2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_types.h"
24 #include "xfs_trans.h"
28 #include "xfs_dmapi.h"
29 #include "xfs_mount.h"
30 #include "xfs_bmap_btree.h"
31 #include "xfs_alloc_btree.h"
32 #include "xfs_ialloc_btree.h"
33 #include "xfs_btree.h"
34 #include "xfs_dir2_sf.h"
35 #include "xfs_attr_sf.h"
36 #include "xfs_inode.h"
37 #include "xfs_dinode.h"
38 #include "xfs_error.h"
39 #include "xfs_mru_cache.h"
40 #include "xfs_filestream.h"
41 #include "xfs_vnodeops.h"
42 #include "xfs_utils.h"
43 #include "xfs_buf_item.h"
44 #include "xfs_inode_item.h"
46 #include "xfs_quota.h"
48 #include <linux/kthread.h>
49 #include <linux/freezer.h>
55 struct xfs_perag
*pag
,
56 uint32_t *first_index
,
63 * use a gang lookup to find the next inode in the tree
64 * as the tree is sparse and a gang lookup walks to find
65 * the number of objects requested.
67 read_lock(&pag
->pag_ici_lock
);
68 if (tag
== XFS_ICI_NO_TAG
) {
69 nr_found
= radix_tree_gang_lookup(&pag
->pag_ici_root
,
70 (void **)&ip
, *first_index
, 1);
72 nr_found
= radix_tree_gang_lookup_tag(&pag
->pag_ici_root
,
73 (void **)&ip
, *first_index
, 1, tag
);
79 * Update the index for the next lookup. Catch overflows
80 * into the next AG range which can occur if we have inodes
81 * in the last block of the AG and we are currently
82 * pointing to the last inode.
84 *first_index
= XFS_INO_TO_AGINO(mp
, ip
->i_ino
+ 1);
85 if (*first_index
< XFS_INO_TO_AGINO(mp
, ip
->i_ino
))
91 read_unlock(&pag
->pag_ici_lock
);
99 int (*execute
)(struct xfs_inode
*ip
,
100 struct xfs_perag
*pag
, int flags
),
104 struct xfs_perag
*pag
= &mp
->m_perag
[ag
];
105 uint32_t first_index
;
116 ip
= xfs_inode_ag_lookup(mp
, pag
, &first_index
, tag
);
120 error
= execute(ip
, pag
, flags
);
121 if (error
== EAGAIN
) {
128 * bail out if the filesystem is corrupted.
130 if (error
== EFSCORRUPTED
)
140 xfs_put_perag(mp
, pag
);
145 xfs_inode_ag_iterator(
146 struct xfs_mount
*mp
,
147 int (*execute
)(struct xfs_inode
*ip
,
148 struct xfs_perag
*pag
, int flags
),
156 for (ag
= 0; ag
< mp
->m_sb
.sb_agcount
; ag
++) {
157 if (!mp
->m_perag
[ag
].pag_ici_init
)
159 error
= xfs_inode_ag_walk(mp
, ag
, execute
, flags
, tag
);
162 if (error
== EFSCORRUPTED
)
166 return XFS_ERROR(last_error
);
169 /* must be called with pag_ici_lock held and releases it */
171 xfs_sync_inode_valid(
172 struct xfs_inode
*ip
,
173 struct xfs_perag
*pag
)
175 struct inode
*inode
= VFS_I(ip
);
177 /* nothing to sync during shutdown */
178 if (XFS_FORCED_SHUTDOWN(ip
->i_mount
)) {
179 read_unlock(&pag
->pag_ici_lock
);
184 * If we can't get a reference on the inode, it must be in reclaim.
185 * Leave it for the reclaim code to flush. Also avoid inodes that
186 * haven't been fully initialised.
189 read_unlock(&pag
->pag_ici_lock
);
192 read_unlock(&pag
->pag_ici_lock
);
194 if (is_bad_inode(inode
) || xfs_iflags_test(ip
, XFS_INEW
)) {
204 struct xfs_inode
*ip
,
205 struct xfs_perag
*pag
,
208 struct inode
*inode
= VFS_I(ip
);
209 struct address_space
*mapping
= inode
->i_mapping
;
212 error
= xfs_sync_inode_valid(ip
, pag
);
216 if (!mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
))
219 if (!xfs_ilock_nowait(ip
, XFS_IOLOCK_SHARED
)) {
220 if (flags
& SYNC_TRYLOCK
)
222 xfs_ilock(ip
, XFS_IOLOCK_SHARED
);
225 error
= xfs_flush_pages(ip
, 0, -1, (flags
& SYNC_WAIT
) ?
226 0 : XFS_B_ASYNC
, FI_NONE
);
227 xfs_iunlock(ip
, XFS_IOLOCK_SHARED
);
230 if (flags
& SYNC_WAIT
)
238 struct xfs_inode
*ip
,
239 struct xfs_perag
*pag
,
244 error
= xfs_sync_inode_valid(ip
, pag
);
248 xfs_ilock(ip
, XFS_ILOCK_SHARED
);
249 if (xfs_inode_clean(ip
))
251 if (!xfs_iflock_nowait(ip
)) {
252 if (!(flags
& SYNC_WAIT
))
257 if (xfs_inode_clean(ip
)) {
262 error
= xfs_iflush(ip
, (flags
& SYNC_WAIT
) ?
263 XFS_IFLUSH_SYNC
: XFS_IFLUSH_DELWRI
);
266 xfs_iunlock(ip
, XFS_ILOCK_SHARED
);
272 * Write out pagecache data for the whole filesystem.
276 struct xfs_mount
*mp
,
281 ASSERT((flags
& ~(SYNC_TRYLOCK
|SYNC_WAIT
)) == 0);
283 error
= xfs_inode_ag_iterator(mp
, xfs_sync_inode_data
, flags
,
286 return XFS_ERROR(error
);
289 (flags
& SYNC_WAIT
) ?
290 XFS_LOG_FORCE
| XFS_LOG_SYNC
:
296 * Write out inode metadata (attributes) for the whole filesystem.
300 struct xfs_mount
*mp
,
303 ASSERT((flags
& ~SYNC_WAIT
) == 0);
305 return xfs_inode_ag_iterator(mp
, xfs_sync_inode_attr
, flags
,
310 xfs_commit_dummy_trans(
311 struct xfs_mount
*mp
,
314 struct xfs_inode
*ip
= mp
->m_rootip
;
315 struct xfs_trans
*tp
;
319 * Put a dummy transaction in the log to tell recovery
320 * that all others are OK.
322 tp
= xfs_trans_alloc(mp
, XFS_TRANS_DUMMY1
);
323 error
= xfs_trans_reserve(tp
, 0, XFS_ICHANGE_LOG_RES(mp
), 0, 0, 0);
325 xfs_trans_cancel(tp
, 0);
329 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
331 xfs_trans_ijoin(tp
, ip
, XFS_ILOCK_EXCL
);
332 xfs_trans_ihold(tp
, ip
);
333 xfs_trans_log_inode(tp
, ip
, XFS_ILOG_CORE
);
334 /* XXX(hch): ignoring the error here.. */
335 error
= xfs_trans_commit(tp
, 0);
337 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
339 xfs_log_force(mp
, 0, log_flags
);
345 struct xfs_mount
*mp
,
349 struct xfs_buf_log_item
*bip
;
353 * If this is xfssyncd() then only sync the superblock if we can
354 * lock it without sleeping and it is not pinned.
356 if (flags
& SYNC_TRYLOCK
) {
357 ASSERT(!(flags
& SYNC_WAIT
));
359 bp
= xfs_getsb(mp
, XFS_BUF_TRYLOCK
);
363 bip
= XFS_BUF_FSPRIVATE(bp
, struct xfs_buf_log_item
*);
364 if (!bip
|| !xfs_buf_item_dirty(bip
) || XFS_BUF_ISPINNED(bp
))
367 bp
= xfs_getsb(mp
, 0);
370 * If the buffer is pinned then push on the log so we won't
371 * get stuck waiting in the write for someone, maybe
372 * ourselves, to flush the log.
374 * Even though we just pushed the log above, we did not have
375 * the superblock buffer locked at that point so it can
376 * become pinned in between there and here.
378 if (XFS_BUF_ISPINNED(bp
))
379 xfs_log_force(mp
, 0, XFS_LOG_FORCE
);
383 if (flags
& SYNC_WAIT
)
388 return xfs_bwrite(mp
, bp
);
397 * When remounting a filesystem read-only or freezing the filesystem, we have
398 * two phases to execute. This first phase is syncing the data before we
399 * quiesce the filesystem, and the second is flushing all the inodes out after
400 * we've waited for all the transactions created by the first phase to
401 * complete. The second phase ensures that the inodes are written to their
402 * location on disk rather than just existing in transactions in the log. This
403 * means after a quiesce there is no log replay required to write the inodes to
404 * disk (this is the main difference between a sync and a quiesce).
407 * First stage of freeze - no writers will make progress now we are here,
408 * so we flush delwri and delalloc buffers here, then wait for all I/O to
409 * complete. Data is frozen at that point. Metadata is not frozen,
410 * transactions can still occur here so don't bother flushing the buftarg
411 * because it'll just get dirty again.
415 struct xfs_mount
*mp
)
419 /* push non-blocking */
420 xfs_sync_data(mp
, 0);
421 xfs_qm_sync(mp
, SYNC_TRYLOCK
);
422 xfs_filestream_flush(mp
);
425 xfs_sync_data(mp
, SYNC_WAIT
);
426 xfs_qm_sync(mp
, SYNC_WAIT
);
428 /* write superblock and hoover up shutdown errors */
429 error
= xfs_sync_fsdata(mp
, 0);
431 /* flush data-only devices */
432 if (mp
->m_rtdev_targp
)
433 XFS_bflush(mp
->m_rtdev_targp
);
440 struct xfs_mount
*mp
)
442 int count
= 0, pincount
;
444 xfs_flush_buftarg(mp
->m_ddev_targp
, 0);
445 xfs_reclaim_inodes(mp
, XFS_IFLUSH_DELWRI_ELSE_ASYNC
);
448 * This loop must run at least twice. The first instance of the loop
449 * will flush most meta data but that will generate more meta data
450 * (typically directory updates). Which then must be flushed and
451 * logged before we can write the unmount record.
454 xfs_sync_attr(mp
, SYNC_WAIT
);
455 pincount
= xfs_flush_buftarg(mp
->m_ddev_targp
, 1);
464 * Second stage of a quiesce. The data is already synced, now we have to take
465 * care of the metadata. New transactions are already blocked, so we need to
466 * wait for any remaining transactions to drain out before proceding.
470 struct xfs_mount
*mp
)
474 /* wait for all modifications to complete */
475 while (atomic_read(&mp
->m_active_trans
) > 0)
478 /* flush inodes and push all remaining buffers out to disk */
482 * Just warn here till VFS can correctly support
483 * read-only remount without racing.
485 WARN_ON(atomic_read(&mp
->m_active_trans
) != 0);
487 /* Push the superblock and write an unmount record */
488 error
= xfs_log_sbcount(mp
, 1);
490 xfs_fs_cmn_err(CE_WARN
, mp
,
491 "xfs_attr_quiesce: failed to log sb changes. "
492 "Frozen image may not be consistent.");
493 xfs_log_unmount_write(mp
);
494 xfs_unmountfs_writesb(mp
);
498 * Enqueue a work item to be picked up by the vfs xfssyncd thread.
499 * Doing this has two advantages:
500 * - It saves on stack space, which is tight in certain situations
501 * - It can be used (with care) as a mechanism to avoid deadlocks.
502 * Flushing while allocating in a full filesystem requires both.
505 xfs_syncd_queue_work(
506 struct xfs_mount
*mp
,
508 void (*syncer
)(struct xfs_mount
*, void *),
509 struct completion
*completion
)
511 struct xfs_sync_work
*work
;
513 work
= kmem_alloc(sizeof(struct xfs_sync_work
), KM_SLEEP
);
514 INIT_LIST_HEAD(&work
->w_list
);
515 work
->w_syncer
= syncer
;
518 work
->w_completion
= completion
;
519 spin_lock(&mp
->m_sync_lock
);
520 list_add_tail(&work
->w_list
, &mp
->m_sync_list
);
521 spin_unlock(&mp
->m_sync_lock
);
522 wake_up_process(mp
->m_sync_task
);
526 * Flush delayed allocate data, attempting to free up reserved space
527 * from existing allocations. At this point a new allocation attempt
528 * has failed with ENOSPC and we are in the process of scratching our
529 * heads, looking about for more room...
532 xfs_flush_inodes_work(
533 struct xfs_mount
*mp
,
536 struct inode
*inode
= arg
;
537 xfs_sync_data(mp
, SYNC_TRYLOCK
);
538 xfs_sync_data(mp
, SYNC_TRYLOCK
| SYNC_WAIT
);
546 struct inode
*inode
= VFS_I(ip
);
547 DECLARE_COMPLETION_ONSTACK(completion
);
550 xfs_syncd_queue_work(ip
->i_mount
, inode
, xfs_flush_inodes_work
, &completion
);
551 wait_for_completion(&completion
);
552 xfs_log_force(ip
->i_mount
, (xfs_lsn_t
)0, XFS_LOG_FORCE
|XFS_LOG_SYNC
);
556 * Every sync period we need to unpin all items, reclaim inodes, sync
557 * quota and write out the superblock. We might need to cover the log
558 * to indicate it is idle.
562 struct xfs_mount
*mp
,
567 if (!(mp
->m_flags
& XFS_MOUNT_RDONLY
)) {
568 xfs_log_force(mp
, (xfs_lsn_t
)0, XFS_LOG_FORCE
);
569 xfs_reclaim_inodes(mp
, XFS_IFLUSH_DELWRI_ELSE_ASYNC
);
570 /* dgc: errors ignored here */
571 error
= xfs_qm_sync(mp
, SYNC_TRYLOCK
);
572 error
= xfs_sync_fsdata(mp
, SYNC_TRYLOCK
);
573 if (xfs_log_need_covered(mp
))
574 error
= xfs_commit_dummy_trans(mp
, XFS_LOG_FORCE
);
577 wake_up(&mp
->m_wait_single_sync_task
);
584 struct xfs_mount
*mp
= arg
;
586 xfs_sync_work_t
*work
, *n
;
590 timeleft
= xfs_syncd_centisecs
* msecs_to_jiffies(10);
592 timeleft
= schedule_timeout_interruptible(timeleft
);
595 if (kthread_should_stop() && list_empty(&mp
->m_sync_list
))
598 spin_lock(&mp
->m_sync_lock
);
600 * We can get woken by laptop mode, to do a sync -
601 * that's the (only!) case where the list would be
602 * empty with time remaining.
604 if (!timeleft
|| list_empty(&mp
->m_sync_list
)) {
606 timeleft
= xfs_syncd_centisecs
*
607 msecs_to_jiffies(10);
608 INIT_LIST_HEAD(&mp
->m_sync_work
.w_list
);
609 list_add_tail(&mp
->m_sync_work
.w_list
,
612 list_for_each_entry_safe(work
, n
, &mp
->m_sync_list
, w_list
)
613 list_move(&work
->w_list
, &tmp
);
614 spin_unlock(&mp
->m_sync_lock
);
616 list_for_each_entry_safe(work
, n
, &tmp
, w_list
) {
617 (*work
->w_syncer
)(mp
, work
->w_data
);
618 list_del(&work
->w_list
);
619 if (work
== &mp
->m_sync_work
)
621 if (work
->w_completion
)
622 complete(work
->w_completion
);
632 struct xfs_mount
*mp
)
634 mp
->m_sync_work
.w_syncer
= xfs_sync_worker
;
635 mp
->m_sync_work
.w_mount
= mp
;
636 mp
->m_sync_work
.w_completion
= NULL
;
637 mp
->m_sync_task
= kthread_run(xfssyncd
, mp
, "xfssyncd");
638 if (IS_ERR(mp
->m_sync_task
))
639 return -PTR_ERR(mp
->m_sync_task
);
645 struct xfs_mount
*mp
)
647 kthread_stop(mp
->m_sync_task
);
656 xfs_perag_t
*pag
= xfs_get_perag(ip
->i_mount
, ip
->i_ino
);
658 /* The hash lock here protects a thread in xfs_iget_core from
659 * racing with us on linking the inode back with a vnode.
660 * Once we have the XFS_IRECLAIM flag set it will not touch
663 write_lock(&pag
->pag_ici_lock
);
664 spin_lock(&ip
->i_flags_lock
);
665 if (__xfs_iflags_test(ip
, XFS_IRECLAIM
) ||
666 !__xfs_iflags_test(ip
, XFS_IRECLAIMABLE
)) {
667 spin_unlock(&ip
->i_flags_lock
);
668 write_unlock(&pag
->pag_ici_lock
);
671 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
675 __xfs_iflags_set(ip
, XFS_IRECLAIM
);
676 spin_unlock(&ip
->i_flags_lock
);
677 write_unlock(&pag
->pag_ici_lock
);
678 xfs_put_perag(ip
->i_mount
, pag
);
681 * If the inode is still dirty, then flush it out. If the inode
682 * is not in the AIL, then it will be OK to flush it delwri as
683 * long as xfs_iflush() does not keep any references to the inode.
684 * We leave that decision up to xfs_iflush() since it has the
685 * knowledge of whether it's OK to simply do a delwri flush of
686 * the inode or whether we need to wait until the inode is
687 * pulled from the AIL.
688 * We get the flush lock regardless, though, just to make sure
689 * we don't free it while it is being flushed.
692 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
697 * In the case of a forced shutdown we rely on xfs_iflush() to
698 * wait for the inode to be unpinned before returning an error.
700 if (!is_bad_inode(VFS_I(ip
)) && xfs_iflush(ip
, sync_mode
) == 0) {
701 /* synchronize with xfs_iflush_done */
706 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
712 * We set the inode flag atomically with the radix tree tag.
713 * Once we get tag lookups on the radix tree, this inode flag
717 xfs_inode_set_reclaim_tag(
720 xfs_mount_t
*mp
= ip
->i_mount
;
721 xfs_perag_t
*pag
= xfs_get_perag(mp
, ip
->i_ino
);
723 read_lock(&pag
->pag_ici_lock
);
724 spin_lock(&ip
->i_flags_lock
);
725 radix_tree_tag_set(&pag
->pag_ici_root
,
726 XFS_INO_TO_AGINO(mp
, ip
->i_ino
), XFS_ICI_RECLAIM_TAG
);
727 __xfs_iflags_set(ip
, XFS_IRECLAIMABLE
);
728 spin_unlock(&ip
->i_flags_lock
);
729 read_unlock(&pag
->pag_ici_lock
);
730 xfs_put_perag(mp
, pag
);
734 __xfs_inode_clear_reclaim_tag(
739 radix_tree_tag_clear(&pag
->pag_ici_root
,
740 XFS_INO_TO_AGINO(mp
, ip
->i_ino
), XFS_ICI_RECLAIM_TAG
);
744 xfs_inode_clear_reclaim_tag(
747 xfs_mount_t
*mp
= ip
->i_mount
;
748 xfs_perag_t
*pag
= xfs_get_perag(mp
, ip
->i_ino
);
750 read_lock(&pag
->pag_ici_lock
);
751 spin_lock(&ip
->i_flags_lock
);
752 __xfs_inode_clear_reclaim_tag(mp
, pag
, ip
);
753 spin_unlock(&ip
->i_flags_lock
);
754 read_unlock(&pag
->pag_ici_lock
);
755 xfs_put_perag(mp
, pag
);
759 xfs_reclaim_inode_now(
760 struct xfs_inode
*ip
,
761 struct xfs_perag
*pag
,
764 /* ignore if already under reclaim */
765 if (xfs_iflags_test(ip
, XFS_IRECLAIM
)) {
766 read_unlock(&pag
->pag_ici_lock
);
769 read_unlock(&pag
->pag_ici_lock
);
771 return xfs_reclaim_inode(ip
, 0, flags
);
779 return xfs_inode_ag_iterator(mp
, xfs_reclaim_inode_now
, mode
,
780 XFS_ICI_RECLAIM_TAG
);