soc/intel/xeon_sp: Revise IIO domain ACPI name encoding
[coreboot2.git] / payloads / libpayload / crypto / sha1.c
blob5f54431a82efd78d400334415377e62ed1a670bc
1 /*
3 * It has originally been taken from the OpenBSD project.
4 */
6 /* $OpenBSD: sha1.c,v 1.20 2005/08/08 08:05:35 espie Exp $ */
8 /*
9 * SHA-1 in C
10 * By Steve Reid <steve@edmweb.com>
11 * 100% Public Domain
13 * Test Vectors (from FIPS PUB 180-1)
14 * "abc"
15 * A9993E36 4706816A BA3E2571 7850C26C 9CD0D89D
16 * "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq"
17 * 84983E44 1C3BD26E BAAE4AA1 F95129E5 E54670F1
18 * A million repetitions of "a"
19 * 34AA973C D4C4DAA4 F61EEB2B DBAD2731 6534016F
22 #include <libpayload-config.h>
23 #include <libpayload.h>
25 typedef u8 u_int8_t;
26 typedef u32 u_int32_t;
27 typedef u64 u_int64_t;
28 typedef unsigned int u_int;
30 /* Moved from libpayload.h */
32 #if CONFIG(LP_LITTLE_ENDIAN)
33 #define BYTE_ORDER LITTLE_ENDIAN
34 #else
35 #define BYTE_ORDER BIG_ENDIAN
36 #endif
38 #define rol(value, bits) (((value) << (bits)) | ((value) >> (32 - (bits))))
41 * blk0() and blk() perform the initial expand.
42 * I got the idea of expanding during the round function from SSLeay
44 #if BYTE_ORDER == LITTLE_ENDIAN
45 # define blk0(i) (block->l[i] = (rol(block->l[i],24)&0xFF00FF00) \
46 |(rol(block->l[i],8)&0x00FF00FF))
47 #else
48 # define blk0(i) block->l[i]
49 #endif
50 #define blk(i) (block->l[i&15] = rol(block->l[(i+13)&15]^block->l[(i+8)&15] \
51 ^block->l[(i+2)&15]^block->l[i&15],1))
54 * (R0+R1), R2, R3, R4 are the different operations (rounds) used in SHA1
56 #define R0(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk0(i)+0x5A827999+rol(v,5);w=rol(w,30);
57 #define R1(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk(i)+0x5A827999+rol(v,5);w=rol(w,30);
58 #define R2(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0x6ED9EBA1+rol(v,5);w=rol(w,30);
59 #define R3(v,w,x,y,z,i) z+=(((w|x)&y)|(w&x))+blk(i)+0x8F1BBCDC+rol(v,5);w=rol(w,30);
60 #define R4(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0xCA62C1D6+rol(v,5);w=rol(w,30);
63 * Hash a single 512-bit block. This is the core of the algorithm.
65 void
66 SHA1Transform(u_int32_t state[5], const u_int8_t buffer[SHA1_BLOCK_LENGTH])
68 u_int32_t a, b, c, d, e;
69 u_int8_t workspace[SHA1_BLOCK_LENGTH];
70 typedef union {
71 u_int8_t c[64];
72 u_int32_t l[16];
73 } CHAR64LONG16;
74 CHAR64LONG16 *block = (CHAR64LONG16 *)workspace;
76 (void)memcpy(block, buffer, SHA1_BLOCK_LENGTH);
78 /* Copy context->state[] to working vars */
79 a = state[0];
80 b = state[1];
81 c = state[2];
82 d = state[3];
83 e = state[4];
85 /* 4 rounds of 20 operations each. Loop unrolled. */
86 R0(a,b,c,d,e, 0); R0(e,a,b,c,d, 1); R0(d,e,a,b,c, 2); R0(c,d,e,a,b, 3);
87 R0(b,c,d,e,a, 4); R0(a,b,c,d,e, 5); R0(e,a,b,c,d, 6); R0(d,e,a,b,c, 7);
88 R0(c,d,e,a,b, 8); R0(b,c,d,e,a, 9); R0(a,b,c,d,e,10); R0(e,a,b,c,d,11);
89 R0(d,e,a,b,c,12); R0(c,d,e,a,b,13); R0(b,c,d,e,a,14); R0(a,b,c,d,e,15);
90 R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19);
91 R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23);
92 R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27);
93 R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31);
94 R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35);
95 R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39);
96 R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43);
97 R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47);
98 R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51);
99 R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55);
100 R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59);
101 R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63);
102 R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67);
103 R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71);
104 R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75);
105 R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79);
107 /* Add the working vars back into context.state[] */
108 state[0] += a;
109 state[1] += b;
110 state[2] += c;
111 state[3] += d;
112 state[4] += e;
114 /* Wipe variables */
115 a = b = c = d = e = 0;
119 * SHA1Init - Initialize new context
121 void
122 SHA1Init(SHA1_CTX *context)
125 /* SHA1 initialization constants */
126 context->count = 0;
127 context->state[0] = 0x67452301;
128 context->state[1] = 0xEFCDAB89;
129 context->state[2] = 0x98BADCFE;
130 context->state[3] = 0x10325476;
131 context->state[4] = 0xC3D2E1F0;
135 * Run your data through this.
137 void
138 SHA1Update(SHA1_CTX *context, const u_int8_t *data, size_t len)
140 size_t i, j;
142 j = (size_t)((context->count >> 3) & 63);
143 context->count += (len << 3);
144 if ((j + len) > 63) {
145 (void)memcpy(&context->buffer[j], data, (i = 64-j));
146 SHA1Transform(context->state, context->buffer);
147 for ( ; i + 63 < len; i += 64)
148 SHA1Transform(context->state, (u_int8_t *)&data[i]);
149 j = 0;
150 } else {
151 i = 0;
153 (void)memcpy(&context->buffer[j], &data[i], len - i);
157 * Add padding and return the message digest.
159 void
160 SHA1Pad(SHA1_CTX *context)
162 u_int8_t finalcount[8];
163 u_int i;
165 for (i = 0; i < 8; i++) {
166 finalcount[i] = (u_int8_t)((context->count >>
167 ((7 - (i & 7)) * 8)) & 255); /* Endian independent */
169 SHA1Update(context, (u_int8_t *)"\200", 1);
170 while ((context->count & 504) != 448)
171 SHA1Update(context, (u_int8_t *)"\0", 1);
172 SHA1Update(context, finalcount, 8); /* Should cause a SHA1Transform() */
175 void
176 SHA1Final(u_int8_t digest[SHA1_DIGEST_LENGTH], SHA1_CTX *context)
178 u_int i;
180 SHA1Pad(context);
181 if (digest) {
182 for (i = 0; i < SHA1_DIGEST_LENGTH; i++) {
183 digest[i] = (u_int8_t)
184 ((context->state[i>>2] >> ((3-(i & 3)) * 8) ) & 255);
186 memset(context, 0, sizeof(*context));
191 * Compute the SHA-1 hash of the given data as specified by the 'data' and
192 * 'len' arguments, and place the result -- 160 bits (20 bytes) -- into the
193 * specified output buffer 'buf'.
195 * @param data Pointer to the input data that shall be hashed.
196 * @param len Length of the input data (in bytes).
197 * @param buf Buffer which will hold the resulting hash (must be at
198 * least 20 bytes in size).
199 * @return Pointer to the output buffer where the hash is stored.
201 u8 *sha1(const u8 *data, size_t len, u8 *buf)
203 SHA1_CTX ctx;
205 SHA1Init(&ctx);
206 SHA1Update(&ctx, data, len);
207 SHA1Final(buf, &ctx);
209 return buf;