mb/system76/cml-u/dt: Make use of chipset devicetree
[coreboot.git] / src / soc / intel / common / block / cpu / smmrelocate.c
blob4df90fd7cef54b53f6070526b71919d60f997500
1 /* SPDX-License-Identifier: GPL-2.0-only */
3 #include <console/console.h>
4 #include <cpu/intel/common/common.h>
5 #include <cpu/intel/em64t101_save_state.h>
6 #include <cpu/intel/smm_reloc.h>
7 #include <cpu/x86/mp.h>
8 #include <cpu/x86/msr.h>
9 #include <cpu/x86/mtrr.h>
10 #include <cpu/x86/smm.h>
11 #include <device/device.h>
12 #include <device/pci.h>
13 #include <device/pci_ops.h>
14 #include <smp/node.h>
15 #include <soc/cpu.h>
16 #include <soc/msr.h>
17 #include <soc/pci_devs.h>
18 #include <soc/soc_chip.h>
19 #include <string.h>
20 #include <types.h>
22 static void update_save_state(int cpu, uintptr_t curr_smbase,
23 uintptr_t staggered_smbase,
24 struct smm_relocation_params *relo_params)
26 u32 smbase;
27 u32 iedbase;
30 * The relocated handler runs with all CPUs concurrently. Therefore
31 * stagger the entry points adjusting SMBASE downwards by save state
32 * size * CPU num.
34 smbase = staggered_smbase;
35 iedbase = relo_params->ied_base;
37 printk(BIOS_DEBUG, "New SMBASE=0x%08x IEDBASE=0x%08x\n",
38 smbase, iedbase);
41 * All threads need to set IEDBASE and SMBASE to the relocated
42 * handler region. However, the save state location depends on the
43 * smm_save_state_in_msrs field in the relocation parameters. If
44 * smm_save_state_in_msrs is non-zero then the CPUs are relocating
45 * the SMM handler in parallel, and each CPUs save state area is
46 * located in their respective MSR space. If smm_save_state_in_msrs
47 * is zero then the SMM relocation is happening serially so the
48 * save state is at the same default location for all CPUs.
50 if (relo_params->smm_save_state_in_msrs) {
51 msr_t smbase_msr;
52 msr_t iedbase_msr;
54 smbase_msr.lo = smbase;
55 smbase_msr.hi = 0;
58 * According the BWG the IEDBASE MSR is in bits 63:32. It's
59 * not clear why it differs from the SMBASE MSR.
61 iedbase_msr.lo = 0;
62 iedbase_msr.hi = iedbase;
64 wrmsr(SMBASE_MSR, smbase_msr);
65 wrmsr(IEDBASE_MSR, iedbase_msr);
66 } else {
67 em64t101_smm_state_save_area_t *save_state;
69 save_state = (void *)(curr_smbase + SMM_DEFAULT_SIZE -
70 sizeof(*save_state));
72 save_state->smbase = smbase;
73 save_state->iedbase = iedbase;
77 /* Returns 1 if SMM MSR save state was set. */
78 static int bsp_setup_msr_save_state(struct smm_relocation_params *relo_params)
80 msr_t smm_mca_cap;
82 smm_mca_cap = rdmsr(SMM_MCA_CAP_MSR);
83 if (smm_mca_cap.hi & SMM_CPU_SVRSTR_MASK) {
84 msr_t smm_feature_control;
86 smm_feature_control = rdmsr(SMM_FEATURE_CONTROL_MSR);
87 smm_feature_control.hi = 0;
88 smm_feature_control.lo |= SMM_CPU_SAVE_EN;
89 wrmsr(SMM_FEATURE_CONTROL_MSR, smm_feature_control);
90 relo_params->smm_save_state_in_msrs = 1;
92 return relo_params->smm_save_state_in_msrs;
96 * The relocation work is actually performed in SMM context, but the code
97 * resides in the ramstage module. This occurs by trampolining from the default
98 * SMRAM entry point to here.
100 void smm_relocation_handler(int cpu, uintptr_t curr_smbase,
101 uintptr_t staggered_smbase)
103 msr_t mtrr_cap;
104 struct smm_relocation_params *relo_params = &smm_reloc_params;
106 printk(BIOS_DEBUG, "In relocation handler: CPU %d\n", cpu);
109 * Determine if the processor supports saving state in MSRs. If so,
110 * enable it before the non-BSPs run so that SMM relocation can occur
111 * in parallel in the non-BSP CPUs.
113 if (cpu == 0) {
115 * If smm_save_state_in_msrs is 1 then that means this is the
116 * 2nd time through the relocation handler for the BSP.
117 * Parallel SMM handler relocation is taking place. However,
118 * it is desired to access other CPUs save state in the real
119 * SMM handler. Therefore, disable the SMM save state in MSRs
120 * feature.
122 if (relo_params->smm_save_state_in_msrs) {
123 msr_t smm_feature_control;
125 smm_feature_control = rdmsr(SMM_FEATURE_CONTROL_MSR);
126 smm_feature_control.lo &= ~SMM_CPU_SAVE_EN;
127 wrmsr(SMM_FEATURE_CONTROL_MSR, smm_feature_control);
128 } else if (bsp_setup_msr_save_state(relo_params))
130 * Just return from relocation handler if MSR save
131 * state is enabled. In that case the BSP will come
132 * back into the relocation handler to setup the new
133 * SMBASE as well disabling SMM save state in MSRs.
135 return;
138 /* Make appropriate changes to the save state map. */
139 update_save_state(cpu, curr_smbase, staggered_smbase, relo_params);
142 * The SMRR MSRs are core-level registers, so if two threads that share
143 * a core try to both set the lock bit (in the same physical register),
144 * a #GP will be raised on the second write to that register (which is
145 * exactly what the lock is supposed to do), therefore secondary threads
146 * should exit here.
148 if (intel_ht_sibling())
149 return;
151 /* Write SMRR MSRs based on indicated support. */
152 mtrr_cap = rdmsr(MTRR_CAP_MSR);
154 /* Set Lock bit if supported */
155 if (mtrr_cap.lo & SMRR_LOCK_SUPPORTED)
156 relo_params->smrr_mask.lo |= SMRR_PHYS_MASK_LOCK;
158 /* Write SMRRs if supported */
159 if (mtrr_cap.lo & SMRR_SUPPORTED)
160 write_smrr(relo_params);
163 static void fill_in_relocation_params(struct smm_relocation_params *params)
165 uintptr_t tseg_base;
166 size_t tseg_size;
167 /* All range registers are aligned to 4KiB */
168 const u32 rmask = ~(4 * KiB - 1);
170 smm_region(&tseg_base, &tseg_size);
172 if (!IS_ALIGNED(tseg_base, tseg_size)) {
173 printk(BIOS_WARNING, "TSEG base not aligned with TSEG size! Not setting SMRR\n");
174 return;
177 smm_subregion(SMM_SUBREGION_CHIPSET, &params->ied_base, &params->ied_size);
179 /* SMRR has 32-bits of valid address aligned to 4KiB. */
180 params->smrr_base.lo = (tseg_base & rmask) | MTRR_TYPE_WRBACK;
181 params->smrr_base.hi = 0;
182 params->smrr_mask.lo = (~(tseg_size - 1) & rmask) | MTRR_PHYS_MASK_VALID;
183 params->smrr_mask.hi = 0;
186 static void setup_ied_area(struct smm_relocation_params *params)
188 char *ied_base;
190 struct ied_header ied = {
191 .signature = "INTEL RSVD",
192 .size = params->ied_size,
193 .reserved = {0},
196 ied_base = (void *)params->ied_base;
198 printk(BIOS_DEBUG, "IED base = 0x%08x\n", (u32)params->ied_base);
199 printk(BIOS_DEBUG, "IED size = 0x%08x\n", (u32)params->ied_size);
201 /* Place IED header at IEDBASE. */
202 memcpy(ied_base, &ied, sizeof(ied));
204 /* Zero out 32KiB at IEDBASE + 1MiB */
205 memset(ied_base + 1 * MiB, 0, 32 * KiB);
208 void smm_info(uintptr_t *perm_smbase, size_t *perm_smsize,
209 size_t *smm_save_state_size)
211 printk(BIOS_DEBUG, "Setting up SMI for CPU\n");
213 fill_in_relocation_params(&smm_reloc_params);
215 smm_subregion(SMM_SUBREGION_HANDLER, perm_smbase, perm_smsize);
217 if (smm_reloc_params.ied_size)
218 setup_ied_area(&smm_reloc_params);
220 *smm_save_state_size = sizeof(em64t101_smm_state_save_area_t);
223 void smm_initialize(void)
225 /* Clear the SMM state in the southbridge. */
226 smm_southbridge_clear_state();
229 * Run the relocation handler for on the BSP to check and set up
230 * parallel SMM relocation.
232 smm_initiate_relocation();
234 if (smm_reloc_params.smm_save_state_in_msrs)
235 printk(BIOS_DEBUG, "Doing parallel SMM relocation.\n");
238 void smm_relocate(void)
241 * If smm_save_state_in_msrs is non-zero then parallel SMM relocation
242 * shall take place. Run the relocation handler a second time on the
243 * BSP to do * the final move. For APs, a relocation handler always
244 * needs to be run.
246 if (smm_reloc_params.smm_save_state_in_msrs)
247 smm_initiate_relocation_parallel();
248 else if (!boot_cpu())
249 smm_initiate_relocation();