1 /* SPDX-License-Identifier: GPL-2.0-only */
5 * C Bootstrap code for the coreboot
9 #include <acpi/acpi_gnvs.h>
11 #include <arch/exception.h>
12 #include <boot/tables.h>
13 #include <bootstate.h>
15 #include <commonlib/console/post_codes.h>
16 #include <commonlib/helpers.h>
17 #include <console/console.h>
19 #include <device/device.h>
20 #include <device/pci.h>
21 #include <program_loading.h>
24 #include <timestamp.h>
28 static boot_state_t
bs_pre_device(void *arg
);
29 static boot_state_t
bs_dev_init_chips(void *arg
);
30 static boot_state_t
bs_dev_enumerate(void *arg
);
31 static boot_state_t
bs_dev_resources(void *arg
);
32 static boot_state_t
bs_dev_enable(void *arg
);
33 static boot_state_t
bs_dev_init(void *arg
);
34 static boot_state_t
bs_post_device(void *arg
);
35 static boot_state_t
bs_os_resume_check(void *arg
);
36 static boot_state_t
bs_os_resume(void *arg
);
37 static boot_state_t
bs_write_tables(void *arg
);
38 static boot_state_t
bs_payload_load(void *arg
);
39 static boot_state_t
bs_payload_boot(void *arg
);
41 /* The prologue (BS_ON_ENTRY) and epilogue (BS_ON_EXIT) of a state can be
42 * blocked from transitioning to the next (state,seq) pair. When the blockers
43 * field is 0 a transition may occur. */
45 struct boot_state_callback
*callbacks
;
53 struct boot_phase phases
[2];
54 boot_state_t (*run_state
)(void *arg
);
60 #define BS_INIT(state_, run_func_) \
64 .post_code = POST_ ## state_, \
65 .phases = { { NULL, 0 }, { NULL, 0 } }, \
66 .run_state = run_func_, \
70 #define BS_INIT_ENTRY(state_, run_func_) \
71 [state_] = BS_INIT(state_, run_func_)
73 static struct boot_state boot_states
[] = {
74 BS_INIT_ENTRY(BS_PRE_DEVICE
, bs_pre_device
),
75 BS_INIT_ENTRY(BS_DEV_INIT_CHIPS
, bs_dev_init_chips
),
76 BS_INIT_ENTRY(BS_DEV_ENUMERATE
, bs_dev_enumerate
),
77 BS_INIT_ENTRY(BS_DEV_RESOURCES
, bs_dev_resources
),
78 BS_INIT_ENTRY(BS_DEV_ENABLE
, bs_dev_enable
),
79 BS_INIT_ENTRY(BS_DEV_INIT
, bs_dev_init
),
80 BS_INIT_ENTRY(BS_POST_DEVICE
, bs_post_device
),
81 BS_INIT_ENTRY(BS_OS_RESUME_CHECK
, bs_os_resume_check
),
82 BS_INIT_ENTRY(BS_OS_RESUME
, bs_os_resume
),
83 BS_INIT_ENTRY(BS_WRITE_TABLES
, bs_write_tables
),
84 BS_INIT_ENTRY(BS_PAYLOAD_LOAD
, bs_payload_load
),
85 BS_INIT_ENTRY(BS_PAYLOAD_BOOT
, bs_payload_boot
),
88 void __weak
arch_bootstate_coreboot_exit(void) { }
90 static boot_state_t
bs_pre_device(void *arg
)
92 return BS_DEV_INIT_CHIPS
;
95 static boot_state_t
bs_dev_init_chips(void *arg
)
97 timestamp_add_now(TS_DEVICE_ENUMERATE
);
99 /* Initialize chips early, they might disable unused devices. */
100 dev_initialize_chips();
102 return BS_DEV_ENUMERATE
;
105 static boot_state_t
bs_dev_enumerate(void *arg
)
107 /* Find the devices we don't have hard coded knowledge about. */
110 return BS_DEV_RESOURCES
;
113 static boot_state_t
bs_dev_resources(void *arg
)
115 timestamp_add_now(TS_DEVICE_CONFIGURE
);
117 /* Now compute and assign the bus resources. */
120 return BS_DEV_ENABLE
;
123 static boot_state_t
bs_dev_enable(void *arg
)
125 timestamp_add_now(TS_DEVICE_ENABLE
);
127 /* Now actually enable devices on the bus */
133 static boot_state_t
bs_dev_init(void *arg
)
135 timestamp_add_now(TS_DEVICE_INITIALIZE
);
137 /* And of course initialize devices on the bus */
140 return BS_POST_DEVICE
;
143 static boot_state_t
bs_post_device(void *arg
)
146 timestamp_add_now(TS_DEVICE_DONE
);
148 return BS_OS_RESUME_CHECK
;
151 static boot_state_t
bs_os_resume_check(void *arg
)
153 void *wake_vector
= NULL
;
155 if (CONFIG(HAVE_ACPI_RESUME
))
156 wake_vector
= acpi_find_wakeup_vector();
158 if (wake_vector
!= NULL
) {
159 boot_states
[BS_OS_RESUME
].arg
= wake_vector
;
163 timestamp_add_now(TS_CBMEM_POST
);
165 return BS_WRITE_TABLES
;
168 static boot_state_t
bs_os_resume(void *wake_vector
)
170 if (CONFIG(HAVE_ACPI_RESUME
)) {
171 arch_bootstate_coreboot_exit();
172 acpi_resume(wake_vector
);
173 /* We will not come back. */
175 die("Failed OS resume\n");
178 static boot_state_t
bs_write_tables(void *arg
)
180 timestamp_add_now(TS_WRITE_TABLES
);
182 /* Now that we have collected all of our information
183 * write our configuration tables.
187 timestamp_add_now(TS_FINALIZE_CHIPS
);
188 dev_finalize_chips();
190 return BS_PAYLOAD_LOAD
;
193 static boot_state_t
bs_payload_load(void *arg
)
197 return BS_PAYLOAD_BOOT
;
200 static boot_state_t
bs_payload_boot(void *arg
)
202 arch_bootstate_coreboot_exit();
205 printk(BIOS_EMERG
, "Boot failed\n");
206 /* Returning from this state will fail because the following signals
207 * return to a completed state. */
208 return BS_PAYLOAD_BOOT
;
212 * Typically a state will take 4 time samples:
213 * 1. Before state entry callbacks
214 * 2. After state entry callbacks / Before state function.
215 * 3. After state function / Before state exit callbacks.
216 * 4. After state exit callbacks.
218 static void bs_sample_time(struct boot_state
*state
)
220 static const char *const sample_id
[] = { "entry", "run", "exit" };
221 static struct mono_time previous_sample
;
222 struct mono_time this_sample
;
225 if (!CONFIG(HAVE_MONOTONIC_TIMER
))
228 console
= console_time_get_and_reset();
229 timer_monotonic_get(&this_sample
);
230 state
->num_samples
++;
232 int i
= state
->num_samples
- 2;
233 if ((i
>= 0) && (i
< ARRAY_SIZE(sample_id
))) {
234 long execution
= mono_time_diff_microseconds(&previous_sample
, &this_sample
);
236 /* Report with millisecond precision to reduce log diffs. */
237 execution
= DIV_ROUND_CLOSEST(execution
, USECS_PER_MSEC
);
238 console
= DIV_ROUND_CLOSEST(console
, USECS_PER_MSEC
);
240 printk(BIOS_DEBUG
, "BS: %s %s times (exec / console): %ld / %ld ms\n",
241 state
->name
, sample_id
[i
], execution
- console
, console
);
242 /* Reset again to ignore printk() time above. */
243 console_time_get_and_reset();
246 timer_monotonic_get(&previous_sample
);
249 #if CONFIG(TIMER_QUEUE)
250 static void bs_run_timers(int drain
)
252 /* Drain all timer callbacks until none are left, if directed.
253 * Otherwise run the timers only once. */
260 static void bs_run_timers(int drain
) {}
263 static void bs_call_callbacks(struct boot_state
*state
,
264 boot_state_sequence_t seq
)
266 struct boot_phase
*phase
= &state
->phases
[seq
];
267 struct mono_time mt_start
, mt_stop
;
270 if (phase
->callbacks
!= NULL
) {
271 struct boot_state_callback
*bscb
;
273 /* Remove the first callback. */
274 bscb
= phase
->callbacks
;
275 phase
->callbacks
= bscb
->next
;
278 if (CONFIG(DEBUG_BOOT_STATE
)) {
279 printk(BIOS_DEBUG
, "BS: callback (%p) @ %s.\n",
280 bscb
, bscb_location(bscb
));
281 timer_monotonic_get(&mt_start
);
283 bscb
->callback(bscb
->arg
);
284 if (CONFIG(DEBUG_BOOT_STATE
)) {
285 timer_monotonic_get(&mt_stop
);
286 printk(BIOS_DEBUG
, "BS: callback (%p) @ %s (%lld ms).\n", bscb
,
288 mono_time_diff_microseconds(&mt_start
, &mt_stop
)
297 /* All callbacks are complete and there are no blockers for
298 * this state. Therefore, this part of the state is complete. */
299 if (!phase
->blockers
)
302 /* Something is blocking this state from transitioning. As
303 * there are no more callbacks a pending timer needs to be
304 * ran to unblock the state. */
309 /* Keep track of the current state. */
310 static struct state_tracker
{
311 boot_state_t state_id
;
312 boot_state_sequence_t seq
;
314 .state_id
= BS_PRE_DEVICE
,
318 static void bs_walk_state_machine(void)
322 struct boot_state
*state
;
323 boot_state_t next_id
;
325 state
= &boot_states
[current_phase
.state_id
];
327 if (state
->complete
) {
328 printk(BIOS_EMERG
, "BS: %s state already executed.\n",
333 if (CONFIG(DEBUG_BOOT_STATE
))
334 printk(BIOS_DEBUG
, "BS: Entering %s state.\n",
339 bs_sample_time(state
);
341 bs_call_callbacks(state
, current_phase
.seq
);
342 /* Update the current sequence so that any calls to block the
343 * current state from the run_state() function will place a
344 * block on the correct phase. */
345 current_phase
.seq
= BS_ON_EXIT
;
347 bs_sample_time(state
);
349 post_code(state
->post_code
);
351 next_id
= state
->run_state(state
->arg
);
353 if (CONFIG(DEBUG_BOOT_STATE
))
354 printk(BIOS_DEBUG
, "BS: Exiting %s state.\n",
357 bs_sample_time(state
);
361 bs_call_callbacks(state
, current_phase
.seq
);
363 if (CONFIG(DEBUG_BOOT_STATE
))
365 "----------------------------------------\n");
367 /* Update the current phase with new state id and sequence. */
368 current_phase
.state_id
= next_id
;
369 current_phase
.seq
= BS_ON_ENTRY
;
371 bs_sample_time(state
);
373 state
->complete
= true;
377 static int boot_state_sched_callback(struct boot_state
*state
,
378 struct boot_state_callback
*bscb
,
379 boot_state_sequence_t seq
)
381 if (state
->complete
) {
383 "Tried to schedule callback on completed state %s.\n",
389 bscb
->next
= state
->phases
[seq
].callbacks
;
390 state
->phases
[seq
].callbacks
= bscb
;
395 int boot_state_sched_on_entry(struct boot_state_callback
*bscb
,
396 boot_state_t state_id
)
398 struct boot_state
*state
= &boot_states
[state_id
];
400 return boot_state_sched_callback(state
, bscb
, BS_ON_ENTRY
);
403 int boot_state_sched_on_exit(struct boot_state_callback
*bscb
,
404 boot_state_t state_id
)
406 struct boot_state
*state
= &boot_states
[state_id
];
408 return boot_state_sched_callback(state
, bscb
, BS_ON_EXIT
);
411 static void boot_state_schedule_static_entries(void)
413 extern struct boot_state_init_entry
*_bs_init_begin
[];
414 struct boot_state_init_entry
**slot
;
416 for (slot
= &_bs_init_begin
[0]; *slot
!= NULL
; slot
++) {
417 struct boot_state_init_entry
*cur
= *slot
;
419 if (cur
->when
== BS_ON_ENTRY
)
420 boot_state_sched_on_entry(&cur
->bscb
, cur
->state
);
422 boot_state_sched_on_exit(&cur
->bscb
, cur
->state
);
429 * We can generally jump between C and Ada code back and forth
430 * without trouble. But since we don't have an Ada main() we
431 * have to do some Ada package initializations that GNAT would
432 * do there. This has to be done before calling any Ada code.
434 * The package initializations should not have any dependen-
435 * cies on C code. So we can call them here early, and don't
436 * have to worry at which point we can start to use Ada.
440 /* TODO: Understand why this is here and move to arch/platform code. */
441 /* For MMIO UART this needs to be called before any other printk. */
445 /* console_init() MUST PRECEDE ALL printk()! Additionally, ensure
446 * it is the very first thing done in ramstage.*/
448 post_code(POST_CONSOLE_READY
);
453 * CBMEM needs to be recovered because timestamps, ACPI, etc rely on
454 * the cbmem infrastructure being around. Explicitly recover it.
458 timestamp_add_now(TS_RAMSTAGE_START
);
459 post_code(POST_ENTRY_HARDWAREMAIN
);
461 /* Handoff sleep type from romstage. */
464 /* Schedule the static boot state entries. */
465 boot_state_schedule_static_entries();
467 bs_walk_state_machine();
469 die("Boot state machine failure.\n");
473 int boot_state_block(boot_state_t state
, boot_state_sequence_t seq
)
475 struct boot_phase
*bp
;
477 /* Blocking a previously ran state is not appropriate. */
478 if (current_phase
.state_id
> state
||
479 (current_phase
.state_id
== state
&& current_phase
.seq
> seq
)) {
481 "BS: Completed state (%d, %d) block attempted.\n",
486 bp
= &boot_states
[state
].phases
[seq
];
492 int boot_state_unblock(boot_state_t state
, boot_state_sequence_t seq
)
494 struct boot_phase
*bp
;
496 /* Blocking a previously ran state is not appropriate. */
497 if (current_phase
.state_id
> state
||
498 (current_phase
.state_id
== state
&& current_phase
.seq
> seq
)) {
500 "BS: Completed state (%d, %d) unblock attempted.\n",
505 bp
= &boot_states
[state
].phases
[seq
];
507 if (bp
->blockers
== 0) {
509 "BS: Unblock attempted on non-blocked state (%d, %d).\n",