1 /* SPDX-License-Identifier: GPL-2.0-only */
4 #include <acpi/acpigen.h>
5 #include <console/console.h>
7 #include <cpu/intel/speedstep.h>
8 #include <cpu/intel/turbo.h>
9 #include <cpu/x86/msr.h>
10 #include <device/device.h>
13 #include "model_206ax.h"
16 #define MWAIT_RES(state, sub_state) \
18 .addrl = (((state) << 4) | (sub_state)), \
19 .space_id = ACPI_ADDRESS_SPACE_FIXED, \
20 .bit_width = ACPI_FFIXEDHW_VENDOR_INTEL, \
21 .bit_offset = ACPI_FFIXEDHW_CLASS_MWAIT, \
22 .access_size = ACPI_FFIXEDHW_FLAG_HW_COORD, \
26 * List of supported C-states in this processor
28 * Latencies are typical worst-case package exit time in uS
29 * taken from the SandyBridge BIOS specification.
31 static acpi_cstate_t cstate_map
[NUM_C_STATES
] = {
36 .resource
= MWAIT_RES(0, 0),
41 .resource
= MWAIT_RES(0, 1),
46 .resource
= MWAIT_RES(1, 0),
51 .resource
= MWAIT_RES(2, 0),
56 .resource
= MWAIT_RES(3, 0),
61 .resource
= MWAIT_RES(3, 1),
65 static const char *const c_state_names
[] = {"C0", "C1", "C1E", "C3", "C6", "C7", "C7S"};
67 static int get_logical_cores_per_package(void)
69 msr_t msr
= rdmsr(MSR_CORE_THREAD_COUNT
);
70 return msr
.lo
& 0xffff;
73 static void print_supported_cstates(void)
75 uint8_t state
, substate
;
77 printk(BIOS_DEBUG
, "Supported C-states: ");
79 for (size_t i
= 0; i
< ARRAY_SIZE(cstate_map
); i
++) {
80 state
= (cstate_map
[i
].resource
.addrl
>> 4) + 1;
81 substate
= cstate_map
[i
].resource
.addrl
& 0xf;
83 /* CPU C0 is always supported */
84 if (i
== 0 || cpu_get_c_substate_support(state
) > substate
)
85 printk(BIOS_DEBUG
, " %s", c_state_names
[i
]);
87 printk(BIOS_DEBUG
, "\n");
91 * Returns the supported C-state or the next lower one that
94 static int get_supported_cstate(int cstate
)
96 uint8_t state
, substate
;
99 assert(cstate
< NUM_C_STATES
);
101 for (i
= cstate
; i
> 0; i
--) {
102 state
= (cstate_map
[i
].resource
.addrl
>> 4) + 1;
103 substate
= cstate_map
[i
].resource
.addrl
& 0xf;
104 if (cpu_get_c_substate_support(state
) > substate
)
109 printk(BIOS_INFO
, "Requested C-state %s not supported, using %s instead\n",
110 c_state_names
[cstate
], c_state_names
[i
]);
115 static void generate_C_state_entries(const struct device
*dev
)
117 struct cpu_intel_model_206ax_config
*conf
= dev
->chip_info
;
119 int acpi_cstates
[3] = { conf
->acpi_c1
, conf
->acpi_c2
, conf
->acpi_c3
};
121 acpi_cstate_t acpi_cstate_map
[ARRAY_SIZE(acpi_cstates
)] = { 0 };
122 /* Count number of active C-states */
125 for (int i
= 0; i
< ARRAY_SIZE(acpi_cstates
); i
++) {
126 /* Remove invalid states */
127 if (acpi_cstates
[i
] >= ARRAY_SIZE(cstate_map
)) {
128 printk(BIOS_ERR
, "Invalid C-state in devicetree: %d\n",
133 /* Skip C0, it's always supported */
134 if (acpi_cstates
[i
] == 0)
137 /* Find supported state. Might downgrade a state. */
138 acpi_cstates
[i
] = get_supported_cstate(acpi_cstates
[i
]);
140 /* Remove duplicate states */
141 for (int j
= i
- 1; j
>= 0; j
--) {
142 if (acpi_cstates
[i
] == acpi_cstates
[j
]) {
149 /* Convert C-state to ACPI C-states */
150 for (int i
= 0; i
< ARRAY_SIZE(acpi_cstates
); i
++) {
151 if (acpi_cstates
[i
] == 0)
153 acpi_cstate_map
[count
] = cstate_map
[acpi_cstates
[i
]];
154 acpi_cstate_map
[count
].ctype
= i
+ 1;
157 printk(BIOS_DEBUG
, "Advertising ACPI C State type C%d as CPU %s\n",
158 i
+ 1, c_state_names
[acpi_cstates
[i
]]);
161 acpigen_write_CST_package(acpi_cstate_map
, count
);
164 static acpi_tstate_t tss_table_fine
[] = {
165 { 100, 1000, 0, 0x00, 0 },
166 { 94, 940, 0, 0x1f, 0 },
167 { 88, 880, 0, 0x1e, 0 },
168 { 82, 820, 0, 0x1d, 0 },
169 { 75, 760, 0, 0x1c, 0 },
170 { 69, 700, 0, 0x1b, 0 },
171 { 63, 640, 0, 0x1a, 0 },
172 { 57, 580, 0, 0x19, 0 },
173 { 50, 520, 0, 0x18, 0 },
174 { 44, 460, 0, 0x17, 0 },
175 { 38, 400, 0, 0x16, 0 },
176 { 32, 340, 0, 0x15, 0 },
177 { 25, 280, 0, 0x14, 0 },
178 { 19, 220, 0, 0x13, 0 },
179 { 13, 160, 0, 0x12, 0 },
182 static acpi_tstate_t tss_table_coarse
[] = {
183 { 100, 1000, 0, 0x00, 0 },
184 { 88, 875, 0, 0x1f, 0 },
185 { 75, 750, 0, 0x1e, 0 },
186 { 63, 625, 0, 0x1d, 0 },
187 { 50, 500, 0, 0x1c, 0 },
188 { 38, 375, 0, 0x1b, 0 },
189 { 25, 250, 0, 0x1a, 0 },
190 { 13, 125, 0, 0x19, 0 },
193 static void generate_T_state_entries(int core
, int cores_per_package
)
195 /* Indicate SW_ALL coordination for T-states */
196 acpigen_write_TSD_package(core
, cores_per_package
, SW_ALL
);
198 /* Indicate FFixedHW so OS will use MSR */
199 acpigen_write_empty_PTC();
201 /* Set a T-state limit that can be modified in NVS */
202 acpigen_write_TPC("\\TLVL");
205 * CPUID.(EAX=6):EAX[5] indicates support
206 * for extended throttle levels.
208 if (cpuid_eax(6) & (1 << 5))
209 acpigen_write_TSS_package(
210 ARRAY_SIZE(tss_table_fine
), tss_table_fine
);
212 acpigen_write_TSS_package(
213 ARRAY_SIZE(tss_table_coarse
), tss_table_coarse
);
216 static int calculate_power(int tdp
, int p1_ratio
, int ratio
)
222 * M = ((1.1 - ((p1_ratio - ratio) * 0.00625)) / 1.1) ^ 2
224 * Power = (ratio / p1_ratio) * m * tdp
227 m
= (110000 - ((p1_ratio
- ratio
) * 625)) / 11;
230 power
= ((ratio
* 100000 / p1_ratio
) / 100);
231 power
*= (m
/ 100) * (tdp
/ 1000);
237 static void generate_P_state_entries(int core
, int cores_per_package
)
239 int ratio_min
, ratio_max
, ratio_turbo
, ratio_step
;
240 int coord_type
, power_max
, power_unit
, num_entries
;
241 int ratio
, power
, clock
, clock_max
;
244 /* Determine P-state coordination type from MISC_PWR_MGMT[0] */
245 msr
= rdmsr(MSR_MISC_PWR_MGMT
);
246 if (msr
.lo
& MISC_PWR_MGMT_EIST_HW_DIS
)
251 /* Get bus ratio limits and calculate clock speeds */
252 msr
= rdmsr(MSR_PLATFORM_INFO
);
253 ratio_min
= (msr
.hi
>> (40-32)) & 0xff; /* Max Efficiency Ratio */
255 /* Determine if this CPU has configurable TDP */
256 if (cpu_config_tdp_levels()) {
257 /* Set max ratio to nominal TDP ratio */
258 msr
= rdmsr(MSR_CONFIG_TDP_NOMINAL
);
259 ratio_max
= msr
.lo
& 0xff;
261 /* Max Non-Turbo Ratio */
262 ratio_max
= (msr
.lo
>> 8) & 0xff;
264 clock_max
= ratio_max
* SANDYBRIDGE_BCLK
;
266 /* Calculate CPU TDP in mW */
267 msr
= rdmsr(MSR_PKG_POWER_SKU_UNIT
);
268 power_unit
= 2 << ((msr
.lo
& 0xf) - 1);
269 msr
= rdmsr(MSR_PKG_POWER_SKU
);
270 power_max
= ((msr
.lo
& 0x7fff) / power_unit
) * 1000;
272 /* Write _PCT indicating use of FFixedHW */
273 acpigen_write_empty_PCT();
275 /* Write _PPC with no limit on supported P-state */
276 acpigen_write_PPC_NVS();
278 /* Write PSD indicating configured coordination type */
279 acpigen_write_PSD_package(core
, cores_per_package
, coord_type
);
281 /* Add P-state entries in _PSS table */
282 acpigen_write_name("_PSS");
284 /* Determine ratio points */
285 ratio_step
= PSS_RATIO_STEP
;
286 num_entries
= (ratio_max
- ratio_min
) / ratio_step
;
287 while (num_entries
> PSS_MAX_ENTRIES
-1) {
292 /* P[T] is Turbo state if enabled */
293 if (get_turbo_state() == TURBO_ENABLED
) {
294 /* _PSS package count including Turbo */
295 acpigen_write_package(num_entries
+ 2);
297 msr
= rdmsr(MSR_TURBO_RATIO_LIMIT
);
298 ratio_turbo
= msr
.lo
& 0xff;
300 /* Add entry for Turbo ratio */
301 acpigen_write_PSS_package(
302 clock_max
+ 1, /*MHz*/
304 PSS_LATENCY_TRANSITION
, /*lat1*/
305 PSS_LATENCY_BUSMASTER
, /*lat2*/
306 ratio_turbo
<< 8, /*control*/
307 ratio_turbo
<< 8); /*status*/
309 /* _PSS package count without Turbo */
310 acpigen_write_package(num_entries
+ 1);
313 /* First regular entry is max non-turbo ratio */
314 acpigen_write_PSS_package(
317 PSS_LATENCY_TRANSITION
, /*lat1*/
318 PSS_LATENCY_BUSMASTER
, /*lat2*/
319 ratio_max
<< 8, /*control*/
320 ratio_max
<< 8); /*status*/
322 /* Generate the remaining entries */
323 for (ratio
= ratio_min
+ ((num_entries
- 1) * ratio_step
);
324 ratio
>= ratio_min
; ratio
-= ratio_step
) {
325 /* Calculate power at this ratio */
326 power
= calculate_power(power_max
, ratio_max
, ratio
);
327 clock
= ratio
* SANDYBRIDGE_BCLK
;
329 acpigen_write_PSS_package(
332 PSS_LATENCY_TRANSITION
, /*lat1*/
333 PSS_LATENCY_BUSMASTER
, /*lat2*/
334 ratio
<< 8, /*control*/
335 ratio
<< 8); /*status*/
338 /* Fix package length */
342 static void generate_cpu_entry(const struct device
*device
, int cpu
, int core
, int cores_per_package
)
344 /* Generate Scope(\_SB) { Device(CPUx */
345 acpigen_write_processor_device(cpu
* cores_per_package
+ core
);
347 /* Generate P-state tables */
348 generate_P_state_entries(cpu
, cores_per_package
);
350 /* Generate C-state tables */
351 generate_C_state_entries(device
);
353 /* Generate T-state tables */
354 generate_T_state_entries(cpu
, cores_per_package
);
356 acpigen_write_processor_device_end();
359 void generate_cpu_entries(const struct device
*device
)
361 int totalcores
= dev_count_cpu();
362 int cores_per_package
= get_logical_cores_per_package();
363 int numcpus
= totalcores
/ cores_per_package
;
365 printk(BIOS_DEBUG
, "Found %d CPU(s) with %d core(s) each.\n",
366 numcpus
, cores_per_package
);
368 print_supported_cstates();
370 for (int cpu_id
= 0; cpu_id
< numcpus
; cpu_id
++)
371 for (int core_id
= 0; core_id
< cores_per_package
; core_id
++)
372 generate_cpu_entry(device
, cpu_id
, core_id
, cores_per_package
);
374 /* PPKG is usually used for thermal management
375 of the first and only package. */
376 acpigen_write_processor_package("PPKG", 0, cores_per_package
);
378 /* Add a method to notify processor nodes */
379 acpigen_write_processor_cnot(cores_per_package
);
382 struct chip_operations cpu_intel_model_206ax_ops
= {
383 .name
= "Intel SandyBridge/IvyBridge CPU",