drivers/amd/opensil/mpio: Factor out common MPIO symbols from vendorcode
[coreboot.git] / util / cbfstool / lzma / C / LzmaEnc.c
blobf2a832059a22bead4b419f247482942e4056a773
1 /* LzmaEnc.c -- LZMA Encoder
2 2009-11-24 : Igor Pavlov : Public domain */
4 #include <string.h>
6 #include "LzmaEnc.h"
8 #include "LzFind.h"
10 #define kBlockSizeMax ((1 << LZMA_NUM_BLOCK_SIZE_BITS) - 1)
12 #define kBlockSize (9 << 10)
13 #define kUnpackBlockSize (1 << 18)
14 #define kMatchArraySize (1 << 21)
15 #define kMatchRecordMaxSize ((LZMA_MATCH_LEN_MAX * 2 + 3) * LZMA_MATCH_LEN_MAX)
17 #define kNumMaxDirectBits (31)
19 #define kNumTopBits 24
20 #define kTopValue ((uint32_t)1 << kNumTopBits)
22 #define kNumBitModelTotalBits 11
23 #define kBitModelTotal (1 << kNumBitModelTotalBits)
24 #define kNumMoveBits 5
25 #define kProbInitValue (kBitModelTotal >> 1)
27 #define kNumMoveReducingBits 4
28 #define kNumBitPriceShiftBits 4
29 #define kBitPrice (1 << kNumBitPriceShiftBits)
31 void LzmaEncProps_Init(struct CLzmaEncProps *p)
33 p->level = 5;
34 p->dictSize = p->mc = 0;
35 p->lc = p->lp = p->pb = p->algo = p->fb = p->btMode = p->numHashBytes = p->numThreads = -1;
36 p->writeEndMark = 0;
39 void LzmaEncProps_Normalize(struct CLzmaEncProps *p)
41 int level = p->level;
42 if (level < 0) level = 5;
43 p->level = level;
44 if (p->dictSize == 0) p->dictSize = (level <= 5 ? (1 << (level * 2 + 14)) : (level == 6 ? (1 << 25) : (1 << 26)));
45 if (p->lc < 0) p->lc = 3;
46 if (p->lp < 0) p->lp = 0;
47 if (p->pb < 0) p->pb = 2;
48 if (p->algo < 0) p->algo = (level < 5 ? 0 : 1);
49 if (p->fb < 0) p->fb = (level < 7 ? 32 : 64);
50 if (p->btMode < 0) p->btMode = (p->algo == 0 ? 0 : 1);
51 if (p->numHashBytes < 0) p->numHashBytes = 4;
52 if (p->mc == 0) p->mc = (16 + (p->fb >> 1)) >> (p->btMode ? 0 : 1);
53 if (p->numThreads < 0)
54 p->numThreads = 1;
57 uint32_t LzmaEncProps_GetDictSize(const struct CLzmaEncProps *props2)
59 struct CLzmaEncProps props = *props2;
60 LzmaEncProps_Normalize(&props);
61 return props.dictSize;
64 #define kNumLogBits (9 + (int)sizeof(size_t) / 2)
65 #define kDicLogSizeMaxCompress ((kNumLogBits - 1) * 2 + 7)
67 static void LzmaEnc_FastPosInit(uint8_t *g_FastPos)
69 int c = 2, slotFast;
70 g_FastPos[0] = 0;
71 g_FastPos[1] = 1;
73 for (slotFast = 2; slotFast < kNumLogBits * 2; slotFast++)
75 uint32_t k = (1 << ((slotFast >> 1) - 1));
76 uint32_t j;
77 for (j = 0; j < k; j++, c++)
78 g_FastPos[c] = (uint8_t)slotFast;
82 #define BSR2_RET(pos, res) { uint32_t macro_i = 6 + ((kNumLogBits - 1) & \
83 (0 - (((((uint32_t)1 << (kNumLogBits + 6)) - 1) - pos) >> 31))); \
84 res = p->g_FastPos[pos >> macro_i] + (macro_i * 2); }
86 #define BSR2_RET(pos, res) { res = (pos < (1 << (kNumLogBits + 6))) ? \
87 p->g_FastPos[pos >> 6] + 12 : \
88 p->g_FastPos[pos >> (6 + kNumLogBits - 1)] + (6 + (kNumLogBits - 1)) * 2; }
91 #define GetPosSlot1(pos) p->g_FastPos[pos]
92 #define GetPosSlot2(pos, res) { BSR2_RET(pos, res); }
93 #define GetPosSlot(pos, res) { if (pos < kNumFullDistances) res = p->g_FastPos[pos]; else BSR2_RET(pos, res); }
95 #define LZMA_NUM_REPS 4
97 typedef unsigned CState;
99 struct COptimal
101 uint32_t price;
103 CState state;
104 int prev1IsChar;
105 int prev2;
107 uint32_t posPrev2;
108 uint32_t backPrev2;
110 uint32_t posPrev;
111 uint32_t backPrev;
112 uint32_t backs[LZMA_NUM_REPS];
115 #define kNumOpts (1 << 12)
117 #define kNumLenToPosStates 4
118 #define kNumPosSlotBits 6
119 #define kDicLogSizeMin 0
120 #define kDicLogSizeMax 32
121 #define kDistTableSizeMax (kDicLogSizeMax * 2)
124 #define kNumAlignBits 4
125 #define kAlignTableSize (1 << kNumAlignBits)
126 #define kAlignMask (kAlignTableSize - 1)
128 #define kStartPosModelIndex 4
129 #define kEndPosModelIndex 14
130 #define kNumPosModels (kEndPosModelIndex - kStartPosModelIndex)
132 #define kNumFullDistances (1 << (kEndPosModelIndex >> 1))
134 typedef uint16_t CLzmaProb;
137 #define LZMA_PB_MAX 4
138 #define LZMA_LC_MAX 8
139 #define LZMA_LP_MAX 4
141 #define LZMA_NUM_PB_STATES_MAX (1 << LZMA_PB_MAX)
144 #define kLenNumLowBits 3
145 #define kLenNumLowSymbols (1 << kLenNumLowBits)
146 #define kLenNumMidBits 3
147 #define kLenNumMidSymbols (1 << kLenNumMidBits)
148 #define kLenNumHighBits 8
149 #define kLenNumHighSymbols (1 << kLenNumHighBits)
151 #define kLenNumSymbolsTotal (kLenNumLowSymbols + kLenNumMidSymbols + kLenNumHighSymbols)
153 #define LZMA_MATCH_LEN_MIN 2
154 #define LZMA_MATCH_LEN_MAX (LZMA_MATCH_LEN_MIN + kLenNumSymbolsTotal - 1)
156 #define kNumStates 12
158 struct CLenEnc
160 CLzmaProb choice;
161 CLzmaProb choice2;
162 CLzmaProb low[LZMA_NUM_PB_STATES_MAX << kLenNumLowBits];
163 CLzmaProb mid[LZMA_NUM_PB_STATES_MAX << kLenNumMidBits];
164 CLzmaProb high[kLenNumHighSymbols];
167 struct CLenPriceEnc
169 struct CLenEnc p;
170 uint32_t prices[LZMA_NUM_PB_STATES_MAX][kLenNumSymbolsTotal];
171 uint32_t tableSize;
172 uint32_t counters[LZMA_NUM_PB_STATES_MAX];
175 struct CRangeEnc
177 uint32_t range;
178 uint8_t cache;
179 uint64_t low;
180 uint64_t cacheSize;
181 uint8_t *buf;
182 uint8_t *bufLim;
183 uint8_t *bufBase;
184 struct ISeqOutStream *outStream;
185 uint64_t processed;
186 SRes res;
189 struct CSaveState
191 CLzmaProb *litProbs;
193 CLzmaProb isMatch[kNumStates][LZMA_NUM_PB_STATES_MAX];
194 CLzmaProb isRep[kNumStates];
195 CLzmaProb isRepG0[kNumStates];
196 CLzmaProb isRepG1[kNumStates];
197 CLzmaProb isRepG2[kNumStates];
198 CLzmaProb isRep0Long[kNumStates][LZMA_NUM_PB_STATES_MAX];
200 CLzmaProb posSlotEncoder[kNumLenToPosStates][1 << kNumPosSlotBits];
201 CLzmaProb posEncoders[kNumFullDistances - kEndPosModelIndex];
202 CLzmaProb posAlignEncoder[1 << kNumAlignBits];
204 struct CLenPriceEnc lenEnc;
205 struct CLenPriceEnc repLenEnc;
207 uint32_t reps[LZMA_NUM_REPS];
208 uint32_t state;
211 struct CLzmaEnc
213 struct IMatchFinder matchFinder;
214 void *matchFinderObj;
216 struct CMatchFinder matchFinderBase;
218 uint32_t optimumEndIndex;
219 uint32_t optimumCurrentIndex;
221 uint32_t longestMatchLength;
222 uint32_t numPairs;
223 uint32_t numAvail;
224 struct COptimal opt[kNumOpts];
226 #ifndef LZMA_LOG_BSR
227 uint8_t g_FastPos[1 << kNumLogBits];
228 #endif
230 uint32_t ProbPrices[kBitModelTotal >> kNumMoveReducingBits];
231 uint32_t matches[LZMA_MATCH_LEN_MAX * 2 + 2 + 1];
232 uint32_t numFastuint8_ts;
233 uint32_t additionalOffset;
234 uint32_t reps[LZMA_NUM_REPS];
235 uint32_t state;
237 uint32_t posSlotPrices[kNumLenToPosStates][kDistTableSizeMax];
238 uint32_t distancesPrices[kNumLenToPosStates][kNumFullDistances];
239 uint32_t alignPrices[kAlignTableSize];
240 uint32_t alignPriceCount;
242 uint32_t distTableSize;
244 unsigned lc, lp, pb;
245 unsigned lpMask, pbMask;
247 CLzmaProb *litProbs;
249 CLzmaProb isMatch[kNumStates][LZMA_NUM_PB_STATES_MAX];
250 CLzmaProb isRep[kNumStates];
251 CLzmaProb isRepG0[kNumStates];
252 CLzmaProb isRepG1[kNumStates];
253 CLzmaProb isRepG2[kNumStates];
254 CLzmaProb isRep0Long[kNumStates][LZMA_NUM_PB_STATES_MAX];
256 CLzmaProb posSlotEncoder[kNumLenToPosStates][1 << kNumPosSlotBits];
257 CLzmaProb posEncoders[kNumFullDistances - kEndPosModelIndex];
258 CLzmaProb posAlignEncoder[1 << kNumAlignBits];
260 struct CLenPriceEnc lenEnc;
261 struct CLenPriceEnc repLenEnc;
263 unsigned lclp;
265 bool fastMode;
267 struct CRangeEnc rc;
269 bool writeEndMark;
270 uint64_t nowPos64;
271 uint32_t matchPriceCount;
272 bool finished;
273 bool multiThread;
275 SRes result;
276 uint32_t dictSize;
277 uint32_t matchFinderCycles;
279 int needInit;
281 struct CSaveState saveState;
284 /*static void LzmaEnc_SaveState(CLzmaEncHandle pp)
286 CLzmaEnc *p = (CLzmaEnc *)pp;
287 CSaveState *dest = &p->saveState;
288 int i;
289 dest->lenEnc = p->lenEnc;
290 dest->repLenEnc = p->repLenEnc;
291 dest->state = p->state;
293 for (i = 0; i < kNumStates; i++)
295 memcpy(dest->isMatch[i], p->isMatch[i], sizeof(p->isMatch[i]));
296 memcpy(dest->isRep0Long[i], p->isRep0Long[i], sizeof(p->isRep0Long[i]));
298 for (i = 0; i < kNumLenToPosStates; i++)
299 memcpy(dest->posSlotEncoder[i], p->posSlotEncoder[i], sizeof(p->posSlotEncoder[i]));
300 memcpy(dest->isRep, p->isRep, sizeof(p->isRep));
301 memcpy(dest->isRepG0, p->isRepG0, sizeof(p->isRepG0));
302 memcpy(dest->isRepG1, p->isRepG1, sizeof(p->isRepG1));
303 memcpy(dest->isRepG2, p->isRepG2, sizeof(p->isRepG2));
304 memcpy(dest->posEncoders, p->posEncoders, sizeof(p->posEncoders));
305 memcpy(dest->posAlignEncoder, p->posAlignEncoder, sizeof(p->posAlignEncoder));
306 memcpy(dest->reps, p->reps, sizeof(p->reps));
307 memcpy(dest->litProbs, p->litProbs, (0x300 << p->lclp) * sizeof(CLzmaProb));
310 /*static void LzmaEnc_RestoreState(CLzmaEncHandle pp)
312 CLzmaEnc *dest = (CLzmaEnc *)pp;
313 const CSaveState *p = &dest->saveState;
314 int i;
315 dest->lenEnc = p->lenEnc;
316 dest->repLenEnc = p->repLenEnc;
317 dest->state = p->state;
319 for (i = 0; i < kNumStates; i++)
321 memcpy(dest->isMatch[i], p->isMatch[i], sizeof(p->isMatch[i]));
322 memcpy(dest->isRep0Long[i], p->isRep0Long[i], sizeof(p->isRep0Long[i]));
324 for (i = 0; i < kNumLenToPosStates; i++)
325 memcpy(dest->posSlotEncoder[i], p->posSlotEncoder[i], sizeof(p->posSlotEncoder[i]));
326 memcpy(dest->isRep, p->isRep, sizeof(p->isRep));
327 memcpy(dest->isRepG0, p->isRepG0, sizeof(p->isRepG0));
328 memcpy(dest->isRepG1, p->isRepG1, sizeof(p->isRepG1));
329 memcpy(dest->isRepG2, p->isRepG2, sizeof(p->isRepG2));
330 memcpy(dest->posEncoders, p->posEncoders, sizeof(p->posEncoders));
331 memcpy(dest->posAlignEncoder, p->posAlignEncoder, sizeof(p->posAlignEncoder));
332 memcpy(dest->reps, p->reps, sizeof(p->reps));
333 memcpy(dest->litProbs, p->litProbs, (0x300 << dest->lclp) * sizeof(CLzmaProb));
336 SRes LzmaEnc_SetProps(CLzmaEncHandle pp, const struct CLzmaEncProps *props2)
338 struct CLzmaEnc *p = (struct CLzmaEnc *)pp;
339 struct CLzmaEncProps props = *props2;
340 LzmaEncProps_Normalize(&props);
342 if (props.lc > LZMA_LC_MAX || props.lp > LZMA_LP_MAX || props.pb > LZMA_PB_MAX ||
343 props.dictSize > (1 << kDicLogSizeMaxCompress) || props.dictSize > (1 << 30))
344 return SZ_ERROR_PARAM;
345 p->dictSize = props.dictSize;
346 p->matchFinderCycles = props.mc;
348 unsigned fb = props.fb;
349 if (fb < 5)
350 fb = 5;
351 if (fb > LZMA_MATCH_LEN_MAX)
352 fb = LZMA_MATCH_LEN_MAX;
353 p->numFastuint8_ts = fb;
355 p->lc = props.lc;
356 p->lp = props.lp;
357 p->pb = props.pb;
358 p->fastMode = (props.algo == 0);
359 p->matchFinderBase.btMode = props.btMode;
361 uint32_t numHashBytes = 4;
362 if (props.btMode)
364 if (props.numHashBytes < 2)
365 numHashBytes = 2;
366 else if (props.numHashBytes < 4)
367 numHashBytes = props.numHashBytes;
369 p->matchFinderBase.numHashBytes = numHashBytes;
372 p->matchFinderBase.cutValue = props.mc;
374 p->writeEndMark = props.writeEndMark;
376 return SZ_OK;
379 static const int kLiteralNextStates[kNumStates] = {0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 4, 5};
380 static const int kMatchNextStates[kNumStates] = {7, 7, 7, 7, 7, 7, 7, 10, 10, 10, 10, 10};
381 static const int kRepNextStates[kNumStates] = {8, 8, 8, 8, 8, 8, 8, 11, 11, 11, 11, 11};
382 static const int kShortRepNextStates[kNumStates]= {9, 9, 9, 9, 9, 9, 9, 11, 11, 11, 11, 11};
384 #define IsCharState(s) ((s) < 7)
386 #define GetLenToPosState(len) (((len) < kNumLenToPosStates + 1) ? (len) - 2 : kNumLenToPosStates - 1)
388 #define kInfinityPrice (1 << 30)
390 static void RangeEnc_Construct(struct CRangeEnc *p)
392 p->outStream = 0;
393 p->bufBase = 0;
396 #define RangeEnc_GetProcessed(p) ((p)->processed + ((p)->buf - (p)->bufBase) + (p)->cacheSize)
398 #define RC_BUF_SIZE (1 << 16)
399 static int RangeEnc_Alloc(struct CRangeEnc *p, struct ISzAlloc *alloc)
401 if (p->bufBase == 0)
403 p->bufBase = (uint8_t *)alloc->Alloc(alloc, RC_BUF_SIZE);
404 if (p->bufBase == 0)
405 return 0;
406 p->bufLim = p->bufBase + RC_BUF_SIZE;
408 return 1;
411 static void RangeEnc_Free(struct CRangeEnc *p, struct ISzAlloc *alloc)
413 alloc->Free(alloc, p->bufBase);
414 p->bufBase = 0;
417 static void RangeEnc_Init(struct CRangeEnc *p)
419 /* Stream.Init(); */
420 p->low = 0;
421 p->range = 0xFFFFFFFF;
422 p->cacheSize = 1;
423 p->cache = 0;
425 p->buf = p->bufBase;
427 p->processed = 0;
428 p->res = SZ_OK;
431 static void RangeEnc_FlushStream(struct CRangeEnc *p)
433 size_t num;
434 if (p->res != SZ_OK)
435 return;
436 num = p->buf - p->bufBase;
437 if (num != p->outStream->Write(p->outStream, p->bufBase, num))
438 p->res = SZ_ERROR_WRITE;
439 p->processed += num;
440 p->buf = p->bufBase;
443 static void RangeEnc_ShiftLow(struct CRangeEnc *p)
445 if ((uint32_t)p->low < (uint32_t)0xFF000000 || (int)(p->low >> 32) != 0)
447 uint8_t temp = p->cache;
450 uint8_t *buf = p->buf;
451 *buf++ = (uint8_t)(temp + (uint8_t)(p->low >> 32));
452 p->buf = buf;
453 if (buf == p->bufLim)
454 RangeEnc_FlushStream(p);
455 temp = 0xFF;
457 while (--p->cacheSize != 0);
458 p->cache = (uint8_t)((uint32_t)p->low >> 24);
460 p->cacheSize++;
461 p->low = (uint32_t)p->low << 8;
464 static void RangeEnc_FlushData(struct CRangeEnc *p)
466 int i;
467 for (i = 0; i < 5; i++)
468 RangeEnc_ShiftLow(p);
471 static void RangeEnc_EncodeDirectBits(struct CRangeEnc *p, uint32_t value, int numBits)
475 p->range >>= 1;
476 p->low += p->range & (0 - ((value >> --numBits) & 1));
477 if (p->range < kTopValue)
479 p->range <<= 8;
480 RangeEnc_ShiftLow(p);
483 while (numBits != 0);
486 static void RangeEnc_EncodeBit(struct CRangeEnc *p, CLzmaProb *prob, uint32_t symbol)
488 uint32_t ttt = *prob;
489 uint32_t newBound = (p->range >> kNumBitModelTotalBits) * ttt;
490 if (symbol == 0)
492 p->range = newBound;
493 ttt += (kBitModelTotal - ttt) >> kNumMoveBits;
495 else
497 p->low += newBound;
498 p->range -= newBound;
499 ttt -= ttt >> kNumMoveBits;
501 *prob = (CLzmaProb)ttt;
502 if (p->range < kTopValue)
504 p->range <<= 8;
505 RangeEnc_ShiftLow(p);
509 static void LitEnc_Encode(struct CRangeEnc *p, CLzmaProb *probs, uint32_t symbol)
511 symbol |= 0x100;
514 RangeEnc_EncodeBit(p, probs + (symbol >> 8), (symbol >> 7) & 1);
515 symbol <<= 1;
517 while (symbol < 0x10000);
520 static void LitEnc_EncodeMatched(struct CRangeEnc *p, CLzmaProb *probs, uint32_t symbol, uint32_t matchuint8_t)
522 uint32_t offs = 0x100;
523 symbol |= 0x100;
526 matchuint8_t <<= 1;
527 RangeEnc_EncodeBit(p, probs + (offs + (matchuint8_t & offs) + (symbol >> 8)), (symbol >> 7) & 1);
528 symbol <<= 1;
529 offs &= ~(matchuint8_t ^ symbol);
531 while (symbol < 0x10000);
534 static void LzmaEnc_InitPriceTables(uint32_t *ProbPrices)
536 uint32_t i;
537 for (i = (1 << kNumMoveReducingBits) / 2; i < kBitModelTotal; i += (1 << kNumMoveReducingBits))
539 const int kCyclesBits = kNumBitPriceShiftBits;
540 uint32_t w = i;
541 uint32_t bitCount = 0;
542 int j;
543 for (j = 0; j < kCyclesBits; j++)
545 w = w * w;
546 bitCount <<= 1;
547 while (w >= ((uint32_t)1 << 16))
549 w >>= 1;
550 bitCount++;
553 ProbPrices[i >> kNumMoveReducingBits] = ((kNumBitModelTotalBits << kCyclesBits) - 15 - bitCount);
558 #define GET_PRICE(prob, symbol) \
559 p->ProbPrices[((prob) ^ (((-(int)(symbol))) & (kBitModelTotal - 1))) >> kNumMoveReducingBits];
561 #define GET_PRICEa(prob, symbol) \
562 ProbPrices[((prob) ^ ((-((int)(symbol))) & (kBitModelTotal - 1))) >> kNumMoveReducingBits];
564 #define GET_PRICE_0(prob) p->ProbPrices[(prob) >> kNumMoveReducingBits]
565 #define GET_PRICE_1(prob) p->ProbPrices[((prob) ^ (kBitModelTotal - 1)) >> kNumMoveReducingBits]
567 #define GET_PRICE_0a(prob) ProbPrices[(prob) >> kNumMoveReducingBits]
568 #define GET_PRICE_1a(prob) ProbPrices[((prob) ^ (kBitModelTotal - 1)) >> kNumMoveReducingBits]
570 static uint32_t LitEnc_GetPrice(const CLzmaProb *probs, uint32_t symbol, uint32_t *ProbPrices)
572 uint32_t price = 0;
573 symbol |= 0x100;
576 price += GET_PRICEa(probs[symbol >> 8], (symbol >> 7) & 1);
577 symbol <<= 1;
579 while (symbol < 0x10000);
580 return price;
583 static uint32_t LitEnc_GetPriceMatched(const CLzmaProb *probs, uint32_t symbol, uint32_t matchuint8_t, uint32_t *ProbPrices)
585 uint32_t price = 0;
586 uint32_t offs = 0x100;
587 symbol |= 0x100;
590 matchuint8_t <<= 1;
591 price += GET_PRICEa(probs[offs + (matchuint8_t & offs) + (symbol >> 8)], (symbol >> 7) & 1);
592 symbol <<= 1;
593 offs &= ~(matchuint8_t ^ symbol);
595 while (symbol < 0x10000);
596 return price;
600 static void RcTree_Encode(struct CRangeEnc *rc, CLzmaProb *probs, int numBitLevels, uint32_t symbol)
602 uint32_t m = 1;
603 int i;
604 for (i = numBitLevels; i != 0;)
606 uint32_t bit;
607 i--;
608 bit = (symbol >> i) & 1;
609 RangeEnc_EncodeBit(rc, probs + m, bit);
610 m = (m << 1) | bit;
614 static void RcTree_ReverseEncode(struct CRangeEnc *rc, CLzmaProb *probs, int numBitLevels, uint32_t symbol)
616 uint32_t m = 1;
617 int i;
618 for (i = 0; i < numBitLevels; i++)
620 uint32_t bit = symbol & 1;
621 RangeEnc_EncodeBit(rc, probs + m, bit);
622 m = (m << 1) | bit;
623 symbol >>= 1;
627 static uint32_t RcTree_GetPrice(const CLzmaProb *probs, int numBitLevels, uint32_t symbol, uint32_t *ProbPrices)
629 uint32_t price = 0;
630 symbol |= (1 << numBitLevels);
631 while (symbol != 1)
633 price += GET_PRICEa(probs[symbol >> 1], symbol & 1);
634 symbol >>= 1;
636 return price;
639 static uint32_t RcTree_ReverseGetPrice(const CLzmaProb *probs, int numBitLevels, uint32_t symbol, uint32_t *ProbPrices)
641 uint32_t price = 0;
642 uint32_t m = 1;
643 int i;
644 for (i = numBitLevels; i != 0; i--)
646 uint32_t bit = symbol & 1;
647 symbol >>= 1;
648 price += GET_PRICEa(probs[m], bit);
649 m = (m << 1) | bit;
651 return price;
655 static void LenEnc_Init(struct CLenEnc *p)
657 unsigned i;
658 p->choice = p->choice2 = kProbInitValue;
659 for (i = 0; i < (LZMA_NUM_PB_STATES_MAX << kLenNumLowBits); i++)
660 p->low[i] = kProbInitValue;
661 for (i = 0; i < (LZMA_NUM_PB_STATES_MAX << kLenNumMidBits); i++)
662 p->mid[i] = kProbInitValue;
663 for (i = 0; i < kLenNumHighSymbols; i++)
664 p->high[i] = kProbInitValue;
667 static void LenEnc_Encode(struct CLenEnc *p, struct CRangeEnc *rc, uint32_t symbol, uint32_t posState)
669 if (symbol < kLenNumLowSymbols)
671 RangeEnc_EncodeBit(rc, &p->choice, 0);
672 RcTree_Encode(rc, p->low + (posState << kLenNumLowBits), kLenNumLowBits, symbol);
674 else
676 RangeEnc_EncodeBit(rc, &p->choice, 1);
677 if (symbol < kLenNumLowSymbols + kLenNumMidSymbols)
679 RangeEnc_EncodeBit(rc, &p->choice2, 0);
680 RcTree_Encode(rc, p->mid + (posState << kLenNumMidBits), kLenNumMidBits, symbol - kLenNumLowSymbols);
682 else
684 RangeEnc_EncodeBit(rc, &p->choice2, 1);
685 RcTree_Encode(rc, p->high, kLenNumHighBits, symbol - kLenNumLowSymbols - kLenNumMidSymbols);
690 static void LenEnc_SetPrices(struct CLenEnc *p, uint32_t posState, uint32_t numSymbols, uint32_t *prices, uint32_t *ProbPrices)
692 uint32_t a0 = GET_PRICE_0a(p->choice);
693 uint32_t a1 = GET_PRICE_1a(p->choice);
694 uint32_t b0 = a1 + GET_PRICE_0a(p->choice2);
695 uint32_t b1 = a1 + GET_PRICE_1a(p->choice2);
696 uint32_t i = 0;
697 for (i = 0; i < kLenNumLowSymbols; i++)
699 if (i >= numSymbols)
700 return;
701 prices[i] = a0 + RcTree_GetPrice(p->low + (posState << kLenNumLowBits), kLenNumLowBits, i, ProbPrices);
703 for (; i < kLenNumLowSymbols + kLenNumMidSymbols; i++)
705 if (i >= numSymbols)
706 return;
707 prices[i] = b0 + RcTree_GetPrice(p->mid + (posState << kLenNumMidBits), kLenNumMidBits, i - kLenNumLowSymbols, ProbPrices);
709 for (; i < numSymbols; i++)
710 prices[i] = b1 + RcTree_GetPrice(p->high, kLenNumHighBits, i - kLenNumLowSymbols - kLenNumMidSymbols, ProbPrices);
713 static void LenPriceEnc_UpdateTable(struct CLenPriceEnc *p, uint32_t posState, uint32_t *ProbPrices)
715 LenEnc_SetPrices(&p->p, posState, p->tableSize, p->prices[posState], ProbPrices);
716 p->counters[posState] = p->tableSize;
719 static void LenPriceEnc_UpdateTables(struct CLenPriceEnc *p, uint32_t numPosStates, uint32_t *ProbPrices)
721 uint32_t posState;
722 for (posState = 0; posState < numPosStates; posState++)
723 LenPriceEnc_UpdateTable(p, posState, ProbPrices);
726 static void LenEnc_Encode2(struct CLenPriceEnc *p, struct CRangeEnc *rc, uint32_t symbol, uint32_t posState, bool updatePrice, uint32_t *ProbPrices)
728 LenEnc_Encode(&p->p, rc, symbol, posState);
729 if (updatePrice)
730 if (--p->counters[posState] == 0)
731 LenPriceEnc_UpdateTable(p, posState, ProbPrices);
737 static void MovePos(struct CLzmaEnc *p, uint32_t num)
739 if (num != 0)
741 p->additionalOffset += num;
742 p->matchFinder.Skip(p->matchFinderObj, num);
746 static uint32_t ReadMatchDistances(struct CLzmaEnc *p, uint32_t *numDistancePairsRes)
748 uint32_t lenRes = 0, numPairs;
749 p->numAvail = p->matchFinder.GetNumAvailableBytes(p->matchFinderObj);
750 numPairs = p->matchFinder.GetMatches(p->matchFinderObj, p->matches);
751 if (numPairs > 0)
753 lenRes = p->matches[numPairs - 2];
754 if (lenRes == p->numFastuint8_ts)
756 const uint8_t *pby = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
757 uint32_t distance = p->matches[numPairs - 1] + 1;
758 uint32_t numAvail = p->numAvail;
759 if (numAvail > LZMA_MATCH_LEN_MAX)
760 numAvail = LZMA_MATCH_LEN_MAX;
762 const uint8_t *pby2 = pby - distance;
763 for (; lenRes < numAvail && pby[lenRes] == pby2[lenRes]; lenRes++);
767 p->additionalOffset++;
768 *numDistancePairsRes = numPairs;
769 return lenRes;
773 #define MakeAsChar(p) (p)->backPrev = (uint32_t)(-1); (p)->prev1IsChar = false;
774 #define MakeAsShortRep(p) (p)->backPrev = 0; (p)->prev1IsChar = false;
775 #define IsShortRep(p) ((p)->backPrev == 0)
777 static uint32_t GetRepLen1Price(struct CLzmaEnc *p, uint32_t state, uint32_t posState)
779 return
780 GET_PRICE_0(p->isRepG0[state]) +
781 GET_PRICE_0(p->isRep0Long[state][posState]);
784 static uint32_t GetPureRepPrice(struct CLzmaEnc *p, uint32_t repIndex, uint32_t state, uint32_t posState)
786 uint32_t price;
787 if (repIndex == 0)
789 price = GET_PRICE_0(p->isRepG0[state]);
790 price += GET_PRICE_1(p->isRep0Long[state][posState]);
792 else
794 price = GET_PRICE_1(p->isRepG0[state]);
795 if (repIndex == 1)
796 price += GET_PRICE_0(p->isRepG1[state]);
797 else
799 price += GET_PRICE_1(p->isRepG1[state]);
800 price += GET_PRICE(p->isRepG2[state], repIndex - 2);
803 return price;
806 static uint32_t GetRepPrice(struct CLzmaEnc *p, uint32_t repIndex, uint32_t len, uint32_t state, uint32_t posState)
808 return p->repLenEnc.prices[posState][len - LZMA_MATCH_LEN_MIN] +
809 GetPureRepPrice(p, repIndex, state, posState);
812 static uint32_t Backward(struct CLzmaEnc *p, uint32_t *backRes, uint32_t cur)
814 uint32_t posMem = p->opt[cur].posPrev;
815 uint32_t backMem = p->opt[cur].backPrev;
816 p->optimumEndIndex = cur;
819 if (p->opt[cur].prev1IsChar)
821 MakeAsChar(&p->opt[posMem])
822 p->opt[posMem].posPrev = posMem - 1;
823 if (p->opt[cur].prev2)
825 p->opt[posMem - 1].prev1IsChar = false;
826 p->opt[posMem - 1].posPrev = p->opt[cur].posPrev2;
827 p->opt[posMem - 1].backPrev = p->opt[cur].backPrev2;
831 uint32_t posPrev = posMem;
832 uint32_t backCur = backMem;
834 backMem = p->opt[posPrev].backPrev;
835 posMem = p->opt[posPrev].posPrev;
837 p->opt[posPrev].backPrev = backCur;
838 p->opt[posPrev].posPrev = cur;
839 cur = posPrev;
842 while (cur != 0);
843 *backRes = p->opt[0].backPrev;
844 p->optimumCurrentIndex = p->opt[0].posPrev;
845 return p->optimumCurrentIndex;
848 #define LIT_PROBS(pos, prevuint8_t) (p->litProbs + ((((pos) & p->lpMask) << p->lc) + ((prevuint8_t) >> (8 - p->lc))) * 0x300)
850 static uint32_t GetOptimum(struct CLzmaEnc *p, uint32_t position, uint32_t *backRes)
852 uint32_t numAvail, mainLen, numPairs, repMaxIndex, i, posState, lenEnd, len, cur;
853 uint32_t matchPrice, repMatchPrice, normalMatchPrice;
854 uint32_t reps[LZMA_NUM_REPS], repLens[LZMA_NUM_REPS];
855 uint32_t *matches;
856 const uint8_t *data;
857 uint8_t curuint8_t, matchuint8_t;
858 if (p->optimumEndIndex != p->optimumCurrentIndex)
860 const struct COptimal *opt = &p->opt[p->optimumCurrentIndex];
861 uint32_t lenRes = opt->posPrev - p->optimumCurrentIndex;
862 *backRes = opt->backPrev;
863 p->optimumCurrentIndex = opt->posPrev;
864 return lenRes;
866 p->optimumCurrentIndex = p->optimumEndIndex = 0;
868 if (p->additionalOffset == 0)
869 mainLen = ReadMatchDistances(p, &numPairs);
870 else
872 mainLen = p->longestMatchLength;
873 numPairs = p->numPairs;
876 numAvail = p->numAvail;
877 if (numAvail < 2)
879 *backRes = (uint32_t)(-1);
880 return 1;
882 if (numAvail > LZMA_MATCH_LEN_MAX)
883 numAvail = LZMA_MATCH_LEN_MAX;
885 data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
886 repMaxIndex = 0;
887 for (i = 0; i < LZMA_NUM_REPS; i++)
889 uint32_t lenTest;
890 const uint8_t *data2;
891 reps[i] = p->reps[i];
892 data2 = data - (reps[i] + 1);
893 if (data[0] != data2[0] || data[1] != data2[1])
895 repLens[i] = 0;
896 continue;
898 for (lenTest = 2; lenTest < numAvail && data[lenTest] == data2[lenTest]; lenTest++);
899 repLens[i] = lenTest;
900 if (lenTest > repLens[repMaxIndex])
901 repMaxIndex = i;
903 if (repLens[repMaxIndex] >= p->numFastuint8_ts)
905 uint32_t lenRes;
906 *backRes = repMaxIndex;
907 lenRes = repLens[repMaxIndex];
908 MovePos(p, lenRes - 1);
909 return lenRes;
912 matches = p->matches;
913 if (mainLen >= p->numFastuint8_ts)
915 *backRes = matches[numPairs - 1] + LZMA_NUM_REPS;
916 MovePos(p, mainLen - 1);
917 return mainLen;
919 curuint8_t = *data;
920 matchuint8_t = *(data - (reps[0] + 1));
922 if (mainLen < 2 && curuint8_t != matchuint8_t && repLens[repMaxIndex] < 2)
924 *backRes = (uint32_t)-1;
925 return 1;
928 p->opt[0].state = (CState)p->state;
930 posState = (position & p->pbMask);
933 const CLzmaProb *probs = LIT_PROBS(position, *(data - 1));
934 p->opt[1].price = GET_PRICE_0(p->isMatch[p->state][posState]) +
935 (!IsCharState(p->state) ?
936 LitEnc_GetPriceMatched(probs, curuint8_t, matchuint8_t, p->ProbPrices) :
937 LitEnc_GetPrice(probs, curuint8_t, p->ProbPrices));
940 MakeAsChar(&p->opt[1]);
942 matchPrice = GET_PRICE_1(p->isMatch[p->state][posState]);
943 repMatchPrice = matchPrice + GET_PRICE_1(p->isRep[p->state]);
945 if (matchuint8_t == curuint8_t)
947 uint32_t shortRepPrice = repMatchPrice + GetRepLen1Price(p, p->state, posState);
948 if (shortRepPrice < p->opt[1].price)
950 p->opt[1].price = shortRepPrice;
951 MakeAsShortRep(&p->opt[1]);
954 lenEnd = ((mainLen >= repLens[repMaxIndex]) ? mainLen : repLens[repMaxIndex]);
956 if (lenEnd < 2)
958 *backRes = p->opt[1].backPrev;
959 return 1;
962 p->opt[1].posPrev = 0;
963 for (i = 0; i < LZMA_NUM_REPS; i++)
964 p->opt[0].backs[i] = reps[i];
966 len = lenEnd;
968 p->opt[len--].price = kInfinityPrice;
969 while (len >= 2);
971 for (i = 0; i < LZMA_NUM_REPS; i++)
973 uint32_t repLen = repLens[i];
974 uint32_t price;
975 if (repLen < 2)
976 continue;
977 price = repMatchPrice + GetPureRepPrice(p, i, p->state, posState);
980 uint32_t curAndLenPrice = price + p->repLenEnc.prices[posState][repLen - 2];
981 struct COptimal *opt = &p->opt[repLen];
982 if (curAndLenPrice < opt->price)
984 opt->price = curAndLenPrice;
985 opt->posPrev = 0;
986 opt->backPrev = i;
987 opt->prev1IsChar = false;
990 while (--repLen >= 2);
993 normalMatchPrice = matchPrice + GET_PRICE_0(p->isRep[p->state]);
995 len = ((repLens[0] >= 2) ? repLens[0] + 1 : 2);
996 if (len <= mainLen)
998 uint32_t offs = 0;
999 while (len > matches[offs])
1000 offs += 2;
1001 for (; ; len++)
1003 struct COptimal *opt;
1004 uint32_t distance = matches[offs + 1];
1006 uint32_t curAndLenPrice = normalMatchPrice + p->lenEnc.prices[posState][len - LZMA_MATCH_LEN_MIN];
1007 uint32_t lenToPosState = GetLenToPosState(len);
1008 if (distance < kNumFullDistances)
1009 curAndLenPrice += p->distancesPrices[lenToPosState][distance];
1010 else
1012 uint32_t slot;
1013 GetPosSlot2(distance, slot);
1014 curAndLenPrice += p->alignPrices[distance & kAlignMask] + p->posSlotPrices[lenToPosState][slot];
1016 opt = &p->opt[len];
1017 if (curAndLenPrice < opt->price)
1019 opt->price = curAndLenPrice;
1020 opt->posPrev = 0;
1021 opt->backPrev = distance + LZMA_NUM_REPS;
1022 opt->prev1IsChar = false;
1024 if (len == matches[offs])
1026 offs += 2;
1027 if (offs == numPairs)
1028 break;
1033 cur = 0;
1035 for (;;)
1037 uint32_t numAvailFull, newLen, posPrev, state, startLen;
1038 uint32_t curPrice, curAnd1Price;
1039 bool nextIsChar;
1040 struct COptimal *curOpt;
1041 struct COptimal *nextOpt;
1043 cur++;
1044 if (cur == lenEnd)
1045 return Backward(p, backRes, cur);
1047 newLen = ReadMatchDistances(p, &numPairs);
1048 if (newLen >= p->numFastuint8_ts)
1050 p->numPairs = numPairs;
1051 p->longestMatchLength = newLen;
1052 return Backward(p, backRes, cur);
1054 position++;
1055 curOpt = &p->opt[cur];
1056 posPrev = curOpt->posPrev;
1057 if (curOpt->prev1IsChar)
1059 posPrev--;
1060 if (curOpt->prev2)
1062 state = p->opt[curOpt->posPrev2].state;
1063 if (curOpt->backPrev2 < LZMA_NUM_REPS)
1064 state = kRepNextStates[state];
1065 else
1066 state = kMatchNextStates[state];
1068 else
1069 state = p->opt[posPrev].state;
1070 state = kLiteralNextStates[state];
1072 else
1073 state = p->opt[posPrev].state;
1074 if (posPrev == cur - 1)
1076 if (IsShortRep(curOpt))
1077 state = kShortRepNextStates[state];
1078 else
1079 state = kLiteralNextStates[state];
1081 else
1083 uint32_t pos;
1084 const struct COptimal *prevOpt;
1085 if (curOpt->prev1IsChar && curOpt->prev2)
1087 posPrev = curOpt->posPrev2;
1088 pos = curOpt->backPrev2;
1089 state = kRepNextStates[state];
1091 else
1093 pos = curOpt->backPrev;
1094 if (pos < LZMA_NUM_REPS)
1095 state = kRepNextStates[state];
1096 else
1097 state = kMatchNextStates[state];
1099 prevOpt = &p->opt[posPrev];
1100 if (pos < LZMA_NUM_REPS)
1102 reps[0] = prevOpt->backs[pos];
1103 for (i = 1; i <= pos; i++)
1104 reps[i] = prevOpt->backs[i - 1];
1105 for (; i < LZMA_NUM_REPS; i++)
1106 reps[i] = prevOpt->backs[i];
1108 else
1110 reps[0] = (pos - LZMA_NUM_REPS);
1111 for (i = 1; i < LZMA_NUM_REPS; i++)
1112 reps[i] = prevOpt->backs[i - 1];
1115 curOpt->state = (CState)state;
1117 curOpt->backs[0] = reps[0];
1118 curOpt->backs[1] = reps[1];
1119 curOpt->backs[2] = reps[2];
1120 curOpt->backs[3] = reps[3];
1122 curPrice = curOpt->price;
1123 nextIsChar = false;
1124 data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
1125 curuint8_t = *data;
1126 matchuint8_t = *(data - (reps[0] + 1));
1128 posState = (position & p->pbMask);
1130 curAnd1Price = curPrice + GET_PRICE_0(p->isMatch[state][posState]);
1132 const CLzmaProb *probs = LIT_PROBS(position, *(data - 1));
1133 curAnd1Price +=
1134 (!IsCharState(state) ?
1135 LitEnc_GetPriceMatched(probs, curuint8_t, matchuint8_t, p->ProbPrices) :
1136 LitEnc_GetPrice(probs, curuint8_t, p->ProbPrices));
1139 nextOpt = &p->opt[cur + 1];
1141 if (curAnd1Price < nextOpt->price)
1143 nextOpt->price = curAnd1Price;
1144 nextOpt->posPrev = cur;
1145 MakeAsChar(nextOpt);
1146 nextIsChar = true;
1149 matchPrice = curPrice + GET_PRICE_1(p->isMatch[state][posState]);
1150 repMatchPrice = matchPrice + GET_PRICE_1(p->isRep[state]);
1152 if (matchuint8_t == curuint8_t && !(nextOpt->posPrev < cur && nextOpt->backPrev == 0))
1154 uint32_t shortRepPrice = repMatchPrice + GetRepLen1Price(p, state, posState);
1155 if (shortRepPrice <= nextOpt->price)
1157 nextOpt->price = shortRepPrice;
1158 nextOpt->posPrev = cur;
1159 MakeAsShortRep(nextOpt);
1160 nextIsChar = true;
1163 numAvailFull = p->numAvail;
1165 uint32_t temp = kNumOpts - 1 - cur;
1166 if (temp < numAvailFull)
1167 numAvailFull = temp;
1170 if (numAvailFull < 2)
1171 continue;
1172 numAvail = (numAvailFull <= p->numFastuint8_ts ? numAvailFull : p->numFastuint8_ts);
1174 if (!nextIsChar && matchuint8_t != curuint8_t) /* speed optimization */
1176 /* try Literal + rep0 */
1177 uint32_t temp;
1178 uint32_t lenTest2;
1179 const uint8_t *data2 = data - (reps[0] + 1);
1180 uint32_t limit = p->numFastuint8_ts + 1;
1181 if (limit > numAvailFull)
1182 limit = numAvailFull;
1184 for (temp = 1; temp < limit && data[temp] == data2[temp]; temp++);
1185 lenTest2 = temp - 1;
1186 if (lenTest2 >= 2)
1188 uint32_t state2 = kLiteralNextStates[state];
1189 uint32_t posStateNext = (position + 1) & p->pbMask;
1190 uint32_t nextRepMatchPrice = curAnd1Price +
1191 GET_PRICE_1(p->isMatch[state2][posStateNext]) +
1192 GET_PRICE_1(p->isRep[state2]);
1193 /* for (; lenTest2 >= 2; lenTest2--) */
1195 uint32_t curAndLenPrice;
1196 struct COptimal *opt;
1197 uint32_t offset = cur + 1 + lenTest2;
1198 while (lenEnd < offset)
1199 p->opt[++lenEnd].price = kInfinityPrice;
1200 curAndLenPrice = nextRepMatchPrice + GetRepPrice(p, 0, lenTest2, state2, posStateNext);
1201 opt = &p->opt[offset];
1202 if (curAndLenPrice < opt->price)
1204 opt->price = curAndLenPrice;
1205 opt->posPrev = cur + 1;
1206 opt->backPrev = 0;
1207 opt->prev1IsChar = true;
1208 opt->prev2 = false;
1214 startLen = 2; /* speed optimization */
1216 uint32_t repIndex;
1217 for (repIndex = 0; repIndex < LZMA_NUM_REPS; repIndex++)
1219 uint32_t lenTest;
1220 uint32_t lenTestTemp;
1221 uint32_t price;
1222 const uint8_t *data2 = data - (reps[repIndex] + 1);
1223 if (data[0] != data2[0] || data[1] != data2[1])
1224 continue;
1225 for (lenTest = 2; lenTest < numAvail && data[lenTest] == data2[lenTest]; lenTest++);
1226 while (lenEnd < cur + lenTest)
1227 p->opt[++lenEnd].price = kInfinityPrice;
1228 lenTestTemp = lenTest;
1229 price = repMatchPrice + GetPureRepPrice(p, repIndex, state, posState);
1232 uint32_t curAndLenPrice = price + p->repLenEnc.prices[posState][lenTest - 2];
1233 struct COptimal *opt = &p->opt[cur + lenTest];
1234 if (curAndLenPrice < opt->price)
1236 opt->price = curAndLenPrice;
1237 opt->posPrev = cur;
1238 opt->backPrev = repIndex;
1239 opt->prev1IsChar = false;
1242 while (--lenTest >= 2);
1243 lenTest = lenTestTemp;
1245 if (repIndex == 0)
1246 startLen = lenTest + 1;
1248 /* if (_maxMode) */
1250 uint32_t lenTest2 = lenTest + 1;
1251 uint32_t limit = lenTest2 + p->numFastuint8_ts;
1252 uint32_t nextRepMatchPrice;
1253 if (limit > numAvailFull)
1254 limit = numAvailFull;
1255 for (; lenTest2 < limit && data[lenTest2] == data2[lenTest2]; lenTest2++);
1256 lenTest2 -= lenTest + 1;
1257 if (lenTest2 >= 2)
1259 uint32_t state2 = kRepNextStates[state];
1260 uint32_t posStateNext = (position + lenTest) & p->pbMask;
1261 uint32_t curAndLenCharPrice =
1262 price + p->repLenEnc.prices[posState][lenTest - 2] +
1263 GET_PRICE_0(p->isMatch[state2][posStateNext]) +
1264 LitEnc_GetPriceMatched(LIT_PROBS(position + lenTest, data[lenTest - 1]),
1265 data[lenTest], data2[lenTest], p->ProbPrices);
1266 state2 = kLiteralNextStates[state2];
1267 posStateNext = (position + lenTest + 1) & p->pbMask;
1268 nextRepMatchPrice = curAndLenCharPrice +
1269 GET_PRICE_1(p->isMatch[state2][posStateNext]) +
1270 GET_PRICE_1(p->isRep[state2]);
1272 /* for (; lenTest2 >= 2; lenTest2--) */
1274 uint32_t curAndLenPrice;
1275 struct COptimal *opt;
1276 uint32_t offset = cur + lenTest + 1 + lenTest2;
1277 while (lenEnd < offset)
1278 p->opt[++lenEnd].price = kInfinityPrice;
1279 curAndLenPrice = nextRepMatchPrice + GetRepPrice(p, 0, lenTest2, state2, posStateNext);
1280 opt = &p->opt[offset];
1281 if (curAndLenPrice < opt->price)
1283 opt->price = curAndLenPrice;
1284 opt->posPrev = cur + lenTest + 1;
1285 opt->backPrev = 0;
1286 opt->prev1IsChar = true;
1287 opt->prev2 = true;
1288 opt->posPrev2 = cur;
1289 opt->backPrev2 = repIndex;
1296 /* for (uint32_t lenTest = 2; lenTest <= newLen; lenTest++) */
1297 if (newLen > numAvail)
1299 newLen = numAvail;
1300 for (numPairs = 0; newLen > matches[numPairs]; numPairs += 2);
1301 matches[numPairs] = newLen;
1302 numPairs += 2;
1304 if (newLen >= startLen)
1306 uint32_t offs, curBack, posSlot;
1307 uint32_t lenTest;
1309 normalMatchPrice = matchPrice + GET_PRICE_0(p->isRep[state]);
1311 while (lenEnd < cur + newLen)
1312 p->opt[++lenEnd].price = kInfinityPrice;
1314 offs = 0;
1315 while (startLen > matches[offs])
1316 offs += 2;
1317 curBack = matches[offs + 1];
1318 GetPosSlot2(curBack, posSlot);
1319 for (lenTest = /*2*/ startLen; ; lenTest++)
1321 uint32_t curAndLenPrice = normalMatchPrice + p->lenEnc.prices[posState][lenTest - LZMA_MATCH_LEN_MIN];
1322 uint32_t lenToPosState = GetLenToPosState(lenTest);
1323 struct COptimal *opt;
1324 if (curBack < kNumFullDistances)
1325 curAndLenPrice += p->distancesPrices[lenToPosState][curBack];
1326 else
1327 curAndLenPrice += p->posSlotPrices[lenToPosState][posSlot] + p->alignPrices[curBack & kAlignMask];
1329 opt = &p->opt[cur + lenTest];
1330 if (curAndLenPrice < opt->price)
1332 opt->price = curAndLenPrice;
1333 opt->posPrev = cur;
1334 opt->backPrev = curBack + LZMA_NUM_REPS;
1335 opt->prev1IsChar = false;
1338 if (/*_maxMode && */lenTest == matches[offs])
1340 /* Try Match + Literal + Rep0 */
1341 const uint8_t *data2 = data - (curBack + 1);
1342 uint32_t lenTest2 = lenTest + 1;
1343 uint32_t limit = lenTest2 + p->numFastuint8_ts;
1344 uint32_t nextRepMatchPrice;
1345 if (limit > numAvailFull)
1346 limit = numAvailFull;
1347 for (; lenTest2 < limit && data[lenTest2] == data2[lenTest2]; lenTest2++);
1348 lenTest2 -= lenTest + 1;
1349 if (lenTest2 >= 2)
1351 uint32_t state2 = kMatchNextStates[state];
1352 uint32_t posStateNext = (position + lenTest) & p->pbMask;
1353 uint32_t curAndLenCharPrice = curAndLenPrice +
1354 GET_PRICE_0(p->isMatch[state2][posStateNext]) +
1355 LitEnc_GetPriceMatched(LIT_PROBS(position + lenTest, data[lenTest - 1]),
1356 data[lenTest], data2[lenTest], p->ProbPrices);
1357 state2 = kLiteralNextStates[state2];
1358 posStateNext = (posStateNext + 1) & p->pbMask;
1359 nextRepMatchPrice = curAndLenCharPrice +
1360 GET_PRICE_1(p->isMatch[state2][posStateNext]) +
1361 GET_PRICE_1(p->isRep[state2]);
1363 /* for (; lenTest2 >= 2; lenTest2--) */
1365 uint32_t offset = cur + lenTest + 1 + lenTest2;
1366 while (lenEnd < offset)
1367 p->opt[++lenEnd].price = kInfinityPrice;
1368 curAndLenPrice = nextRepMatchPrice + GetRepPrice(p, 0, lenTest2, state2, posStateNext);
1369 opt = &p->opt[offset];
1370 if (curAndLenPrice < opt->price)
1372 opt->price = curAndLenPrice;
1373 opt->posPrev = cur + lenTest + 1;
1374 opt->backPrev = 0;
1375 opt->prev1IsChar = true;
1376 opt->prev2 = true;
1377 opt->posPrev2 = cur;
1378 opt->backPrev2 = curBack + LZMA_NUM_REPS;
1382 offs += 2;
1383 if (offs == numPairs)
1384 break;
1385 curBack = matches[offs + 1];
1386 if (curBack >= kNumFullDistances)
1387 GetPosSlot2(curBack, posSlot);
1394 #define ChangePair(smallDist, bigDist) (((bigDist) >> 7) > (smallDist))
1396 static uint32_t GetOptimumFast(struct CLzmaEnc *p, uint32_t *backRes)
1398 uint32_t numAvail, mainLen, mainDist, numPairs, repIndex, repLen, i;
1399 const uint8_t *data;
1400 const uint32_t *matches;
1402 if (p->additionalOffset == 0)
1403 mainLen = ReadMatchDistances(p, &numPairs);
1404 else
1406 mainLen = p->longestMatchLength;
1407 numPairs = p->numPairs;
1410 numAvail = p->numAvail;
1411 *backRes = (uint32_t)-1;
1412 if (numAvail < 2)
1413 return 1;
1414 if (numAvail > LZMA_MATCH_LEN_MAX)
1415 numAvail = LZMA_MATCH_LEN_MAX;
1416 data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
1418 repLen = repIndex = 0;
1419 for (i = 0; i < LZMA_NUM_REPS; i++)
1421 uint32_t len;
1422 const uint8_t *data2 = data - (p->reps[i] + 1);
1423 if (data[0] != data2[0] || data[1] != data2[1])
1424 continue;
1425 for (len = 2; len < numAvail && data[len] == data2[len]; len++);
1426 if (len >= p->numFastuint8_ts)
1428 *backRes = i;
1429 MovePos(p, len - 1);
1430 return len;
1432 if (len > repLen)
1434 repIndex = i;
1435 repLen = len;
1439 matches = p->matches;
1440 if (mainLen >= p->numFastuint8_ts)
1442 *backRes = matches[numPairs - 1] + LZMA_NUM_REPS;
1443 MovePos(p, mainLen - 1);
1444 return mainLen;
1447 mainDist = 0; /* for GCC */
1448 if (mainLen >= 2)
1450 mainDist = matches[numPairs - 1];
1451 while (numPairs > 2 && mainLen == matches[numPairs - 4] + 1)
1453 if (!ChangePair(matches[numPairs - 3], mainDist))
1454 break;
1455 numPairs -= 2;
1456 mainLen = matches[numPairs - 2];
1457 mainDist = matches[numPairs - 1];
1459 if (mainLen == 2 && mainDist >= 0x80)
1460 mainLen = 1;
1463 if (repLen >= 2 && (
1464 (repLen + 1 >= mainLen) ||
1465 (repLen + 2 >= mainLen && mainDist >= (1 << 9)) ||
1466 (repLen + 3 >= mainLen && mainDist >= (1 << 15))))
1468 *backRes = repIndex;
1469 MovePos(p, repLen - 1);
1470 return repLen;
1473 if (mainLen < 2 || numAvail <= 2)
1474 return 1;
1476 p->longestMatchLength = ReadMatchDistances(p, &p->numPairs);
1477 if (p->longestMatchLength >= 2)
1479 uint32_t newDistance = matches[p->numPairs - 1];
1480 if ((p->longestMatchLength >= mainLen && newDistance < mainDist) ||
1481 (p->longestMatchLength == mainLen + 1 && !ChangePair(mainDist, newDistance)) ||
1482 (p->longestMatchLength > mainLen + 1) ||
1483 (p->longestMatchLength + 1 >= mainLen && mainLen >= 3 && ChangePair(newDistance, mainDist)))
1484 return 1;
1487 data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
1488 for (i = 0; i < LZMA_NUM_REPS; i++)
1490 uint32_t len, limit;
1491 const uint8_t *data2 = data - (p->reps[i] + 1);
1492 if (data[0] != data2[0] || data[1] != data2[1])
1493 continue;
1494 limit = mainLen - 1;
1495 for (len = 2; len < limit && data[len] == data2[len]; len++);
1496 if (len >= limit)
1497 return 1;
1499 *backRes = mainDist + LZMA_NUM_REPS;
1500 MovePos(p, mainLen - 2);
1501 return mainLen;
1504 static void WriteEndMarker(struct CLzmaEnc *p, uint32_t posState)
1506 uint32_t len;
1507 RangeEnc_EncodeBit(&p->rc, &p->isMatch[p->state][posState], 1);
1508 RangeEnc_EncodeBit(&p->rc, &p->isRep[p->state], 0);
1509 p->state = kMatchNextStates[p->state];
1510 len = LZMA_MATCH_LEN_MIN;
1511 LenEnc_Encode2(&p->lenEnc, &p->rc, len - LZMA_MATCH_LEN_MIN, posState, !p->fastMode, p->ProbPrices);
1512 RcTree_Encode(&p->rc, p->posSlotEncoder[GetLenToPosState(len)], kNumPosSlotBits, (1 << kNumPosSlotBits) - 1);
1513 RangeEnc_EncodeDirectBits(&p->rc, (((uint32_t)1 << 30) - 1) >> kNumAlignBits, 30 - kNumAlignBits);
1514 RcTree_ReverseEncode(&p->rc, p->posAlignEncoder, kNumAlignBits, kAlignMask);
1517 static SRes CheckErrors(struct CLzmaEnc *p)
1519 if (p->result != SZ_OK)
1520 return p->result;
1521 if (p->rc.res != SZ_OK)
1522 p->result = SZ_ERROR_WRITE;
1523 if (p->matchFinderBase.result != SZ_OK)
1524 p->result = SZ_ERROR_READ;
1525 if (p->result != SZ_OK)
1526 p->finished = true;
1527 return p->result;
1530 static SRes Flush(struct CLzmaEnc *p, uint32_t nowPos)
1532 /* ReleaseMFStream(); */
1533 p->finished = true;
1534 if (p->writeEndMark)
1535 WriteEndMarker(p, nowPos & p->pbMask);
1536 RangeEnc_FlushData(&p->rc);
1537 RangeEnc_FlushStream(&p->rc);
1538 return CheckErrors(p);
1541 static void FillAlignPrices(struct CLzmaEnc *p)
1543 uint32_t i;
1544 for (i = 0; i < kAlignTableSize; i++)
1545 p->alignPrices[i] = RcTree_ReverseGetPrice(p->posAlignEncoder, kNumAlignBits, i, p->ProbPrices);
1546 p->alignPriceCount = 0;
1549 static void FillDistancesPrices(struct CLzmaEnc *p)
1551 uint32_t tempPrices[kNumFullDistances];
1552 uint32_t i, lenToPosState;
1553 for (i = kStartPosModelIndex; i < kNumFullDistances; i++)
1555 uint32_t posSlot = GetPosSlot1(i);
1556 uint32_t footerBits = ((posSlot >> 1) - 1);
1557 uint32_t base = ((2 | (posSlot & 1)) << footerBits);
1558 tempPrices[i] = RcTree_ReverseGetPrice(p->posEncoders + base - posSlot - 1, footerBits, i - base, p->ProbPrices);
1561 for (lenToPosState = 0; lenToPosState < kNumLenToPosStates; lenToPosState++)
1563 uint32_t posSlot;
1564 const CLzmaProb *encoder = p->posSlotEncoder[lenToPosState];
1565 uint32_t *posSlotPrices = p->posSlotPrices[lenToPosState];
1566 for (posSlot = 0; posSlot < p->distTableSize; posSlot++)
1567 posSlotPrices[posSlot] = RcTree_GetPrice(encoder, kNumPosSlotBits, posSlot, p->ProbPrices);
1568 for (posSlot = kEndPosModelIndex; posSlot < p->distTableSize; posSlot++)
1569 posSlotPrices[posSlot] += ((((posSlot >> 1) - 1) - kNumAlignBits) << kNumBitPriceShiftBits);
1572 uint32_t *distancesPrices = p->distancesPrices[lenToPosState];
1573 for (i = 0; i < kStartPosModelIndex; i++)
1574 distancesPrices[i] = posSlotPrices[i];
1575 for (; i < kNumFullDistances; i++)
1576 distancesPrices[i] = posSlotPrices[GetPosSlot1(i)] + tempPrices[i];
1579 p->matchPriceCount = 0;
1582 static void LzmaEnc_Construct(struct CLzmaEnc *p)
1584 RangeEnc_Construct(&p->rc);
1585 MatchFinder_Construct(&p->matchFinderBase);
1588 struct CLzmaEncProps props;
1589 LzmaEncProps_Init(&props);
1590 LzmaEnc_SetProps(p, &props);
1593 #ifndef LZMA_LOG_BSR
1594 LzmaEnc_FastPosInit(p->g_FastPos);
1595 #endif
1597 LzmaEnc_InitPriceTables(p->ProbPrices);
1598 p->litProbs = 0;
1599 p->saveState.litProbs = 0;
1602 CLzmaEncHandle LzmaEnc_Create(struct ISzAlloc *alloc)
1604 void *p;
1605 p = alloc->Alloc(alloc, sizeof(struct CLzmaEnc));
1606 if (p != 0)
1607 LzmaEnc_Construct((struct CLzmaEnc *)p);
1608 return p;
1611 static void LzmaEnc_FreeLits(struct CLzmaEnc *p, struct ISzAlloc *alloc)
1613 alloc->Free(alloc, p->litProbs);
1614 alloc->Free(alloc, p->saveState.litProbs);
1615 p->litProbs = 0;
1616 p->saveState.litProbs = 0;
1619 static void LzmaEnc_Destruct(struct CLzmaEnc *p, struct ISzAlloc *alloc, struct ISzAlloc *allocBig)
1621 MatchFinder_Free(&p->matchFinderBase, allocBig);
1622 LzmaEnc_FreeLits(p, alloc);
1623 RangeEnc_Free(&p->rc, alloc);
1626 void LzmaEnc_Destroy(CLzmaEncHandle p, struct ISzAlloc *alloc, struct ISzAlloc *allocBig)
1628 LzmaEnc_Destruct((struct CLzmaEnc *)p, alloc, allocBig);
1629 alloc->Free(alloc, p);
1632 static SRes LzmaEnc_CodeOneBlock(struct CLzmaEnc *p, bool useLimits, uint32_t maxPackSize, uint32_t maxUnpackSize)
1634 uint32_t nowPos32, startPos32;
1635 if (p->needInit)
1637 p->matchFinder.Init(p->matchFinderObj);
1638 p->needInit = 0;
1641 if (p->finished)
1642 return p->result;
1643 RINOK(CheckErrors(p));
1645 nowPos32 = (uint32_t)p->nowPos64;
1646 startPos32 = nowPos32;
1648 if (p->nowPos64 == 0)
1650 uint32_t numPairs;
1651 uint8_t curuint8_t;
1652 if (p->matchFinder.GetNumAvailableBytes(p->matchFinderObj) == 0)
1653 return Flush(p, nowPos32);
1654 ReadMatchDistances(p, &numPairs);
1655 RangeEnc_EncodeBit(&p->rc, &p->isMatch[p->state][0], 0);
1656 p->state = kLiteralNextStates[p->state];
1657 curuint8_t = p->matchFinder.GetIndexByte(p->matchFinderObj, 0 - p->additionalOffset);
1658 LitEnc_Encode(&p->rc, p->litProbs, curuint8_t);
1659 p->additionalOffset--;
1660 nowPos32++;
1663 if (p->matchFinder.GetNumAvailableBytes(p->matchFinderObj) != 0)
1664 for (;;)
1666 uint32_t pos, len, posState;
1668 if (p->fastMode)
1669 len = GetOptimumFast(p, &pos);
1670 else
1671 len = GetOptimum(p, nowPos32, &pos);
1673 posState = nowPos32 & p->pbMask;
1674 if (len == 1 && pos == (uint32_t)-1)
1676 uint8_t curuint8_t;
1677 CLzmaProb *probs;
1678 const uint8_t *data;
1680 RangeEnc_EncodeBit(&p->rc, &p->isMatch[p->state][posState], 0);
1681 data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - p->additionalOffset;
1682 curuint8_t = *data;
1683 probs = LIT_PROBS(nowPos32, *(data - 1));
1684 if (IsCharState(p->state))
1685 LitEnc_Encode(&p->rc, probs, curuint8_t);
1686 else
1687 LitEnc_EncodeMatched(&p->rc, probs, curuint8_t, *(data - p->reps[0] - 1));
1688 p->state = kLiteralNextStates[p->state];
1690 else
1692 RangeEnc_EncodeBit(&p->rc, &p->isMatch[p->state][posState], 1);
1693 if (pos < LZMA_NUM_REPS)
1695 RangeEnc_EncodeBit(&p->rc, &p->isRep[p->state], 1);
1696 if (pos == 0)
1698 RangeEnc_EncodeBit(&p->rc, &p->isRepG0[p->state], 0);
1699 RangeEnc_EncodeBit(&p->rc, &p->isRep0Long[p->state][posState], ((len == 1) ? 0 : 1));
1701 else
1703 uint32_t distance = p->reps[pos];
1704 RangeEnc_EncodeBit(&p->rc, &p->isRepG0[p->state], 1);
1705 if (pos == 1)
1706 RangeEnc_EncodeBit(&p->rc, &p->isRepG1[p->state], 0);
1707 else
1709 RangeEnc_EncodeBit(&p->rc, &p->isRepG1[p->state], 1);
1710 RangeEnc_EncodeBit(&p->rc, &p->isRepG2[p->state], pos - 2);
1711 if (pos == 3)
1712 p->reps[3] = p->reps[2];
1713 p->reps[2] = p->reps[1];
1715 p->reps[1] = p->reps[0];
1716 p->reps[0] = distance;
1718 if (len == 1)
1719 p->state = kShortRepNextStates[p->state];
1720 else
1722 LenEnc_Encode2(&p->repLenEnc, &p->rc, len - LZMA_MATCH_LEN_MIN, posState, !p->fastMode, p->ProbPrices);
1723 p->state = kRepNextStates[p->state];
1726 else
1728 uint32_t posSlot;
1729 RangeEnc_EncodeBit(&p->rc, &p->isRep[p->state], 0);
1730 p->state = kMatchNextStates[p->state];
1731 LenEnc_Encode2(&p->lenEnc, &p->rc, len - LZMA_MATCH_LEN_MIN, posState, !p->fastMode, p->ProbPrices);
1732 pos -= LZMA_NUM_REPS;
1733 GetPosSlot(pos, posSlot);
1734 RcTree_Encode(&p->rc, p->posSlotEncoder[GetLenToPosState(len)], kNumPosSlotBits, posSlot);
1736 if (posSlot >= kStartPosModelIndex)
1738 uint32_t footerBits = ((posSlot >> 1) - 1);
1739 uint32_t base = ((2 | (posSlot & 1)) << footerBits);
1740 uint32_t posReduced = pos - base;
1742 if (posSlot < kEndPosModelIndex)
1743 RcTree_ReverseEncode(&p->rc, p->posEncoders + base - posSlot - 1, footerBits, posReduced);
1744 else
1746 RangeEnc_EncodeDirectBits(&p->rc, posReduced >> kNumAlignBits, footerBits - kNumAlignBits);
1747 RcTree_ReverseEncode(&p->rc, p->posAlignEncoder, kNumAlignBits, posReduced & kAlignMask);
1748 p->alignPriceCount++;
1751 p->reps[3] = p->reps[2];
1752 p->reps[2] = p->reps[1];
1753 p->reps[1] = p->reps[0];
1754 p->reps[0] = pos;
1755 p->matchPriceCount++;
1758 p->additionalOffset -= len;
1759 nowPos32 += len;
1760 if (p->additionalOffset == 0)
1762 uint32_t processed;
1763 if (!p->fastMode)
1765 if (p->matchPriceCount >= (1 << 7))
1766 FillDistancesPrices(p);
1767 if (p->alignPriceCount >= kAlignTableSize)
1768 FillAlignPrices(p);
1770 if (p->matchFinder.GetNumAvailableBytes(p->matchFinderObj) == 0)
1771 break;
1772 processed = nowPos32 - startPos32;
1773 if (useLimits)
1775 if (processed + kNumOpts + 300 >= maxUnpackSize ||
1776 RangeEnc_GetProcessed(&p->rc) + kNumOpts * 2 >= maxPackSize)
1777 break;
1779 else if (processed >= (1 << 15))
1781 p->nowPos64 += nowPos32 - startPos32;
1782 return CheckErrors(p);
1786 p->nowPos64 += nowPos32 - startPos32;
1787 return Flush(p, nowPos32);
1790 #define kBigHashDicLimit ((uint32_t)1 << 24)
1792 static SRes LzmaEnc_Alloc(struct CLzmaEnc *p, uint32_t keepWindowSize, struct ISzAlloc *alloc, struct ISzAlloc *allocBig)
1794 uint32_t beforeSize = kNumOpts;
1795 if (!RangeEnc_Alloc(&p->rc, alloc))
1796 return SZ_ERROR_MEM;
1799 unsigned lclp = p->lc + p->lp;
1800 if (p->litProbs == 0 || p->saveState.litProbs == 0 || p->lclp != lclp)
1802 LzmaEnc_FreeLits(p, alloc);
1803 p->litProbs = (CLzmaProb *)alloc->Alloc(alloc, (0x300 << lclp) * sizeof(CLzmaProb));
1804 p->saveState.litProbs = (CLzmaProb *)alloc->Alloc(alloc, (0x300 << lclp) * sizeof(CLzmaProb));
1805 if (p->litProbs == 0 || p->saveState.litProbs == 0)
1807 LzmaEnc_FreeLits(p, alloc);
1808 return SZ_ERROR_MEM;
1810 p->lclp = lclp;
1814 p->matchFinderBase.bigHash = (p->dictSize > kBigHashDicLimit);
1816 if (beforeSize + p->dictSize < keepWindowSize)
1817 beforeSize = keepWindowSize - p->dictSize;
1820 if (!MatchFinder_Create(&p->matchFinderBase, p->dictSize, beforeSize, p->numFastuint8_ts, LZMA_MATCH_LEN_MAX, allocBig))
1821 return SZ_ERROR_MEM;
1822 p->matchFinderObj = &p->matchFinderBase;
1823 MatchFinder_CreateVTable(&p->matchFinderBase, &p->matchFinder);
1825 return SZ_OK;
1828 static void LzmaEnc_Init(struct CLzmaEnc *p)
1830 uint32_t i;
1831 p->state = 0;
1832 for (i = 0 ; i < LZMA_NUM_REPS; i++)
1833 p->reps[i] = 0;
1835 RangeEnc_Init(&p->rc);
1838 for (i = 0; i < kNumStates; i++)
1840 uint32_t j;
1841 for (j = 0; j < LZMA_NUM_PB_STATES_MAX; j++)
1843 p->isMatch[i][j] = kProbInitValue;
1844 p->isRep0Long[i][j] = kProbInitValue;
1846 p->isRep[i] = kProbInitValue;
1847 p->isRepG0[i] = kProbInitValue;
1848 p->isRepG1[i] = kProbInitValue;
1849 p->isRepG2[i] = kProbInitValue;
1853 uint32_t num = 0x300 << (p->lp + p->lc);
1854 for (i = 0; i < num; i++)
1855 p->litProbs[i] = kProbInitValue;
1859 for (i = 0; i < kNumLenToPosStates; i++)
1861 CLzmaProb *probs = p->posSlotEncoder[i];
1862 uint32_t j;
1863 for (j = 0; j < (1 << kNumPosSlotBits); j++)
1864 probs[j] = kProbInitValue;
1868 for (i = 0; i < kNumFullDistances - kEndPosModelIndex; i++)
1869 p->posEncoders[i] = kProbInitValue;
1872 LenEnc_Init(&p->lenEnc.p);
1873 LenEnc_Init(&p->repLenEnc.p);
1875 for (i = 0; i < (1 << kNumAlignBits); i++)
1876 p->posAlignEncoder[i] = kProbInitValue;
1878 p->optimumEndIndex = 0;
1879 p->optimumCurrentIndex = 0;
1880 p->additionalOffset = 0;
1882 p->pbMask = (1 << p->pb) - 1;
1883 p->lpMask = (1 << p->lp) - 1;
1886 static void LzmaEnc_InitPrices(struct CLzmaEnc *p)
1888 if (!p->fastMode)
1890 FillDistancesPrices(p);
1891 FillAlignPrices(p);
1894 p->lenEnc.tableSize =
1895 p->repLenEnc.tableSize =
1896 p->numFastuint8_ts + 1 - LZMA_MATCH_LEN_MIN;
1897 LenPriceEnc_UpdateTables(&p->lenEnc, 1 << p->pb, p->ProbPrices);
1898 LenPriceEnc_UpdateTables(&p->repLenEnc, 1 << p->pb, p->ProbPrices);
1901 static SRes LzmaEnc_AllocAndInit(struct CLzmaEnc *p, uint32_t keepWindowSize, struct ISzAlloc *alloc, struct ISzAlloc *allocBig)
1903 uint32_t i;
1904 for (i = 0; i < (uint32_t)kDicLogSizeMaxCompress; i++)
1905 if (p->dictSize <= ((uint32_t)1 << i))
1906 break;
1907 p->distTableSize = i * 2;
1909 p->finished = false;
1910 p->result = SZ_OK;
1911 RINOK(LzmaEnc_Alloc(p, keepWindowSize, alloc, allocBig));
1912 LzmaEnc_Init(p);
1913 LzmaEnc_InitPrices(p);
1914 p->nowPos64 = 0;
1915 return SZ_OK;
1918 static SRes LzmaEnc_Prepare(CLzmaEncHandle pp, struct ISeqOutStream *outStream, struct ISeqInStream *inStream,
1919 struct ISzAlloc *alloc, struct ISzAlloc *allocBig)
1921 struct CLzmaEnc *p = (struct CLzmaEnc *)pp;
1922 p->matchFinderBase.stream = inStream;
1923 p->needInit = 1;
1924 p->rc.outStream = outStream;
1925 return LzmaEnc_AllocAndInit(p, 0, alloc, allocBig);
1928 /*static SRes LzmaEnc_PrepareForLzma2(CLzmaEncHandle pp,
1929 ISeqInStream *inStream, uint32_t keepWindowSize,
1930 ISzAlloc *alloc, ISzAlloc *allocBig)
1932 CLzmaEnc *p = (CLzmaEnc *)pp;
1933 p->matchFinderBase.stream = inStream;
1934 p->needInit = 1;
1935 return LzmaEnc_AllocAndInit(p, keepWindowSize, alloc, allocBig);
1938 static void LzmaEnc_SetInputBuf(struct CLzmaEnc *p, const uint8_t *src, size_t srcLen)
1940 p->matchFinderBase.directInput = 1;
1941 p->matchFinderBase.bufferBase = (uint8_t *)src;
1942 p->matchFinderBase.directInputRem = srcLen;
1945 static SRes LzmaEnc_MemPrepare(CLzmaEncHandle pp, const uint8_t *src, size_t srcLen,
1946 uint32_t keepWindowSize, struct ISzAlloc *alloc, struct ISzAlloc *allocBig)
1948 struct CLzmaEnc *p = (struct CLzmaEnc *)pp;
1949 LzmaEnc_SetInputBuf(p, src, srcLen);
1950 p->needInit = 1;
1952 return LzmaEnc_AllocAndInit(p, keepWindowSize, alloc, allocBig);
1955 static void LzmaEnc_Finish(CLzmaEncHandle pp)
1957 (void)pp;
1960 struct CSeqOutStreamBuf
1962 struct ISeqOutStream funcTable;
1963 uint8_t *data;
1964 size_t rem;
1965 bool overflow;
1968 static size_t MyWrite(void *pp, const void *data, size_t size)
1970 struct CSeqOutStreamBuf *p = (struct CSeqOutStreamBuf *)pp;
1971 if (p->rem < size)
1973 size = p->rem;
1974 p->overflow = true;
1976 memcpy(p->data, data, size);
1977 p->rem -= size;
1978 p->data += size;
1979 return size;
1983 /*static uint32_t LzmaEnc_GetNumAvailableBytes(CLzmaEncHandle pp)
1985 const CLzmaEnc *p = (CLzmaEnc *)pp;
1986 return p->matchFinder.GetNumAvailableBytes(p->matchFinderObj);
1989 /*static const uint8_t *LzmaEnc_GetCurBuf(CLzmaEncHandle pp)
1991 const CLzmaEnc *p = (CLzmaEnc *)pp;
1992 return p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - p->additionalOffset;
1995 /*static SRes LzmaEnc_CodeOneMemBlock(CLzmaEncHandle pp, bool reInit,
1996 uint8_t *dest, size_t *destLen, uint32_t desiredPackSize, uint32_t *unpackSize)
1998 CLzmaEnc *p = (CLzmaEnc *)pp;
1999 uint64_t nowPos64;
2000 SRes res;
2001 CSeqOutStreamBuf outStream;
2003 outStream.funcTable.Write = MyWrite;
2004 outStream.data = dest;
2005 outStream.rem = *destLen;
2006 outStream.overflow = false;
2008 p->writeEndMark = false;
2009 p->finished = false;
2010 p->result = SZ_OK;
2012 if (reInit)
2013 LzmaEnc_Init(p);
2014 LzmaEnc_InitPrices(p);
2015 nowPos64 = p->nowPos64;
2016 RangeEnc_Init(&p->rc);
2017 p->rc.outStream = &outStream.funcTable;
2019 res = LzmaEnc_CodeOneBlock(p, true, desiredPackSize, *unpackSize);
2021 *unpackSize = (uint32_t)(p->nowPos64 - nowPos64);
2022 *destLen -= outStream.rem;
2023 if (outStream.overflow)
2024 return SZ_ERROR_OUTPUT_EOF;
2026 return res;
2029 static SRes LzmaEnc_Encode2(struct CLzmaEnc *p, struct ICompressProgress *progress)
2031 SRes res = SZ_OK;
2033 for (;;)
2035 res = LzmaEnc_CodeOneBlock(p, false, 0, 0);
2036 if (res != SZ_OK || p->finished != 0)
2037 break;
2038 if (progress != 0)
2040 res = progress->Progress(progress, p->nowPos64, RangeEnc_GetProcessed(&p->rc));
2041 if (res != SZ_OK)
2043 res = SZ_ERROR_PROGRESS;
2044 break;
2048 LzmaEnc_Finish(p);
2049 return res;
2052 SRes LzmaEnc_Encode(CLzmaEncHandle pp, struct ISeqOutStream *outStream, struct ISeqInStream *inStream, struct ICompressProgress *progress,
2053 struct ISzAlloc *alloc, struct ISzAlloc *allocBig)
2055 RINOK(LzmaEnc_Prepare(pp, outStream, inStream, alloc, allocBig));
2056 return LzmaEnc_Encode2((struct CLzmaEnc *)pp, progress);
2059 SRes LzmaEnc_WriteProperties(CLzmaEncHandle pp, uint8_t *props, size_t *size)
2061 struct CLzmaEnc *p = (struct CLzmaEnc *)pp;
2062 int i;
2063 uint32_t dictSize = p->dictSize;
2064 if (*size < LZMA_PROPS_SIZE)
2065 return SZ_ERROR_PARAM;
2066 *size = LZMA_PROPS_SIZE;
2067 props[0] = (uint8_t)((p->pb * 5 + p->lp) * 9 + p->lc);
2069 for (i = 11; i <= 30; i++)
2071 if (dictSize <= ((uint32_t)2 << i))
2073 dictSize = (2 << i);
2074 break;
2076 if (dictSize <= ((uint32_t)3 << i))
2078 dictSize = (3 << i);
2079 break;
2083 for (i = 0; i < 4; i++)
2084 props[1 + i] = (uint8_t)(dictSize >> (8 * i));
2085 return SZ_OK;
2088 SRes LzmaEnc_MemEncode(CLzmaEncHandle pp, uint8_t *dest, size_t *destLen, const uint8_t *src, size_t srcLen,
2089 int writeEndMark, struct ICompressProgress *progress, struct ISzAlloc *alloc, struct ISzAlloc *allocBig)
2091 SRes res;
2092 struct CLzmaEnc *p = (struct CLzmaEnc *)pp;
2094 struct CSeqOutStreamBuf outStream;
2096 LzmaEnc_SetInputBuf(p, src, srcLen);
2098 outStream.funcTable.Write = MyWrite;
2099 outStream.data = dest;
2100 outStream.rem = *destLen;
2101 outStream.overflow = false;
2103 p->writeEndMark = writeEndMark;
2105 p->rc.outStream = &outStream.funcTable;
2106 res = LzmaEnc_MemPrepare(pp, src, srcLen, 0, alloc, allocBig);
2107 if (res == SZ_OK)
2108 res = LzmaEnc_Encode2(p, progress);
2110 *destLen -= outStream.rem;
2111 if (outStream.overflow)
2112 return SZ_ERROR_OUTPUT_EOF;
2113 return res;
2116 SRes LzmaEncode(uint8_t *dest, size_t *destLen, const uint8_t *src, size_t srcLen,
2117 const struct CLzmaEncProps *props, uint8_t *propsEncoded, size_t *propsSize, int writeEndMark,
2118 struct ICompressProgress *progress, struct ISzAlloc *alloc, struct ISzAlloc *allocBig)
2120 struct CLzmaEnc *p = (struct CLzmaEnc *)LzmaEnc_Create(alloc);
2121 SRes res;
2122 if (p == 0)
2123 return SZ_ERROR_MEM;
2125 res = LzmaEnc_SetProps(p, props);
2126 if (res == SZ_OK)
2128 res = LzmaEnc_WriteProperties(p, propsEncoded, propsSize);
2129 if (res == SZ_OK)
2130 res = LzmaEnc_MemEncode(p, dest, destLen, src, srcLen,
2131 writeEndMark, progress, alloc, allocBig);
2134 LzmaEnc_Destroy(p, alloc, allocBig);
2135 return res;