soc/intel/alderlake: Add ADL-P 4+4 with 28W TDP
[coreboot.git] / src / device / pci_device.c
blobe600f34fe661d013878bbf5b68dc0d7c05845047
1 /* SPDX-License-Identifier: GPL-2.0-only */
3 /*
4 * Originally based on the Linux kernel (drivers/pci/pci.c).
5 * PCI Bus Services, see include/linux/pci.h for further explanation.
6 */
8 #include <acpi/acpi.h>
9 #include <assert.h>
10 #include <device/pci_ops.h>
11 #include <bootmode.h>
12 #include <console/console.h>
13 #include <cpu/cpu.h>
14 #include <stdlib.h>
15 #include <string.h>
16 #include <delay.h>
17 #include <device/cardbus.h>
18 #include <device/device.h>
19 #include <device/pci.h>
20 #include <device/pci_ids.h>
21 #include <device/pcix.h>
22 #include <device/pciexp.h>
23 #include <lib.h>
24 #include <pc80/i8259.h>
25 #include <security/vboot/vbnv.h>
26 #include <timestamp.h>
27 #include <types.h>
29 u8 pci_moving_config8(struct device *dev, unsigned int reg)
31 u8 value, ones, zeroes;
33 value = pci_read_config8(dev, reg);
35 pci_write_config8(dev, reg, 0xff);
36 ones = pci_read_config8(dev, reg);
38 pci_write_config8(dev, reg, 0x00);
39 zeroes = pci_read_config8(dev, reg);
41 pci_write_config8(dev, reg, value);
43 return ones ^ zeroes;
46 u16 pci_moving_config16(struct device *dev, unsigned int reg)
48 u16 value, ones, zeroes;
50 value = pci_read_config16(dev, reg);
52 pci_write_config16(dev, reg, 0xffff);
53 ones = pci_read_config16(dev, reg);
55 pci_write_config16(dev, reg, 0x0000);
56 zeroes = pci_read_config16(dev, reg);
58 pci_write_config16(dev, reg, value);
60 return ones ^ zeroes;
63 u32 pci_moving_config32(struct device *dev, unsigned int reg)
65 u32 value, ones, zeroes;
67 value = pci_read_config32(dev, reg);
69 pci_write_config32(dev, reg, 0xffffffff);
70 ones = pci_read_config32(dev, reg);
72 pci_write_config32(dev, reg, 0x00000000);
73 zeroes = pci_read_config32(dev, reg);
75 pci_write_config32(dev, reg, value);
77 return ones ^ zeroes;
80 /**
81 * Given a device and register, read the size of the BAR for that register.
83 * @param dev Pointer to the device structure.
84 * @param index Address of the PCI configuration register.
85 * @return TODO
87 struct resource *pci_get_resource(struct device *dev, unsigned long index)
89 struct resource *resource;
90 unsigned long value, attr;
91 resource_t moving, limit;
93 /* Initialize the resources to nothing. */
94 resource = new_resource(dev, index);
96 /* Get the initial value. */
97 value = pci_read_config32(dev, index);
99 /* See which bits move. */
100 moving = pci_moving_config32(dev, index);
102 /* Initialize attr to the bits that do not move. */
103 attr = value & ~moving;
105 /* If it is a 64bit resource look at the high half as well. */
106 if (((attr & PCI_BASE_ADDRESS_SPACE_IO) == 0) &&
107 ((attr & PCI_BASE_ADDRESS_MEM_LIMIT_MASK) ==
108 PCI_BASE_ADDRESS_MEM_LIMIT_64)) {
109 /* Find the high bits that move. */
110 moving |=
111 ((resource_t)pci_moving_config32(dev, index + 4)) << 32;
114 /* Find the resource constraints.
115 * Start by finding the bits that move. From there:
116 * - Size is the least significant bit of the bits that move.
117 * - Limit is all of the bits that move plus all of the lower bits.
118 * See PCI Spec 6.2.5.1.
120 limit = 0;
121 if (moving) {
122 resource->size = 1;
123 resource->align = resource->gran = 0;
124 while (!(moving & resource->size)) {
125 resource->size <<= 1;
126 resource->align += 1;
127 resource->gran += 1;
129 resource->limit = limit = moving | (resource->size - 1);
131 if (pci_base_address_is_memory_space(attr)) {
132 /* Page-align to allow individual mapping of devices. */
133 if (resource->align < 12)
134 resource->align = 12;
139 * Some broken hardware has read-only registers that do not
140 * really size correctly.
142 * Example: the Acer M7229 has BARs 1-4 normally read-only,
143 * so BAR1 at offset 0x10 reads 0x1f1. If you size that register
144 * by writing 0xffffffff to it, it will read back as 0x1f1 -- which
145 * is a violation of the spec.
147 * We catch this case and ignore it by observing which bits move.
149 * This also catches the common case of unimplemented registers
150 * that always read back as 0.
152 if (moving == 0) {
153 if (value != 0) {
154 printk(BIOS_DEBUG, "%s register %02lx(%08lx), read-only ignoring it\n",
155 dev_path(dev), index, value);
157 resource->flags = 0;
158 } else if (attr & PCI_BASE_ADDRESS_SPACE_IO) {
159 /* An I/O mapped base address. */
160 resource->flags |= IORESOURCE_IO;
161 /* I don't want to deal with 32bit I/O resources. */
162 resource->limit = 0xffff;
163 } else {
164 /* A Memory mapped base address. */
165 attr &= PCI_BASE_ADDRESS_MEM_ATTR_MASK;
166 resource->flags |= IORESOURCE_MEM;
167 if (attr & PCI_BASE_ADDRESS_MEM_PREFETCH) {
168 resource->flags |= IORESOURCE_PREFETCH;
169 if (CONFIG(PCIEXP_HOTPLUG_PREFETCH_MEM_ABOVE_4G)
170 && dev_path_hotplug(dev))
171 resource->flags |= IORESOURCE_ABOVE_4G;
173 attr &= PCI_BASE_ADDRESS_MEM_LIMIT_MASK;
174 if (attr == PCI_BASE_ADDRESS_MEM_LIMIT_32) {
175 /* 32bit limit. */
176 resource->limit = 0xffffffffUL;
177 } else if (attr == PCI_BASE_ADDRESS_MEM_LIMIT_1M) {
178 /* 1MB limit. */
179 resource->limit = 0x000fffffUL;
180 } else if (attr == PCI_BASE_ADDRESS_MEM_LIMIT_64) {
181 /* 64bit limit. */
182 resource->limit = 0xffffffffffffffffULL;
183 resource->flags |= IORESOURCE_PCI64;
184 } else {
185 /* Invalid value. */
186 printk(BIOS_ERR, "Broken BAR with value %lx\n", attr);
187 printk(BIOS_ERR, " on dev %s at index %02lx\n",
188 dev_path(dev), index);
189 resource->flags = 0;
193 /* Don't let the limit exceed which bits can move. */
194 if (resource->limit > limit)
195 resource->limit = limit;
197 return resource;
201 * Given a device and an index, read the size of the BAR for that register.
203 * @param dev Pointer to the device structure.
204 * @param index Address of the PCI configuration register.
206 static void pci_get_rom_resource(struct device *dev, unsigned long index)
208 struct resource *resource;
209 unsigned long value;
210 resource_t moving;
212 /* Initialize the resources to nothing. */
213 resource = new_resource(dev, index);
215 /* Get the initial value. */
216 value = pci_read_config32(dev, index);
218 /* See which bits move. */
219 moving = pci_moving_config32(dev, index);
221 /* Clear the Enable bit. */
222 moving = moving & ~PCI_ROM_ADDRESS_ENABLE;
224 /* Find the resource constraints.
225 * Start by finding the bits that move. From there:
226 * - Size is the least significant bit of the bits that move.
227 * - Limit is all of the bits that move plus all of the lower bits.
228 * See PCI Spec 6.2.5.1.
230 if (moving) {
231 resource->size = 1;
232 resource->align = resource->gran = 0;
233 while (!(moving & resource->size)) {
234 resource->size <<= 1;
235 resource->align += 1;
236 resource->gran += 1;
238 resource->limit = moving | (resource->size - 1);
239 resource->flags |= IORESOURCE_MEM | IORESOURCE_READONLY;
240 } else {
241 if (value != 0) {
242 printk(BIOS_DEBUG, "%s register %02lx(%08lx), read-only ignoring it\n",
243 dev_path(dev), index, value);
245 resource->flags = 0;
247 compact_resources(dev);
251 * Given a device, read the size of the MSI-X table.
253 * @param dev Pointer to the device structure.
254 * @return MSI-X table size or 0 if not MSI-X capable device
256 size_t pci_msix_table_size(struct device *dev)
258 const size_t pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
259 if (!pos)
260 return 0;
262 const u16 control = pci_read_config16(dev, pos + PCI_MSIX_FLAGS);
263 return (control & PCI_MSIX_FLAGS_QSIZE) + 1;
267 * Given a device, return the table offset and bar the MSI-X tables resides in.
269 * @param dev Pointer to the device structure.
270 * @param offset Returned value gives the offset in bytes inside the PCI BAR.
271 * @param idx The returned value is the index of the PCI_BASE_ADDRESS register
272 * the MSI-X table is located in.
273 * @return Zero on success
275 int pci_msix_table_bar(struct device *dev, u32 *offset, u8 *idx)
277 const size_t pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
278 if (!pos || !offset || !idx)
279 return 1;
281 *offset = pci_read_config32(dev, pos + PCI_MSIX_TABLE);
282 *idx = (u8)(*offset & PCI_MSIX_PBA_BIR);
283 *offset &= PCI_MSIX_PBA_OFFSET;
285 return 0;
289 * Given a device, return a msix_entry pointer or NULL if no table was found.
291 * @param dev Pointer to the device structure.
293 * @return NULL on error
295 struct msix_entry *pci_msix_get_table(struct device *dev)
297 struct resource *res;
298 u32 offset;
299 u8 idx;
301 if (pci_msix_table_bar(dev, &offset, &idx))
302 return NULL;
304 if (idx > 5)
305 return NULL;
307 res = probe_resource(dev, idx * 4 + PCI_BASE_ADDRESS_0);
308 if (!res || !res->base || offset >= res->size)
309 return NULL;
311 if ((res->flags & IORESOURCE_PCI64) &&
312 (uintptr_t)res->base != res->base)
313 return NULL;
315 return (struct msix_entry *)((uintptr_t)res->base + offset);
318 static unsigned int get_rebar_offset(const struct device *dev, unsigned long index)
320 uint32_t offset = pciexp_find_extended_cap(dev, PCIE_EXT_CAP_RESIZABLE_BAR, 0);
321 if (!offset)
322 return 0;
324 /* Convert PCI_BASE_ADDRESS_0, ..._1, ..._2 into 0, 1, 2... */
325 const unsigned int find_bar_idx = (index - PCI_BASE_ADDRESS_0) /
326 sizeof(uint32_t);
328 /* Although all of the Resizable BAR Control Registers contain an
329 "NBARs" field, it is only valid in the Control Register for BAR 0 */
330 const uint32_t rebar_ctrl0 = pci_read_config32(dev, offset + PCI_REBAR_CTRL_OFFSET);
331 const unsigned int nbars = (rebar_ctrl0 & PCI_REBAR_CTRL_NBARS_MASK) >>
332 PCI_REBAR_CTRL_NBARS_SHIFT;
334 for (unsigned int i = 0; i < nbars; i++, offset += sizeof(uint64_t)) {
335 const uint32_t rebar_ctrl = pci_read_config32(
336 dev, offset + PCI_REBAR_CTRL_OFFSET);
337 const uint32_t bar_idx = rebar_ctrl & PCI_REBAR_CTRL_IDX_MASK;
338 if (bar_idx == find_bar_idx)
339 return offset;
342 return 0;
345 /* Bit 20 = 1 MiB, bit 21 = 2 MiB, bit 22 = 4 MiB, ... bit 63 = 8 EiB */
346 static uint64_t get_rebar_sizes_mask(const struct device *dev,
347 unsigned long index)
349 uint64_t size_mask = 0ULL;
350 const uint32_t offset = get_rebar_offset(dev, index);
351 if (!offset)
352 return 0;
354 /* Get 1 MB - 128 TB support from CAP register */
355 const uint32_t cap = pci_read_config32(dev, offset + PCI_REBAR_CAP_OFFSET);
356 /* Shift the bits from 4-31 to 0-27 (i.e., down by 4 bits) */
357 size_mask |= ((cap & PCI_REBAR_CAP_SIZE_MASK) >> 4);
359 /* Get 256 TB - 8 EB support from CTRL register and store it in bits 28-43 */
360 const uint64_t ctrl = pci_read_config32(dev, offset + PCI_REBAR_CTRL_OFFSET);
361 /* Shift ctrl mask from bit 16 to bit 28, so that the two
362 masks (fom cap and ctrl) form a contiguous bitmask when
363 concatenated (i.e., up by 12 bits). */
364 size_mask |= ((ctrl & PCI_REBAR_CTRL_SIZE_MASK) << 12);
366 /* Now that the mask occupies bits 0-43, shift it up to 20-63, so they
367 represent the actual powers of 2. */
368 return size_mask << 20;
371 static void pci_store_rebar_size(const struct device *dev,
372 const struct resource *resource)
374 const unsigned int num_bits = __fls64(resource->size);
375 const uint32_t offset = get_rebar_offset(dev, resource->index);
376 if (!offset)
377 return;
379 pci_update_config32(dev, offset + PCI_REBAR_CTRL_OFFSET,
380 ~PCI_REBAR_CTRL_SIZE_MASK,
381 num_bits << PCI_REBAR_CTRL_SIZE_SHIFT);
384 static void configure_adjustable_base(const struct device *dev,
385 unsigned long index,
386 struct resource *res)
389 * Excerpt from an implementation note from the PCIe spec:
391 * System software uses this capability in place of the above mentioned
392 * method of determining the resource size[0], and prior to assigning
393 * the base address to the BAR. Potential usable resource sizes are
394 * reported by the Function via its Resizable BAR Capability and Control
395 * registers. It is intended that the software allocate the largest of
396 * the reported sizes that it can, since allocating less address space
397 * than the largest reported size can result in lower
398 * performance. Software then writes the size to the Resizable BAR
399 * Control register for the appropriate BAR for the Function. Following
400 * this, the base address is written to the BAR.
402 * [0] Referring to using the moving bits in the BAR to determine the
403 * requested size of the MMIO region
405 const uint64_t size_mask = get_rebar_sizes_mask(dev, index);
406 if (!size_mask)
407 return;
409 int max_requested_bits = __fls64(size_mask);
410 if (max_requested_bits > CONFIG_PCIEXP_DEFAULT_MAX_RESIZABLE_BAR_BITS) {
411 printk(BIOS_WARNING, "Device %s requests a BAR with"
412 " %u bits of address space, which coreboot is not"
413 " configured to hand out, truncating to %u bits\n",
414 dev_path(dev), max_requested_bits,
415 CONFIG_PCIEXP_DEFAULT_MAX_RESIZABLE_BAR_BITS);
416 max_requested_bits = CONFIG_PCIEXP_DEFAULT_MAX_RESIZABLE_BAR_BITS;
419 if (!(res->flags & IORESOURCE_PCI64) && max_requested_bits > 32) {
420 printk(BIOS_ERR, "Resizable BAR requested"
421 " above 32 bits, but PCI function reported a"
422 " 32-bit BAR.");
423 return;
426 /* Configure the resource parameters for the adjustable BAR */
427 res->size = 1ULL << max_requested_bits;
428 res->align = max_requested_bits;
429 res->gran = max_requested_bits;
430 res->limit = (res->flags & IORESOURCE_PCI64) ? UINT64_MAX : UINT32_MAX;
431 res->flags |= (res->flags & IORESOURCE_PCI64) ?
432 IORESOURCE_PCIE_RESIZABLE_BAR | IORESOURCE_ABOVE_4G :
433 IORESOURCE_PCIE_RESIZABLE_BAR;
435 printk(BIOS_INFO, "%s: Adjusting resource index %lu: base: %llx size: %llx "
436 "align: %d gran: %d limit: %llx\n",
437 dev_path(dev), res->index, res->base, res->size,
438 res->align, res->gran, res->limit);
442 * Read the base address registers for a given device.
444 * @param dev Pointer to the dev structure.
445 * @param howmany How many registers to read (6 for device, 2 for bridge).
447 static void pci_read_bases(struct device *dev, unsigned int howmany)
449 unsigned long index;
451 for (index = PCI_BASE_ADDRESS_0;
452 (index < PCI_BASE_ADDRESS_0 + (howmany << 2));) {
453 struct resource *resource;
454 resource = pci_get_resource(dev, index);
456 const bool is_pcie = pci_find_capability(dev, PCI_CAP_ID_PCIE) != 0;
457 if (CONFIG(PCIEXP_SUPPORT_RESIZABLE_BARS) && is_pcie)
458 configure_adjustable_base(dev, index, resource);
460 index += (resource->flags & IORESOURCE_PCI64) ? 8 : 4;
463 compact_resources(dev);
466 static void pci_record_bridge_resource(struct device *dev, resource_t moving,
467 unsigned int index, unsigned long type)
469 struct resource *resource;
470 unsigned long gran;
471 resource_t step;
473 resource = NULL;
475 if (!moving)
476 return;
478 /* Initialize the constraints on the current bus. */
479 resource = new_resource(dev, index);
480 resource->size = 0;
481 gran = 0;
482 step = 1;
483 while ((moving & step) == 0) {
484 gran += 1;
485 step <<= 1;
487 resource->gran = gran;
488 resource->align = gran;
489 resource->limit = moving | (step - 1);
490 resource->flags = type | IORESOURCE_PCI_BRIDGE |
491 IORESOURCE_BRIDGE;
494 static void pci_bridge_read_bases(struct device *dev)
496 resource_t moving_base, moving_limit, moving;
498 /* See if the bridge I/O resources are implemented. */
499 moving_base = ((u32)pci_moving_config8(dev, PCI_IO_BASE)) << 8;
500 moving_base |=
501 ((u32)pci_moving_config16(dev, PCI_IO_BASE_UPPER16)) << 16;
503 moving_limit = ((u32)pci_moving_config8(dev, PCI_IO_LIMIT)) << 8;
504 moving_limit |=
505 ((u32)pci_moving_config16(dev, PCI_IO_LIMIT_UPPER16)) << 16;
507 moving = moving_base & moving_limit;
509 /* Initialize the I/O space constraints on the current bus. */
510 pci_record_bridge_resource(dev, moving, PCI_IO_BASE, IORESOURCE_IO);
512 /* See if the bridge prefmem resources are implemented. */
513 moving_base =
514 ((resource_t)pci_moving_config16(dev, PCI_PREF_MEMORY_BASE)) << 16;
515 moving_base |=
516 ((resource_t)pci_moving_config32(dev, PCI_PREF_BASE_UPPER32)) << 32;
518 moving_limit =
519 ((resource_t)pci_moving_config16(dev, PCI_PREF_MEMORY_LIMIT)) << 16;
520 moving_limit |=
521 ((resource_t)pci_moving_config32(dev, PCI_PREF_LIMIT_UPPER32)) << 32;
523 moving = moving_base & moving_limit;
524 /* Initialize the prefetchable memory constraints on the current bus. */
525 pci_record_bridge_resource(dev, moving, PCI_PREF_MEMORY_BASE,
526 IORESOURCE_MEM | IORESOURCE_PREFETCH);
528 /* See if the bridge mem resources are implemented. */
529 moving_base = ((u32)pci_moving_config16(dev, PCI_MEMORY_BASE)) << 16;
530 moving_limit = ((u32)pci_moving_config16(dev, PCI_MEMORY_LIMIT)) << 16;
532 moving = moving_base & moving_limit;
534 /* Initialize the memory resources on the current bus. */
535 pci_record_bridge_resource(dev, moving, PCI_MEMORY_BASE,
536 IORESOURCE_MEM);
538 compact_resources(dev);
541 void pci_dev_read_resources(struct device *dev)
543 pci_read_bases(dev, 6);
544 pci_get_rom_resource(dev, PCI_ROM_ADDRESS);
547 void pci_bus_read_resources(struct device *dev)
549 pci_bridge_read_bases(dev);
550 pci_read_bases(dev, 2);
551 pci_get_rom_resource(dev, PCI_ROM_ADDRESS1);
554 void pci_domain_read_resources(struct device *dev)
556 struct resource *res;
558 /* Initialize the system-wide I/O space constraints. */
559 res = new_resource(dev, IOINDEX_SUBTRACTIVE(0, 0));
560 res->limit = 0xffffUL;
561 res->flags = IORESOURCE_IO | IORESOURCE_SUBTRACTIVE |
562 IORESOURCE_ASSIGNED;
564 /* Initialize the system-wide memory resources constraints. */
565 res = new_resource(dev, IOINDEX_SUBTRACTIVE(1, 0));
566 res->limit = (1ULL << cpu_phys_address_size()) - 1;
567 res->flags = IORESOURCE_MEM | IORESOURCE_SUBTRACTIVE |
568 IORESOURCE_ASSIGNED;
571 void pci_domain_set_resources(struct device *dev)
573 assign_resources(dev->link_list);
576 static void pci_store_resource(const struct device *const dev,
577 const struct resource *const resource)
579 unsigned long base_lo, base_hi;
581 base_lo = resource->base & 0xffffffff;
582 base_hi = (resource->base >> 32) & 0xffffffff;
585 * Some chipsets allow us to set/clear the I/O bit
586 * (e.g. VIA 82C686A). So set it to be safe.
588 if (resource->flags & IORESOURCE_IO)
589 base_lo |= PCI_BASE_ADDRESS_SPACE_IO;
591 pci_write_config32(dev, resource->index, base_lo);
592 if (resource->flags & IORESOURCE_PCI64)
593 pci_write_config32(dev, resource->index + 4, base_hi);
596 static void pci_store_bridge_resource(const struct device *const dev,
597 struct resource *const resource)
599 resource_t base, end;
602 * PCI bridges have no enable bit. They are disabled if the base of
603 * the range is greater than the limit. If the size is zero, disable
604 * by setting the base = limit and end = limit - 2^gran.
606 if (resource->size == 0) {
607 base = resource->limit;
608 end = resource->limit - (1 << resource->gran);
609 resource->base = base;
610 } else {
611 base = resource->base;
612 end = resource_end(resource);
615 if (resource->index == PCI_IO_BASE) {
616 /* Set the I/O ranges. */
617 pci_write_config8(dev, PCI_IO_BASE, base >> 8);
618 pci_write_config16(dev, PCI_IO_BASE_UPPER16, base >> 16);
619 pci_write_config8(dev, PCI_IO_LIMIT, end >> 8);
620 pci_write_config16(dev, PCI_IO_LIMIT_UPPER16, end >> 16);
621 } else if (resource->index == PCI_MEMORY_BASE) {
622 /* Set the memory range. */
623 pci_write_config16(dev, PCI_MEMORY_BASE, base >> 16);
624 pci_write_config16(dev, PCI_MEMORY_LIMIT, end >> 16);
625 } else if (resource->index == PCI_PREF_MEMORY_BASE) {
626 /* Set the prefetchable memory range. */
627 pci_write_config16(dev, PCI_PREF_MEMORY_BASE, base >> 16);
628 pci_write_config32(dev, PCI_PREF_BASE_UPPER32, base >> 32);
629 pci_write_config16(dev, PCI_PREF_MEMORY_LIMIT, end >> 16);
630 pci_write_config32(dev, PCI_PREF_LIMIT_UPPER32, end >> 32);
631 } else {
632 /* Don't let me think I stored the resource. */
633 resource->flags &= ~IORESOURCE_STORED;
634 printk(BIOS_ERR, "invalid resource->index %lx\n", resource->index);
638 static void pci_set_resource(struct device *dev, struct resource *resource)
640 /* Make certain the resource has actually been assigned a value. */
641 if (!(resource->flags & IORESOURCE_ASSIGNED)) {
642 if (resource->flags & IORESOURCE_BRIDGE) {
643 /* If a bridge resource has no value assigned,
644 we can treat it like an empty resource. */
645 resource->size = 0;
646 } else {
647 printk(BIOS_ERR, "%s %02lx %s size: 0x%010llx not assigned\n",
648 dev_path(dev), resource->index,
649 resource_type(resource), resource->size);
650 return;
654 /* If this resource is fixed don't worry about it. */
655 if (resource->flags & IORESOURCE_FIXED)
656 return;
658 /* If I have already stored this resource don't worry about it. */
659 if (resource->flags & IORESOURCE_STORED)
660 return;
662 /* If the resource is subtractive don't worry about it. */
663 if (resource->flags & IORESOURCE_SUBTRACTIVE)
664 return;
666 /* Only handle PCI memory and I/O resources for now. */
667 if (!(resource->flags & (IORESOURCE_MEM | IORESOURCE_IO)))
668 return;
670 /* Enable the resources in the command register. */
671 if (resource->size) {
672 if (resource->flags & IORESOURCE_MEM)
673 dev->command |= PCI_COMMAND_MEMORY;
674 if (resource->flags & IORESOURCE_IO)
675 dev->command |= PCI_COMMAND_IO;
676 if (resource->flags & IORESOURCE_PCI_BRIDGE &&
677 CONFIG(PCI_SET_BUS_MASTER_PCI_BRIDGES))
678 dev->command |= PCI_COMMAND_MASTER;
681 /* Now store the resource. */
682 resource->flags |= IORESOURCE_STORED;
684 if (!(resource->flags & IORESOURCE_PCI_BRIDGE)) {
685 if (CONFIG(PCIEXP_SUPPORT_RESIZABLE_BARS) &&
686 (resource->flags & IORESOURCE_PCIE_RESIZABLE_BAR))
687 pci_store_rebar_size(dev, resource);
689 pci_store_resource(dev, resource);
691 } else {
692 pci_store_bridge_resource(dev, resource);
695 report_resource_stored(dev, resource, "");
698 void pci_dev_set_resources(struct device *dev)
700 struct resource *res;
701 struct bus *bus;
702 u8 line;
704 for (res = dev->resource_list; res; res = res->next)
705 pci_set_resource(dev, res);
707 for (bus = dev->link_list; bus; bus = bus->next) {
708 if (bus->children)
709 assign_resources(bus);
712 /* Set a default latency timer. */
713 pci_write_config8(dev, PCI_LATENCY_TIMER, 0x40);
715 /* Set a default secondary latency timer. */
716 if ((dev->hdr_type & 0x7f) == PCI_HEADER_TYPE_BRIDGE)
717 pci_write_config8(dev, PCI_SEC_LATENCY_TIMER, 0x40);
719 /* Zero the IRQ settings. */
720 line = pci_read_config8(dev, PCI_INTERRUPT_PIN);
721 if (line)
722 pci_write_config8(dev, PCI_INTERRUPT_LINE, 0);
724 /* Set the cache line size, so far 64 bytes is good for everyone. */
725 pci_write_config8(dev, PCI_CACHE_LINE_SIZE, 64 >> 2);
728 void pci_dev_enable_resources(struct device *dev)
730 const struct pci_operations *ops = NULL;
731 u16 command;
733 /* Set the subsystem vendor and device ID for mainboard devices. */
734 if (dev->ops)
735 ops = dev->ops->ops_pci;
736 if (dev->on_mainboard && ops && ops->set_subsystem) {
737 if (CONFIG_SUBSYSTEM_VENDOR_ID)
738 dev->subsystem_vendor = CONFIG_SUBSYSTEM_VENDOR_ID;
739 else if (!dev->subsystem_vendor)
740 dev->subsystem_vendor = pci_read_config16(dev,
741 PCI_VENDOR_ID);
742 if (CONFIG_SUBSYSTEM_DEVICE_ID)
743 dev->subsystem_device = CONFIG_SUBSYSTEM_DEVICE_ID;
744 else if (!dev->subsystem_device)
745 dev->subsystem_device = pci_read_config16(dev,
746 PCI_DEVICE_ID);
748 printk(BIOS_DEBUG, "%s subsystem <- %04x/%04x\n",
749 dev_path(dev), dev->subsystem_vendor,
750 dev->subsystem_device);
751 ops->set_subsystem(dev, dev->subsystem_vendor,
752 dev->subsystem_device);
754 command = pci_read_config16(dev, PCI_COMMAND);
755 command |= dev->command;
757 /* v3 has
758 * command |= (PCI_COMMAND_PARITY + PCI_COMMAND_SERR); // Error check.
761 printk(BIOS_DEBUG, "%s cmd <- %02x\n", dev_path(dev), command);
762 pci_write_config16(dev, PCI_COMMAND, command);
765 void pci_bus_enable_resources(struct device *dev)
767 u16 ctrl;
770 * Enable I/O in command register if there is VGA card
771 * connected with (even it does not claim I/O resource).
773 if (dev->link_list->bridge_ctrl & PCI_BRIDGE_CTL_VGA)
774 dev->command |= PCI_COMMAND_IO;
775 ctrl = pci_read_config16(dev, PCI_BRIDGE_CONTROL);
776 ctrl |= dev->link_list->bridge_ctrl;
777 ctrl |= (PCI_BRIDGE_CTL_PARITY | PCI_BRIDGE_CTL_SERR); /* Error check. */
778 printk(BIOS_DEBUG, "%s bridge ctrl <- %04x\n", dev_path(dev), ctrl);
779 pci_write_config16(dev, PCI_BRIDGE_CONTROL, ctrl);
781 pci_dev_enable_resources(dev);
784 void pci_bus_reset(struct bus *bus)
786 u16 ctl;
788 ctl = pci_read_config16(bus->dev, PCI_BRIDGE_CONTROL);
789 ctl |= PCI_BRIDGE_CTL_BUS_RESET;
790 pci_write_config16(bus->dev, PCI_BRIDGE_CONTROL, ctl);
791 mdelay(10);
793 ctl &= ~PCI_BRIDGE_CTL_BUS_RESET;
794 pci_write_config16(bus->dev, PCI_BRIDGE_CONTROL, ctl);
795 delay(1);
798 void pci_dev_set_subsystem(struct device *dev, unsigned int vendor,
799 unsigned int device)
801 uint8_t offset;
803 /* Header type */
804 switch (dev->hdr_type & 0x7f) {
805 case PCI_HEADER_TYPE_NORMAL:
806 offset = PCI_SUBSYSTEM_VENDOR_ID;
807 break;
808 case PCI_HEADER_TYPE_BRIDGE:
809 offset = pci_find_capability(dev, PCI_CAP_ID_SSVID);
810 if (!offset)
811 return;
812 offset += 4; /* Vendor ID at offset 4 */
813 break;
814 case PCI_HEADER_TYPE_CARDBUS:
815 offset = PCI_CB_SUBSYSTEM_VENDOR_ID;
816 break;
817 default:
818 return;
821 if (!vendor || !device) {
822 pci_write_config32(dev, offset,
823 pci_read_config32(dev, PCI_VENDOR_ID));
824 } else {
825 pci_write_config32(dev, offset,
826 ((device & 0xffff) << 16) | (vendor & 0xffff));
830 static int should_run_oprom(struct device *dev, struct rom_header *rom)
832 static int should_run = -1;
834 if (CONFIG(VENDORCODE_ELTAN_VBOOT))
835 if (rom != NULL)
836 if (!verified_boot_should_run_oprom(rom))
837 return 0;
839 if (should_run >= 0)
840 return should_run;
842 if (CONFIG(ALWAYS_RUN_OPROM)) {
843 should_run = 1;
844 return should_run;
847 /* Don't run VGA option ROMs, unless we have to print
848 * something on the screen before the kernel is loaded.
850 should_run = display_init_required();
852 if (!should_run)
853 printk(BIOS_DEBUG, "Not running VGA Option ROM\n");
854 return should_run;
857 static int should_load_oprom(struct device *dev)
859 /* If S3_VGA_ROM_RUN is disabled, skip running VGA option
860 * ROMs when coming out of an S3 resume.
862 if (!CONFIG(S3_VGA_ROM_RUN) && acpi_is_wakeup_s3() &&
863 ((dev->class >> 8) == PCI_CLASS_DISPLAY_VGA))
864 return 0;
865 if (CONFIG(ALWAYS_LOAD_OPROM))
866 return 1;
867 if (should_run_oprom(dev, NULL))
868 return 1;
870 return 0;
873 static void oprom_pre_graphics_stall(void)
875 if (CONFIG_PRE_GRAPHICS_DELAY_MS)
876 mdelay(CONFIG_PRE_GRAPHICS_DELAY_MS);
879 /** Default handler: only runs the relevant PCI BIOS. */
880 void pci_dev_init(struct device *dev)
882 struct rom_header *rom, *ram;
884 if (!CONFIG(VGA_ROM_RUN))
885 return;
887 /* Only execute VGA ROMs. */
888 if (((dev->class >> 8) != PCI_CLASS_DISPLAY_VGA))
889 return;
891 if (!should_load_oprom(dev))
892 return;
893 timestamp_add_now(TS_OPROM_INITIALIZE);
895 rom = pci_rom_probe(dev);
896 if (rom == NULL)
897 return;
899 ram = pci_rom_load(dev, rom);
900 if (ram == NULL)
901 return;
902 timestamp_add_now(TS_OPROM_COPY_END);
904 if (!should_run_oprom(dev, rom))
905 return;
907 /* Wait for any configured pre-graphics delay */
908 oprom_pre_graphics_stall();
910 run_bios(dev, (unsigned long)ram);
912 gfx_set_init_done(1);
913 printk(BIOS_DEBUG, "VGA Option ROM was run\n");
914 timestamp_add_now(TS_OPROM_END);
917 /** Default device operation for PCI devices */
918 struct pci_operations pci_dev_ops_pci = {
919 .set_subsystem = pci_dev_set_subsystem,
922 struct device_operations default_pci_ops_dev = {
923 .read_resources = pci_dev_read_resources,
924 .set_resources = pci_dev_set_resources,
925 .enable_resources = pci_dev_enable_resources,
926 #if CONFIG(HAVE_ACPI_TABLES)
927 .write_acpi_tables = pci_rom_write_acpi_tables,
928 .acpi_fill_ssdt = pci_rom_ssdt,
929 #endif
930 .init = pci_dev_init,
931 .ops_pci = &pci_dev_ops_pci,
934 /** Default device operations for PCI bridges */
935 struct device_operations default_pci_ops_bus = {
936 .read_resources = pci_bus_read_resources,
937 .set_resources = pci_dev_set_resources,
938 .enable_resources = pci_bus_enable_resources,
939 .scan_bus = pci_scan_bridge,
940 .reset_bus = pci_bus_reset,
943 /** Default device operations for PCI devices marked 'hidden' */
944 static struct device_operations default_hidden_pci_ops_dev = {
945 .read_resources = noop_read_resources,
946 .set_resources = noop_set_resources,
947 .scan_bus = scan_static_bus,
951 * Check for compatibility to route legacy VGA cycles through a bridge.
953 * Originally, when decoding i/o ports for legacy VGA cycles, bridges
954 * should only consider the 10 least significant bits of the port address.
955 * This means all VGA registers were aliased every 1024 ports!
956 * e.g. 0x3b0 was also decoded as 0x7b0, 0xbb0 etc.
958 * To avoid this mess, a bridge control bit (VGA16) was introduced in
959 * 2003 to enable decoding of 16-bit port addresses. As we don't want
960 * to make this any more complex for now, we use this bit if possible
961 * and only warn if it's not supported (in set_vga_bridge_bits()).
963 static void pci_bridge_vga_compat(struct bus *const bus)
965 uint16_t bridge_ctrl;
967 bridge_ctrl = pci_read_config16(bus->dev, PCI_BRIDGE_CONTROL);
969 /* Ensure VGA decoding is disabled during probing (it should
970 be by default, but we run blobs nowadays) */
971 bridge_ctrl &= ~PCI_BRIDGE_CTL_VGA;
972 pci_write_config16(bus->dev, PCI_BRIDGE_CONTROL, bridge_ctrl);
974 /* If the upstream bridge doesn't support VGA16, we don't have to check */
975 bus->no_vga16 |= bus->dev->bus->no_vga16;
976 if (bus->no_vga16)
977 return;
979 /* Test if we can enable 16-bit decoding */
980 bridge_ctrl |= PCI_BRIDGE_CTL_VGA16;
981 pci_write_config16(bus->dev, PCI_BRIDGE_CONTROL, bridge_ctrl);
982 bridge_ctrl = pci_read_config16(bus->dev, PCI_BRIDGE_CONTROL);
984 bus->no_vga16 = !(bridge_ctrl & PCI_BRIDGE_CTL_VGA16);
988 * Detect the type of downstream bridge.
990 * This function is a heuristic to detect which type of bus is downstream
991 * of a PCI-to-PCI bridge. This functions by looking for various capability
992 * blocks to figure out the type of downstream bridge. PCI-X, PCI-E, and
993 * Hypertransport all seem to have appropriate capabilities.
995 * When only a PCI-Express capability is found the type is examined to see
996 * which type of bridge we have.
998 * @param dev Pointer to the device structure of the bridge.
999 * @return Appropriate bridge operations.
1001 static struct device_operations *get_pci_bridge_ops(struct device *dev)
1003 #if CONFIG(PCIX_PLUGIN_SUPPORT)
1004 unsigned int pcixpos;
1005 pcixpos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1006 if (pcixpos) {
1007 printk(BIOS_DEBUG, "%s subordinate bus PCI-X\n", dev_path(dev));
1008 return &default_pcix_ops_bus;
1010 #endif
1011 #if CONFIG(PCIEXP_PLUGIN_SUPPORT)
1012 unsigned int pciexpos;
1013 pciexpos = pci_find_capability(dev, PCI_CAP_ID_PCIE);
1014 if (pciexpos) {
1015 u16 flags;
1016 flags = pci_read_config16(dev, pciexpos + PCI_EXP_FLAGS);
1017 switch ((flags & PCI_EXP_FLAGS_TYPE) >> 4) {
1018 case PCI_EXP_TYPE_ROOT_PORT:
1019 case PCI_EXP_TYPE_UPSTREAM:
1020 case PCI_EXP_TYPE_DOWNSTREAM:
1021 printk(BIOS_DEBUG, "%s subordinate bus PCI Express\n",
1022 dev_path(dev));
1023 if (CONFIG(PCIEXP_HOTPLUG)) {
1024 u16 sltcap;
1025 sltcap = pci_read_config16(dev, pciexpos + PCI_EXP_SLTCAP);
1026 if (sltcap & PCI_EXP_SLTCAP_HPC) {
1027 printk(BIOS_DEBUG, "%s hot-plug capable\n",
1028 dev_path(dev));
1029 return &default_pciexp_hotplug_ops_bus;
1032 return &default_pciexp_ops_bus;
1033 case PCI_EXP_TYPE_PCI_BRIDGE:
1034 printk(BIOS_DEBUG, "%s subordinate PCI\n",
1035 dev_path(dev));
1036 return &default_pci_ops_bus;
1037 default:
1038 break;
1041 #endif
1042 return &default_pci_ops_bus;
1046 * Check if a device id matches a PCI driver entry.
1048 * The driver entry can either point at a zero terminated array of acceptable
1049 * device IDs, or include a single device ID.
1051 * @param driver pointer to the PCI driver entry being checked
1052 * @param device_id PCI device ID of the device being matched
1054 static int device_id_match(struct pci_driver *driver, unsigned short device_id)
1056 if (driver->devices) {
1057 unsigned short check_id;
1058 const unsigned short *device_list = driver->devices;
1059 while ((check_id = *device_list++) != 0)
1060 if (check_id == device_id)
1061 return 1;
1064 return (driver->device == device_id);
1068 * Set up PCI device operation.
1070 * Check if it already has a driver. If not, use find_device_operations(),
1071 * or set to a default based on type.
1073 * @param dev Pointer to the device whose pci_ops you want to set.
1074 * @see pci_drivers
1076 static void set_pci_ops(struct device *dev)
1078 struct pci_driver *driver;
1080 if (dev->ops)
1081 return;
1084 * Look through the list of setup drivers and find one for
1085 * this PCI device.
1087 for (driver = &_pci_drivers[0]; driver != &_epci_drivers[0]; driver++) {
1088 if ((driver->vendor == dev->vendor) &&
1089 device_id_match(driver, dev->device)) {
1090 dev->ops = (struct device_operations *)driver->ops;
1091 break;
1095 if (dev->ops) {
1096 printk(BIOS_SPEW, "%s [%04x/%04x] %sops\n", dev_path(dev),
1097 driver->vendor, driver->device, (driver->ops->scan_bus ? "bus " : ""));
1098 return;
1101 /* If I don't have a specific driver use the default operations. */
1102 switch (dev->hdr_type & 0x7f) { /* Header type */
1103 case PCI_HEADER_TYPE_NORMAL:
1104 if ((dev->class >> 8) == PCI_CLASS_BRIDGE_PCI)
1105 goto bad;
1106 dev->ops = &default_pci_ops_dev;
1107 break;
1108 case PCI_HEADER_TYPE_BRIDGE:
1109 if ((dev->class >> 8) != PCI_CLASS_BRIDGE_PCI)
1110 goto bad;
1111 dev->ops = get_pci_bridge_ops(dev);
1112 break;
1113 #if CONFIG(CARDBUS_PLUGIN_SUPPORT)
1114 case PCI_HEADER_TYPE_CARDBUS:
1115 dev->ops = &default_cardbus_ops_bus;
1116 break;
1117 #endif
1118 default:
1119 bad:
1120 if (dev->enabled) {
1121 printk(BIOS_ERR,
1122 "%s [%04x/%04x/%06x] has unknown header type %02x, ignoring.\n",
1123 dev_path(dev), dev->vendor, dev->device,
1124 dev->class >> 8, dev->hdr_type);
1130 * See if we have already allocated a device structure for a given devfn.
1132 * Given a PCI bus structure and a devfn number, find the device structure
1133 * corresponding to the devfn, if present. Then move the device structure
1134 * as the last child on the bus.
1136 * @param bus Pointer to the bus structure.
1137 * @param devfn A device/function number.
1138 * @return Pointer to the device structure found or NULL if we have not
1139 * allocated a device for this devfn yet.
1141 static struct device *pci_scan_get_dev(struct bus *bus, unsigned int devfn)
1143 struct device *dev, **prev;
1145 prev = &bus->children;
1146 for (dev = bus->children; dev; dev = dev->sibling) {
1147 if (dev->path.type == DEVICE_PATH_PCI && dev->path.pci.devfn == devfn) {
1148 /* Unlink from the list. */
1149 *prev = dev->sibling;
1150 dev->sibling = NULL;
1151 break;
1153 prev = &dev->sibling;
1157 * Just like alloc_dev() add the device to the list of devices on the
1158 * bus. When the list of devices was formed we removed all of the
1159 * parents children, and now we are interleaving static and dynamic
1160 * devices in order on the bus.
1162 if (dev) {
1163 struct device *child;
1165 /* Find the last child on the bus. */
1166 for (child = bus->children; child && child->sibling;)
1167 child = child->sibling;
1169 /* Place the device as last on the bus. */
1170 if (child)
1171 child->sibling = dev;
1172 else
1173 bus->children = dev;
1176 return dev;
1180 * Scan a PCI bus.
1182 * Determine the existence of a given PCI device. Allocate a new struct device
1183 * if dev==NULL was passed in and the device exists in hardware.
1185 * @param dev Pointer to the dev structure.
1186 * @param bus Pointer to the bus structure.
1187 * @param devfn A device/function number to look at.
1188 * @return The device structure for the device (if found), NULL otherwise.
1190 struct device *pci_probe_dev(struct device *dev, struct bus *bus,
1191 unsigned int devfn)
1193 u32 id, class;
1194 u8 hdr_type;
1196 /* Detect if a device is present. */
1197 if (!dev) {
1198 struct device dummy;
1200 dummy.bus = bus;
1201 dummy.path.type = DEVICE_PATH_PCI;
1202 dummy.path.pci.devfn = devfn;
1204 id = pci_read_config32(&dummy, PCI_VENDOR_ID);
1206 * Have we found something? Some broken boards return 0 if a
1207 * slot is empty, but the expected answer is 0xffffffff.
1209 if (id == 0xffffffff)
1210 return NULL;
1212 if ((id == 0x00000000) || (id == 0x0000ffff) ||
1213 (id == 0xffff0000)) {
1214 printk(BIOS_SPEW, "%s, bad id 0x%x\n",
1215 dev_path(&dummy), id);
1216 return NULL;
1218 dev = alloc_dev(bus, &dummy.path);
1219 } else {
1221 * Enable/disable the device. Once we have found the device-
1222 * specific operations this operations we will disable the
1223 * device with those as well.
1225 * This is geared toward devices that have subfunctions
1226 * that do not show up by default.
1228 * If a device is a stuff option on the motherboard
1229 * it may be absent and enable_dev() must cope.
1231 /* Run the magic enable sequence for the device. */
1232 if (dev->chip_ops && dev->chip_ops->enable_dev)
1233 dev->chip_ops->enable_dev(dev);
1235 /* Now read the vendor and device ID. */
1236 id = pci_read_config32(dev, PCI_VENDOR_ID);
1239 * If the device does not have a PCI ID disable it. Possibly
1240 * this is because we have already disabled the device. But
1241 * this also handles optional devices that may not always
1242 * show up.
1244 /* If the chain is fully enumerated quit */
1245 if ((id == 0xffffffff) || (id == 0x00000000) ||
1246 (id == 0x0000ffff) || (id == 0xffff0000)) {
1247 if (dev->enabled) {
1248 printk(BIOS_INFO,
1249 "PCI: Static device %s not found, disabling it.\n",
1250 dev_path(dev));
1251 dev->enabled = 0;
1253 return dev;
1257 /* Read the rest of the PCI configuration information. */
1258 hdr_type = pci_read_config8(dev, PCI_HEADER_TYPE);
1259 class = pci_read_config32(dev, PCI_CLASS_REVISION);
1261 /* Store the interesting information in the device structure. */
1262 dev->vendor = id & 0xffff;
1263 dev->device = (id >> 16) & 0xffff;
1264 dev->hdr_type = hdr_type;
1266 /* Class code, the upper 3 bytes of PCI_CLASS_REVISION. */
1267 dev->class = class >> 8;
1269 /* Architectural/System devices always need to be bus masters. */
1270 if ((dev->class >> 16) == PCI_BASE_CLASS_SYSTEM &&
1271 CONFIG(PCI_ALLOW_BUS_MASTER_ANY_DEVICE))
1272 dev->command |= PCI_COMMAND_MASTER;
1275 * Look at the vendor and device ID, or at least the header type and
1276 * class and figure out which set of configuration methods to use.
1277 * Unless we already have some PCI ops.
1279 set_pci_ops(dev);
1281 /* Now run the magic enable/disable sequence for the device. */
1282 if (dev->ops && dev->ops->enable)
1283 dev->ops->enable(dev);
1285 /* Display the device. */
1286 printk(BIOS_DEBUG, "%s [%04x/%04x] %s%s\n", dev_path(dev),
1287 dev->vendor, dev->device, dev->enabled ? "enabled" : "disabled",
1288 dev->ops ? "" : " No operations");
1290 return dev;
1294 * Test for match between romstage and ramstage device instance.
1296 * @param dev Pointer to the device structure.
1297 * @param sdev Simple device model identifier, created with PCI_DEV().
1298 * @return Non-zero if bus:dev.fn of device matches.
1300 unsigned int pci_match_simple_dev(struct device *dev, pci_devfn_t sdev)
1302 return dev->bus->secondary == PCI_DEV2SEGBUS(sdev) &&
1303 dev->path.pci.devfn == PCI_DEV2DEVFN(sdev);
1307 * Test whether a capability is available along the whole path from the given
1308 * device to the host bridge.
1310 * @param dev Pointer to the device structure.
1311 * @param cap PCI_CAP_LIST_ID of the PCI capability we're looking for.
1312 * @return The next matching capability of the given device, if it is available
1313 * along the whole path, or zero if not.
1315 uint16_t pci_find_cap_recursive(const struct device *dev, uint16_t cap)
1317 assert(dev->bus);
1318 uint16_t pos = pci_find_capability(dev, cap);
1319 const struct device *bridge = dev->bus->dev;
1320 while (bridge && (bridge->path.type == DEVICE_PATH_PCI)) {
1321 assert(bridge->bus);
1322 if (!pci_find_capability(bridge, cap))
1323 return 0;
1324 bridge = bridge->bus->dev;
1326 return pos;
1330 * PCI devices that are marked as "hidden" do not get probed. However, the same
1331 * initialization logic is still performed as if it were. This is useful when
1332 * devices would like to be described in the devicetree.cb file, and/or present
1333 * static PCI resources to the allocator, but the platform firmware hides the
1334 * device (makes the device invisible to PCI enumeration) before PCI enumeration
1335 * takes place.
1337 * The expected semantics of PCI devices marked as 'hidden':
1338 * 1) The device is actually present under the specified BDF
1339 * 2) The device config space can still be accessed somehow, but the Vendor ID
1340 * indicates there is no device there (it reads as 0xffffffff).
1341 * 3) The device may still consume PCI resources. Typically, these would have
1342 * been hardcoded elsewhere.
1344 * @param dev Pointer to the device structure.
1346 static void pci_scan_hidden_device(struct device *dev)
1348 if (dev->chip_ops && dev->chip_ops->enable_dev)
1349 dev->chip_ops->enable_dev(dev);
1352 * If chip_ops->enable_dev did not set dev->ops, then set to a default
1353 * .ops, because PCI enumeration is effectively being skipped, therefore
1354 * no PCI driver will bind to this device. However, children may want to
1355 * be enumerated, so this provides scan_static_bus for the .scan_bus
1356 * callback.
1358 if (dev->ops == NULL)
1359 dev->ops = &default_hidden_pci_ops_dev;
1361 if (dev->ops->enable)
1362 dev->ops->enable(dev);
1364 /* Display the device almost as if it were probed normally */
1365 printk(BIOS_DEBUG, "%s [0000/%04x] hidden%s\n", dev_path(dev),
1366 dev->device, dev->ops ? "" : " No operations");
1370 * A PCIe Downstream Port normally leads to a Link with only Device 0 on it
1371 * (PCIe spec r5.0, sec 7.3.1). As an optimization, scan only for Device 0 in
1372 * that situation.
1374 * @param bus Pointer to the bus structure.
1376 static bool pci_bus_only_one_child(struct bus *bus)
1378 struct device *bridge = bus->dev;
1379 u16 pcie_pos, pcie_flags_reg;
1380 int pcie_type;
1382 if (!bridge)
1383 return false;
1385 if (bridge->path.type != DEVICE_PATH_PCI)
1386 return false;
1388 pcie_pos = pci_find_capability(bridge, PCI_CAP_ID_PCIE);
1389 if (!pcie_pos)
1390 return false;
1392 pcie_flags_reg = pci_read_config16(bridge, pcie_pos + PCI_EXP_FLAGS);
1394 pcie_type = (pcie_flags_reg & PCI_EXP_FLAGS_TYPE) >> 4;
1396 return pciexp_is_downstream_port(pcie_type);
1400 * Scan a PCI bus.
1402 * Determine the existence of devices and bridges on a PCI bus. If there are
1403 * bridges on the bus, recursively scan the buses behind the bridges.
1405 * @param bus Pointer to the bus structure.
1406 * @param min_devfn Minimum devfn to look at in the scan, usually 0x00.
1407 * @param max_devfn Maximum devfn to look at in the scan, usually 0xff.
1409 void pci_scan_bus(struct bus *bus, unsigned int min_devfn,
1410 unsigned int max_devfn)
1412 unsigned int devfn;
1413 struct device *dev, **prev;
1414 int once = 0;
1416 printk(BIOS_DEBUG, "PCI: %s for bus %02x\n", __func__, bus->secondary);
1418 /* Maximum sane devfn is 0xFF. */
1419 if (max_devfn > 0xff) {
1420 printk(BIOS_ERR, "PCI: %s limits devfn %x - devfn %x\n",
1421 __func__, min_devfn, max_devfn);
1422 printk(BIOS_ERR, "PCI: %s upper limit too big. Using 0xff.\n", __func__);
1423 max_devfn=0xff;
1426 post_code(POST_ENTER_PCI_SCAN_BUS);
1428 if (pci_bus_only_one_child(bus))
1429 max_devfn = MIN(max_devfn, 0x07);
1432 * Probe all devices/functions on this bus with some optimization for
1433 * non-existence and single function devices.
1435 for (devfn = min_devfn; devfn <= max_devfn; devfn++) {
1436 if (CONFIG(MINIMAL_PCI_SCANNING)) {
1437 dev = pcidev_path_behind(bus, devfn);
1438 if (!dev || !dev->mandatory)
1439 continue;
1442 /* First thing setup the device structure. */
1443 dev = pci_scan_get_dev(bus, devfn);
1445 /* Devices marked 'hidden' do not get probed */
1446 if (dev && dev->hidden) {
1447 pci_scan_hidden_device(dev);
1449 /* Skip pci_probe_dev, go to next devfn */
1450 continue;
1453 /* See if a device is present and setup the device structure. */
1454 dev = pci_probe_dev(dev, bus, devfn);
1457 * If this is not a multi function device, or the device is
1458 * not present don't waste time probing another function.
1459 * Skip to next device.
1461 if ((PCI_FUNC(devfn) == 0x00) && (!dev
1462 || (dev->enabled && ((dev->hdr_type & 0x80) != 0x80)))) {
1463 devfn += 0x07;
1468 * Warn if any leftover static devices are found.
1469 * There's probably a problem in devicetree.cb.
1472 prev = &bus->children;
1473 for (dev = bus->children; dev; dev = dev->sibling) {
1476 * If static device is not PCI then enable it here and don't
1477 * treat it as a leftover device.
1479 if (dev->path.type != DEVICE_PATH_PCI) {
1480 enable_static_device(dev);
1481 continue;
1485 * The device is only considered leftover if it is not hidden
1486 * and it has a Vendor ID of 0 (the default for a device that
1487 * could not be probed).
1489 if (dev->vendor != 0 || dev->hidden) {
1490 prev = &dev->sibling;
1491 continue;
1494 /* Unlink it from list. */
1495 *prev = dev->sibling;
1497 if (!once++)
1498 printk(BIOS_WARNING, "PCI: Leftover static devices:\n");
1499 printk(BIOS_WARNING, "%s\n", dev_path(dev));
1502 if (once)
1503 printk(BIOS_WARNING, "PCI: Check your devicetree.cb.\n");
1506 * For all children that implement scan_bus() (i.e. bridges)
1507 * scan the bus behind that child.
1510 scan_bridges(bus);
1513 * We've scanned the bus and so we know all about what's on the other
1514 * side of any bridges that may be on this bus plus any devices.
1515 * Return how far we've got finding sub-buses.
1517 post_code(POST_EXIT_PCI_SCAN_BUS);
1520 typedef enum {
1521 PCI_ROUTE_CLOSE,
1522 PCI_ROUTE_SCAN,
1523 PCI_ROUTE_FINAL,
1524 } scan_state;
1526 static void pci_bridge_route(struct bus *link, scan_state state)
1528 struct device *dev = link->dev;
1529 struct bus *parent = dev->bus;
1530 uint8_t primary, secondary, subordinate;
1532 if (state == PCI_ROUTE_SCAN) {
1533 link->secondary = parent->subordinate + 1;
1534 link->subordinate = link->secondary + dev->hotplug_buses;
1535 link->max_subordinate = parent->max_subordinate
1536 ? parent->max_subordinate
1537 : (CONFIG_ECAM_MMCONF_BUS_NUMBER - 1);
1540 if (link->secondary > link->max_subordinate)
1541 die("%s: No more busses available!\n", __func__);
1543 /* This ought to only happen with hotplug buses. */
1544 if (link->subordinate > link->max_subordinate) {
1545 printk(BIOS_WARNING, "%s: Limiting subordinate busses\n", __func__);
1546 link->subordinate = link->max_subordinate;
1549 if (state == PCI_ROUTE_CLOSE) {
1550 primary = 0;
1551 secondary = 0xff;
1552 subordinate = 0xfe;
1553 } else if (state == PCI_ROUTE_SCAN) {
1554 primary = parent->secondary;
1555 secondary = link->secondary;
1556 subordinate = link->max_subordinate;
1557 } else if (state == PCI_ROUTE_FINAL) {
1558 primary = parent->secondary;
1559 secondary = link->secondary;
1560 subordinate = link->subordinate;
1561 } else {
1562 return;
1565 if (state == PCI_ROUTE_SCAN) {
1566 /* Clear all status bits and turn off memory, I/O and master enables. */
1567 link->bridge_cmd = pci_read_config16(dev, PCI_COMMAND);
1568 pci_write_config16(dev, PCI_COMMAND, 0x0000);
1569 pci_write_config16(dev, PCI_STATUS, 0xffff);
1573 * Configure the bus numbers for this bridge: the configuration
1574 * transactions will not be propagated by the bridge if it is not
1575 * correctly configured.
1577 pci_write_config8(dev, PCI_PRIMARY_BUS, primary);
1578 pci_write_config8(dev, PCI_SECONDARY_BUS, secondary);
1579 pci_write_config8(dev, PCI_SUBORDINATE_BUS, subordinate);
1581 if (state == PCI_ROUTE_FINAL) {
1582 pci_write_config16(dev, PCI_COMMAND, link->bridge_cmd);
1583 parent->subordinate = link->subordinate;
1588 * Scan a PCI bridge and the buses behind the bridge.
1590 * Determine the existence of buses behind the bridge. Set up the bridge
1591 * according to the result of the scan.
1593 * This function is the default scan_bus() method for PCI bridge devices.
1595 * @param dev Pointer to the bridge device.
1596 * @param do_scan_bus TODO
1598 void do_pci_scan_bridge(struct device *dev,
1599 void (*do_scan_bus) (struct bus * bus,
1600 unsigned int min_devfn,
1601 unsigned int max_devfn))
1603 struct bus *bus;
1605 printk(BIOS_SPEW, "%s for %s\n", __func__, dev_path(dev));
1607 if (dev->link_list == NULL) {
1608 struct bus *link;
1609 link = malloc(sizeof(*link));
1610 if (link == NULL)
1611 die("Couldn't allocate a link!\n");
1612 memset(link, 0, sizeof(*link));
1613 link->dev = dev;
1614 dev->link_list = link;
1617 bus = dev->link_list;
1619 pci_bridge_vga_compat(bus);
1621 pci_bridge_route(bus, PCI_ROUTE_SCAN);
1623 do_scan_bus(bus, 0x00, 0xff);
1625 pci_bridge_route(bus, PCI_ROUTE_FINAL);
1629 * Scan a PCI bridge and the buses behind the bridge.
1631 * Determine the existence of buses behind the bridge. Set up the bridge
1632 * according to the result of the scan.
1634 * This function is the default scan_bus() method for PCI bridge devices.
1636 * @param dev Pointer to the bridge device.
1638 void pci_scan_bridge(struct device *dev)
1640 do_pci_scan_bridge(dev, pci_scan_bus);
1644 * Scan a PCI domain.
1646 * This function is the default scan_bus() method for PCI domains.
1648 * @param dev Pointer to the domain.
1650 void pci_domain_scan_bus(struct device *dev)
1652 struct bus *link = dev->link_list;
1653 pci_scan_bus(link, PCI_DEVFN(0, 0), 0xff);
1656 void pci_dev_disable_bus_master(const struct device *dev)
1658 pci_update_config16(dev, PCI_COMMAND, ~PCI_COMMAND_MASTER, 0x0);
1662 * Take an INT_PIN number (0, 1 - 4) and convert
1663 * it to a string ("NO PIN", "PIN A" - "PIN D")
1665 * @param pin PCI Interrupt Pin number (0, 1 - 4)
1666 * @return A string corresponding to the pin number or "Invalid"
1668 const char *pin_to_str(int pin)
1670 const char *str[5] = {
1671 "NO PIN",
1672 "PIN A",
1673 "PIN B",
1674 "PIN C",
1675 "PIN D",
1678 if (pin >= 0 && pin <= 4)
1679 return str[pin];
1680 else
1681 return "Invalid PIN, not 0 - 4";
1685 * Get the PCI INT_PIN swizzle for a device defined as:
1686 * pin_parent = (pin_child + devn_child) % 4 + 1
1687 * where PIN A = 1 ... PIN_D = 4
1689 * Given a PCI device structure 'dev', find the interrupt pin
1690 * that will be triggered on its parent bridge device when
1691 * generating an interrupt. For example: Device 1:3.2 may
1692 * use INT_PIN A but will trigger PIN D on its parent bridge
1693 * device. In this case, this function will return 4 (PIN D).
1695 * @param dev A PCI device structure to swizzle interrupt pins for
1696 * @param *parent_bridge The PCI device structure for the bridge
1697 * device 'dev' is attached to
1698 * @return The interrupt pin number (1 - 4) that 'dev' will
1699 * trigger when generating an interrupt
1701 static int swizzle_irq_pins(struct device *dev, struct device **parent_bridge)
1703 struct device *parent; /* Our current device's parent device */
1704 struct device *child; /* The child device of the parent */
1705 uint8_t parent_bus = 0; /* Parent Bus number */
1706 uint16_t parent_devfn = 0; /* Parent Device and Function number */
1707 uint16_t child_devfn = 0; /* Child Device and Function number */
1708 uint8_t swizzled_pin = 0; /* Pin swizzled across a bridge */
1710 /* Start with PIN A = 0 ... D = 3 */
1711 swizzled_pin = pci_read_config8(dev, PCI_INTERRUPT_PIN) - 1;
1713 /* While our current device has parent devices */
1714 child = dev;
1715 for (parent = child->bus->dev; parent; parent = parent->bus->dev) {
1716 parent_bus = parent->bus->secondary;
1717 parent_devfn = parent->path.pci.devfn;
1718 child_devfn = child->path.pci.devfn;
1720 /* Swizzle the INT_PIN for any bridges not on root bus */
1721 swizzled_pin = (PCI_SLOT(child_devfn) + swizzled_pin) % 4;
1722 printk(BIOS_SPEW, "\tWith INT_PIN swizzled to %s\n"
1723 "\tAttached to bridge device %01X:%02Xh.%02Xh\n",
1724 pin_to_str(swizzled_pin + 1), parent_bus,
1725 PCI_SLOT(parent_devfn), PCI_FUNC(parent_devfn));
1727 /* Continue until we find the root bus */
1728 if (parent_bus > 0) {
1730 * We will go on to the next parent so this parent
1731 * becomes the child
1733 child = parent;
1734 continue;
1735 } else {
1737 * Found the root bridge device,
1738 * fill in the structure and exit
1740 *parent_bridge = parent;
1741 break;
1745 /* End with PIN A = 1 ... D = 4 */
1746 return swizzled_pin + 1;
1750 * Given a device structure 'dev', find its interrupt pin
1751 * and its parent bridge 'parent_bdg' device structure.
1752 * If it is behind a bridge, it will return the interrupt
1753 * pin number (1 - 4) of the parent bridge that the device
1754 * interrupt pin has been swizzled to, otherwise it will
1755 * return the interrupt pin that is programmed into the
1756 * PCI config space of the target device. If 'dev' is
1757 * behind a bridge, it will fill in 'parent_bdg' with the
1758 * device structure of the bridge it is behind, otherwise
1759 * it will copy 'dev' into 'parent_bdg'.
1761 * @param dev A PCI device structure to get interrupt pins for.
1762 * @param *parent_bdg The PCI device structure for the bridge
1763 * device 'dev' is attached to.
1764 * @return The interrupt pin number (1 - 4) that 'dev' will
1765 * trigger when generating an interrupt.
1766 * Errors: -1 is returned if the device is not enabled
1767 * -2 is returned if a parent bridge could not be found.
1769 int get_pci_irq_pins(struct device *dev, struct device **parent_bdg)
1771 uint8_t bus = 0; /* The bus this device is on */
1772 uint16_t devfn = 0; /* This device's device and function numbers */
1773 uint8_t int_pin = 0; /* Interrupt pin used by the device */
1774 uint8_t target_pin = 0; /* Interrupt pin we want to assign an IRQ to */
1776 /* Make sure this device is enabled */
1777 if (!(dev->enabled && (dev->path.type == DEVICE_PATH_PCI)))
1778 return -1;
1780 bus = dev->bus->secondary;
1781 devfn = dev->path.pci.devfn;
1783 /* Get and validate the interrupt pin used. Only 1-4 are allowed */
1784 int_pin = pci_read_config8(dev, PCI_INTERRUPT_PIN);
1785 if (int_pin < 1 || int_pin > 4)
1786 return -1;
1788 printk(BIOS_SPEW, "PCI IRQ: Found device %01X:%02X.%02X using %s\n",
1789 bus, PCI_SLOT(devfn), PCI_FUNC(devfn), pin_to_str(int_pin));
1791 /* If this device is on a bridge, swizzle its INT_PIN */
1792 if (bus) {
1793 /* Swizzle its INT_PINs */
1794 target_pin = swizzle_irq_pins(dev, parent_bdg);
1796 /* Make sure the swizzle returned valid structures */
1797 if (parent_bdg == NULL) {
1798 printk(BIOS_WARNING, "Could not find parent bridge for this device!\n");
1799 return -2;
1801 } else { /* Device is not behind a bridge */
1802 target_pin = int_pin; /* Return its own interrupt pin */
1803 *parent_bdg = dev; /* Return its own structure */
1806 /* Target pin is the interrupt pin we want to assign an IRQ to */
1807 return target_pin;
1810 #if CONFIG(PC80_SYSTEM)
1812 * Assign IRQ numbers.
1814 * This function assigns IRQs for all functions contained within the indicated
1815 * device address. If the device does not exist or does not require interrupts
1816 * then this function has no effect.
1818 * This function should be called for each PCI slot in your system.
1820 * @param dev Pointer to dev structure.
1821 * @param pIntAtoD An array of IRQ #s that are assigned to PINTA through PINTD
1822 * of this slot. The particular IRQ #s that are passed in depend on the
1823 * routing inside your southbridge and on your board.
1825 void pci_assign_irqs(struct device *dev, const unsigned char pIntAtoD[4])
1827 u8 slot, line, irq;
1829 /* Each device may contain up to eight functions. */
1830 slot = dev->path.pci.devfn >> 3;
1832 for (; dev ; dev = dev->sibling) {
1834 if (dev->path.pci.devfn >> 3 != slot)
1835 break;
1837 line = pci_read_config8(dev, PCI_INTERRUPT_PIN);
1839 /* PCI spec says all values except 1..4 are reserved. */
1840 if ((line < 1) || (line > 4))
1841 continue;
1843 irq = pIntAtoD[line - 1];
1845 printk(BIOS_DEBUG, "Assigning IRQ %d to %s\n", irq, dev_path(dev));
1847 pci_write_config8(dev, PCI_INTERRUPT_LINE, irq);
1849 /* Change to level triggered. */
1850 i8259_configure_irq_trigger(irq, IRQ_LEVEL_TRIGGERED);
1853 #endif