2 #include <asm/pgalloc.h>
3 #include <asm/pgtable.h>
5 #include <asm/fixmap.h>
7 #define PGALLOC_GFP GFP_KERNEL | __GFP_NOTRACK | __GFP_REPEAT | __GFP_ZERO
9 pte_t
*pte_alloc_one_kernel(struct mm_struct
*mm
, unsigned long address
)
11 return (pte_t
*)__get_free_page(PGALLOC_GFP
);
14 pgtable_t
pte_alloc_one(struct mm_struct
*mm
, unsigned long address
)
19 pte
= alloc_pages(PGALLOC_GFP
| __GFP_HIGHMEM
, 0);
21 pte
= alloc_pages(PGALLOC_GFP
, 0);
24 pgtable_page_ctor(pte
);
28 void ___pte_free_tlb(struct mmu_gather
*tlb
, struct page
*pte
)
30 pgtable_page_dtor(pte
);
31 paravirt_release_pte(page_to_pfn(pte
));
32 tlb_remove_page(tlb
, pte
);
35 #if PAGETABLE_LEVELS > 2
36 void ___pmd_free_tlb(struct mmu_gather
*tlb
, pmd_t
*pmd
)
38 paravirt_release_pmd(__pa(pmd
) >> PAGE_SHIFT
);
39 tlb_remove_page(tlb
, virt_to_page(pmd
));
42 #if PAGETABLE_LEVELS > 3
43 void ___pud_free_tlb(struct mmu_gather
*tlb
, pud_t
*pud
)
45 paravirt_release_pud(__pa(pud
) >> PAGE_SHIFT
);
46 tlb_remove_page(tlb
, virt_to_page(pud
));
48 #endif /* PAGETABLE_LEVELS > 3 */
49 #endif /* PAGETABLE_LEVELS > 2 */
51 static inline void pgd_list_add(pgd_t
*pgd
)
53 struct page
*page
= virt_to_page(pgd
);
55 list_add(&page
->lru
, &pgd_list
);
58 static inline void pgd_list_del(pgd_t
*pgd
)
60 struct page
*page
= virt_to_page(pgd
);
65 #define UNSHARED_PTRS_PER_PGD \
66 (SHARED_KERNEL_PMD ? KERNEL_PGD_BOUNDARY : PTRS_PER_PGD)
68 static void pgd_ctor(pgd_t
*pgd
)
70 /* If the pgd points to a shared pagetable level (either the
71 ptes in non-PAE, or shared PMD in PAE), then just copy the
72 references from swapper_pg_dir. */
73 if (PAGETABLE_LEVELS
== 2 ||
74 (PAGETABLE_LEVELS
== 3 && SHARED_KERNEL_PMD
) ||
75 PAGETABLE_LEVELS
== 4) {
76 clone_pgd_range(pgd
+ KERNEL_PGD_BOUNDARY
,
77 swapper_pg_dir
+ KERNEL_PGD_BOUNDARY
,
79 paravirt_alloc_pmd_clone(__pa(pgd
) >> PAGE_SHIFT
,
80 __pa(swapper_pg_dir
) >> PAGE_SHIFT
,
85 /* list required to sync kernel mapping updates */
86 if (!SHARED_KERNEL_PMD
)
90 static void pgd_dtor(pgd_t
*pgd
)
92 unsigned long flags
; /* can be called from interrupt context */
94 if (SHARED_KERNEL_PMD
)
97 spin_lock_irqsave(&pgd_lock
, flags
);
99 spin_unlock_irqrestore(&pgd_lock
, flags
);
103 * List of all pgd's needed for non-PAE so it can invalidate entries
104 * in both cached and uncached pgd's; not needed for PAE since the
105 * kernel pmd is shared. If PAE were not to share the pmd a similar
106 * tactic would be needed. This is essentially codepath-based locking
107 * against pageattr.c; it is the unique case in which a valid change
108 * of kernel pagetables can't be lazily synchronized by vmalloc faults.
109 * vmalloc faults work because attached pagetables are never freed.
113 #ifdef CONFIG_X86_PAE
115 * In PAE mode, we need to do a cr3 reload (=tlb flush) when
116 * updating the top-level pagetable entries to guarantee the
117 * processor notices the update. Since this is expensive, and
118 * all 4 top-level entries are used almost immediately in a
119 * new process's life, we just pre-populate them here.
121 * Also, if we're in a paravirt environment where the kernel pmd is
122 * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate
123 * and initialize the kernel pmds here.
125 #define PREALLOCATED_PMDS UNSHARED_PTRS_PER_PGD
127 void pud_populate(struct mm_struct
*mm
, pud_t
*pudp
, pmd_t
*pmd
)
129 paravirt_alloc_pmd(mm
, __pa(pmd
) >> PAGE_SHIFT
);
131 /* Note: almost everything apart from _PAGE_PRESENT is
132 reserved at the pmd (PDPT) level. */
133 set_pud(pudp
, __pud(__pa(pmd
) | _PAGE_PRESENT
));
136 * According to Intel App note "TLBs, Paging-Structure Caches,
137 * and Their Invalidation", April 2007, document 317080-001,
138 * section 8.1: in PAE mode we explicitly have to flush the
139 * TLB via cr3 if the top-level pgd is changed...
141 if (mm
== current
->active_mm
)
142 write_cr3(read_cr3());
144 #else /* !CONFIG_X86_PAE */
146 /* No need to prepopulate any pagetable entries in non-PAE modes. */
147 #define PREALLOCATED_PMDS 0
149 #endif /* CONFIG_X86_PAE */
151 static void free_pmds(pmd_t
*pmds
[])
155 for(i
= 0; i
< PREALLOCATED_PMDS
; i
++)
157 free_page((unsigned long)pmds
[i
]);
160 static int preallocate_pmds(pmd_t
*pmds
[])
165 for(i
= 0; i
< PREALLOCATED_PMDS
; i
++) {
166 pmd_t
*pmd
= (pmd_t
*)__get_free_page(PGALLOC_GFP
);
181 * Mop up any pmd pages which may still be attached to the pgd.
182 * Normally they will be freed by munmap/exit_mmap, but any pmd we
183 * preallocate which never got a corresponding vma will need to be
186 static void pgd_mop_up_pmds(struct mm_struct
*mm
, pgd_t
*pgdp
)
190 for(i
= 0; i
< PREALLOCATED_PMDS
; i
++) {
193 if (pgd_val(pgd
) != 0) {
194 pmd_t
*pmd
= (pmd_t
*)pgd_page_vaddr(pgd
);
196 pgdp
[i
] = native_make_pgd(0);
198 paravirt_release_pmd(pgd_val(pgd
) >> PAGE_SHIFT
);
204 static void pgd_prepopulate_pmd(struct mm_struct
*mm
, pgd_t
*pgd
, pmd_t
*pmds
[])
210 if (PREALLOCATED_PMDS
== 0) /* Work around gcc-3.4.x bug */
213 pud
= pud_offset(pgd
, 0);
215 for (addr
= i
= 0; i
< PREALLOCATED_PMDS
;
216 i
++, pud
++, addr
+= PUD_SIZE
) {
217 pmd_t
*pmd
= pmds
[i
];
219 if (i
>= KERNEL_PGD_BOUNDARY
)
220 memcpy(pmd
, (pmd_t
*)pgd_page_vaddr(swapper_pg_dir
[i
]),
221 sizeof(pmd_t
) * PTRS_PER_PMD
);
223 pud_populate(mm
, pud
, pmd
);
227 pgd_t
*pgd_alloc(struct mm_struct
*mm
)
230 pmd_t
*pmds
[PREALLOCATED_PMDS
];
233 pgd
= (pgd_t
*)__get_free_page(PGALLOC_GFP
);
240 if (preallocate_pmds(pmds
) != 0)
243 if (paravirt_pgd_alloc(mm
) != 0)
247 * Make sure that pre-populating the pmds is atomic with
248 * respect to anything walking the pgd_list, so that they
249 * never see a partially populated pgd.
251 spin_lock_irqsave(&pgd_lock
, flags
);
254 pgd_prepopulate_pmd(mm
, pgd
, pmds
);
256 spin_unlock_irqrestore(&pgd_lock
, flags
);
263 free_page((unsigned long)pgd
);
268 void pgd_free(struct mm_struct
*mm
, pgd_t
*pgd
)
270 pgd_mop_up_pmds(mm
, pgd
);
272 paravirt_pgd_free(mm
, pgd
);
273 free_page((unsigned long)pgd
);
276 int ptep_set_access_flags(struct vm_area_struct
*vma
,
277 unsigned long address
, pte_t
*ptep
,
278 pte_t entry
, int dirty
)
280 int changed
= !pte_same(*ptep
, entry
);
282 if (changed
&& dirty
) {
284 pte_update_defer(vma
->vm_mm
, address
, ptep
);
285 flush_tlb_page(vma
, address
);
291 int ptep_test_and_clear_young(struct vm_area_struct
*vma
,
292 unsigned long addr
, pte_t
*ptep
)
296 if (pte_young(*ptep
))
297 ret
= test_and_clear_bit(_PAGE_BIT_ACCESSED
,
298 (unsigned long *) &ptep
->pte
);
301 pte_update(vma
->vm_mm
, addr
, ptep
);
306 int ptep_clear_flush_young(struct vm_area_struct
*vma
,
307 unsigned long address
, pte_t
*ptep
)
311 young
= ptep_test_and_clear_young(vma
, address
, ptep
);
313 flush_tlb_page(vma
, address
);
319 * reserve_top_address - reserves a hole in the top of kernel address space
320 * @reserve - size of hole to reserve
322 * Can be used to relocate the fixmap area and poke a hole in the top
323 * of kernel address space to make room for a hypervisor.
325 void __init
reserve_top_address(unsigned long reserve
)
328 BUG_ON(fixmaps_set
> 0);
329 printk(KERN_INFO
"Reserving virtual address space above 0x%08x\n",
331 __FIXADDR_TOP
= -reserve
- PAGE_SIZE
;
332 __VMALLOC_RESERVE
+= reserve
;
338 void __native_set_fixmap(enum fixed_addresses idx
, pte_t pte
)
340 unsigned long address
= __fix_to_virt(idx
);
342 if (idx
>= __end_of_fixed_addresses
) {
346 set_pte_vaddr(address
, pte
);
350 void native_set_fixmap(enum fixed_addresses idx
, phys_addr_t phys
,
353 __native_set_fixmap(idx
, pfn_pte(phys
>> PAGE_SHIFT
, flags
));