soc/intel/xeon_sp: Revise IIO domain ACPI name encoding
[coreboot2.git] / payloads / libpayload / arch / arm64 / mmu.c
blob3822a891cf2368abac5f0044c2d28679c90aa80b
1 /*
3 * Copyright 2014 Google Inc.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. The name of the author may not be used to endorse or promote products
14 * derived from this software without specific prior written permission.
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
29 #include <assert.h>
30 #include <stdlib.h>
31 #include <stdint.h>
32 #include <string.h>
34 #include <arch/mmu.h>
35 #include <arch/lib_helpers.h>
36 #include <arch/cache.h>
38 /* Maximum number of XLAT Tables available based on ttb buffer size */
39 static unsigned int max_tables;
40 /* Address of ttb buffer */
41 static uint64_t *xlat_addr;
43 static int free_idx;
46 * We refer to the section ".bss.ttb_buffer" in the linker script for ChromeOS's depthcharge
47 * payload. Please DO NOT change the section name without discussing with us.
48 * Please contact: jwerner@chromium.org or yich@chromium.org
50 static uint8_t ttb_buffer[TTB_DEFAULT_SIZE] __aligned(GRANULE_SIZE)
51 __section(".bss.ttb_buffer");
53 static const char * const tag_to_string[] = {
54 [TYPE_NORMAL_MEM] = "normal",
55 [TYPE_DEV_MEM] = "device",
56 [TYPE_DMA_MEM] = "uncached",
60 * The usedmem_ranges is used to describe all the memory ranges that are
61 * actually used by payload i.e. _start -> _end in linker script and the
62 * coreboot tables. This is required for two purposes:
63 * 1) During the pre_sysinfo_scan_mmu_setup, these are the only ranges
64 * initialized in the page table as we do not know the entire memory map.
65 * 2) During the post_sysinfo_scan_mmu_setup, these ranges are used to check if
66 * the DMA buffer is being placed in a sane location and does not overlap any of
67 * the used mem ranges.
69 static struct mmu_ranges usedmem_ranges;
71 static void __attribute__((noreturn)) mmu_error(void)
73 halt();
76 /* Func : get_block_attr
77 * Desc : Get block descriptor attributes based on the value of tag in memrange
78 * region
80 static uint64_t get_block_attr(unsigned long tag)
82 uint64_t attr;
84 /* We should be in EL2(which is non-secure only) or EL1(non-secure) */
85 attr = BLOCK_NS;
87 /* Assuming whole memory is read-write */
88 attr |= BLOCK_AP_RW;
90 attr |= BLOCK_ACCESS;
92 switch (tag) {
94 case TYPE_NORMAL_MEM:
95 attr |= BLOCK_SH_INNER_SHAREABLE;
96 attr |= (BLOCK_INDEX_MEM_NORMAL << BLOCK_INDEX_SHIFT);
97 break;
98 case TYPE_DEV_MEM:
99 attr |= BLOCK_INDEX_MEM_DEV_NGNRNE << BLOCK_INDEX_SHIFT;
100 attr |= BLOCK_XN;
101 break;
102 case TYPE_DMA_MEM:
103 attr |= BLOCK_INDEX_MEM_NORMAL_NC << BLOCK_INDEX_SHIFT;
104 break;
107 return attr;
110 /* Func : table_desc_valid
111 * Desc : Check if a table entry contains valid desc
113 static uint64_t table_desc_valid(uint64_t desc)
115 return((desc & TABLE_DESC) == TABLE_DESC);
118 /* Func : setup_new_table
119 * Desc : Get next free table from TTB and set it up to match old parent entry.
121 static uint64_t *setup_new_table(uint64_t desc, size_t xlat_size)
123 uint64_t *new, *entry;
125 assert(free_idx < max_tables);
127 new = (uint64_t*)((unsigned char *)xlat_addr + free_idx * GRANULE_SIZE);
128 free_idx++;
130 if (!desc) {
131 memset(new, 0, GRANULE_SIZE);
132 } else {
133 /* Can reuse old parent entry, but may need to adjust type. */
134 if (xlat_size == L3_XLAT_SIZE)
135 desc |= PAGE_DESC;
137 for (entry = new; (u8 *)entry < (u8 *)new + GRANULE_SIZE;
138 entry++, desc += xlat_size)
139 *entry = desc;
142 return new;
145 /* Func : get_table_from_desc
146 * Desc : Get next level table address from table descriptor
148 static uint64_t *get_table_from_desc(uint64_t desc)
150 uint64_t *ptr = (uint64_t*)(desc & XLAT_TABLE_MASK);
151 return ptr;
154 /* Func: get_next_level_table
155 * Desc: Check if the table entry is a valid descriptor. If not, initialize new
156 * table, update the entry and return the table addr. If valid, return the addr.
158 static uint64_t *get_next_level_table(uint64_t *ptr, size_t xlat_size)
160 uint64_t desc = *ptr;
162 if (!table_desc_valid(desc)) {
163 uint64_t *new_table = setup_new_table(desc, xlat_size);
164 desc = ((uint64_t)new_table) | TABLE_DESC;
165 *ptr = desc;
167 return get_table_from_desc(desc);
170 /* Func : init_xlat_table
171 * Desc : Given a base address and size, it identifies the indices within
172 * different level XLAT tables which map the given base addr. Similar to table
173 * walk, except that all invalid entries during the walk are updated
174 * accordingly. On success, it returns the size of the block/page addressed by
175 * the final table.
177 static uint64_t init_xlat_table(uint64_t base_addr,
178 uint64_t size,
179 uint64_t tag)
181 uint64_t l0_index = (base_addr & L0_ADDR_MASK) >> L0_ADDR_SHIFT;
182 uint64_t l1_index = (base_addr & L1_ADDR_MASK) >> L1_ADDR_SHIFT;
183 uint64_t l2_index = (base_addr & L2_ADDR_MASK) >> L2_ADDR_SHIFT;
184 uint64_t l3_index = (base_addr & L3_ADDR_MASK) >> L3_ADDR_SHIFT;
185 uint64_t *table = xlat_addr;
186 uint64_t desc;
187 uint64_t attr = get_block_attr(tag);
189 /* L0 entry stores a table descriptor (doesn't support blocks) */
190 table = get_next_level_table(&table[l0_index], L1_XLAT_SIZE);
192 /* L1 table lookup */
193 if ((size >= L1_XLAT_SIZE) &&
194 IS_ALIGNED(base_addr, (1UL << L1_ADDR_SHIFT))) {
195 /* If block address is aligned and size is greater than
196 * or equal to size addressed by each L1 entry, we can
197 * directly store a block desc */
198 desc = base_addr | BLOCK_DESC | attr;
199 table[l1_index] = desc;
200 /* L2 lookup is not required */
201 return L1_XLAT_SIZE;
204 /* L1 entry stores a table descriptor */
205 table = get_next_level_table(&table[l1_index], L2_XLAT_SIZE);
207 /* L2 table lookup */
208 if ((size >= L2_XLAT_SIZE) &&
209 IS_ALIGNED(base_addr, (1UL << L2_ADDR_SHIFT))) {
210 /* If block address is aligned and size is greater than
211 * or equal to size addressed by each L2 entry, we can
212 * directly store a block desc */
213 desc = base_addr | BLOCK_DESC | attr;
214 table[l2_index] = desc;
215 /* L3 lookup is not required */
216 return L2_XLAT_SIZE;
219 /* L2 entry stores a table descriptor */
220 table = get_next_level_table(&table[l2_index], L3_XLAT_SIZE);
222 /* L3 table lookup */
223 desc = base_addr | PAGE_DESC | attr;
224 table[l3_index] = desc;
225 return L3_XLAT_SIZE;
228 /* Func : sanity_check
229 * Desc : Check address/size alignment of a table or page.
231 static void sanity_check(uint64_t addr, uint64_t size)
233 assert(!(addr & GRANULE_SIZE_MASK) &&
234 !(size & GRANULE_SIZE_MASK) &&
235 (addr + size < (1UL << BITS_PER_VA)) &&
236 size >= GRANULE_SIZE);
239 /* Func : mmu_config_range
240 * Desc : This function repeatedly calls init_xlat_table with the base
241 * address. Based on size returned from init_xlat_table, base_addr is updated
242 * and subsequent calls are made for initializing the xlat table until the whole
243 * region is initialized.
245 void mmu_config_range(void *start, size_t size, uint64_t tag)
247 uint64_t base_addr = (uintptr_t)start;
248 uint64_t temp_size = size;
250 assert(tag < ARRAY_SIZE(tag_to_string));
251 printf("Libpayload: ARM64 MMU: Mapping address range [%p:%p) as %s\n",
252 start, start + size, tag_to_string[tag]);
253 sanity_check(base_addr, temp_size);
255 while (temp_size)
256 temp_size -= init_xlat_table(base_addr + (size - temp_size),
257 temp_size, tag);
259 /* ARMv8 MMUs snoop L1 data cache, no need to flush it. */
260 dsb();
261 tlbiall_el2();
262 dsb();
263 isb();
266 /* Func : mmu_init
267 * Desc : Initialize mmu based on the mmu_memrange passed. ttb_buffer is used as
268 * the base address for xlat tables. TTB_DEFAULT_SIZE defines the max number of
269 * tables that can be used
270 * Assuming that memory 0-4GiB is device memory.
272 uint64_t mmu_init(struct mmu_ranges *mmu_ranges)
274 int i = 0;
276 xlat_addr = (uint64_t *)&ttb_buffer;
278 memset((void*)xlat_addr, 0, GRANULE_SIZE);
279 max_tables = (TTB_DEFAULT_SIZE >> GRANULE_SIZE_SHIFT);
280 free_idx = 1;
282 printf("Libpayload ARM64: TTB_BUFFER: %p Max Tables: %d\n",
283 (void*)xlat_addr, max_tables);
286 * To keep things simple we start with mapping the entire base 4GB as
287 * device memory. This accommodates various architectures' default
288 * settings (for instance rk3399 mmio starts at 0xf8000000); it is
289 * fine tuned (e.g. mapping DRAM areas as write-back) later in the
290 * boot process.
292 mmu_config_range(NULL, 0x100000000, TYPE_DEV_MEM);
294 for (; i < mmu_ranges->used; i++)
295 mmu_config_range((void *)mmu_ranges->entries[i].base,
296 mmu_ranges->entries[i].size,
297 mmu_ranges->entries[i].type);
299 printf("Libpayload ARM64: MMU init done\n");
300 return 0;
303 static uint32_t is_mmu_enabled(void)
305 uint32_t sctlr;
307 sctlr = raw_read_sctlr_el2();
309 return (sctlr & SCTLR_M);
313 * Func: mmu_enable
314 * Desc: Initialize MAIR, TCR, TTBR and enable MMU by setting appropriate bits
315 * in SCTLR
317 void mmu_enable(void)
319 uint32_t sctlr;
321 /* Initialize MAIR indices */
322 raw_write_mair_el2(MAIR_ATTRIBUTES);
324 /* Invalidate TLBs */
325 tlbiall_el2();
327 /* Initialize TCR flags */
328 raw_write_tcr_el2(TCR_TOSZ | TCR_IRGN0_NM_WBWAC | TCR_ORGN0_NM_WBWAC |
329 TCR_SH0_IS | TCR_TG0_4KB | TCR_PS_256TB |
330 TCR_TBI_USED);
332 /* Initialize TTBR */
333 raw_write_ttbr0_el2((uintptr_t)xlat_addr);
335 /* Ensure system register writes are committed before enabling MMU */
336 isb();
338 /* Enable MMU */
339 sctlr = raw_read_sctlr_el2();
340 sctlr |= SCTLR_C | SCTLR_M | SCTLR_I;
341 raw_write_sctlr_el2(sctlr);
343 isb();
345 if(is_mmu_enabled())
346 printf("ARM64: MMU enable done\n");
347 else
348 printf("ARM64: MMU enable failed\n");
352 * Func: mmu_add_memrange
353 * Desc: Adds a new memory range
355 static struct mmu_memrange *mmu_add_memrange(struct mmu_ranges *r,
356 uint64_t base, uint64_t size,
357 uint64_t type)
359 struct mmu_memrange *curr = NULL;
360 int i = r->used;
362 if (i < ARRAY_SIZE(r->entries)) {
363 curr = &r->entries[i];
364 curr->base = base;
365 curr->size = size;
366 curr->type = type;
368 r->used = i + 1;
371 return curr;
374 /* Structure to define properties of new memrange request */
375 struct mmu_new_range_prop {
376 /* Type of memrange */
377 uint64_t type;
378 /* Size of the range */
379 uint64_t size;
381 * If any restrictions on the max addr limit(This addr is exclusive for
382 * the range), else 0
384 uint64_t lim_excl;
385 /* If any restrictions on alignment of the range base, else 0 */
386 uint64_t align;
388 * Function to test whether selected range is fine.
389 * NULL=any range is fine
390 * Return value 1=valid range, 0=otherwise
392 int (*is_valid_range)(uint64_t, uint64_t);
393 /* From what type of source range should this range be extracted */
394 uint64_t src_type;
398 * Func: mmu_is_range_free
399 * Desc: We need to ensure that the new range being allocated doesn't overlap
400 * with any used memory range. Basically:
401 * 1. Memory ranges used by the payload (usedmem_ranges)
402 * 2. Any area that falls below _end symbol in linker script (Kernel needs to be
403 * loaded in lower areas of memory, So, the payload linker script can have
404 * kernel memory below _start and _end. Thus, we want to make sure we do not
405 * step in those areas as well.
406 * Returns: 1 on success, 0 on error
407 * ASSUMPTION: All the memory used by payload resides below the program
408 * proper. If there is any memory used above the _end symbol, then it should be
409 * marked as used memory in usedmem_ranges during the presysinfo_scan.
411 static int mmu_is_range_free(uint64_t r_base,
412 uint64_t r_end)
414 uint64_t payload_end = (uint64_t)&_end;
415 uint64_t i;
416 struct mmu_memrange *r = &usedmem_ranges.entries[0];
418 /* Allocate memranges only above payload */
419 if ((r_base <= payload_end) || (r_end <= payload_end))
420 return 0;
422 for (i = 0; i < usedmem_ranges.used; i++) {
423 uint64_t start = r[i].base;
424 uint64_t end = start + r[i].size;
426 if ((start < r_end) && (end > r_base))
427 return 0;
430 return 1;
434 * Func: mmu_get_new_range
435 * Desc: Add a requested new memrange. We take as input set of all memranges and
436 * a structure to define the new memrange properties i.e. its type, size,
437 * max_addr it can grow upto, alignment restrictions, source type to take range
438 * from and finally a function pointer to check if the chosen range is valid.
440 static struct mmu_memrange *mmu_get_new_range(struct mmu_ranges *mmu_ranges,
441 struct mmu_new_range_prop *new)
443 int i = 0;
444 struct mmu_memrange *r = &mmu_ranges->entries[0];
446 if (new->size == 0) {
447 printf("MMU Error: Invalid range size\n");
448 return NULL;
451 for (; i < mmu_ranges->used; i++) {
453 if ((r[i].type != new->src_type) ||
454 (r[i].size < new->size) ||
455 (new->lim_excl && (r[i].base >= new->lim_excl)))
456 continue;
458 uint64_t base_addr;
459 uint64_t range_end_addr = r[i].base + r[i].size;
460 uint64_t end_addr = range_end_addr;
462 /* Make sure we do not go above max if it is non-zero */
463 if (new->lim_excl && (end_addr >= new->lim_excl))
464 end_addr = new->lim_excl;
466 while (1) {
468 * In case of alignment requirement,
469 * if end_addr is aligned, then base_addr will be too.
471 if (new->align)
472 end_addr = ALIGN_DOWN(end_addr, new->align);
474 base_addr = end_addr - new->size;
476 if (base_addr < r[i].base)
477 break;
480 * If the selected range is not used and valid for the
481 * user, move ahead with it
483 if (mmu_is_range_free(base_addr, end_addr) &&
484 ((new->is_valid_range == NULL) ||
485 new->is_valid_range(base_addr, end_addr)))
486 break;
488 /* Drop to the next address. */
489 end_addr -= 1;
492 if (base_addr < r[i].base)
493 continue;
495 if (end_addr != range_end_addr) {
496 /* Add a new memrange since we split up one
497 * range crossing the 4GiB boundary or doing an
498 * ALIGN_DOWN on end_addr.
500 r[i].size -= (range_end_addr - end_addr);
501 if (mmu_add_memrange(mmu_ranges, end_addr,
502 range_end_addr - end_addr,
503 r[i].type) == NULL)
504 mmu_error();
507 if (r[i].size == new->size) {
508 r[i].type = new->type;
509 return &r[i];
512 r[i].size -= new->size;
514 r = mmu_add_memrange(mmu_ranges, base_addr, new->size,
515 new->type);
517 if (r == NULL)
518 mmu_error();
520 return r;
523 /* Should never reach here if everything went fine */
524 printf("ARM64 ERROR: No region allocated\n");
525 return NULL;
529 * Func: mmu_alloc_range
530 * Desc: Call get_new_range to get a new memrange which is unused and mark it as
531 * used to avoid same range being allocated for different purposes.
533 static struct mmu_memrange *mmu_alloc_range(struct mmu_ranges *mmu_ranges,
534 struct mmu_new_range_prop *p)
536 struct mmu_memrange *r = mmu_get_new_range(mmu_ranges, p);
538 if (r == NULL)
539 return NULL;
542 * Mark this memrange as used memory. Important since function
543 * can be called multiple times and we do not want to reuse some
544 * range already allocated.
546 if (mmu_add_memrange(&usedmem_ranges, r->base, r->size, r->type)
547 == NULL)
548 mmu_error();
550 return r;
554 * Func: mmu_add_dma_range
555 * Desc: Add a memrange for dma operations. This is special because we want to
556 * initialize this memory as non-cacheable. We have a constraint that the DMA
557 * buffer should be below 4GiB(32-bit only). So, we lookup a TYPE_NORMAL_MEM
558 * from the lowest available addresses and align it to page size i.e. 64KiB.
560 static struct mmu_memrange *mmu_add_dma_range(struct mmu_ranges *mmu_ranges)
562 struct mmu_new_range_prop prop;
564 prop.type = TYPE_DMA_MEM;
565 /* DMA_DEFAULT_SIZE is multiple of GRANULE_SIZE */
566 assert((DMA_DEFAULT_SIZE % GRANULE_SIZE) == 0);
567 prop.size = DMA_DEFAULT_SIZE;
568 prop.lim_excl = (uint64_t)CONFIG_LP_DMA_LIM_EXCL * MiB;
569 prop.align = GRANULE_SIZE;
570 prop.is_valid_range = NULL;
571 prop.src_type = TYPE_NORMAL_MEM;
573 return mmu_alloc_range(mmu_ranges, &prop);
576 static struct mmu_memrange *_mmu_add_fb_range(
577 uint32_t size,
578 struct mmu_ranges *mmu_ranges)
580 struct mmu_new_range_prop prop;
582 prop.type = TYPE_DMA_MEM;
584 prop.size = size;
585 prop.lim_excl = MIN_64_BIT_ADDR;
586 prop.align = MB_SIZE;
587 prop.is_valid_range = NULL;
588 prop.src_type = TYPE_NORMAL_MEM;
590 return mmu_alloc_range(mmu_ranges, &prop);
594 * Func: mmu_extract_ranges
595 * Desc: Assumption is that coreboot tables have memranges in sorted
596 * order. So, if there is an opportunity to combine ranges, we do that as
597 * well. Memranges are initialized for both CB_MEM_RAM and CB_MEM_TABLE as
598 * TYPE_NORMAL_MEM.
600 static void mmu_extract_ranges(struct memrange *cb_ranges,
601 uint64_t ncb,
602 struct mmu_ranges *mmu_ranges)
604 int i = 0;
605 struct mmu_memrange *prev_range = NULL;
607 /* Extract memory ranges to be mapped */
608 for (; i < ncb; i++) {
609 switch (cb_ranges[i].type) {
610 case CB_MEM_RAM:
611 case CB_MEM_TABLE:
612 if (prev_range && (prev_range->base + prev_range->size
613 == cb_ranges[i].base)) {
614 prev_range->size += cb_ranges[i].size;
615 } else {
616 prev_range = mmu_add_memrange(mmu_ranges,
617 cb_ranges[i].base,
618 cb_ranges[i].size,
619 TYPE_NORMAL_MEM);
620 if (prev_range == NULL)
621 mmu_error();
623 break;
624 default:
625 break;
630 static void mmu_add_fb_range(struct mmu_ranges *mmu_ranges)
632 struct mmu_memrange *fb_range;
633 struct cb_framebuffer *framebuffer = &lib_sysinfo.framebuffer;
634 uint32_t fb_size;
636 /* Check whether framebuffer is needed */
637 fb_size = framebuffer->bytes_per_line * framebuffer->y_resolution;
638 if (!fb_size)
639 return;
641 /* make sure to allocate a size of multiple of GRANULE_SIZE */
642 fb_size = ALIGN_UP(fb_size, GRANULE_SIZE);
644 /* framebuffer address has been set already, so just add it as DMA */
645 if (framebuffer->physical_address) {
646 if (mmu_add_memrange(mmu_ranges,
647 framebuffer->physical_address,
648 fb_size,
649 TYPE_DMA_MEM) == NULL)
650 mmu_error();
651 return;
654 /* Allocate framebuffer */
655 fb_range = _mmu_add_fb_range(fb_size, mmu_ranges);
656 if (fb_range == NULL)
657 mmu_error();
659 framebuffer->physical_address = fb_range->base;
663 * Func: mmu_init_ranges
664 * Desc: Initialize mmu_memranges based on the memranges obtained from coreboot
665 * tables. Also, initialize dma memrange and xlat_addr for ttb buffer.
667 struct mmu_memrange *mmu_init_ranges_from_sysinfo(struct memrange *cb_ranges,
668 uint64_t ncb,
669 struct mmu_ranges *mmu_ranges)
671 struct mmu_memrange *dma_range;
673 /* Initialize mmu_ranges to contain no entries. */
674 mmu_ranges->used = 0;
676 /* Extract ranges from memrange in lib_sysinfo */
677 mmu_extract_ranges(cb_ranges, ncb, mmu_ranges);
679 /* Get a range for dma */
680 dma_range = mmu_add_dma_range(mmu_ranges);
682 /* Get a range for framebuffer */
683 mmu_add_fb_range(mmu_ranges);
685 if (dma_range == NULL)
686 mmu_error();
688 return dma_range;
692 * Func: mmu_presysinfo_memory_used
693 * Desc: Initializes all the memory used for presysinfo page table
694 * initialization and enabling of MMU. All these ranges are stored in
695 * usedmem_ranges. usedmem_ranges plays an important role in selecting the dma
696 * buffer as well since we check the dma buffer range against the used memory
697 * ranges to prevent any overstepping.
699 void mmu_presysinfo_memory_used(uint64_t base, uint64_t size)
701 uint64_t range_base;
703 range_base = ALIGN_DOWN(base, GRANULE_SIZE);
705 size += (base - range_base);
706 size = ALIGN_UP(size, GRANULE_SIZE);
708 mmu_add_memrange(&usedmem_ranges, range_base, size, TYPE_NORMAL_MEM);
711 void mmu_presysinfo_enable(void)
713 mmu_init(&usedmem_ranges);
714 mmu_enable();
717 const struct mmu_ranges *mmu_get_used_ranges(void)
719 return &usedmem_ranges;