
);
1660 vmcs_writel(GUEST_CR3
, guest_cr3
);
1661 if (vcpu
->arch
.cr0
& X86_CR0_PE
)
1662 vmx_fpu_deactivate(vcpu
);
1665 static void vmx_set_cr4(struct kvm_vcpu
*vcpu
, unsigned long cr4
)
1667 unsigned long hw_cr4
= cr4
| (vcpu
->arch
.rmode
.vm86_active
?
1668 KVM_RMODE_VM_CR4_ALWAYS_ON
: KVM_PMODE_VM_CR4_ALWAYS_ON
);
1670 vcpu
->arch
.cr4
= cr4
;
1672 ept_update_paging_mode_cr4(&hw_cr4
, vcpu
);
1674 vmcs_writel(CR4_READ_SHADOW
, cr4
);
1675 vmcs_writel(GUEST_CR4
, hw_cr4
);
1678 static u64
vmx_get_segment_base(struct kvm_vcpu
*vcpu
, int seg
)
1680 struct kvm_vmx_segment_field
*sf
= &kvm_vmx_segment_fields
[seg
];
1682 return vmcs_readl(sf
->base
);
1685 static void vmx_get_segment(struct kvm_vcpu
*vcpu
,
1686 struct kvm_segment
*var
, int seg
)
1688 struct kvm_vmx_segment_field
*sf
= &kvm_vmx_segment_fields
[seg
];
1691 var
->base
= vmcs_readl(sf
->base
);
1692 var
->limit
= vmcs_read32(sf
->limit
);
1693 var
->selector
= vmcs_read16(sf
->selector
);
1694 ar
= vmcs_read32(sf
->ar_bytes
);
1695 if ((ar
& AR_UNUSABLE_MASK
) && !emulate_invalid_guest_state
)
1697 var
->type
= ar
& 15;
1698 var
->s
= (ar
>> 4) & 1;
1699 var
->dpl
= (ar
>> 5) & 3;
1700 var
->present
= (ar
>> 7) & 1;
1701 var
->avl
= (ar
>> 12) & 1;
1702 var
->l
= (ar
>> 13) & 1;
1703 var
->db
= (ar
>> 14) & 1;
1704 var
->g
= (ar
>> 15) & 1;
1705 var
->unusable
= (ar
>> 16) & 1;
1708 static int vmx_get_cpl(struct kvm_vcpu
*vcpu
)
1710 struct kvm_segment kvm_seg
;
1712 if (!(vcpu
->arch
.cr0
& X86_CR0_PE
)) /* if real mode */
1715 if (vmx_get_rflags(vcpu
) & X86_EFLAGS_VM
) /* if virtual 8086 */
1718 vmx_get_segment(vcpu
, &kvm_seg
, VCPU_SREG_CS
);
1719 return kvm_seg
.selector
& 3;
1722 static u32
vmx_segment_access_rights(struct kvm_segment
*var
)
1729 ar
= var
->type
& 15;
1730 ar
|= (var
->s
& 1) << 4;
1731 ar
|= (var
->dpl
& 3) << 5;
1732 ar
|= (var
->present
& 1) << 7;
1733 ar
|= (var
->avl
& 1) << 12;
1734 ar
|= (var
->l
& 1) << 13;
1735 ar
|= (var
->db
& 1) << 14;
1736 ar
|= (var
->g
& 1) << 15;
1738 if (ar
== 0) /* a 0 value means unusable */
1739 ar
= AR_UNUSABLE_MASK
;
1744 static void vmx_set_segment(struct kvm_vcpu
*vcpu
,
1745 struct kvm_segment
*var
, int seg
)
1747 struct kvm_vmx_segment_field
*sf
= &kvm_vmx_segment_fields
[seg
];
1750 if (vcpu
->arch
.rmode
.vm86_active
&& seg
== VCPU_SREG_TR
) {
1751 vcpu
->arch
.rmode
.tr
.selector
= var
->selector
;
1752 vcpu
->arch
.rmode
.tr
.base
= var
->base
;
1753 vcpu
->arch
.rmode
.tr
.limit
= var
->limit
;
1754 vcpu
->arch
.rmode
.tr
.ar
= vmx_segment_access_rights(var
);
1757 vmcs_writel(sf
->base
, var
->base
);
1758 vmcs_write32(sf
->limit
, var
->limit
);
1759 vmcs_write16(sf
->selector
, var
->selector
);
1760 if (vcpu
->arch
.rmode
.vm86_active
&& var
->s
) {
1762 * Hack real-mode segments into vm86 compatibility.
1764 if (var
->base
== 0xffff0000 && var
->selector
== 0xf000)
1765 vmcs_writel(sf
->base
, 0xf0000);
1768 ar
= vmx_segment_access_rights(var
);
1769 vmcs_write32(sf
->ar_bytes
, ar
);
1772 static void vmx_get_cs_db_l_bits(struct kvm_vcpu
*vcpu
, int *db
, int *l
)
1774 u32 ar
= vmcs_read32(GUEST_CS_AR_BYTES
);
1776 *db
= (ar
>> 14) & 1;
1777 *l
= (ar
>> 13) & 1;
1780 static void vmx_get_idt(struct kvm_vcpu
*vcpu
, struct descriptor_table
*dt
)
1782 dt
->limit
= vmcs_read32(GUEST_IDTR_LIMIT
);
1783 dt
->base
= vmcs_readl(GUEST_IDTR_BASE
);
1786 static void vmx_set_idt(struct kvm_vcpu
*vcpu
, struct descriptor_table
*dt
)
1788 vmcs_write32(GUEST_IDTR_LIMIT
, dt
->limit
);
1789 vmcs_writel(GUEST_IDTR_BASE
, dt
->base
);
1792 static void vmx_get_gdt(struct kvm_vcpu
*vcpu
, struct descriptor_table
*dt
)
1794 dt
->limit
= vmcs_read32(GUEST_GDTR_LIMIT
);
1795 dt
->base
= vmcs_readl(GUEST_GDTR_BASE
);
1798 static void vmx_set_gdt(struct kvm_vcpu
*vcpu
, struct descriptor_table
*dt
)
1800 vmcs_write32(GUEST_GDTR_LIMIT
, dt
->limit
);
1801 vmcs_writel(GUEST_GDTR_BASE
, dt
->base
);
1804 static bool rmode_segment_valid(struct kvm_vcpu
*vcpu
, int seg
)
1806 struct kvm_segment var
;
1809 vmx_get_segment(vcpu
, &var
, seg
);
1810 ar
= vmx_segment_access_rights(&var
);
1812 if (var
.base
!= (var
.selector
<< 4))
1814 if (var
.limit
!= 0xffff)
1822 static bool code_segment_valid(struct kvm_vcpu
*vcpu
)
1824 struct kvm_segment cs
;
1825 unsigned int cs_rpl
;
1827 vmx_get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
1828 cs_rpl
= cs
.selector
& SELECTOR_RPL_MASK
;
1832 if (~cs
.type
& (AR_TYPE_CODE_MASK
|AR_TYPE_ACCESSES_MASK
))
1836 if (cs
.type
& AR_TYPE_WRITEABLE_MASK
) {
1837 if (cs
.dpl
> cs_rpl
)
1840 if (cs
.dpl
!= cs_rpl
)
1846 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
1850 static bool stack_segment_valid(struct kvm_vcpu
*vcpu
)
1852 struct kvm_segment ss
;
1853 unsigned int ss_rpl
;
1855 vmx_get_segment(vcpu
, &ss
, VCPU_SREG_SS
);
1856 ss_rpl
= ss
.selector
& SELECTOR_RPL_MASK
;
1860 if (ss
.type
!= 3 && ss
.type
!= 7)
1864 if (ss
.dpl
!= ss_rpl
) /* DPL != RPL */
1872 static bool data_segment_valid(struct kvm_vcpu
*vcpu
, int seg
)
1874 struct kvm_segment var
;
1877 vmx_get_segment(vcpu
, &var
, seg
);
1878 rpl
= var
.selector
& SELECTOR_RPL_MASK
;
1886 if (~var
.type
& (AR_TYPE_CODE_MASK
|AR_TYPE_WRITEABLE_MASK
)) {
1887 if (var
.dpl
< rpl
) /* DPL < RPL */
1891 /* TODO: Add other members to kvm_segment_field to allow checking for other access
1897 static bool tr_valid(struct kvm_vcpu
*vcpu
)
1899 struct kvm_segment tr
;
1901 vmx_get_segment(vcpu
, &tr
, VCPU_SREG_TR
);
1905 if (tr
.selector
& SELECTOR_TI_MASK
) /* TI = 1 */
1907 if (tr
.type
!= 3 && tr
.type
!= 11) /* TODO: Check if guest is in IA32e mode */
1915 static bool ldtr_valid(struct kvm_vcpu
*vcpu
)
1917 struct kvm_segment ldtr
;
1919 vmx_get_segment(vcpu
, &ldtr
, VCPU_SREG_LDTR
);
1923 if (ldtr
.selector
& SELECTOR_TI_MASK
) /* TI = 1 */
1933 static bool cs_ss_rpl_check(struct kvm_vcpu
*vcpu
)
1935 struct kvm_segment cs
, ss
;
1937 vmx_get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
1938 vmx_get_segment(vcpu
, &ss
, VCPU_SREG_SS
);
1940 return ((cs
.selector
& SELECTOR_RPL_MASK
) ==
1941 (ss
.selector
& SELECTOR_RPL_MASK
));
1945 * Check if guest state is valid. Returns true if valid, false if
1947 * We assume that registers are always usable
1949 static bool guest_state_valid(struct kvm_vcpu
*vcpu
)
1951 /* real mode guest state checks */
1952 if (!(vcpu
->arch
.cr0
& X86_CR0_PE
)) {
1953 if (!rmode_segment_valid(vcpu
, VCPU_SREG_CS
))
1955 if (!rmode_segment_valid(vcpu
, VCPU_SREG_SS
))
1957 if (!rmode_segment_valid(vcpu
, VCPU_SREG_DS
))
1959 if (!rmode_segment_valid(vcpu
, VCPU_SREG_ES
))
1961 if (!rmode_segment_valid(vcpu
, VCPU_SREG_FS
))
1963 if (!rmode_segment_valid(vcpu
, VCPU_SREG_GS
))
1966 /* protected mode guest state checks */
1967 if (!cs_ss_rpl_check(vcpu
))
1969 if (!code_segment_valid(vcpu
))
1971 if (!stack_segment_valid(vcpu
))
1973 if (!data_segment_valid(vcpu
, VCPU_SREG_DS
))
1975 if (!data_segment_valid(vcpu
, VCPU_SREG_ES
))
1977 if (!data_segment_valid(vcpu
, VCPU_SREG_FS
))
1979 if (!data_segment_valid(vcpu
, VCPU_SREG_GS
))
1981 if (!tr_valid(vcpu
))
1983 if (!ldtr_valid(vcpu
))
1987 * - Add checks on RIP
1988 * - Add checks on RFLAGS
1994 static int init_rmode_tss(struct kvm
*kvm
)
1996 gfn_t fn
= rmode_tss_base(kvm
) >> PAGE_SHIFT
;
2001 r
= kvm_clear_guest_page(kvm
, fn
, 0, PAGE_SIZE
);
2004 data
= TSS_BASE_SIZE
+ TSS_REDIRECTION_SIZE
;
2005 r
= kvm_write_guest_page(kvm
, fn
++, &data
,
2006 TSS_IOPB_BASE_OFFSET
, sizeof(u16
));
2009 r
= kvm_clear_guest_page(kvm
, fn
++, 0, PAGE_SIZE
);
2012 r
= kvm_clear_guest_page(kvm
, fn
, 0, PAGE_SIZE
);
2016 r
= kvm_write_guest_page(kvm
, fn
, &data
,
2017 RMODE_TSS_SIZE
- 2 * PAGE_SIZE
- 1,
2027 static int init_rmode_identity_map(struct kvm
*kvm
)
2030 pfn_t identity_map_pfn
;
2035 if (unlikely(!kvm
->arch
.ept_identity_pagetable
)) {
2036 printk(KERN_ERR
"EPT: identity-mapping pagetable "
2037 "haven't been allocated!\n");
2040 if (likely(kvm
->arch
.ept_identity_pagetable_done
))
2043 identity_map_pfn
= VMX_EPT_IDENTITY_PAGETABLE_ADDR
>> PAGE_SHIFT
;
2044 r
= kvm_clear_guest_page(kvm
, identity_map_pfn
, 0, PAGE_SIZE
);
2047 /* Set up identity-mapping pagetable for EPT in real mode */
2048 for (i
= 0; i
< PT32_ENT_PER_PAGE
; i
++) {
2049 tmp
= (i
<< 22) + (_PAGE_PRESENT
| _PAGE_RW
| _PAGE_USER
|
2050 _PAGE_ACCESSED
| _PAGE_DIRTY
| _PAGE_PSE
);
2051 r
= kvm_write_guest_page(kvm
, identity_map_pfn
,
2052 &tmp
, i
* sizeof(tmp
), sizeof(tmp
));
2056 kvm
->arch
.ept_identity_pagetable_done
= true;
2062 static void seg_setup(int seg
)
2064 struct kvm_vmx_segment_field
*sf
= &kvm_vmx_segment_fields
[seg
];
2066 vmcs_write16(sf
->selector
, 0);
2067 vmcs_writel(sf
->base
, 0);
2068 vmcs_write32(sf
->limit
, 0xffff);
2069 vmcs_write32(sf
->ar_bytes
, 0xf3);
2072 static int alloc_apic_access_page(struct kvm
*kvm
)
2074 struct kvm_userspace_memory_region kvm_userspace_mem
;
2077 down_write(&kvm
->slots_lock
);
2078 if (kvm
->arch
.apic_access_page
)
2080 kvm_userspace_mem
.slot
= APIC_ACCESS_PAGE_PRIVATE_MEMSLOT
;
2081 kvm_userspace_mem
.flags
= 0;
2082 kvm_userspace_mem
.guest_phys_addr
= 0xfee00000ULL
;
2083 kvm_userspace_mem
.memory_size
= PAGE_SIZE
;
2084 r
= __kvm_set_memory_region(kvm
, &kvm_userspace_mem
, 0);
2088 kvm
->arch
.apic_access_page
= gfn_to_page(kvm
, 0xfee00);
2090 up_write(&kvm
->slots_lock
);
2094 static int alloc_identity_pagetable(struct kvm
*kvm
)
2096 struct kvm_userspace_memory_region kvm_userspace_mem
;
2099 down_write(&kvm
->slots_lock
);
2100 if (kvm
->arch
.ept_identity_pagetable
)
2102 kvm_userspace_mem
.slot
= IDENTITY_PAGETABLE_PRIVATE_MEMSLOT
;
2103 kvm_userspace_mem
.flags
= 0;
2104 kvm_userspace_mem
.guest_phys_addr
= VMX_EPT_IDENTITY_PAGETABLE_ADDR
;
2105 kvm_userspace_mem
.memory_size
= PAGE_SIZE
;
2106 r
= __kvm_set_memory_region(kvm
, &kvm_userspace_mem
, 0);
2110 kvm
->arch
.ept_identity_pagetable
= gfn_to_page(kvm
,
2111 VMX_EPT_IDENTITY_PAGETABLE_ADDR
>> PAGE_SHIFT
);
2113 up_write(&kvm
->slots_lock
);
2117 static void allocate_vpid(struct vcpu_vmx
*vmx
)
2124 spin_lock(&vmx_vpid_lock
);
2125 vpid
= find_first_zero_bit(vmx_vpid_bitmap
, VMX_NR_VPIDS
);
2126 if (vpid
< VMX_NR_VPIDS
) {
2128 __set_bit(vpid
, vmx_vpid_bitmap
);
2130 spin_unlock(&vmx_vpid_lock
);
2133 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap
, u32 msr
)
2135 int f
= sizeof(unsigned long);
2137 if (!cpu_has_vmx_msr_bitmap())
2141 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
2142 * have the write-low and read-high bitmap offsets the wrong way round.
2143 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
2145 if (msr
<= 0x1fff) {
2146 __clear_bit(msr
, msr_bitmap
+ 0x000 / f
); /* read-low */
2147 __clear_bit(msr
, msr_bitmap
+ 0x800 / f
); /* write-low */
2148 } else if ((msr
>= 0xc0000000) && (msr
<= 0xc0001fff)) {
2150 __clear_bit(msr
, msr_bitmap
+ 0x400 / f
); /* read-high */
2151 __clear_bit(msr
, msr_bitmap
+ 0xc00 / f
); /* write-high */
2155 static void vmx_disable_intercept_for_msr(u32 msr
, bool longmode_only
)
2158 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy
, msr
);
2159 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode
, msr
);
2163 * Sets up the vmcs for emulated real mode.
2165 static int vmx_vcpu_setup(struct vcpu_vmx
*vmx
)
2167 u32 host_sysenter_cs
, msr_low
, msr_high
;
2169 u64 host_pat
, tsc_this
, tsc_base
;
2171 struct descriptor_table dt
;
2173 unsigned long kvm_vmx_return
;
2177 vmcs_write64(IO_BITMAP_A
, __pa(vmx_io_bitmap_a
));
2178 vmcs_write64(IO_BITMAP_B
, __pa(vmx_io_bitmap_b
));
2180 if (cpu_has_vmx_msr_bitmap())
2181 vmcs_write64(MSR_BITMAP
, __pa(vmx_msr_bitmap_legacy
));
2183 vmcs_write64(VMCS_LINK_POINTER
, -1ull); /* 22.3.1.5 */
2186 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL
,
2187 vmcs_config
.pin_based_exec_ctrl
);
2189 exec_control
= vmcs_config
.cpu_based_exec_ctrl
;
2190 if (!vm_need_tpr_shadow(vmx
->vcpu
.kvm
)) {
2191 exec_control
&= ~CPU_BASED_TPR_SHADOW
;
2192 #ifdef CONFIG_X86_64
2193 exec_control
|= CPU_BASED_CR8_STORE_EXITING
|
2194 CPU_BASED_CR8_LOAD_EXITING
;
2198 exec_control
|= CPU_BASED_CR3_STORE_EXITING
|
2199 CPU_BASED_CR3_LOAD_EXITING
|
2200 CPU_BASED_INVLPG_EXITING
;
2201 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
, exec_control
);
2203 if (cpu_has_secondary_exec_ctrls()) {
2204 exec_control
= vmcs_config
.cpu_based_2nd_exec_ctrl
;
2205 if (!vm_need_virtualize_apic_accesses(vmx
->vcpu
.kvm
))
2207 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
;
2209 exec_control
&= ~SECONDARY_EXEC_ENABLE_VPID
;
2211 exec_control
&= ~SECONDARY_EXEC_ENABLE_EPT
;
2212 vmcs_write32(SECONDARY_VM_EXEC_CONTROL
, exec_control
);
2215 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK
, !!bypass_guest_pf
);
2216 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH
, !!bypass_guest_pf
);
2217 vmcs_write32(CR3_TARGET_COUNT
, 0); /* 22.2.1 */
2219 vmcs_writel(HOST_CR0
, read_cr0()); /* 22.2.3 */
2220 vmcs_writel(HOST_CR4
, read_cr4()); /* 22.2.3, 22.2.5 */
2221 vmcs_writel(HOST_CR3
, read_cr3()); /* 22.2.3 FIXME: shadow tables */
2223 vmcs_write16(HOST_CS_SELECTOR
, __KERNEL_CS
); /* 22.2.4 */
2224 vmcs_write16(HOST_DS_SELECTOR
, __KERNEL_DS
); /* 22.2.4 */
2225 vmcs_write16(HOST_ES_SELECTOR
, __KERNEL_DS
); /* 22.2.4 */
2226 vmcs_write16(HOST_FS_SELECTOR
, kvm_read_fs()); /* 22.2.4 */
2227 vmcs_write16(HOST_GS_SELECTOR
, kvm_read_gs()); /* 22.2.4 */
2228 vmcs_write16(HOST_SS_SELECTOR
, __KERNEL_DS
); /* 22.2.4 */
2229 #ifdef CONFIG_X86_64
2230 rdmsrl(MSR_FS_BASE
, a
);
2231 vmcs_writel(HOST_FS_BASE
, a
); /* 22.2.4 */
2232 rdmsrl(MSR_GS_BASE
, a
);
2233 vmcs_writel(HOST_GS_BASE
, a
); /* 22.2.4 */
2235 vmcs_writel(HOST_FS_BASE
, 0); /* 22.2.4 */
2236 vmcs_writel(HOST_GS_BASE
, 0); /* 22.2.4 */
2239 vmcs_write16(HOST_TR_SELECTOR
, GDT_ENTRY_TSS
*8); /* 22.2.4 */
2242 vmcs_writel(HOST_IDTR_BASE
, dt
.base
); /* 22.2.4 */
2244 asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return
));
2245 vmcs_writel(HOST_RIP
, kvm_vmx_return
); /* 22.2.5 */
2246 vmcs_write32(VM_EXIT_MSR_STORE_COUNT
, 0);
2247 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT
, 0);
2248 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT
, 0);
2250 rdmsr(MSR_IA32_SYSENTER_CS
, host_sysenter_cs
, junk
);
2251 vmcs_write32(HOST_IA32_SYSENTER_CS
, host_sysenter_cs
);
2252 rdmsrl(MSR_IA32_SYSENTER_ESP
, a
);
2253 vmcs_writel(HOST_IA32_SYSENTER_ESP
, a
); /* 22.2.3 */
2254 rdmsrl(MSR_IA32_SYSENTER_EIP
, a
);
2255 vmcs_writel(HOST_IA32_SYSENTER_EIP
, a
); /* 22.2.3 */
2257 if (vmcs_config
.vmexit_ctrl
& VM_EXIT_LOAD_IA32_PAT
) {
2258 rdmsr(MSR_IA32_CR_PAT
, msr_low
, msr_high
);
2259 host_pat
= msr_low
| ((u64
) msr_high
<< 32);
2260 vmcs_write64(HOST_IA32_PAT
, host_pat
);
2262 if (vmcs_config
.vmentry_ctrl
& VM_ENTRY_LOAD_IA32_PAT
) {
2263 rdmsr(MSR_IA32_CR_PAT
, msr_low
, msr_high
);
2264 host_pat
= msr_low
| ((u64
) msr_high
<< 32);
2265 /* Write the default value follow host pat */
2266 vmcs_write64(GUEST_IA32_PAT
, host_pat
);
2267 /* Keep arch.pat sync with GUEST_IA32_PAT */
2268 vmx
->vcpu
.arch
.pat
= host_pat
;
2271 for (i
= 0; i
< NR_VMX_MSR
; ++i
) {
2272 u32 index
= vmx_msr_index
[i
];
2273 u32 data_low
, data_high
;
2277 if (rdmsr_safe(index
, &data_low
, &data_high
) < 0)
2279 if (wrmsr_safe(index
, data_low
, data_high
) < 0)
2281 data
= data_low
| ((u64
)data_high
<< 32);
2282 vmx
->host_msrs
[j
].index
= index
;
2283 vmx
->host_msrs
[j
].reserved
= 0;
2284 vmx
->host_msrs
[j
].data
= data
;
2285 vmx
->guest_msrs
[j
] = vmx
->host_msrs
[j
];
2289 vmcs_write32(VM_EXIT_CONTROLS
, vmcs_config
.vmexit_ctrl
);
2291 /* 22.2.1, 20.8.1 */
2292 vmcs_write32(VM_ENTRY_CONTROLS
, vmcs_config
.vmentry_ctrl
);
2294 vmcs_writel(CR0_GUEST_HOST_MASK
, ~0UL);
2295 vmcs_writel(CR4_GUEST_HOST_MASK
, KVM_GUEST_CR4_MASK
);
2297 tsc_base
= vmx
->vcpu
.kvm
->arch
.vm_init_tsc
;
2299 if (tsc_this
< vmx
->vcpu
.kvm
->arch
.vm_init_tsc
)
2300 tsc_base
= tsc_this
;
2302 guest_write_tsc(0, tsc_base
);
2307 static int init_rmode(struct kvm
*kvm
)
2309 if (!init_rmode_tss(kvm
))
2311 if (!init_rmode_identity_map(kvm
))
2316 static int vmx_vcpu_reset(struct kvm_vcpu
*vcpu
)
2318 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
2322 vcpu
->arch
.regs_avail
= ~((1 << VCPU_REGS_RIP
) | (1 << VCPU_REGS_RSP
));
2323 down_read(&vcpu
->kvm
->slots_lock
);
2324 if (!init_rmode(vmx
->vcpu
.kvm
)) {
2329 vmx
->vcpu
.arch
.rmode
.vm86_active
= 0;
2331 vmx
->soft_vnmi_blocked
= 0;
2333 vmx
->vcpu
.arch
.regs
[VCPU_REGS_RDX
] = get_rdx_init_val();
2334 kvm_set_cr8(&vmx
->vcpu
, 0);
2335 msr
= 0xfee00000 | MSR_IA32_APICBASE_ENABLE
;
2336 if (vmx
->vcpu
.vcpu_id
== 0)
2337 msr
|= MSR_IA32_APICBASE_BSP
;
2338 kvm_set_apic_base(&vmx
->vcpu
, msr
);
2340 fx_init(&vmx
->vcpu
);
2342 seg_setup(VCPU_SREG_CS
);
2344 * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
2345 * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
2347 if (vmx
->vcpu
.vcpu_id
== 0) {
2348 vmcs_write16(GUEST_CS_SELECTOR
, 0xf000);
2349 vmcs_writel(GUEST_CS_BASE
, 0x000f0000);
2351 vmcs_write16(GUEST_CS_SELECTOR
, vmx
->vcpu
.arch
.sipi_vector
<< 8);
2352 vmcs_writel(GUEST_CS_BASE
, vmx
->vcpu
.arch
.sipi_vector
<< 12);
2355 seg_setup(VCPU_SREG_DS
);
2356 seg_setup(VCPU_SREG_ES
);
2357 seg_setup(VCPU_SREG_FS
);
2358 seg_setup(VCPU_SREG_GS
);
2359 seg_setup(VCPU_SREG_SS
);
2361 vmcs_write16(GUEST_TR_SELECTOR
, 0);
2362 vmcs_writel(GUEST_TR_BASE
, 0);
2363 vmcs_write32(GUEST_TR_LIMIT
, 0xffff);
2364 vmcs_write32(GUEST_TR_AR_BYTES
, 0x008b);
2366 vmcs_write16(GUEST_LDTR_SELECTOR
, 0);
2367 vmcs_writel(GUEST_LDTR_BASE
, 0);
2368 vmcs_write32(GUEST_LDTR_LIMIT
, 0xffff);
2369 vmcs_write32(GUEST_LDTR_AR_BYTES
, 0x00082);
2371 vmcs_write32(GUEST_SYSENTER_CS
, 0);
2372 vmcs_writel(GUEST_SYSENTER_ESP
, 0);
2373 vmcs_writel(GUEST_SYSENTER_EIP
, 0);
2375 vmcs_writel(GUEST_RFLAGS
, 0x02);
2376 if (vmx
->vcpu
.vcpu_id
== 0)
2377 kvm_rip_write(vcpu
, 0xfff0);
2379 kvm_rip_write(vcpu
, 0);
2380 kvm_register_write(vcpu
, VCPU_REGS_RSP
, 0);
2382 vmcs_writel(GUEST_DR7
, 0x400);
2384 vmcs_writel(GUEST_GDTR_BASE
, 0);
2385 vmcs_write32(GUEST_GDTR_LIMIT
, 0xffff);
2387 vmcs_writel(GUEST_IDTR_BASE
, 0);
2388 vmcs_write32(GUEST_IDTR_LIMIT
, 0xffff);
2390 vmcs_write32(GUEST_ACTIVITY_STATE
, 0);
2391 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO
, 0);
2392 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS
, 0);
2394 /* Special registers */
2395 vmcs_write64(GUEST_IA32_DEBUGCTL
, 0);
2399 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
, 0); /* 22.2.1 */
2401 if (cpu_has_vmx_tpr_shadow()) {
2402 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR
, 0);
2403 if (vm_need_tpr_shadow(vmx
->vcpu
.kvm
))
2404 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR
,
2405 page_to_phys(vmx
->vcpu
.arch
.apic
->regs_page
));
2406 vmcs_write32(TPR_THRESHOLD
, 0);
2409 if (vm_need_virtualize_apic_accesses(vmx
->vcpu
.kvm
))
2410 vmcs_write64(APIC_ACCESS_ADDR
,
2411 page_to_phys(vmx
->vcpu
.kvm
->arch
.apic_access_page
));
2414 vmcs_write16(VIRTUAL_PROCESSOR_ID
, vmx
->vpid
);
2416 vmx
->vcpu
.arch
.cr0
= 0x60000010;
2417 vmx_set_cr0(&vmx
->vcpu
, vmx
->vcpu
.arch
.cr0
); /* enter rmode */
2418 vmx_set_cr4(&vmx
->vcpu
, 0);
2419 vmx_set_efer(&vmx
->vcpu
, 0);
2420 vmx_fpu_activate(&vmx
->vcpu
);
2421 update_exception_bitmap(&vmx
->vcpu
);
2423 vpid_sync_vcpu_all(vmx
);
2427 /* HACK: Don't enable emulation on guest boot/reset */
2428 vmx
->emulation_required
= 0;
2431 up_read(&vcpu
->kvm
->slots_lock
);
2435 static void enable_irq_window(struct kvm_vcpu
*vcpu
)
2437 u32 cpu_based_vm_exec_control
;
2439 cpu_based_vm_exec_control
= vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
);
2440 cpu_based_vm_exec_control
|= CPU_BASED_VIRTUAL_INTR_PENDING
;
2441 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
, cpu_based_vm_exec_control
);
2444 static void enable_nmi_window(struct kvm_vcpu
*vcpu
)
2446 u32 cpu_based_vm_exec_control
;
2448 if (!cpu_has_virtual_nmis()) {
2449 enable_irq_window(vcpu
);
2453 cpu_based_vm_exec_control
= vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
);
2454 cpu_based_vm_exec_control
|= CPU_BASED_VIRTUAL_NMI_PENDING
;
2455 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
, cpu_based_vm_exec_control
);
2458 static void vmx_inject_irq(struct kvm_vcpu
*vcpu
)
2460 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
2462 int irq
= vcpu
->arch
.interrupt
.nr
;
2464 KVMTRACE_1D(INJ_VIRQ
, vcpu
, (u32
)irq
, handler
);
2466 ++vcpu
->stat
.irq_injections
;
2467 if (vcpu
->arch
.rmode
.vm86_active
) {
2468 vmx
->rmode
.irq
.pending
= true;
2469 vmx
->rmode
.irq
.vector
= irq
;
2470 vmx
->rmode
.irq
.rip
= kvm_rip_read(vcpu
);
2471 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
,
2472 irq
| INTR_TYPE_SOFT_INTR
| INTR_INFO_VALID_MASK
);
2473 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN
, 1);
2474 kvm_rip_write(vcpu
, vmx
->rmode
.irq
.rip
- 1);
2477 intr
= irq
| INTR_INFO_VALID_MASK
;
2478 if (vcpu
->arch
.interrupt
.soft
) {
2479 intr
|= INTR_TYPE_SOFT_INTR
;
2480 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN
,
2481 vmx
->vcpu
.arch
.event_exit_inst_len
);
2483 intr
|= INTR_TYPE_EXT_INTR
;
2484 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
, intr
);
2487 static void vmx_inject_nmi(struct kvm_vcpu
*vcpu
)
2489 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
2491 if (!cpu_has_virtual_nmis()) {
2493 * Tracking the NMI-blocked state in software is built upon
2494 * finding the next open IRQ window. This, in turn, depends on
2495 * well-behaving guests: They have to keep IRQs disabled at
2496 * least as long as the NMI handler runs. Otherwise we may
2497 * cause NMI nesting, maybe breaking the guest. But as this is
2498 * highly unlikely, we can live with the residual risk.
2500 vmx
->soft_vnmi_blocked
= 1;
2501 vmx
->vnmi_blocked_time
= 0;
2504 ++vcpu
->stat
.nmi_injections
;
2505 if (vcpu
->arch
.rmode
.vm86_active
) {
2506 vmx
->rmode
.irq
.pending
= true;
2507 vmx
->rmode
.irq
.vector
= NMI_VECTOR
;
2508 vmx
->rmode
.irq
.rip
= kvm_rip_read(vcpu
);
2509 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
,
2510 NMI_VECTOR
| INTR_TYPE_SOFT_INTR
|
2511 INTR_INFO_VALID_MASK
);
2512 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN
, 1);
2513 kvm_rip_write(vcpu
, vmx
->rmode
.irq
.rip
- 1);
2516 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
,
2517 INTR_TYPE_NMI_INTR
| INTR_INFO_VALID_MASK
| NMI_VECTOR
);
2520 static int vmx_nmi_allowed(struct kvm_vcpu
*vcpu
)
2522 if (!cpu_has_virtual_nmis() && to_vmx(vcpu
)->soft_vnmi_blocked
)
2525 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
) &
2526 (GUEST_INTR_STATE_STI
| GUEST_INTR_STATE_MOV_SS
|
2527 GUEST_INTR_STATE_NMI
));
2530 static int vmx_interrupt_allowed(struct kvm_vcpu
*vcpu
)
2532 return (vmcs_readl(GUEST_RFLAGS
) & X86_EFLAGS_IF
) &&
2533 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
) &
2534 (GUEST_INTR_STATE_STI
| GUEST_INTR_STATE_MOV_SS
));
2537 static int vmx_set_tss_addr(struct kvm
*kvm
, unsigned int addr
)
2540 struct kvm_userspace_memory_region tss_mem
= {
2541 .slot
= TSS_PRIVATE_MEMSLOT
,
2542 .guest_phys_addr
= addr
,
2543 .memory_size
= PAGE_SIZE
* 3,
2547 ret
= kvm_set_memory_region(kvm
, &tss_mem
, 0);
2550 kvm
->arch
.tss_addr
= addr
;
2554 static int handle_rmode_exception(struct kvm_vcpu
*vcpu
,
2555 int vec
, u32 err_code
)
2558 * Instruction with address size override prefix opcode 0x67
2559 * Cause the #SS fault with 0 error code in VM86 mode.
2561 if (((vec
== GP_VECTOR
) || (vec
== SS_VECTOR
)) && err_code
== 0)
2562 if (emulate_instruction(vcpu
, NULL
, 0, 0, 0) == EMULATE_DONE
)
2565 * Forward all other exceptions that are valid in real mode.
2566 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
2567 * the required debugging infrastructure rework.
2571 if (vcpu
->guest_debug
&
2572 (KVM_GUESTDBG_SINGLESTEP
| KVM_GUESTDBG_USE_HW_BP
))
2574 kvm_queue_exception(vcpu
, vec
);
2577 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_SW_BP
)
2588 kvm_queue_exception(vcpu
, vec
);
2595 * Trigger machine check on the host. We assume all the MSRs are already set up
2596 * by the CPU and that we still run on the same CPU as the MCE occurred on.
2597 * We pass a fake environment to the machine check handler because we want
2598 * the guest to be always treated like user space, no matter what context
2599 * it used internally.
2601 static void kvm_machine_check(void)
2603 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
2604 struct pt_regs regs
= {
2605 .cs
= 3, /* Fake ring 3 no matter what the guest ran on */
2606 .flags
= X86_EFLAGS_IF
,
2609 do_machine_check(®s
, 0);
2613 static int handle_machine_check(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
2615 /* already handled by vcpu_run */
2619 static int handle_exception(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
2621 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
2622 u32 intr_info
, ex_no
, error_code
;
2623 unsigned long cr2
, rip
, dr6
;
2625 enum emulation_result er
;
2627 vect_info
= vmx
->idt_vectoring_info
;
2628 intr_info
= vmcs_read32(VM_EXIT_INTR_INFO
);
2630 if (is_machine_check(intr_info
))
2631 return handle_machine_check(vcpu
, kvm_run
);
2633 if ((vect_info
& VECTORING_INFO_VALID_MASK
) &&
2634 !is_page_fault(intr_info
))
2635 printk(KERN_ERR
"%s: unexpected, vectoring info 0x%x "
2636 "intr info 0x%x\n", __func__
, vect_info
, intr_info
);
2638 if ((intr_info
& INTR_INFO_INTR_TYPE_MASK
) == INTR_TYPE_NMI_INTR
)
2639 return 1; /* already handled by vmx_vcpu_run() */
2641 if (is_no_device(intr_info
)) {
2642 vmx_fpu_activate(vcpu
);
2646 if (is_invalid_opcode(intr_info
)) {
2647 er
= emulate_instruction(vcpu
, kvm_run
, 0, 0, EMULTYPE_TRAP_UD
);
2648 if (er
!= EMULATE_DONE
)
2649 kvm_queue_exception(vcpu
, UD_VECTOR
);
2654 rip
= kvm_rip_read(vcpu
);
2655 if (intr_info
& INTR_INFO_DELIVER_CODE_MASK
)
2656 error_code
= vmcs_read32(VM_EXIT_INTR_ERROR_CODE
);
2657 if (is_page_fault(intr_info
)) {
2658 /* EPT won't cause page fault directly */
2661 cr2
= vmcs_readl(EXIT_QUALIFICATION
);
2662 KVMTRACE_3D(PAGE_FAULT
, vcpu
, error_code
, (u32
)cr2
,
2663 (u32
)((u64
)cr2
>> 32), handler
);
2664 if (kvm_event_needs_reinjection(vcpu
))
2665 kvm_mmu_unprotect_page_virt(vcpu
, cr2
);
2666 return kvm_mmu_page_fault(vcpu
, cr2
, error_code
);
2669 if (vcpu
->arch
.rmode
.vm86_active
&&
2670 handle_rmode_exception(vcpu
, intr_info
& INTR_INFO_VECTOR_MASK
,
2672 if (vcpu
->arch
.halt_request
) {
2673 vcpu
->arch
.halt_request
= 0;
2674 return kvm_emulate_halt(vcpu
);
2679 ex_no
= intr_info
& INTR_INFO_VECTOR_MASK
;
2682 dr6
= vmcs_readl(EXIT_QUALIFICATION
);
2683 if (!(vcpu
->guest_debug
&
2684 (KVM_GUESTDBG_SINGLESTEP
| KVM_GUESTDBG_USE_HW_BP
))) {
2685 vcpu
->arch
.dr6
= dr6
| DR6_FIXED_1
;
2686 kvm_queue_exception(vcpu
, DB_VECTOR
);
2689 kvm_run
->debug
.arch
.dr6
= dr6
| DR6_FIXED_1
;
2690 kvm_run
->debug
.arch
.dr7
= vmcs_readl(GUEST_DR7
);
2693 kvm_run
->exit_reason
= KVM_EXIT_DEBUG
;
2694 kvm_run
->debug
.arch
.pc
= vmcs_readl(GUEST_CS_BASE
) + rip
;
2695 kvm_run
->debug
.arch
.exception
= ex_no
;
2698 kvm_run
->exit_reason
= KVM_EXIT_EXCEPTION
;
2699 kvm_run
->ex
.exception
= ex_no
;
2700 kvm_run
->ex
.error_code
= error_code
;
2706 static int handle_external_interrupt(struct kvm_vcpu
*vcpu
,
2707 struct kvm_run
*kvm_run
)
2709 ++vcpu
->stat
.irq_exits
;
2710 KVMTRACE_1D(INTR
, vcpu
, vmcs_read32(VM_EXIT_INTR_INFO
), handler
);
2714 static int handle_triple_fault(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
2716 kvm_run
->exit_reason
= KVM_EXIT_SHUTDOWN
;
2720 static int handle_io(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
2722 unsigned long exit_qualification
;
2723 int size
, in
, string
;
2726 ++vcpu
->stat
.io_exits
;
2727 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
2728 string
= (exit_qualification
& 16) != 0;
2731 if (emulate_instruction(vcpu
,
2732 kvm_run
, 0, 0, 0) == EMULATE_DO_MMIO
)
2737 size
= (exit_qualification
& 7) + 1;
2738 in
= (exit_qualification
& 8) != 0;
2739 port
= exit_qualification
>> 16;
2741 skip_emulated_instruction(vcpu
);
2742 return kvm_emulate_pio(vcpu
, kvm_run
, in
, size
, port
);
2746 vmx_patch_hypercall(struct kvm_vcpu
*vcpu
, unsigned char *hypercall
)
2749 * Patch in the VMCALL instruction:
2751 hypercall
[0] = 0x0f;
2752 hypercall
[1] = 0x01;
2753 hypercall
[2] = 0xc1;
2756 static int handle_cr(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
2758 unsigned long exit_qualification
;
2762 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
2763 cr
= exit_qualification
& 15;
2764 reg
= (exit_qualification
>> 8) & 15;
2765 switch ((exit_qualification
>> 4) & 3) {
2766 case 0: /* mov to cr */
2767 KVMTRACE_3D(CR_WRITE
, vcpu
, (u32
)cr
,
2768 (u32
)kvm_register_read(vcpu
, reg
),
2769 (u32
)((u64
)kvm_register_read(vcpu
, reg
) >> 32),
2773 kvm_set_cr0(vcpu
, kvm_register_read(vcpu
, reg
));
2774 skip_emulated_instruction(vcpu
);
2777 kvm_set_cr3(vcpu
, kvm_register_read(vcpu
, reg
));
2778 skip_emulated_instruction(vcpu
);
2781 kvm_set_cr4(vcpu
, kvm_register_read(vcpu
, reg
));
2782 skip_emulated_instruction(vcpu
);
2785 u8 cr8_prev
= kvm_get_cr8(vcpu
);
2786 u8 cr8
= kvm_register_read(vcpu
, reg
);
2787 kvm_set_cr8(vcpu
, cr8
);
2788 skip_emulated_instruction(vcpu
);
2789 if (irqchip_in_kernel(vcpu
->kvm
))
2791 if (cr8_prev
<= cr8
)
2793 kvm_run
->exit_reason
= KVM_EXIT_SET_TPR
;
2799 vmx_fpu_deactivate(vcpu
);
2800 vcpu
->arch
.cr0
&= ~X86_CR0_TS
;
2801 vmcs_writel(CR0_READ_SHADOW
, vcpu
->arch
.cr0
);
2802 vmx_fpu_activate(vcpu
);
2803 KVMTRACE_0D(CLTS
, vcpu
, handler
);
2804 skip_emulated_instruction(vcpu
);
2806 case 1: /*mov from cr*/
2809 kvm_register_write(vcpu
, reg
, vcpu
->arch
.cr3
);
2810 KVMTRACE_3D(CR_READ
, vcpu
, (u32
)cr
,
2811 (u32
)kvm_register_read(vcpu
, reg
),
2812 (u32
)((u64
)kvm_register_read(vcpu
, reg
) >> 32),
2814 skip_emulated_instruction(vcpu
);
2817 kvm_register_write(vcpu
, reg
, kvm_get_cr8(vcpu
));
2818 KVMTRACE_2D(CR_READ
, vcpu
, (u32
)cr
,
2819 (u32
)kvm_register_read(vcpu
, reg
), handler
);
2820 skip_emulated_instruction(vcpu
);
2825 kvm_lmsw(vcpu
, (exit_qualification
>> LMSW_SOURCE_DATA_SHIFT
) & 0x0f);
2827 skip_emulated_instruction(vcpu
);
2832 kvm_run
->exit_reason
= 0;
2833 pr_unimpl(vcpu
, "unhandled control register: op %d cr %d\n",
2834 (int)(exit_qualification
>> 4) & 3, cr
);
2838 static int handle_dr(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
2840 unsigned long exit_qualification
;
2844 dr
= vmcs_readl(GUEST_DR7
);
2847 * As the vm-exit takes precedence over the debug trap, we
2848 * need to emulate the latter, either for the host or the
2849 * guest debugging itself.
2851 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
) {
2852 kvm_run
->debug
.arch
.dr6
= vcpu
->arch
.dr6
;
2853 kvm_run
->debug
.arch
.dr7
= dr
;
2854 kvm_run
->debug
.arch
.pc
=
2855 vmcs_readl(GUEST_CS_BASE
) +
2856 vmcs_readl(GUEST_RIP
);
2857 kvm_run
->debug
.arch
.exception
= DB_VECTOR
;
2858 kvm_run
->exit_reason
= KVM_EXIT_DEBUG
;
2861 vcpu
->arch
.dr7
&= ~DR7_GD
;
2862 vcpu
->arch
.dr6
|= DR6_BD
;
2863 vmcs_writel(GUEST_DR7
, vcpu
->arch
.dr7
);
2864 kvm_queue_exception(vcpu
, DB_VECTOR
);
2869 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
2870 dr
= exit_qualification
& DEBUG_REG_ACCESS_NUM
;
2871 reg
= DEBUG_REG_ACCESS_REG(exit_qualification
);
2872 if (exit_qualification
& TYPE_MOV_FROM_DR
) {
2875 val
= vcpu
->arch
.db
[dr
];
2878 val
= vcpu
->arch
.dr6
;
2881 val
= vcpu
->arch
.dr7
;
2886 kvm_register_write(vcpu
, reg
, val
);
2887 KVMTRACE_2D(DR_READ
, vcpu
, (u32
)dr
, (u32
)val
, handler
);
2889 val
= vcpu
->arch
.regs
[reg
];
2892 vcpu
->arch
.db
[dr
] = val
;
2893 if (!(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
))
2894 vcpu
->arch
.eff_db
[dr
] = val
;
2897 if (vcpu
->arch
.cr4
& X86_CR4_DE
)
2898 kvm_queue_exception(vcpu
, UD_VECTOR
);
2901 if (val
& 0xffffffff00000000ULL
) {
2902 kvm_queue_exception(vcpu
, GP_VECTOR
);
2905 vcpu
->arch
.dr6
= (val
& DR6_VOLATILE
) | DR6_FIXED_1
;
2908 if (val
& 0xffffffff00000000ULL
) {
2909 kvm_queue_exception(vcpu
, GP_VECTOR
);
2912 vcpu
->arch
.dr7
= (val
& DR7_VOLATILE
) | DR7_FIXED_1
;
2913 if (!(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
)) {
2914 vmcs_writel(GUEST_DR7
, vcpu
->arch
.dr7
);
2915 vcpu
->arch
.switch_db_regs
=
2916 (val
& DR7_BP_EN_MASK
);
2920 KVMTRACE_2D(DR_WRITE
, vcpu
, (u32
)dr
, (u32
)val
, handler
);
2922 skip_emulated_instruction(vcpu
);
2926 static int handle_cpuid(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
2928 kvm_emulate_cpuid(vcpu
);
2932 static int handle_rdmsr(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
2934 u32 ecx
= vcpu
->arch
.regs
[VCPU_REGS_RCX
];
2937 if (vmx_get_msr(vcpu
, ecx
, &data
)) {
2938 kvm_inject_gp(vcpu
, 0);
2942 KVMTRACE_3D(MSR_READ
, vcpu
, ecx
, (u32
)data
, (u32
)(data
>> 32),
2945 /* FIXME: handling of bits 32:63 of rax, rdx */
2946 vcpu
->arch
.regs
[VCPU_REGS_RAX
] = data
& -1u;
2947 vcpu
->arch
.regs
[VCPU_REGS_RDX
] = (data
>> 32) & -1u;
2948 skip_emulated_instruction(vcpu
);
2952 static int handle_wrmsr(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
2954 u32 ecx
= vcpu
->arch
.regs
[VCPU_REGS_RCX
];
2955 u64 data
= (vcpu
->arch
.regs
[VCPU_REGS_RAX
] & -1u)
2956 | ((u64
)(vcpu
->arch
.regs
[VCPU_REGS_RDX
] & -1u) << 32);
2958 KVMTRACE_3D(MSR_WRITE
, vcpu
, ecx
, (u32
)data
, (u32
)(data
>> 32),
2961 if (vmx_set_msr(vcpu
, ecx
, data
) != 0) {
2962 kvm_inject_gp(vcpu
, 0);
2966 skip_emulated_instruction(vcpu
);
2970 static int handle_tpr_below_threshold(struct kvm_vcpu
*vcpu
,
2971 struct kvm_run
*kvm_run
)
2976 static int handle_interrupt_window(struct kvm_vcpu
*vcpu
,
2977 struct kvm_run
*kvm_run
)
2979 u32 cpu_based_vm_exec_control
;
2981 /* clear pending irq */
2982 cpu_based_vm_exec_control
= vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
);
2983 cpu_based_vm_exec_control
&= ~CPU_BASED_VIRTUAL_INTR_PENDING
;
2984 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
, cpu_based_vm_exec_control
);
2986 KVMTRACE_0D(PEND_INTR
, vcpu
, handler
);
2987 ++vcpu
->stat
.irq_window_exits
;
2990 * If the user space waits to inject interrupts, exit as soon as
2993 if (!irqchip_in_kernel(vcpu
->kvm
) &&
2994 kvm_run
->request_interrupt_window
&&
2995 !kvm_cpu_has_interrupt(vcpu
)) {
2996 kvm_run
->exit_reason
= KVM_EXIT_IRQ_WINDOW_OPEN
;
3002 static int handle_halt(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
3004 skip_emulated_instruction(vcpu
);
3005 return kvm_emulate_halt(vcpu
);
3008 static int handle_vmcall(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
3010 skip_emulated_instruction(vcpu
);
3011 kvm_emulate_hypercall(vcpu
);
3015 static int handle_vmx_insn(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
3017 kvm_queue_exception(vcpu
, UD_VECTOR
);
3021 static int handle_invlpg(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
3023 unsigned long exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
3025 kvm_mmu_invlpg(vcpu
, exit_qualification
);
3026 skip_emulated_instruction(vcpu
);
3030 static int handle_wbinvd(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
3032 skip_emulated_instruction(vcpu
);
3033 /* TODO: Add support for VT-d/pass-through device */
3037 static int handle_apic_access(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
3039 unsigned long exit_qualification
;
3040 enum emulation_result er
;
3041 unsigned long offset
;
3043 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
3044 offset
= exit_qualification
& 0xffful
;
3046 er
= emulate_instruction(vcpu
, kvm_run
, 0, 0, 0);
3048 if (er
!= EMULATE_DONE
) {
3050 "Fail to handle apic access vmexit! Offset is 0x%lx\n",
3057 static int handle_task_switch(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
3059 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3060 unsigned long exit_qualification
;
3062 int reason
, type
, idt_v
;
3064 idt_v
= (vmx
->idt_vectoring_info
& VECTORING_INFO_VALID_MASK
);
3065 type
= (vmx
->idt_vectoring_info
& VECTORING_INFO_TYPE_MASK
);
3067 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
3069 reason
= (u32
)exit_qualification
>> 30;
3070 if (reason
== TASK_SWITCH_GATE
&& idt_v
) {
3072 case INTR_TYPE_NMI_INTR
:
3073 vcpu
->arch
.nmi_injected
= false;
3074 if (cpu_has_virtual_nmis())
3075 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO
,
3076 GUEST_INTR_STATE_NMI
);
3078 case INTR_TYPE_EXT_INTR
:
3079 case INTR_TYPE_SOFT_INTR
:
3080 kvm_clear_interrupt_queue(vcpu
);
3082 case INTR_TYPE_HARD_EXCEPTION
:
3083 case INTR_TYPE_SOFT_EXCEPTION
:
3084 kvm_clear_exception_queue(vcpu
);
3090 tss_selector
= exit_qualification
;
3092 if (!idt_v
|| (type
!= INTR_TYPE_HARD_EXCEPTION
&&
3093 type
!= INTR_TYPE_EXT_INTR
&&
3094 type
!= INTR_TYPE_NMI_INTR
))
3095 skip_emulated_instruction(vcpu
);
3097 if (!kvm_task_switch(vcpu
, tss_selector
, reason
))
3100 /* clear all local breakpoint enable flags */
3101 vmcs_writel(GUEST_DR7
, vmcs_readl(GUEST_DR7
) & ~55);
3104 * TODO: What about debug traps on tss switch?
3105 * Are we supposed to inject them and update dr6?
3111 static int handle_ept_violation(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
3113 unsigned long exit_qualification
;
3117 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
3119 if (exit_qualification
& (1 << 6)) {
3120 printk(KERN_ERR
"EPT: GPA exceeds GAW!\n");
3124 gla_validity
= (exit_qualification
>> 7) & 0x3;
3125 if (gla_validity
!= 0x3 && gla_validity
!= 0x1 && gla_validity
!= 0) {
3126 printk(KERN_ERR
"EPT: Handling EPT violation failed!\n");
3127 printk(KERN_ERR
"EPT: GPA: 0x%lx, GVA: 0x%lx\n",
3128 (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS
),
3129 vmcs_readl(GUEST_LINEAR_ADDRESS
));
3130 printk(KERN_ERR
"EPT: Exit qualification is 0x%lx\n",
3131 (long unsigned int)exit_qualification
);
3132 kvm_run
->exit_reason
= KVM_EXIT_UNKNOWN
;
3133 kvm_run
->hw
.hardware_exit_reason
= 0;
3137 gpa
= vmcs_read64(GUEST_PHYSICAL_ADDRESS
);
3138 return kvm_mmu_page_fault(vcpu
, gpa
& PAGE_MASK
, 0);
3141 static int handle_nmi_window(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
3143 u32 cpu_based_vm_exec_control
;
3145 /* clear pending NMI */
3146 cpu_based_vm_exec_control
= vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
);
3147 cpu_based_vm_exec_control
&= ~CPU_BASED_VIRTUAL_NMI_PENDING
;
3148 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
, cpu_based_vm_exec_control
);
3149 ++vcpu
->stat
.nmi_window_exits
;
3154 static void handle_invalid_guest_state(struct kvm_vcpu
*vcpu
,
3155 struct kvm_run
*kvm_run
)
3157 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3158 enum emulation_result err
= EMULATE_DONE
;
3163 while (!guest_state_valid(vcpu
)) {
3164 err
= emulate_instruction(vcpu
, kvm_run
, 0, 0, 0);
3166 if (err
== EMULATE_DO_MMIO
)
3169 if (err
!= EMULATE_DONE
) {
3170 kvm_report_emulation_failure(vcpu
, "emulation failure");
3174 if (signal_pending(current
))
3180 local_irq_disable();
3183 vmx
->invalid_state_emulation_result
= err
;
3187 * The exit handlers return 1 if the exit was handled fully and guest execution
3188 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
3189 * to be done to userspace and return 0.
3191 static int (*kvm_vmx_exit_handlers
[])(struct kvm_vcpu
*vcpu
,
3192 struct kvm_run
*kvm_run
) = {
3193 [EXIT_REASON_EXCEPTION_NMI
] = handle_exception
,
3194 [EXIT_REASON_EXTERNAL_INTERRUPT
] = handle_external_interrupt
,
3195 [EXIT_REASON_TRIPLE_FAULT
] = handle_triple_fault
,
3196 [EXIT_REASON_NMI_WINDOW
] = handle_nmi_window
,
3197 [EXIT_REASON_IO_INSTRUCTION
] = handle_io
,
3198 [EXIT_REASON_CR_ACCESS
] = handle_cr
,
3199 [EXIT_REASON_DR_ACCESS
] = handle_dr
,
3200 [EXIT_REASON_CPUID
] = handle_cpuid
,
3201 [EXIT_REASON_MSR_READ
] = handle_rdmsr
,
3202 [EXIT_REASON_MSR_WRITE
] = handle_wrmsr
,
3203 [EXIT_REASON_PENDING_INTERRUPT
] = handle_interrupt_window
,
3204 [EXIT_REASON_HLT
] = handle_halt
,
3205 [EXIT_REASON_INVLPG
] = handle_invlpg
,
3206 [EXIT_REASON_VMCALL
] = handle_vmcall
,
3207 [EXIT_REASON_VMCLEAR
] = handle_vmx_insn
,
3208 [EXIT_REASON_VMLAUNCH
] = handle_vmx_insn
,
3209 [EXIT_REASON_VMPTRLD
] = handle_vmx_insn
,
3210 [EXIT_REASON_VMPTRST
] = handle_vmx_insn
,
3211 [EXIT_REASON_VMREAD
] = handle_vmx_insn
,
3212 [EXIT_REASON_VMRESUME
] = handle_vmx_insn
,
3213 [EXIT_REASON_VMWRITE
] = handle_vmx_insn
,
3214 [EXIT_REASON_VMOFF
] = handle_vmx_insn
,
3215 [EXIT_REASON_VMON
] = handle_vmx_insn
,
3216 [EXIT_REASON_TPR_BELOW_THRESHOLD
] = handle_tpr_below_threshold
,
3217 [EXIT_REASON_APIC_ACCESS
] = handle_apic_access
,
3218 [EXIT_REASON_WBINVD
] = handle_wbinvd
,
3219 [EXIT_REASON_TASK_SWITCH
] = handle_task_switch
,
3220 [EXIT_REASON_EPT_VIOLATION
] = handle_ept_violation
,
3221 [EXIT_REASON_MCE_DURING_VMENTRY
] = handle_machine_check
,
3224 static const int kvm_vmx_max_exit_handlers
=
3225 ARRAY_SIZE(kvm_vmx_exit_handlers
);
3228 * The guest has exited. See if we can fix it or if we need userspace
3231 static int vmx_handle_exit(struct kvm_run
*kvm_run
, struct kvm_vcpu
*vcpu
)
3233 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3234 u32 exit_reason
= vmx
->exit_reason
;
3235 u32 vectoring_info
= vmx
->idt_vectoring_info
;
3237 KVMTRACE_3D(VMEXIT
, vcpu
, exit_reason
, (u32
)kvm_rip_read(vcpu
),
3238 (u32
)((u64
)kvm_rip_read(vcpu
) >> 32), entryexit
);
3240 /* If we need to emulate an MMIO from handle_invalid_guest_state
3241 * we just return 0 */
3242 if (vmx
->emulation_required
&& emulate_invalid_guest_state
) {
3243 if (guest_state_valid(vcpu
))
3244 vmx
->emulation_required
= 0;
3245 return vmx
->invalid_state_emulation_result
!= EMULATE_DO_MMIO
;
3248 /* Access CR3 don't cause VMExit in paging mode, so we need
3249 * to sync with guest real CR3. */
3250 if (enable_ept
&& is_paging(vcpu
)) {
3251 vcpu
->arch
.cr3
= vmcs_readl(GUEST_CR3
);
3252 ept_load_pdptrs(vcpu
);
3255 if (unlikely(vmx
->fail
)) {
3256 kvm_run
->exit_reason
= KVM_EXIT_FAIL_ENTRY
;
3257 kvm_run
->fail_entry
.hardware_entry_failure_reason
3258 = vmcs_read32(VM_INSTRUCTION_ERROR
);
3262 if ((vectoring_info
& VECTORING_INFO_VALID_MASK
) &&
3263 (exit_reason
!= EXIT_REASON_EXCEPTION_NMI
&&
3264 exit_reason
!= EXIT_REASON_EPT_VIOLATION
&&
3265 exit_reason
!= EXIT_REASON_TASK_SWITCH
))
3266 printk(KERN_WARNING
"%s: unexpected, valid vectoring info "
3267 "(0x%x) and exit reason is 0x%x\n",
3268 __func__
, vectoring_info
, exit_reason
);
3270 if (unlikely(!cpu_has_virtual_nmis() && vmx
->soft_vnmi_blocked
)) {
3271 if (vmx_interrupt_allowed(vcpu
)) {
3272 vmx
->soft_vnmi_blocked
= 0;
3273 } else if (vmx
->vnmi_blocked_time
> 1000000000LL &&
3274 vcpu
->arch
.nmi_pending
) {
3276 * This CPU don't support us in finding the end of an
3277 * NMI-blocked window if the guest runs with IRQs
3278 * disabled. So we pull the trigger after 1 s of
3279 * futile waiting, but inform the user about this.
3281 printk(KERN_WARNING
"%s: Breaking out of NMI-blocked "
3282 "state on VCPU %d after 1 s timeout\n",
3283 __func__
, vcpu
->vcpu_id
);
3284 vmx
->soft_vnmi_blocked
= 0;
3288 if (exit_reason
< kvm_vmx_max_exit_handlers
3289 && kvm_vmx_exit_handlers
[exit_reason
])
3290 return kvm_vmx_exit_handlers
[exit_reason
](vcpu
, kvm_run
);
3292 kvm_run
->exit_reason
= KVM_EXIT_UNKNOWN
;
3293 kvm_run
->hw
.hardware_exit_reason
= exit_reason
;
3298 static void update_cr8_intercept(struct kvm_vcpu
*vcpu
, int tpr
, int irr
)
3300 if (irr
== -1 || tpr
< irr
) {
3301 vmcs_write32(TPR_THRESHOLD
, 0);
3305 vmcs_write32(TPR_THRESHOLD
, irr
);
3308 static void vmx_complete_interrupts(struct vcpu_vmx
*vmx
)
3311 u32 idt_vectoring_info
= vmx
->idt_vectoring_info
;
3315 bool idtv_info_valid
;
3317 exit_intr_info
= vmcs_read32(VM_EXIT_INTR_INFO
);
3319 vmx
->exit_reason
= vmcs_read32(VM_EXIT_REASON
);
3321 /* Handle machine checks before interrupts are enabled */
3322 if ((vmx
->exit_reason
== EXIT_REASON_MCE_DURING_VMENTRY
)
3323 || (vmx
->exit_reason
== EXIT_REASON_EXCEPTION_NMI
3324 && is_machine_check(exit_intr_info
)))
3325 kvm_machine_check();
3327 /* We need to handle NMIs before interrupts are enabled */
3328 if ((exit_intr_info
& INTR_INFO_INTR_TYPE_MASK
) == INTR_TYPE_NMI_INTR
&&
3329 (exit_intr_info
& INTR_INFO_VALID_MASK
)) {
3330 KVMTRACE_0D(NMI
, &vmx
->vcpu
, handler
);
3334 idtv_info_valid
= idt_vectoring_info
& VECTORING_INFO_VALID_MASK
;
3336 if (cpu_has_virtual_nmis()) {
3337 unblock_nmi
= (exit_intr_info
& INTR_INFO_UNBLOCK_NMI
) != 0;
3338 vector
= exit_intr_info
& INTR_INFO_VECTOR_MASK
;
3340 * SDM 3: 27.7.1.2 (September 2008)
3341 * Re-set bit "block by NMI" before VM entry if vmexit caused by
3342 * a guest IRET fault.
3343 * SDM 3: 23.2.2 (September 2008)
3344 * Bit 12 is undefined in any of the following cases:
3345 * If the VM exit sets the valid bit in the IDT-vectoring
3346 * information field.
3347 * If the VM exit is due to a double fault.
3349 if ((exit_intr_info
& INTR_INFO_VALID_MASK
) && unblock_nmi
&&
3350 vector
!= DF_VECTOR
&& !idtv_info_valid
)
3351 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO
,
3352 GUEST_INTR_STATE_NMI
);
3353 } else if (unlikely(vmx
->soft_vnmi_blocked
))
3354 vmx
->vnmi_blocked_time
+=
3355 ktime_to_ns(ktime_sub(ktime_get(), vmx
->entry_time
));
3357 vmx
->vcpu
.arch
.nmi_injected
= false;
3358 kvm_clear_exception_queue(&vmx
->vcpu
);
3359 kvm_clear_interrupt_queue(&vmx
->vcpu
);
3361 if (!idtv_info_valid
)
3364 vector
= idt_vectoring_info
& VECTORING_INFO_VECTOR_MASK
;
3365 type
= idt_vectoring_info
& VECTORING_INFO_TYPE_MASK
;
3368 case INTR_TYPE_NMI_INTR
:
3369 vmx
->vcpu
.arch
.nmi_injected
= true;
3371 * SDM 3: 27.7.1.2 (September 2008)
3372 * Clear bit "block by NMI" before VM entry if a NMI
3375 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO
,
3376 GUEST_INTR_STATE_NMI
);
3378 case INTR_TYPE_SOFT_EXCEPTION
:
3379 vmx
->vcpu
.arch
.event_exit_inst_len
=
3380 vmcs_read32(VM_EXIT_INSTRUCTION_LEN
);
3382 case INTR_TYPE_HARD_EXCEPTION
:
3383 if (idt_vectoring_info
& VECTORING_INFO_DELIVER_CODE_MASK
) {
3384 u32 err
= vmcs_read32(IDT_VECTORING_ERROR_CODE
);
3385 kvm_queue_exception_e(&vmx
->vcpu
, vector
, err
);
3387 kvm_queue_exception(&vmx
->vcpu
, vector
);
3389 case INTR_TYPE_SOFT_INTR
:
3390 vmx
->vcpu
.arch
.event_exit_inst_len
=
3391 vmcs_read32(VM_EXIT_INSTRUCTION_LEN
);
3393 case INTR_TYPE_EXT_INTR
:
3394 kvm_queue_interrupt(&vmx
->vcpu
, vector
,
3395 type
== INTR_TYPE_SOFT_INTR
);
3403 * Failure to inject an interrupt should give us the information
3404 * in IDT_VECTORING_INFO_FIELD. However, if the failure occurs
3405 * when fetching the interrupt redirection bitmap in the real-mode
3406 * tss, this doesn't happen. So we do it ourselves.
3408 static void fixup_rmode_irq(struct vcpu_vmx
*vmx
)
3410 vmx
->rmode
.irq
.pending
= 0;
3411 if (kvm_rip_read(&vmx
->vcpu
) + 1 != vmx
->rmode
.irq
.rip
)
3413 kvm_rip_write(&vmx
->vcpu
, vmx
->rmode
.irq
.rip
);
3414 if (vmx
->idt_vectoring_info
& VECTORING_INFO_VALID_MASK
) {
3415 vmx
->idt_vectoring_info
&= ~VECTORING_INFO_TYPE_MASK
;
3416 vmx
->idt_vectoring_info
|= INTR_TYPE_EXT_INTR
;
3419 vmx
->idt_vectoring_info
=
3420 VECTORING_INFO_VALID_MASK
3421 | INTR_TYPE_EXT_INTR
3422 | vmx
->rmode
.irq
.vector
;
3425 #ifdef CONFIG_X86_64
3433 static void vmx_vcpu_run(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
3435 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3437 /* Record the guest's net vcpu time for enforced NMI injections. */
3438 if (unlikely(!cpu_has_virtual_nmis() && vmx
->soft_vnmi_blocked
))
3439 vmx
->entry_time
= ktime_get();
3441 /* Handle invalid guest state instead of entering VMX */
3442 if (vmx
->emulation_required
&& emulate_invalid_guest_state
) {
3443 handle_invalid_guest_state(vcpu
, kvm_run
);
3447 if (test_bit(VCPU_REGS_RSP
, (unsigned long *)&vcpu
->arch
.regs_dirty
))
3448 vmcs_writel(GUEST_RSP
, vcpu
->arch
.regs
[VCPU_REGS_RSP
]);
3449 if (test_bit(VCPU_REGS_RIP
, (unsigned long *)&vcpu
->arch
.regs_dirty
))
3450 vmcs_writel(GUEST_RIP
, vcpu
->arch
.regs
[VCPU_REGS_RIP
]);
3453 * Loading guest fpu may have cleared host cr0.ts
3455 vmcs_writel(HOST_CR0
, read_cr0());
3457 set_debugreg(vcpu
->arch
.dr6
, 6);
3460 /* Store host registers */
3461 "push %%"R
"dx; push %%"R
"bp;"
3463 "cmp %%"R
"sp, %c[host_rsp](%0) \n\t"
3465 "mov %%"R
"sp, %c[host_rsp](%0) \n\t"
3466 __ex(ASM_VMX_VMWRITE_RSP_RDX
) "\n\t"
3468 /* Check if vmlaunch of vmresume is needed */
3469 "cmpl $0, %c[launched](%0) \n\t"
3470 /* Load guest registers. Don't clobber flags. */
3471 "mov %c[cr2](%0), %%"R
"ax \n\t"
3472 "mov %%"R
"ax, %%cr2 \n\t"
3473 "mov %c[rax](%0), %%"R
"ax \n\t"
3474 "mov %c[rbx](%0), %%"R
"bx \n\t"
3475 "mov %c[rdx](%0), %%"R
"dx \n\t"
3476 "mov %c[rsi](%0), %%"R
"si \n\t"
3477 "mov %c[rdi](%0), %%"R
"di \n\t"
3478 "mov %c[rbp](%0), %%"R
"bp \n\t"
3479 #ifdef CONFIG_X86_64
3480 "mov %c[r8](%0), %%r8 \n\t"
3481 "mov %c[r9](%0), %%r9 \n\t"
3482 "mov %c[r10](%0), %%r10 \n\t"
3483 "mov %c[r11](%0), %%r11 \n\t"
3484 "mov %c[r12](%0), %%r12 \n\t"
3485 "mov %c[r13](%0), %%r13 \n\t"
3486 "mov %c[r14](%0), %%r14 \n\t"
3487 "mov %c[r15](%0), %%r15 \n\t"
3489 "mov %c[rcx](%0), %%"R
"cx \n\t" /* kills %0 (ecx) */
3491 /* Enter guest mode */
3492 "jne .Llaunched \n\t"
3493 __ex(ASM_VMX_VMLAUNCH
) "\n\t"
3494 "jmp .Lkvm_vmx_return \n\t"
3495 ".Llaunched: " __ex(ASM_VMX_VMRESUME
) "\n\t"
3496 ".Lkvm_vmx_return: "
3497 /* Save guest registers, load host registers, keep flags */
3498 "xchg %0, (%%"R
"sp) \n\t"
3499 "mov %%"R
"ax, %c[rax](%0) \n\t"
3500 "mov %%"R
"bx, %c[rbx](%0) \n\t"
3501 "push"Q
" (%%"R
"sp); pop"Q
" %c[rcx](%0) \n\t"
3502 "mov %%"R
"dx, %c[rdx](%0) \n\t"
3503 "mov %%"R
"si, %c[rsi](%0) \n\t"
3504 "mov %%"R
"di, %c[rdi](%0) \n\t"
3505 "mov %%"R
"bp, %c[rbp](%0) \n\t"
3506 #ifdef CONFIG_X86_64
3507 "mov %%r8, %c[r8](%0) \n\t"
3508 "mov %%r9, %c[r9](%0) \n\t"
3509 "mov %%r10, %c[r10](%0) \n\t"
3510 "mov %%r11, %c[r11](%0) \n\t"
3511 "mov %%r12, %c[r12](%0) \n\t"
3512 "mov %%r13, %c[r13](%0) \n\t"
3513 "mov %%r14, %c[r14](%0) \n\t"
3514 "mov %%r15, %c[r15](%0) \n\t"
3516 "mov %%cr2, %%"R
"ax \n\t"
3517 "mov %%"R
"ax, %c[cr2](%0) \n\t"
3519 "pop %%"R
"bp; pop %%"R
"bp; pop %%"R
"dx \n\t"
3520 "setbe %c[fail](%0) \n\t"
3521 : : "c"(vmx
), "d"((unsigned long)HOST_RSP
),
3522 [launched
]"i"(offsetof(struct vcpu_vmx
, launched
)),
3523 [fail
]"i"(offsetof(struct vcpu_vmx
, fail
)),
3524 [host_rsp
]"i"(offsetof(struct vcpu_vmx
, host_rsp
)),
3525 [rax
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RAX
])),
3526 [rbx
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RBX
])),
3527 [rcx
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RCX
])),
3528 [rdx
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RDX
])),
3529 [rsi
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RSI
])),
3530 [rdi
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RDI
])),
3531 [rbp
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RBP
])),
3532 #ifdef CONFIG_X86_64
3533 [r8
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R8
])),
3534 [r9
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R9
])),
3535 [r10
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R10
])),
3536 [r11
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R11
])),
3537 [r12
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R12
])),
3538 [r13
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R13
])),
3539 [r14
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R14
])),
3540 [r15
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R15
])),
3542 [cr2
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.cr2
))
3544 , R
"bx", R
"di", R
"si"
3545 #ifdef CONFIG_X86_64
3546 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
3550 vcpu
->arch
.regs_avail
= ~((1 << VCPU_REGS_RIP
) | (1 << VCPU_REGS_RSP
));
3551 vcpu
->arch
.regs_dirty
= 0;
3553 get_debugreg(vcpu
->arch
.dr6
, 6);
3555 vmx
->idt_vectoring_info
= vmcs_read32(IDT_VECTORING_INFO_FIELD
);
3556 if (vmx
->rmode
.irq
.pending
)
3557 fixup_rmode_irq(vmx
);
3559 asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS
));
3562 vmx_complete_interrupts(vmx
);
3568 static void vmx_free_vmcs(struct kvm_vcpu
*vcpu
)
3570 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3574 free_vmcs(vmx
->vmcs
);
3579 static void vmx_free_vcpu(struct kvm_vcpu
*vcpu
)
3581 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3583 spin_lock(&vmx_vpid_lock
);
3585 __clear_bit(vmx
->vpid
, vmx_vpid_bitmap
);
3586 spin_unlock(&vmx_vpid_lock
);
3587 vmx_free_vmcs(vcpu
);
3588 kfree(vmx
->host_msrs
);
3589 kfree(vmx
->guest_msrs
);
3590 kvm_vcpu_uninit(vcpu
);
3591 kmem_cache_free(kvm_vcpu_cache
, vmx
);
3594 static struct kvm_vcpu
*vmx_create_vcpu(struct kvm
*kvm
, unsigned int id
)
3597 struct vcpu_vmx
*vmx
= kmem_cache_zalloc(kvm_vcpu_cache
, GFP_KERNEL
);
3601 return ERR_PTR(-ENOMEM
);
3605 err
= kvm_vcpu_init(&vmx
->vcpu
, kvm
, id
);
3609 vmx
->guest_msrs
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
3610 if (!vmx
->guest_msrs
) {
3615 vmx
->host_msrs
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
3616 if (!vmx
->host_msrs
)
3617 goto free_guest_msrs
;
3619 vmx
->vmcs
= alloc_vmcs();
3623 vmcs_clear(vmx
->vmcs
);
3626 vmx_vcpu_load(&vmx
->vcpu
, cpu
);
3627 err
= vmx_vcpu_setup(vmx
);
3628 vmx_vcpu_put(&vmx
->vcpu
);
3632 if (vm_need_virtualize_apic_accesses(kvm
))
3633 if (alloc_apic_access_page(kvm
) != 0)
3637 if (alloc_identity_pagetable(kvm
) != 0)
3643 free_vmcs(vmx
->vmcs
);
3645 kfree(vmx
->host_msrs
);
3647 kfree(vmx
->guest_msrs
);
3649 kvm_vcpu_uninit(&vmx
->vcpu
);
3651 kmem_cache_free(kvm_vcpu_cache
, vmx
);
3652 return ERR_PTR(err
);
3655 static void __init
vmx_check_processor_compat(void *rtn
)
3657 struct vmcs_config vmcs_conf
;
3660 if (setup_vmcs_config(&vmcs_conf
) < 0)
3662 if (memcmp(&vmcs_config
, &vmcs_conf
, sizeof(struct vmcs_config
)) != 0) {
3663 printk(KERN_ERR
"kvm: CPU %d feature inconsistency!\n",
3664 smp_processor_id());
3669 static int get_ept_level(void)
3671 return VMX_EPT_DEFAULT_GAW
+ 1;
3674 static u64
vmx_get_mt_mask(struct kvm_vcpu
*vcpu
, gfn_t gfn
, bool is_mmio
)
3678 /* For VT-d and EPT combination
3679 * 1. MMIO: always map as UC
3681 * a. VT-d without snooping control feature: can't guarantee the
3682 * result, try to trust guest.
3683 * b. VT-d with snooping control feature: snooping control feature of
3684 * VT-d engine can guarantee the cache correctness. Just set it
3685 * to WB to keep consistent with host. So the same as item 3.
3686 * 3. EPT without VT-d: always map as WB and set IGMT=1 to keep
3687 * consistent with host MTRR
3690 ret
= MTRR_TYPE_UNCACHABLE
<< VMX_EPT_MT_EPTE_SHIFT
;
3691 else if (vcpu
->kvm
->arch
.iommu_domain
&&
3692 !(vcpu
->kvm
->arch
.iommu_flags
& KVM_IOMMU_CACHE_COHERENCY
))
3693 ret
= kvm_get_guest_memory_type(vcpu
, gfn
) <<
3694 VMX_EPT_MT_EPTE_SHIFT
;
3696 ret
= (MTRR_TYPE_WRBACK
<< VMX_EPT_MT_EPTE_SHIFT
)
3702 static struct kvm_x86_ops vmx_x86_ops
= {
3703 .cpu_has_kvm_support
= cpu_has_kvm_support
,
3704 .disabled_by_bios
= vmx_disabled_by_bios
,
3705 .hardware_setup
= hardware_setup
,
3706 .hardware_unsetup
= hardware_unsetup
,
3707 .check_processor_compatibility
= vmx_check_processor_compat
,
3708 .hardware_enable
= hardware_enable
,
3709 .hardware_disable
= hardware_disable
,
3710 .cpu_has_accelerated_tpr
= report_flexpriority
,
3712 .vcpu_create
= vmx_create_vcpu
,
3713 .vcpu_free
= vmx_free_vcpu
,
3714 .vcpu_reset
= vmx_vcpu_reset
,
3716 .prepare_guest_switch
= vmx_save_host_state
,
3717 .vcpu_load
= vmx_vcpu_load
,
3718 .vcpu_put
= vmx_vcpu_put
,
3720 .set_guest_debug
= set_guest_debug
,
3721 .get_msr
= vmx_get_msr
,
3722 .set_msr
= vmx_set_msr
,
3723 .get_segment_base
= vmx_get_segment_base
,
3724 .get_segment
= vmx_get_segment
,
3725 .set_segment
= vmx_set_segment
,
3726 .get_cpl
= vmx_get_cpl
,
3727 .get_cs_db_l_bits
= vmx_get_cs_db_l_bits
,
3728 .decache_cr4_guest_bits
= vmx_decache_cr4_guest_bits
,
3729 .set_cr0
= vmx_set_cr0
,
3730 .set_cr3
= vmx_set_cr3
,
3731 .set_cr4
= vmx_set_cr4
,
3732 .set_efer
= vmx_set_efer
,
3733 .get_idt
= vmx_get_idt
,
3734 .set_idt
= vmx_set_idt
,
3735 .get_gdt
= vmx_get_gdt
,
3736 .set_gdt
= vmx_set_gdt
,
3737 .cache_reg
= vmx_cache_reg
,
3738 .get_rflags
= vmx_get_rflags
,
3739 .set_rflags
= vmx_set_rflags
,
3741 .tlb_flush
= vmx_flush_tlb
,
3743 .run
= vmx_vcpu_run
,
3744 .handle_exit
= vmx_handle_exit
,
3745 .skip_emulated_instruction
= skip_emulated_instruction
,
3746 .set_interrupt_shadow
= vmx_set_interrupt_shadow
,
3747 .get_interrupt_shadow
= vmx_get_interrupt_shadow
,
3748 .patch_hypercall
= vmx_patch_hypercall
,
3749 .set_irq
= vmx_inject_irq
,
3750 .set_nmi
= vmx_inject_nmi
,
3751 .queue_exception
= vmx_queue_exception
,
3752 .interrupt_allowed
= vmx_interrupt_allowed
,
3753 .nmi_allowed
= vmx_nmi_allowed
,
3754 .enable_nmi_window
= enable_nmi_window
,
3755 .enable_irq_window
= enable_irq_window
,
3756 .update_cr8_intercept
= update_cr8_intercept
,
3758 .set_tss_addr
= vmx_set_tss_addr
,
3759 .get_tdp_level
= get_ept_level
,
3760 .get_mt_mask
= vmx_get_mt_mask
,
3763 static int __init
vmx_init(void)
3767 vmx_io_bitmap_a
= (unsigned long *)__get_free_page(GFP_KERNEL
);
3768 if (!vmx_io_bitmap_a
)
3771 vmx_io_bitmap_b
= (unsigned long *)__get_free_page(GFP_KERNEL
);
3772 if (!vmx_io_bitmap_b
) {
3777 vmx_msr_bitmap_legacy
= (unsigned long *)__get_free_page(GFP_KERNEL
);
3778 if (!vmx_msr_bitmap_legacy
) {
3783 vmx_msr_bitmap_longmode
= (unsigned long *)__get_free_page(GFP_KERNEL
);
3784 if (!vmx_msr_bitmap_longmode
) {
3790 * Allow direct access to the PC debug port (it is often used for I/O
3791 * delays, but the vmexits simply slow things down).
3793 memset(vmx_io_bitmap_a
, 0xff, PAGE_SIZE
);
3794 clear_bit(0x80, vmx_io_bitmap_a
);
3796 memset(vmx_io_bitmap_b
, 0xff, PAGE_SIZE
);
3798 memset(vmx_msr_bitmap_legacy
, 0xff, PAGE_SIZE
);
3799 memset(vmx_msr_bitmap_longmode
, 0xff, PAGE_SIZE
);
3801 set_bit(0, vmx_vpid_bitmap
); /* 0 is reserved for host */
3803 r
= kvm_init(&vmx_x86_ops
, sizeof(struct vcpu_vmx
), THIS_MODULE
);
3807 vmx_disable_intercept_for_msr(MSR_FS_BASE
, false);
3808 vmx_disable_intercept_for_msr(MSR_GS_BASE
, false);
3809 vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE
, true);
3810 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS
, false);
3811 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP
, false);
3812 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP
, false);
3815 bypass_guest_pf
= 0;
3816 kvm_mmu_set_base_ptes(VMX_EPT_READABLE_MASK
|
3817 VMX_EPT_WRITABLE_MASK
);
3818 kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
3819 VMX_EPT_EXECUTABLE_MASK
);
3824 if (bypass_guest_pf
)
3825 kvm_mmu_set_nonpresent_ptes(~0xffeull
, 0ull);
3832 free_page((unsigned long)vmx_msr_bitmap_longmode
);
3834 free_page((unsigned long)vmx_msr_bitmap_legacy
);
3836 free_page((unsigned long)vmx_io_bitmap_b
);
3838 free_page((unsigned long)vmx_io_bitmap_a
);
3842 static void __exit
vmx_exit(void)
3844 free_page((unsigned long)vmx_msr_bitmap_legacy
);
3845 free_page((unsigned long)vmx_msr_bitmap_longmode
);
3846 free_page((unsigned long)vmx_io_bitmap_b
);
3847 free_page((unsigned long)vmx_io_bitmap_a
);
3852 module_init(vmx_init
)
3853 module_exit(vmx_exit
)