1 /* $OpenBSD: queue.h,v 1.38 2013/07/03 15:05:21 fgsch Exp $ */
2 /* $NetBSD: queue.h,v 1.11 1996/05/16 05:17:14 mycroft Exp $ */
5 * Copyright (c) 1991, 1993
6 * The Regents of the University of California. All rights reserved.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the University nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * @(#)queue.h 8.5 (Berkeley) 8/20/94
39 * This file defines five types of data structures: singly-linked lists,
40 * lists, simple queues, tail queues, and circular queues.
43 * A singly-linked list is headed by a single forward pointer. The elements
44 * are singly linked for minimum space and pointer manipulation overhead at
45 * the expense of O(n) removal for arbitrary elements. New elements can be
46 * added to the list after an existing element or at the head of the list.
47 * Elements being removed from the head of the list should use the explicit
48 * macro for this purpose for optimum efficiency. A singly-linked list may
49 * only be traversed in the forward direction. Singly-linked lists are ideal
50 * for applications with large datasets and few or no removals or for
51 * implementing a LIFO queue.
53 * A list is headed by a single forward pointer (or an array of forward
54 * pointers for a hash table header). The elements are doubly linked
55 * so that an arbitrary element can be removed without a need to
56 * traverse the list. New elements can be added to the list before
57 * or after an existing element or at the head of the list. A list
58 * may only be traversed in the forward direction.
60 * A simple queue is headed by a pair of pointers, one the head of the
61 * list and the other to the tail of the list. The elements are singly
62 * linked to save space, so elements can only be removed from the
63 * head of the list. New elements can be added to the list before or after
64 * an existing element, at the head of the list, or at the end of the
65 * list. A simple queue may only be traversed in the forward direction.
67 * A tail queue is headed by a pair of pointers, one to the head of the
68 * list and the other to the tail of the list. The elements are doubly
69 * linked so that an arbitrary element can be removed without a need to
70 * traverse the list. New elements can be added to the list before or
71 * after an existing element, at the head of the list, or at the end of
72 * the list. A tail queue may be traversed in either direction.
74 * A circle queue is headed by a pair of pointers, one to the head of the
75 * list and the other to the tail of the list. The elements are doubly
76 * linked so that an arbitrary element can be removed without a need to
77 * traverse the list. New elements can be added to the list before or after
78 * an existing element, at the head of the list, or at the end of the list.
79 * A circle queue may be traversed in either direction, but has a more
80 * complex end of list detection.
82 * For details on the use of these macros, see the queue(3) manual page.
85 #if defined(QUEUE_MACRO_DEBUG) || (defined(_KERNEL) && defined(DIAGNOSTIC))
86 #define _Q_INVALIDATE(a) (a) = ((void *)-1)
88 #define _Q_INVALIDATE(a)
92 * Singly-linked List definitions.
94 #define SLIST_HEAD(name, type) \
96 struct type *slh_first; /* first element */ \
99 #define SLIST_HEAD_INITIALIZER(head) \
102 #define SLIST_ENTRY(type) \
104 struct type *sle_next; /* next element */ \
108 * Singly-linked List access methods.
110 #define SLIST_FIRST(head) ((head)->slh_first)
111 #define SLIST_END(head) NULL
112 #define SLIST_EMPTY(head) (SLIST_FIRST(head) == SLIST_END(head))
113 #define SLIST_NEXT(elm, field) ((elm)->field.sle_next)
115 #define SLIST_FOREACH(var, head, field) \
116 for((var) = SLIST_FIRST(head); \
117 (var) != SLIST_END(head); \
118 (var) = SLIST_NEXT(var, field))
120 #define SLIST_FOREACH_SAFE(var, head, field, tvar) \
121 for ((var) = SLIST_FIRST(head); \
122 (var) && ((tvar) = SLIST_NEXT(var, field), 1); \
126 * Singly-linked List functions.
128 #define SLIST_INIT(head) { \
129 SLIST_FIRST(head) = SLIST_END(head); \
132 #define SLIST_INSERT_AFTER(slistelm, elm, field) do { \
133 (elm)->field.sle_next = (slistelm)->field.sle_next; \
134 (slistelm)->field.sle_next = (elm); \
137 #define SLIST_INSERT_HEAD(head, elm, field) do { \
138 (elm)->field.sle_next = (head)->slh_first; \
139 (head)->slh_first = (elm); \
142 #define SLIST_REMOVE_AFTER(elm, field) do { \
143 (elm)->field.sle_next = (elm)->field.sle_next->field.sle_next; \
146 #define SLIST_REMOVE_HEAD(head, field) do { \
147 (head)->slh_first = (head)->slh_first->field.sle_next; \
150 #define SLIST_REMOVE(head, elm, type, field) do { \
151 if ((head)->slh_first == (elm)) { \
152 SLIST_REMOVE_HEAD((head), field); \
154 struct type *curelm = (head)->slh_first; \
156 while (curelm->field.sle_next != (elm)) \
157 curelm = curelm->field.sle_next; \
158 curelm->field.sle_next = \
159 curelm->field.sle_next->field.sle_next; \
160 _Q_INVALIDATE((elm)->field.sle_next); \
167 #define LIST_HEAD(name, type) \
169 struct type *lh_first; /* first element */ \
172 #define LIST_HEAD_INITIALIZER(head) \
175 #define LIST_ENTRY(type) \
177 struct type *le_next; /* next element */ \
178 struct type **le_prev; /* address of previous next element */ \
182 * List access methods
184 #define LIST_FIRST(head) ((head)->lh_first)
185 #define LIST_END(head) NULL
186 #define LIST_EMPTY(head) (LIST_FIRST(head) == LIST_END(head))
187 #define LIST_NEXT(elm, field) ((elm)->field.le_next)
189 #define LIST_FOREACH(var, head, field) \
190 for((var) = LIST_FIRST(head); \
191 (var)!= LIST_END(head); \
192 (var) = LIST_NEXT(var, field))
194 #define LIST_FOREACH_SAFE(var, head, field, tvar) \
195 for ((var) = LIST_FIRST(head); \
196 (var) && ((tvar) = LIST_NEXT(var, field), 1); \
202 #define LIST_INIT(head) do { \
203 LIST_FIRST(head) = LIST_END(head); \
206 #define LIST_INSERT_AFTER(listelm, elm, field) do { \
207 if (((elm)->field.le_next = (listelm)->field.le_next) != NULL) \
208 (listelm)->field.le_next->field.le_prev = \
209 &(elm)->field.le_next; \
210 (listelm)->field.le_next = (elm); \
211 (elm)->field.le_prev = &(listelm)->field.le_next; \
214 #define LIST_INSERT_BEFORE(listelm, elm, field) do { \
215 (elm)->field.le_prev = (listelm)->field.le_prev; \
216 (elm)->field.le_next = (listelm); \
217 *(listelm)->field.le_prev = (elm); \
218 (listelm)->field.le_prev = &(elm)->field.le_next; \
221 #define LIST_INSERT_HEAD(head, elm, field) do { \
222 if (((elm)->field.le_next = (head)->lh_first) != NULL) \
223 (head)->lh_first->field.le_prev = &(elm)->field.le_next;\
224 (head)->lh_first = (elm); \
225 (elm)->field.le_prev = &(head)->lh_first; \
228 #define LIST_REMOVE(elm, field) do { \
229 if ((elm)->field.le_next != NULL) \
230 (elm)->field.le_next->field.le_prev = \
231 (elm)->field.le_prev; \
232 *(elm)->field.le_prev = (elm)->field.le_next; \
233 _Q_INVALIDATE((elm)->field.le_prev); \
234 _Q_INVALIDATE((elm)->field.le_next); \
237 #define LIST_REPLACE(elm, elm2, field) do { \
238 if (((elm2)->field.le_next = (elm)->field.le_next) != NULL) \
239 (elm2)->field.le_next->field.le_prev = \
240 &(elm2)->field.le_next; \
241 (elm2)->field.le_prev = (elm)->field.le_prev; \
242 *(elm2)->field.le_prev = (elm2); \
243 _Q_INVALIDATE((elm)->field.le_prev); \
244 _Q_INVALIDATE((elm)->field.le_next); \
248 * Simple queue definitions.
250 #define SIMPLEQ_HEAD(name, type) \
252 struct type *sqh_first; /* first element */ \
253 struct type **sqh_last; /* addr of last next element */ \
256 #define SIMPLEQ_HEAD_INITIALIZER(head) \
257 { NULL, &(head).sqh_first }
259 #define SIMPLEQ_ENTRY(type) \
261 struct type *sqe_next; /* next element */ \
265 * Simple queue access methods.
267 #define SIMPLEQ_FIRST(head) ((head)->sqh_first)
268 #define SIMPLEQ_END(head) NULL
269 #define SIMPLEQ_EMPTY(head) (SIMPLEQ_FIRST(head) == SIMPLEQ_END(head))
270 #define SIMPLEQ_NEXT(elm, field) ((elm)->field.sqe_next)
271 #define SIMPLEQ_TAIL_NEXT(head) ((head)->sqh_last)
272 #define SIMPLEQ_SINGLETON(head, field) \
273 (&SIMPLEQ_NEXT(SIMPLEQ_FIRST(head), field) == SIMPLEQ_TAIL_NEXT(head))
275 #define SIMPLEQ_FOREACH(var, head, field) \
276 for((var) = SIMPLEQ_FIRST(head); \
277 (var) != SIMPLEQ_END(head); \
278 (var) = SIMPLEQ_NEXT(var, field))
280 #define SIMPLEQ_FOREACH_SAFE(var, head, field, tvar) \
281 for ((var) = SIMPLEQ_FIRST(head); \
282 (var) && ((tvar) = SIMPLEQ_NEXT(var, field), 1); \
286 * Simple queue functions.
288 #define SIMPLEQ_INIT(head) do { \
289 (head)->sqh_first = NULL; \
290 (head)->sqh_last = &(head)->sqh_first; \
293 #define SIMPLEQ_INSERT_HEAD(head, elm, field) do { \
294 if (((elm)->field.sqe_next = (head)->sqh_first) == NULL) \
295 (head)->sqh_last = &(elm)->field.sqe_next; \
296 (head)->sqh_first = (elm); \
299 #define SIMPLEQ_INSERT_TAIL(head, elm, field) do { \
300 (elm)->field.sqe_next = NULL; \
301 *(head)->sqh_last = (elm); \
302 (head)->sqh_last = &(elm)->field.sqe_next; \
305 #define SIMPLEQ_INSERT_AFTER(head, listelm, elm, field) do { \
306 if (((elm)->field.sqe_next = (listelm)->field.sqe_next) == NULL)\
307 (head)->sqh_last = &(elm)->field.sqe_next; \
308 (listelm)->field.sqe_next = (elm); \
311 #define SIMPLEQ_REMOVE_HEAD(head, field) do { \
312 if (((head)->sqh_first = (head)->sqh_first->field.sqe_next) == NULL) \
313 (head)->sqh_last = &(head)->sqh_first; \
316 #define SIMPLEQ_REMOVE_AFTER(head, elm, field) do { \
317 if (((elm)->field.sqe_next = (elm)->field.sqe_next->field.sqe_next) \
319 (head)->sqh_last = &(elm)->field.sqe_next; \
323 * XOR Simple queue definitions.
325 #define XSIMPLEQ_HEAD(name, type) \
327 struct type *sqx_first; /* first element */ \
328 struct type **sqx_last; /* addr of last next element */ \
329 unsigned long sqx_cookie; \
332 #define XSIMPLEQ_ENTRY(type) \
334 struct type *sqx_next; /* next element */ \
338 * XOR Simple queue access methods.
340 #define XSIMPLEQ_XOR(head, ptr) ((__typeof(ptr))((head)->sqx_cookie ^ \
341 (unsigned long)(ptr)))
342 #define XSIMPLEQ_FIRST(head) XSIMPLEQ_XOR(head, ((head)->sqx_first))
343 #define XSIMPLEQ_END(head) NULL
344 #define XSIMPLEQ_EMPTY(head) (XSIMPLEQ_FIRST(head) == XSIMPLEQ_END(head))
345 #define XSIMPLEQ_NEXT(head, elm, field) XSIMPLEQ_XOR(head, ((elm)->field.sqx_next))
347 #define XSIMPLEQ_FOREACH(var, head, field) \
348 for ((var) = XSIMPLEQ_FIRST(head); \
349 (var) != XSIMPLEQ_END(head); \
350 (var) = XSIMPLEQ_NEXT(head, var, field))
352 #define XSIMPLEQ_FOREACH_SAFE(var, head, field, tvar) \
353 for ((var) = XSIMPLEQ_FIRST(head); \
354 (var) && ((tvar) = XSIMPLEQ_NEXT(head, var, field), 1); \
358 * XOR Simple queue functions.
360 #define XSIMPLEQ_INIT(head) do { \
361 arc4random_buf(&(head)->sqx_cookie, sizeof((head)->sqx_cookie)); \
362 (head)->sqx_first = XSIMPLEQ_XOR(head, NULL); \
363 (head)->sqx_last = XSIMPLEQ_XOR(head, &(head)->sqx_first); \
366 #define XSIMPLEQ_INSERT_HEAD(head, elm, field) do { \
367 if (((elm)->field.sqx_next = (head)->sqx_first) == \
368 XSIMPLEQ_XOR(head, NULL)) \
369 (head)->sqx_last = XSIMPLEQ_XOR(head, &(elm)->field.sqx_next); \
370 (head)->sqx_first = XSIMPLEQ_XOR(head, (elm)); \
373 #define XSIMPLEQ_INSERT_TAIL(head, elm, field) do { \
374 (elm)->field.sqx_next = XSIMPLEQ_XOR(head, NULL); \
375 *(XSIMPLEQ_XOR(head, (head)->sqx_last)) = XSIMPLEQ_XOR(head, (elm)); \
376 (head)->sqx_last = XSIMPLEQ_XOR(head, &(elm)->field.sqx_next); \
379 #define XSIMPLEQ_INSERT_AFTER(head, listelm, elm, field) do { \
380 if (((elm)->field.sqx_next = (listelm)->field.sqx_next) == \
381 XSIMPLEQ_XOR(head, NULL)) \
382 (head)->sqx_last = XSIMPLEQ_XOR(head, &(elm)->field.sqx_next); \
383 (listelm)->field.sqx_next = XSIMPLEQ_XOR(head, (elm)); \
386 #define XSIMPLEQ_REMOVE_HEAD(head, field) do { \
387 if (((head)->sqx_first = XSIMPLEQ_XOR(head, \
388 (head)->sqx_first)->field.sqx_next) == XSIMPLEQ_XOR(head, NULL)) \
389 (head)->sqx_last = XSIMPLEQ_XOR(head, &(head)->sqx_first); \
392 #define XSIMPLEQ_REMOVE_AFTER(head, elm, field) do { \
393 if (((elm)->field.sqx_next = XSIMPLEQ_XOR(head, \
394 (elm)->field.sqx_next)->field.sqx_next) \
395 == XSIMPLEQ_XOR(head, NULL)) \
397 XSIMPLEQ_XOR(head, &(elm)->field.sqx_next); \
401 * Tail queue definitions.
403 #define TAILQ_HEAD(name, type) \
405 struct type *tqh_first; /* first element */ \
406 struct type **tqh_last; /* addr of last next element */ \
409 #define TAILQ_HEAD_INITIALIZER(head) \
410 { NULL, &(head).tqh_first }
412 #define TAILQ_ENTRY(type) \
414 struct type *tqe_next; /* next element */ \
415 struct type **tqe_prev; /* address of previous next element */ \
419 * tail queue access methods
421 #define TAILQ_FIRST(head) ((head)->tqh_first)
422 #define TAILQ_END(head) NULL
423 #define TAILQ_NEXT(elm, field) ((elm)->field.tqe_next)
424 #define TAILQ_LAST(head, headname) \
425 (*(((struct headname *)((head)->tqh_last))->tqh_last))
427 #define TAILQ_PREV(elm, headname, field) \
428 (*(((struct headname *)((elm)->field.tqe_prev))->tqh_last))
429 #define TAILQ_EMPTY(head) \
430 (TAILQ_FIRST(head) == TAILQ_END(head))
432 #define TAILQ_FOREACH(var, head, field) \
433 for((var) = TAILQ_FIRST(head); \
434 (var) != TAILQ_END(head); \
435 (var) = TAILQ_NEXT(var, field))
437 #define TAILQ_FOREACH_SAFE(var, head, field, tvar) \
438 for ((var) = TAILQ_FIRST(head); \
439 (var) != TAILQ_END(head) && \
440 ((tvar) = TAILQ_NEXT(var, field), 1); \
443 #define TAILQ_FOREACH_REVERSE(var, head, headname, field) \
444 for((var) = TAILQ_LAST(head, headname); \
445 (var) != TAILQ_END(head); \
446 (var) = TAILQ_PREV(var, headname, field))
448 #define TAILQ_FOREACH_REVERSE_SAFE(var, head, headname, field, tvar) \
449 for ((var) = TAILQ_LAST(head, headname); \
450 (var) != TAILQ_END(head) && \
451 ((tvar) = TAILQ_PREV(var, headname, field), 1); \
455 * Tail queue functions.
457 #define TAILQ_INIT(head) do { \
458 (head)->tqh_first = NULL; \
459 (head)->tqh_last = &(head)->tqh_first; \
462 #define TAILQ_INSERT_HEAD(head, elm, field) do { \
463 if (((elm)->field.tqe_next = (head)->tqh_first) != NULL) \
464 (head)->tqh_first->field.tqe_prev = \
465 &(elm)->field.tqe_next; \
467 (head)->tqh_last = &(elm)->field.tqe_next; \
468 (head)->tqh_first = (elm); \
469 (elm)->field.tqe_prev = &(head)->tqh_first; \
472 #define TAILQ_INSERT_TAIL(head, elm, field) do { \
473 (elm)->field.tqe_next = NULL; \
474 (elm)->field.tqe_prev = (head)->tqh_last; \
475 *(head)->tqh_last = (elm); \
476 (head)->tqh_last = &(elm)->field.tqe_next; \
479 #define TAILQ_INSERT_AFTER(head, listelm, elm, field) do { \
480 if (((elm)->field.tqe_next = (listelm)->field.tqe_next) != NULL)\
481 (elm)->field.tqe_next->field.tqe_prev = \
482 &(elm)->field.tqe_next; \
484 (head)->tqh_last = &(elm)->field.tqe_next; \
485 (listelm)->field.tqe_next = (elm); \
486 (elm)->field.tqe_prev = &(listelm)->field.tqe_next; \
489 #define TAILQ_INSERT_BEFORE(listelm, elm, field) do { \
490 (elm)->field.tqe_prev = (listelm)->field.tqe_prev; \
491 (elm)->field.tqe_next = (listelm); \
492 *(listelm)->field.tqe_prev = (elm); \
493 (listelm)->field.tqe_prev = &(elm)->field.tqe_next; \
496 #define TAILQ_REMOVE(head, elm, field) do { \
497 if (((elm)->field.tqe_next) != NULL) \
498 (elm)->field.tqe_next->field.tqe_prev = \
499 (elm)->field.tqe_prev; \
501 (head)->tqh_last = (elm)->field.tqe_prev; \
502 *(elm)->field.tqe_prev = (elm)->field.tqe_next; \
503 _Q_INVALIDATE((elm)->field.tqe_prev); \
504 _Q_INVALIDATE((elm)->field.tqe_next); \
507 #define TAILQ_REPLACE(head, elm, elm2, field) do { \
508 if (((elm2)->field.tqe_next = (elm)->field.tqe_next) != NULL) \
509 (elm2)->field.tqe_next->field.tqe_prev = \
510 &(elm2)->field.tqe_next; \
512 (head)->tqh_last = &(elm2)->field.tqe_next; \
513 (elm2)->field.tqe_prev = (elm)->field.tqe_prev; \
514 *(elm2)->field.tqe_prev = (elm2); \
515 _Q_INVALIDATE((elm)->field.tqe_prev); \
516 _Q_INVALIDATE((elm)->field.tqe_next); \
520 * Circular queue definitions.
522 #define CIRCLEQ_HEAD(name, type) \
524 struct type *cqh_first; /* first element */ \
525 struct type *cqh_last; /* last element */ \
528 #define CIRCLEQ_HEAD_INITIALIZER(head) \
529 { CIRCLEQ_END(&head), CIRCLEQ_END(&head) }
531 #define CIRCLEQ_ENTRY(type) \
533 struct type *cqe_next; /* next element */ \
534 struct type *cqe_prev; /* previous element */ \
538 * Circular queue access methods
540 #define CIRCLEQ_FIRST(head) ((head)->cqh_first)
541 #define CIRCLEQ_LAST(head) ((head)->cqh_last)
542 #define CIRCLEQ_END(head) ((void *)(head))
543 #define CIRCLEQ_NEXT(elm, field) ((elm)->field.cqe_next)
544 #define CIRCLEQ_PREV(elm, field) ((elm)->field.cqe_prev)
545 #define CIRCLEQ_EMPTY(head) \
546 (CIRCLEQ_FIRST(head) == CIRCLEQ_END(head))
548 #define CIRCLEQ_FOREACH(var, head, field) \
549 for((var) = CIRCLEQ_FIRST(head); \
550 (var) != CIRCLEQ_END(head); \
551 (var) = CIRCLEQ_NEXT(var, field))
553 #define CIRCLEQ_FOREACH_SAFE(var, head, field, tvar) \
554 for ((var) = CIRCLEQ_FIRST(head); \
555 (var) != CIRCLEQ_END(head) && \
556 ((tvar) = CIRCLEQ_NEXT(var, field), 1); \
559 #define CIRCLEQ_FOREACH_REVERSE(var, head, field) \
560 for((var) = CIRCLEQ_LAST(head); \
561 (var) != CIRCLEQ_END(head); \
562 (var) = CIRCLEQ_PREV(var, field))
564 #define CIRCLEQ_FOREACH_REVERSE_SAFE(var, head, headname, field, tvar) \
565 for ((var) = CIRCLEQ_LAST(head, headname); \
566 (var) != CIRCLEQ_END(head) && \
567 ((tvar) = CIRCLEQ_PREV(var, headname, field), 1); \
571 * Circular queue functions.
573 #define CIRCLEQ_INIT(head) do { \
574 (head)->cqh_first = CIRCLEQ_END(head); \
575 (head)->cqh_last = CIRCLEQ_END(head); \
578 #define CIRCLEQ_INSERT_AFTER(head, listelm, elm, field) do { \
579 (elm)->field.cqe_next = (listelm)->field.cqe_next; \
580 (elm)->field.cqe_prev = (listelm); \
581 if ((listelm)->field.cqe_next == CIRCLEQ_END(head)) \
582 (head)->cqh_last = (elm); \
584 (listelm)->field.cqe_next->field.cqe_prev = (elm); \
585 (listelm)->field.cqe_next = (elm); \
588 #define CIRCLEQ_INSERT_BEFORE(head, listelm, elm, field) do { \
589 (elm)->field.cqe_next = (listelm); \
590 (elm)->field.cqe_prev = (listelm)->field.cqe_prev; \
591 if ((listelm)->field.cqe_prev == CIRCLEQ_END(head)) \
592 (head)->cqh_first = (elm); \
594 (listelm)->field.cqe_prev->field.cqe_next = (elm); \
595 (listelm)->field.cqe_prev = (elm); \
598 #define CIRCLEQ_INSERT_HEAD(head, elm, field) do { \
599 (elm)->field.cqe_next = (head)->cqh_first; \
600 (elm)->field.cqe_prev = CIRCLEQ_END(head); \
601 if ((head)->cqh_last == CIRCLEQ_END(head)) \
602 (head)->cqh_last = (elm); \
604 (head)->cqh_first->field.cqe_prev = (elm); \
605 (head)->cqh_first = (elm); \
608 #define CIRCLEQ_INSERT_TAIL(head, elm, field) do { \
609 (elm)->field.cqe_next = CIRCLEQ_END(head); \
610 (elm)->field.cqe_prev = (head)->cqh_last; \
611 if ((head)->cqh_first == CIRCLEQ_END(head)) \
612 (head)->cqh_first = (elm); \
614 (head)->cqh_last->field.cqe_next = (elm); \
615 (head)->cqh_last = (elm); \
618 #define CIRCLEQ_REMOVE(head, elm, field) do { \
619 if ((elm)->field.cqe_next == CIRCLEQ_END(head)) \
620 (head)->cqh_last = (elm)->field.cqe_prev; \
622 (elm)->field.cqe_next->field.cqe_prev = \
623 (elm)->field.cqe_prev; \
624 if ((elm)->field.cqe_prev == CIRCLEQ_END(head)) \
625 (head)->cqh_first = (elm)->field.cqe_next; \
627 (elm)->field.cqe_prev->field.cqe_next = \
628 (elm)->field.cqe_next; \
629 _Q_INVALIDATE((elm)->field.cqe_prev); \
630 _Q_INVALIDATE((elm)->field.cqe_next); \
633 #define CIRCLEQ_REPLACE(head, elm, elm2, field) do { \
634 if (((elm2)->field.cqe_next = (elm)->field.cqe_next) == \
636 (head)->cqh_last = (elm2); \
638 (elm2)->field.cqe_next->field.cqe_prev = (elm2); \
639 if (((elm2)->field.cqe_prev = (elm)->field.cqe_prev) == \
641 (head)->cqh_first = (elm2); \
643 (elm2)->field.cqe_prev->field.cqe_next = (elm2); \
644 _Q_INVALIDATE((elm)->field.cqe_prev); \
645 _Q_INVALIDATE((elm)->field.cqe_next); \
648 #endif /* !_SYS_QUEUE_H_ */