1 /* SPDX-License-Identifier: GPL-2.0-only */
4 * Originally based on the Linux kernel (drivers/pci/pci.c).
5 * PCI Bus Services, see include/linux/pci.h for further explanation.
11 #include <device/pci_ops.h>
13 #include <console/console.h>
18 #include <device/cardbus.h>
19 #include <device/device.h>
20 #include <device/pci.h>
21 #include <device/pci_ids.h>
22 #include <device/pcix.h>
23 #include <device/pciexp.h>
25 #include <pc80/i8259.h>
26 #include <security/vboot/vbnv.h>
27 #include <timestamp.h>
30 u8
pci_moving_config8(struct device
*dev
, unsigned int reg
)
32 u8 value
, ones
, zeroes
;
34 value
= pci_read_config8(dev
, reg
);
36 pci_write_config8(dev
, reg
, 0xff);
37 ones
= pci_read_config8(dev
, reg
);
39 pci_write_config8(dev
, reg
, 0x00);
40 zeroes
= pci_read_config8(dev
, reg
);
42 pci_write_config8(dev
, reg
, value
);
47 u16
pci_moving_config16(struct device
*dev
, unsigned int reg
)
49 u16 value
, ones
, zeroes
;
51 value
= pci_read_config16(dev
, reg
);
53 pci_write_config16(dev
, reg
, 0xffff);
54 ones
= pci_read_config16(dev
, reg
);
56 pci_write_config16(dev
, reg
, 0x0000);
57 zeroes
= pci_read_config16(dev
, reg
);
59 pci_write_config16(dev
, reg
, value
);
64 u32
pci_moving_config32(struct device
*dev
, unsigned int reg
)
66 u32 value
, ones
, zeroes
;
68 value
= pci_read_config32(dev
, reg
);
70 pci_write_config32(dev
, reg
, 0xffffffff);
71 ones
= pci_read_config32(dev
, reg
);
73 pci_write_config32(dev
, reg
, 0x00000000);
74 zeroes
= pci_read_config32(dev
, reg
);
76 pci_write_config32(dev
, reg
, value
);
82 * Given a device and register, read the size of the BAR for that register.
84 * @param dev Pointer to the device structure.
85 * @param index Address of the PCI configuration register.
88 struct resource
*pci_get_resource(struct device
*dev
, unsigned long index
)
90 struct resource
*resource
;
91 unsigned long value
, attr
;
92 resource_t moving
, limit
;
94 /* Initialize the resources to nothing. */
95 resource
= new_resource(dev
, index
);
97 /* Get the initial value. */
98 value
= pci_read_config32(dev
, index
);
100 /* See which bits move. */
101 moving
= pci_moving_config32(dev
, index
);
103 /* Initialize attr to the bits that do not move. */
104 attr
= value
& ~moving
;
106 /* If it is a 64bit resource look at the high half as well. */
107 if (((attr
& PCI_BASE_ADDRESS_SPACE_IO
) == 0) &&
108 ((attr
& PCI_BASE_ADDRESS_MEM_LIMIT_MASK
) ==
109 PCI_BASE_ADDRESS_MEM_LIMIT_64
)) {
110 /* Find the high bits that move. */
112 ((resource_t
)pci_moving_config32(dev
, index
+ 4)) << 32;
115 /* Find the resource constraints.
116 * Start by finding the bits that move. From there:
117 * - Size is the least significant bit of the bits that move.
118 * - Limit is all of the bits that move plus all of the lower bits.
119 * See PCI Spec 6.2.5.1.
124 resource
->align
= resource
->gran
= 0;
125 while (!(moving
& resource
->size
)) {
126 resource
->size
<<= 1;
127 resource
->align
+= 1;
130 resource
->limit
= limit
= moving
| (resource
->size
- 1);
132 if (pci_base_address_is_memory_space(attr
)) {
133 /* Page-align to allow individual mapping of devices. */
134 if (resource
->align
< 12)
135 resource
->align
= 12;
140 * Some broken hardware has read-only registers that do not
141 * really size correctly.
143 * Example: the Acer M7229 has BARs 1-4 normally read-only,
144 * so BAR1 at offset 0x10 reads 0x1f1. If you size that register
145 * by writing 0xffffffff to it, it will read back as 0x1f1 -- which
146 * is a violation of the spec.
148 * We catch this case and ignore it by observing which bits move.
150 * This also catches the common case of unimplemented registers
151 * that always read back as 0.
155 printk(BIOS_DEBUG
, "%s register %02lx(%08lx), read-only ignoring it\n",
156 dev_path(dev
), index
, value
);
159 } else if (attr
& PCI_BASE_ADDRESS_SPACE_IO
) {
160 /* An I/O mapped base address. */
161 resource
->flags
|= IORESOURCE_IO
;
162 /* I don't want to deal with 32bit I/O resources. */
163 resource
->limit
= 0xffff;
165 /* A Memory mapped base address. */
166 attr
&= PCI_BASE_ADDRESS_MEM_ATTR_MASK
;
167 resource
->flags
|= IORESOURCE_MEM
;
168 if (attr
& PCI_BASE_ADDRESS_MEM_PREFETCH
) {
169 resource
->flags
|= IORESOURCE_PREFETCH
;
170 if (CONFIG(PCIEXP_HOTPLUG_PREFETCH_MEM_ABOVE_4G
)
171 && dev_path_hotplug(dev
))
172 resource
->flags
|= IORESOURCE_ABOVE_4G
;
174 attr
&= PCI_BASE_ADDRESS_MEM_LIMIT_MASK
;
175 if (attr
== PCI_BASE_ADDRESS_MEM_LIMIT_32
) {
177 resource
->limit
= 0xffffffffUL
;
178 } else if (attr
== PCI_BASE_ADDRESS_MEM_LIMIT_1M
) {
180 resource
->limit
= 0x000fffffUL
;
181 } else if (attr
== PCI_BASE_ADDRESS_MEM_LIMIT_64
) {
183 resource
->limit
= 0xffffffffffffffffULL
;
184 resource
->flags
|= IORESOURCE_PCI64
;
187 printk(BIOS_ERR
, "Broken BAR with value %lx\n", attr
);
188 printk(BIOS_ERR
, " on dev %s at index %02lx\n",
189 dev_path(dev
), index
);
194 /* Don't let the limit exceed which bits can move. */
195 if (resource
->limit
> limit
)
196 resource
->limit
= limit
;
202 * Given a device and an index, read the size of the BAR for that register.
204 * @param dev Pointer to the device structure.
205 * @param index Address of the PCI configuration register.
207 static void pci_get_rom_resource(struct device
*dev
, unsigned long index
)
209 struct resource
*resource
;
213 /* Initialize the resources to nothing. */
214 resource
= new_resource(dev
, index
);
216 /* Get the initial value. */
217 value
= pci_read_config32(dev
, index
);
219 /* See which bits move. */
220 moving
= pci_moving_config32(dev
, index
);
222 /* Clear the Enable bit. */
223 moving
= moving
& ~PCI_ROM_ADDRESS_ENABLE
;
225 /* Find the resource constraints.
226 * Start by finding the bits that move. From there:
227 * - Size is the least significant bit of the bits that move.
228 * - Limit is all of the bits that move plus all of the lower bits.
229 * See PCI Spec 6.2.5.1.
233 resource
->align
= resource
->gran
= 0;
234 while (!(moving
& resource
->size
)) {
235 resource
->size
<<= 1;
236 resource
->align
+= 1;
239 resource
->limit
= moving
| (resource
->size
- 1);
240 resource
->flags
|= IORESOURCE_MEM
| IORESOURCE_READONLY
;
243 printk(BIOS_DEBUG
, "%s register %02lx(%08lx), read-only ignoring it\n",
244 dev_path(dev
), index
, value
);
248 compact_resources(dev
);
252 * Given a device, read the size of the MSI-X table.
254 * @param dev Pointer to the device structure.
255 * @return MSI-X table size or 0 if not MSI-X capable device
257 size_t pci_msix_table_size(struct device
*dev
)
259 const size_t pos
= pci_find_capability(dev
, PCI_CAP_ID_MSIX
);
263 const u16 control
= pci_read_config16(dev
, pos
+ PCI_MSIX_FLAGS
);
264 return (control
& PCI_MSIX_FLAGS_QSIZE
) + 1;
268 * Given a device, return the table offset and bar the MSI-X tables resides in.
270 * @param dev Pointer to the device structure.
271 * @param offset Returned value gives the offset in bytes inside the PCI BAR.
272 * @param idx The returned value is the index of the PCI_BASE_ADDRESS register
273 * the MSI-X table is located in.
274 * @return Zero on success
276 int pci_msix_table_bar(struct device
*dev
, u32
*offset
, u8
*idx
)
278 const size_t pos
= pci_find_capability(dev
, PCI_CAP_ID_MSIX
);
279 if (!pos
|| !offset
|| !idx
)
282 *offset
= pci_read_config32(dev
, pos
+ PCI_MSIX_TABLE
);
283 *idx
= (u8
)(*offset
& PCI_MSIX_PBA_BIR
);
284 *offset
&= PCI_MSIX_PBA_OFFSET
;
290 * Given a device, return a msix_entry pointer or NULL if no table was found.
292 * @param dev Pointer to the device structure.
294 * @return NULL on error
296 struct msix_entry
*pci_msix_get_table(struct device
*dev
)
298 struct resource
*res
;
302 if (pci_msix_table_bar(dev
, &offset
, &idx
))
308 res
= probe_resource(dev
, idx
* 4 + PCI_BASE_ADDRESS_0
);
309 if (!res
|| !res
->base
|| offset
>= res
->size
)
312 if ((res
->flags
& IORESOURCE_PCI64
) &&
313 (uintptr_t)res
->base
!= res
->base
)
316 return (struct msix_entry
*)((uintptr_t)res
->base
+ offset
);
319 static unsigned int get_rebar_offset(const struct device
*dev
, unsigned long index
)
321 uint32_t offset
= pciexp_find_extended_cap(dev
, PCIE_EXT_CAP_RESIZABLE_BAR
, 0);
325 /* Convert PCI_BASE_ADDRESS_0, ..._1, ..._2 into 0, 1, 2... */
326 const unsigned int find_bar_idx
= (index
- PCI_BASE_ADDRESS_0
) /
329 /* Although all of the Resizable BAR Control Registers contain an
330 "NBARs" field, it is only valid in the Control Register for BAR 0 */
331 const uint32_t rebar_ctrl0
= pci_read_config32(dev
, offset
+ PCI_REBAR_CTRL_OFFSET
);
332 const unsigned int nbars
= (rebar_ctrl0
& PCI_REBAR_CTRL_NBARS_MASK
) >>
333 PCI_REBAR_CTRL_NBARS_SHIFT
;
335 for (unsigned int i
= 0; i
< nbars
; i
++, offset
+= sizeof(uint64_t)) {
336 const uint32_t rebar_ctrl
= pci_read_config32(
337 dev
, offset
+ PCI_REBAR_CTRL_OFFSET
);
338 const uint32_t bar_idx
= rebar_ctrl
& PCI_REBAR_CTRL_IDX_MASK
;
339 if (bar_idx
== find_bar_idx
)
346 /* Bit 20 = 1 MiB, bit 21 = 2 MiB, bit 22 = 4 MiB, ... bit 63 = 8 EiB */
347 static uint64_t get_rebar_sizes_mask(const struct device
*dev
,
350 uint64_t size_mask
= 0ULL;
351 const uint32_t offset
= get_rebar_offset(dev
, index
);
355 /* Get 1 MB - 128 TB support from CAP register */
356 const uint32_t cap
= pci_read_config32(dev
, offset
+ PCI_REBAR_CAP_OFFSET
);
357 /* Shift the bits from 4-31 to 0-27 (i.e., down by 4 bits) */
358 size_mask
|= ((cap
& PCI_REBAR_CAP_SIZE_MASK
) >> 4);
360 /* Get 256 TB - 8 EB support from CTRL register and store it in bits 28-43 */
361 const uint64_t ctrl
= pci_read_config32(dev
, offset
+ PCI_REBAR_CTRL_OFFSET
);
362 /* Shift ctrl mask from bit 16 to bit 28, so that the two
363 masks (fom cap and ctrl) form a contiguous bitmask when
364 concatenated (i.e., up by 12 bits). */
365 size_mask
|= ((ctrl
& PCI_REBAR_CTRL_SIZE_MASK
) << 12);
367 /* Now that the mask occupies bits 0-43, shift it up to 20-63, so they
368 represent the actual powers of 2. */
369 return size_mask
<< 20;
372 static void pci_store_rebar_size(const struct device
*dev
,
373 const struct resource
*resource
)
375 const unsigned int num_bits
= __fls64(resource
->size
);
376 const uint32_t offset
= get_rebar_offset(dev
, resource
->index
);
380 pci_update_config32(dev
, offset
+ PCI_REBAR_CTRL_OFFSET
,
381 ~PCI_REBAR_CTRL_SIZE_MASK
,
382 num_bits
<< PCI_REBAR_CTRL_SIZE_SHIFT
);
385 static void configure_adjustable_base(const struct device
*dev
,
387 struct resource
*res
)
390 * Excerpt from an implementation note from the PCIe spec:
392 * System software uses this capability in place of the above mentioned
393 * method of determining the resource size[0], and prior to assigning
394 * the base address to the BAR. Potential usable resource sizes are
395 * reported by the Function via its Resizable BAR Capability and Control
396 * registers. It is intended that the software allocate the largest of
397 * the reported sizes that it can, since allocating less address space
398 * than the largest reported size can result in lower
399 * performance. Software then writes the size to the Resizable BAR
400 * Control register for the appropriate BAR for the Function. Following
401 * this, the base address is written to the BAR.
403 * [0] Referring to using the moving bits in the BAR to determine the
404 * requested size of the MMIO region
406 const uint64_t size_mask
= get_rebar_sizes_mask(dev
, index
);
410 int max_requested_bits
= __fls64(size_mask
);
411 if (max_requested_bits
> CONFIG_PCIEXP_DEFAULT_MAX_RESIZABLE_BAR_BITS
) {
412 printk(BIOS_WARNING
, "Device %s requests a BAR with"
413 " %u bits of address space, which coreboot is not"
414 " configured to hand out, truncating to %u bits\n",
415 dev_path(dev
), max_requested_bits
,
416 CONFIG_PCIEXP_DEFAULT_MAX_RESIZABLE_BAR_BITS
);
417 max_requested_bits
= CONFIG_PCIEXP_DEFAULT_MAX_RESIZABLE_BAR_BITS
;
420 if (!(res
->flags
& IORESOURCE_PCI64
) && max_requested_bits
> 32) {
421 printk(BIOS_ERR
, "Resizable BAR requested"
422 " above 32 bits, but PCI function reported a"
427 /* Configure the resource parameters for the adjustable BAR */
428 res
->size
= 1ULL << max_requested_bits
;
429 res
->align
= max_requested_bits
;
430 res
->gran
= max_requested_bits
;
431 res
->limit
= (res
->flags
& IORESOURCE_PCI64
) ? UINT64_MAX
: UINT32_MAX
;
432 res
->flags
|= (res
->flags
& IORESOURCE_PCI64
) ?
433 IORESOURCE_PCIE_RESIZABLE_BAR
| IORESOURCE_ABOVE_4G
:
434 IORESOURCE_PCIE_RESIZABLE_BAR
;
436 printk(BIOS_INFO
, "%s: Adjusting resource index %lu: base: %llx size: %llx "
437 "align: %d gran: %d limit: %llx\n",
438 dev_path(dev
), res
->index
, res
->base
, res
->size
,
439 res
->align
, res
->gran
, res
->limit
);
443 * Read the base address registers for a given device.
445 * @param dev Pointer to the dev structure.
446 * @param howmany How many registers to read (6 for device, 2 for bridge).
448 static void pci_read_bases(struct device
*dev
, unsigned int howmany
)
452 for (index
= PCI_BASE_ADDRESS_0
;
453 (index
< PCI_BASE_ADDRESS_0
+ (howmany
<< 2));) {
454 struct resource
*resource
;
455 resource
= pci_get_resource(dev
, index
);
457 const bool is_pcie
= pci_find_capability(dev
, PCI_CAP_ID_PCIE
) != 0;
458 if (CONFIG(PCIEXP_SUPPORT_RESIZABLE_BARS
) && is_pcie
)
459 configure_adjustable_base(dev
, index
, resource
);
461 index
+= (resource
->flags
& IORESOURCE_PCI64
) ? 8 : 4;
464 compact_resources(dev
);
467 static void pci_record_bridge_resource(struct device
*dev
, resource_t moving
,
468 unsigned int index
, unsigned long type
)
470 struct resource
*resource
;
479 /* Initialize the constraints on the current bus. */
480 resource
= new_resource(dev
, index
);
484 while ((moving
& step
) == 0) {
488 resource
->gran
= gran
;
489 resource
->align
= gran
;
490 resource
->limit
= moving
| (step
- 1);
491 resource
->flags
= type
| IORESOURCE_PCI_BRIDGE
|
495 static void pci_bridge_read_bases(struct device
*dev
)
497 resource_t moving_base
, moving_limit
, moving
;
499 /* See if the bridge I/O resources are implemented. */
500 moving_base
= ((u32
)pci_moving_config8(dev
, PCI_IO_BASE
)) << 8;
502 ((u32
)pci_moving_config16(dev
, PCI_IO_BASE_UPPER16
)) << 16;
504 moving_limit
= ((u32
)pci_moving_config8(dev
, PCI_IO_LIMIT
)) << 8;
506 ((u32
)pci_moving_config16(dev
, PCI_IO_LIMIT_UPPER16
)) << 16;
508 moving
= moving_base
& moving_limit
;
510 /* Initialize the I/O space constraints on the current bus. */
511 pci_record_bridge_resource(dev
, moving
, PCI_IO_BASE
, IORESOURCE_IO
);
513 /* See if the bridge prefmem resources are implemented. */
515 ((resource_t
)pci_moving_config16(dev
, PCI_PREF_MEMORY_BASE
)) << 16;
517 ((resource_t
)pci_moving_config32(dev
, PCI_PREF_BASE_UPPER32
)) << 32;
520 ((resource_t
)pci_moving_config16(dev
, PCI_PREF_MEMORY_LIMIT
)) << 16;
522 ((resource_t
)pci_moving_config32(dev
, PCI_PREF_LIMIT_UPPER32
)) << 32;
524 moving
= moving_base
& moving_limit
;
525 /* Initialize the prefetchable memory constraints on the current bus. */
526 pci_record_bridge_resource(dev
, moving
, PCI_PREF_MEMORY_BASE
,
527 IORESOURCE_MEM
| IORESOURCE_PREFETCH
);
529 /* See if the bridge mem resources are implemented. */
530 moving_base
= ((u32
)pci_moving_config16(dev
, PCI_MEMORY_BASE
)) << 16;
531 moving_limit
= ((u32
)pci_moving_config16(dev
, PCI_MEMORY_LIMIT
)) << 16;
533 moving
= moving_base
& moving_limit
;
535 /* Initialize the memory resources on the current bus. */
536 pci_record_bridge_resource(dev
, moving
, PCI_MEMORY_BASE
,
539 compact_resources(dev
);
542 void pci_dev_read_resources(struct device
*dev
)
544 pci_read_bases(dev
, 6);
545 pci_get_rom_resource(dev
, PCI_ROM_ADDRESS
);
548 void pci_bus_read_resources(struct device
*dev
)
550 pci_bridge_read_bases(dev
);
551 pci_read_bases(dev
, 2);
552 pci_get_rom_resource(dev
, PCI_ROM_ADDRESS1
);
555 void pci_domain_read_resources(struct device
*dev
)
557 struct resource
*res
;
559 /* Initialize the system-wide I/O space constraints. */
560 res
= new_resource(dev
, IOINDEX_SUBTRACTIVE(0, 0));
561 res
->limit
= 0xffffUL
;
562 res
->flags
= IORESOURCE_IO
| IORESOURCE_SUBTRACTIVE
|
566 * Initialize 32-bit memory resource constraints.
568 * There are often undeclared chipset resources in lower memory
569 * and memory right below the 4G barrier. Hence, only allow
570 * one big range from cbmem_top to the configured limit.
572 res
= new_resource(dev
, IOINDEX_SUBTRACTIVE(1, 0));
573 res
->base
= (uintptr_t)cbmem_top();
574 res
->limit
= CONFIG_DOMAIN_RESOURCE_32BIT_LIMIT
- 1;
575 res
->flags
= IORESOURCE_MEM
| IORESOURCE_SUBTRACTIVE
|
578 /* Initialize 64-bit memory resource constraints above 4G. */
579 res
= new_resource(dev
, IOINDEX_SUBTRACTIVE(2, 0));
580 res
->base
= 4ULL * GiB
;
581 res
->limit
= (1ULL << soc_phys_address_size()) - 1;
582 res
->flags
= IORESOURCE_MEM
| IORESOURCE_SUBTRACTIVE
|
586 void pci_domain_set_resources(struct device
*dev
)
588 assign_resources(dev
->downstream
);
591 static void pci_store_resource(const struct device
*const dev
,
592 const struct resource
*const resource
)
594 unsigned long base_lo
, base_hi
;
596 base_lo
= resource
->base
& 0xffffffff;
597 base_hi
= (resource
->base
>> 32) & 0xffffffff;
600 * Some chipsets allow us to set/clear the I/O bit
601 * (e.g. VIA 82C686A). So set it to be safe.
603 if (resource
->flags
& IORESOURCE_IO
)
604 base_lo
|= PCI_BASE_ADDRESS_SPACE_IO
;
606 pci_write_config32(dev
, resource
->index
, base_lo
);
607 if (resource
->flags
& IORESOURCE_PCI64
)
608 pci_write_config32(dev
, resource
->index
+ 4, base_hi
);
611 static void pci_store_bridge_resource(const struct device
*const dev
,
612 struct resource
*const resource
)
614 resource_t base
, end
;
617 * PCI bridges have no enable bit. They are disabled if the base of
618 * the range is greater than the limit. If the size is zero, disable
619 * by setting the base = limit and end = limit - 2^gran.
621 if (resource
->size
== 0) {
622 base
= resource
->limit
;
623 end
= resource
->limit
- (1 << resource
->gran
);
624 resource
->base
= base
;
626 base
= resource
->base
;
627 end
= resource_end(resource
);
630 if (resource
->index
== PCI_IO_BASE
) {
631 /* Set the I/O ranges. */
632 pci_write_config8(dev
, PCI_IO_BASE
, base
>> 8);
633 pci_write_config16(dev
, PCI_IO_BASE_UPPER16
, base
>> 16);
634 pci_write_config8(dev
, PCI_IO_LIMIT
, end
>> 8);
635 pci_write_config16(dev
, PCI_IO_LIMIT_UPPER16
, end
>> 16);
636 } else if (resource
->index
== PCI_MEMORY_BASE
) {
637 /* Set the memory range. */
638 pci_write_config16(dev
, PCI_MEMORY_BASE
, base
>> 16);
639 pci_write_config16(dev
, PCI_MEMORY_LIMIT
, end
>> 16);
640 } else if (resource
->index
== PCI_PREF_MEMORY_BASE
) {
641 /* Set the prefetchable memory range. */
642 pci_write_config16(dev
, PCI_PREF_MEMORY_BASE
, base
>> 16);
643 pci_write_config32(dev
, PCI_PREF_BASE_UPPER32
, base
>> 32);
644 pci_write_config16(dev
, PCI_PREF_MEMORY_LIMIT
, end
>> 16);
645 pci_write_config32(dev
, PCI_PREF_LIMIT_UPPER32
, end
>> 32);
647 /* Don't let me think I stored the resource. */
648 resource
->flags
&= ~IORESOURCE_STORED
;
649 printk(BIOS_ERR
, "invalid resource->index %lx\n", resource
->index
);
653 static void pci_set_resource(struct device
*dev
, struct resource
*resource
)
655 /* Make certain the resource has actually been assigned a value. */
656 if (!(resource
->flags
& IORESOURCE_ASSIGNED
)) {
657 if (resource
->flags
& IORESOURCE_BRIDGE
) {
658 /* If a bridge resource has no value assigned,
659 we can treat it like an empty resource. */
662 printk(BIOS_ERR
, "%s %02lx %s size: 0x%010llx not assigned\n",
663 dev_path(dev
), resource
->index
,
664 resource_type(resource
), resource
->size
);
669 /* If this resource is fixed don't worry about it. */
670 if (resource
->flags
& IORESOURCE_FIXED
)
673 /* If I have already stored this resource don't worry about it. */
674 if (resource
->flags
& IORESOURCE_STORED
)
677 /* If the resource is subtractive don't worry about it. */
678 if (resource
->flags
& IORESOURCE_SUBTRACTIVE
)
681 /* Only handle PCI memory and I/O resources for now. */
682 if (!(resource
->flags
& (IORESOURCE_MEM
| IORESOURCE_IO
)))
685 /* Enable the resources in the command register. */
686 if (resource
->size
) {
687 if (resource
->flags
& IORESOURCE_MEM
)
688 dev
->command
|= PCI_COMMAND_MEMORY
;
689 if (resource
->flags
& IORESOURCE_IO
)
690 dev
->command
|= PCI_COMMAND_IO
;
691 if (resource
->flags
& IORESOURCE_PCI_BRIDGE
&&
692 CONFIG(PCI_SET_BUS_MASTER_PCI_BRIDGES
))
693 dev
->command
|= PCI_COMMAND_MASTER
;
696 /* Now store the resource. */
697 resource
->flags
|= IORESOURCE_STORED
;
699 if (!(resource
->flags
& IORESOURCE_PCI_BRIDGE
)) {
700 if (CONFIG(PCIEXP_SUPPORT_RESIZABLE_BARS
) &&
701 (resource
->flags
& IORESOURCE_PCIE_RESIZABLE_BAR
))
702 pci_store_rebar_size(dev
, resource
);
704 pci_store_resource(dev
, resource
);
707 pci_store_bridge_resource(dev
, resource
);
710 report_resource_stored(dev
, resource
, "");
713 void pci_dev_set_resources(struct device
*dev
)
715 struct resource
*res
;
718 for (res
= dev
->resource_list
; res
; res
= res
->next
)
719 pci_set_resource(dev
, res
);
721 if (dev
->downstream
&& dev
->downstream
->children
)
722 assign_resources(dev
->downstream
);
724 /* Set a default latency timer. */
725 pci_write_config8(dev
, PCI_LATENCY_TIMER
, 0x40);
727 /* Set a default secondary latency timer. */
728 if ((dev
->hdr_type
& 0x7f) == PCI_HEADER_TYPE_BRIDGE
)
729 pci_write_config8(dev
, PCI_SEC_LATENCY_TIMER
, 0x40);
731 /* Zero the IRQ settings. */
732 line
= pci_read_config8(dev
, PCI_INTERRUPT_PIN
);
734 pci_write_config8(dev
, PCI_INTERRUPT_LINE
, 0);
736 /* Set the cache line size, so far 64 bytes is good for everyone. */
737 pci_write_config8(dev
, PCI_CACHE_LINE_SIZE
, 64 >> 2);
740 void pci_dev_enable_resources(struct device
*dev
)
742 const struct pci_operations
*ops
= NULL
;
745 /* Set the subsystem vendor and device ID for mainboard devices. */
747 ops
= dev
->ops
->ops_pci
;
748 if (dev
->on_mainboard
&& ops
&& ops
->set_subsystem
) {
749 if (CONFIG_SUBSYSTEM_VENDOR_ID
)
750 dev
->subsystem_vendor
= CONFIG_SUBSYSTEM_VENDOR_ID
;
751 else if (!dev
->subsystem_vendor
)
752 dev
->subsystem_vendor
= pci_read_config16(dev
,
754 if (CONFIG_SUBSYSTEM_DEVICE_ID
)
755 dev
->subsystem_device
= CONFIG_SUBSYSTEM_DEVICE_ID
;
756 else if (!dev
->subsystem_device
)
757 dev
->subsystem_device
= pci_read_config16(dev
,
760 printk(BIOS_DEBUG
, "%s subsystem <- %04x/%04x\n",
761 dev_path(dev
), dev
->subsystem_vendor
,
762 dev
->subsystem_device
);
763 ops
->set_subsystem(dev
, dev
->subsystem_vendor
,
764 dev
->subsystem_device
);
766 command
= pci_read_config16(dev
, PCI_COMMAND
);
767 command
|= dev
->command
;
770 * command |= (PCI_COMMAND_PARITY + PCI_COMMAND_SERR); // Error check.
773 printk(BIOS_DEBUG
, "%s cmd <- %02x\n", dev_path(dev
), command
);
774 pci_write_config16(dev
, PCI_COMMAND
, command
);
777 void pci_bus_enable_resources(struct device
*dev
)
782 * Enable I/O in command register if there is VGA card
783 * connected with (even it does not claim I/O resource).
785 if (dev
->downstream
->bridge_ctrl
& PCI_BRIDGE_CTL_VGA
)
786 dev
->command
|= PCI_COMMAND_IO
;
787 ctrl
= pci_read_config16(dev
, PCI_BRIDGE_CONTROL
);
788 ctrl
|= dev
->downstream
->bridge_ctrl
;
789 ctrl
|= (PCI_BRIDGE_CTL_PARITY
| PCI_BRIDGE_CTL_SERR
); /* Error check. */
790 printk(BIOS_DEBUG
, "%s bridge ctrl <- %04x\n", dev_path(dev
), ctrl
);
791 pci_write_config16(dev
, PCI_BRIDGE_CONTROL
, ctrl
);
793 pci_dev_enable_resources(dev
);
796 void pci_bus_reset(struct bus
*bus
)
800 ctl
= pci_read_config16(bus
->dev
, PCI_BRIDGE_CONTROL
);
801 ctl
|= PCI_BRIDGE_CTL_BUS_RESET
;
802 pci_write_config16(bus
->dev
, PCI_BRIDGE_CONTROL
, ctl
);
805 ctl
&= ~PCI_BRIDGE_CTL_BUS_RESET
;
806 pci_write_config16(bus
->dev
, PCI_BRIDGE_CONTROL
, ctl
);
810 void pci_dev_set_subsystem(struct device
*dev
, unsigned int vendor
,
816 switch (dev
->hdr_type
& 0x7f) {
817 case PCI_HEADER_TYPE_NORMAL
:
818 offset
= PCI_SUBSYSTEM_VENDOR_ID
;
820 case PCI_HEADER_TYPE_BRIDGE
:
821 offset
= pci_find_capability(dev
, PCI_CAP_ID_SSVID
);
824 offset
+= 4; /* Vendor ID at offset 4 */
826 case PCI_HEADER_TYPE_CARDBUS
:
827 offset
= PCI_CB_SUBSYSTEM_VENDOR_ID
;
833 if (!vendor
|| !device
) {
834 pci_write_config32(dev
, offset
,
835 pci_read_config32(dev
, PCI_VENDOR_ID
));
837 pci_write_config32(dev
, offset
,
838 ((device
& 0xffff) << 16) | (vendor
& 0xffff));
842 static int should_run_oprom(struct device
*dev
, struct rom_header
*rom
)
844 static int should_run
= -1;
846 if (dev
->upstream
->segment_group
) {
847 printk(BIOS_ERR
, "Only option ROMs of devices in first PCI segment group can "
852 if (CONFIG(VENDORCODE_ELTAN_VBOOT
))
854 if (!verified_boot_should_run_oprom(rom
))
860 if (CONFIG(ALWAYS_RUN_OPROM
)) {
865 /* Don't run VGA option ROMs, unless we have to print
866 * something on the screen before the kernel is loaded.
868 should_run
= display_init_required();
871 printk(BIOS_DEBUG
, "Not running VGA Option ROM\n");
875 static int should_load_oprom(struct device
*dev
)
877 /* If S3_VGA_ROM_RUN is disabled, skip running VGA option
878 * ROMs when coming out of an S3 resume.
880 if (!CONFIG(S3_VGA_ROM_RUN
) && acpi_is_wakeup_s3() &&
881 ((dev
->class >> 8) == PCI_CLASS_DISPLAY_VGA
))
883 if (CONFIG(ALWAYS_LOAD_OPROM
))
885 if (should_run_oprom(dev
, NULL
))
891 static void oprom_pre_graphics_stall(void)
893 if (CONFIG_PRE_GRAPHICS_DELAY_MS
)
894 mdelay(CONFIG_PRE_GRAPHICS_DELAY_MS
);
897 /** Default handler: only runs the relevant PCI BIOS. */
898 void pci_dev_init(struct device
*dev
)
900 struct rom_header
*rom
, *ram
;
902 if (!CONFIG(VGA_ROM_RUN
))
905 /* Only execute VGA ROMs. */
906 if (((dev
->class >> 8) != PCI_CLASS_DISPLAY_VGA
))
909 if (!should_load_oprom(dev
))
911 timestamp_add_now(TS_OPROM_INITIALIZE
);
913 rom
= pci_rom_probe(dev
);
917 ram
= pci_rom_load(dev
, rom
);
920 timestamp_add_now(TS_OPROM_COPY_END
);
922 if (!should_run_oprom(dev
, rom
))
925 /* Wait for any configured pre-graphics delay */
926 oprom_pre_graphics_stall();
928 run_bios(dev
, (unsigned long)ram
);
930 gfx_set_init_done(1);
931 printk(BIOS_DEBUG
, "VGA Option ROM was run\n");
932 timestamp_add_now(TS_OPROM_END
);
935 /** Default device operation for PCI devices */
936 struct pci_operations pci_dev_ops_pci
= {
937 .set_subsystem
= pci_dev_set_subsystem
,
940 struct device_operations default_pci_ops_dev
= {
941 .read_resources
= pci_dev_read_resources
,
942 .set_resources
= pci_dev_set_resources
,
943 .enable_resources
= pci_dev_enable_resources
,
944 #if CONFIG(HAVE_ACPI_TABLES)
945 .write_acpi_tables
= pci_rom_write_acpi_tables
,
946 .acpi_fill_ssdt
= pci_rom_ssdt
,
948 .init
= pci_dev_init
,
949 .ops_pci
= &pci_dev_ops_pci
,
952 /** Default device operations for PCI bridges */
953 struct device_operations default_pci_ops_bus
= {
954 .read_resources
= pci_bus_read_resources
,
955 .set_resources
= pci_dev_set_resources
,
956 .enable_resources
= pci_bus_enable_resources
,
957 .scan_bus
= pci_scan_bridge
,
958 .reset_bus
= pci_bus_reset
,
961 /** Default device operations for PCI devices marked 'hidden' */
962 static struct device_operations default_hidden_pci_ops_dev
= {
963 .read_resources
= noop_read_resources
,
964 .set_resources
= noop_set_resources
,
965 .scan_bus
= scan_static_bus
,
969 * Check for compatibility to route legacy VGA cycles through a bridge.
971 * Originally, when decoding i/o ports for legacy VGA cycles, bridges
972 * should only consider the 10 least significant bits of the port address.
973 * This means all VGA registers were aliased every 1024 ports!
974 * e.g. 0x3b0 was also decoded as 0x7b0, 0xbb0 etc.
976 * To avoid this mess, a bridge control bit (VGA16) was introduced in
977 * 2003 to enable decoding of 16-bit port addresses. As we don't want
978 * to make this any more complex for now, we use this bit if possible
979 * and only warn if it's not supported (in set_vga_bridge_bits()).
981 static void pci_bridge_vga_compat(struct bus
*const bus
)
983 uint16_t bridge_ctrl
;
985 bridge_ctrl
= pci_read_config16(bus
->dev
, PCI_BRIDGE_CONTROL
);
987 /* Ensure VGA decoding is disabled during probing (it should
988 be by default, but we run blobs nowadays) */
989 bridge_ctrl
&= ~PCI_BRIDGE_CTL_VGA
;
990 pci_write_config16(bus
->dev
, PCI_BRIDGE_CONTROL
, bridge_ctrl
);
992 /* If the upstream bridge doesn't support VGA16, we don't have to check */
993 bus
->no_vga16
|= bus
->dev
->upstream
->no_vga16
;
997 /* Test if we can enable 16-bit decoding */
998 bridge_ctrl
|= PCI_BRIDGE_CTL_VGA16
;
999 pci_write_config16(bus
->dev
, PCI_BRIDGE_CONTROL
, bridge_ctrl
);
1000 bridge_ctrl
= pci_read_config16(bus
->dev
, PCI_BRIDGE_CONTROL
);
1002 bus
->no_vga16
= !(bridge_ctrl
& PCI_BRIDGE_CTL_VGA16
);
1006 * Detect the type of downstream bridge.
1008 * This function is a heuristic to detect which type of bus is downstream
1009 * of a PCI-to-PCI bridge. This functions by looking for various capability
1010 * blocks to figure out the type of downstream bridge. PCI-X, PCI-E, and
1011 * Hypertransport all seem to have appropriate capabilities.
1013 * When only a PCI-Express capability is found the type is examined to see
1014 * which type of bridge we have.
1016 * @param dev Pointer to the device structure of the bridge.
1017 * @return Appropriate bridge operations.
1019 static struct device_operations
*get_pci_bridge_ops(struct device
*dev
)
1021 #if CONFIG(PCIX_PLUGIN_SUPPORT)
1022 unsigned int pcixpos
;
1023 pcixpos
= pci_find_capability(dev
, PCI_CAP_ID_PCIX
);
1025 printk(BIOS_DEBUG
, "%s subordinate bus PCI-X\n", dev_path(dev
));
1026 return &default_pcix_ops_bus
;
1029 #if CONFIG(PCIEXP_PLUGIN_SUPPORT)
1030 unsigned int pciexpos
;
1031 pciexpos
= pci_find_capability(dev
, PCI_CAP_ID_PCIE
);
1034 flags
= pci_read_config16(dev
, pciexpos
+ PCI_EXP_FLAGS
);
1035 switch ((flags
& PCI_EXP_FLAGS_TYPE
) >> 4) {
1036 case PCI_EXP_TYPE_ROOT_PORT
:
1037 case PCI_EXP_TYPE_UPSTREAM
:
1038 case PCI_EXP_TYPE_DOWNSTREAM
:
1039 printk(BIOS_DEBUG
, "%s subordinate bus PCI Express\n",
1041 if (CONFIG(PCIEXP_HOTPLUG
)) {
1043 sltcap
= pci_read_config16(dev
, pciexpos
+ PCI_EXP_SLTCAP
);
1044 if (sltcap
& PCI_EXP_SLTCAP_HPC
) {
1045 printk(BIOS_DEBUG
, "%s hot-plug capable\n",
1047 return &default_pciexp_hotplug_ops_bus
;
1050 return &default_pciexp_ops_bus
;
1051 case PCI_EXP_TYPE_PCI_BRIDGE
:
1052 printk(BIOS_DEBUG
, "%s subordinate PCI\n",
1054 return &default_pci_ops_bus
;
1060 return &default_pci_ops_bus
;
1064 * Check if a device id matches a PCI driver entry.
1066 * The driver entry can either point at a zero terminated array of acceptable
1067 * device IDs, or include a single device ID.
1069 * @param driver pointer to the PCI driver entry being checked
1070 * @param device_id PCI device ID of the device being matched
1072 static int device_id_match(struct pci_driver
*driver
, unsigned short device_id
)
1074 if (driver
->devices
) {
1075 unsigned short check_id
;
1076 const unsigned short *device_list
= driver
->devices
;
1077 while ((check_id
= *device_list
++) != 0)
1078 if (check_id
== device_id
)
1082 return (driver
->device
== device_id
);
1086 * Set up PCI device operation.
1088 * Check if it already has a driver. If not, use find_device_operations(),
1089 * or set to a default based on type.
1091 * @param dev Pointer to the device whose pci_ops you want to set.
1094 static void set_pci_ops(struct device
*dev
)
1096 struct pci_driver
*driver
;
1102 * Look through the list of setup drivers and find one for
1105 for (driver
= &_pci_drivers
[0]; driver
!= &_epci_drivers
[0]; driver
++) {
1106 if ((driver
->vendor
== dev
->vendor
) &&
1107 device_id_match(driver
, dev
->device
)) {
1108 dev
->ops
= (struct device_operations
*)driver
->ops
;
1114 printk(BIOS_SPEW
, "%s [%04x/%04x] %sops\n", dev_path(dev
),
1115 driver
->vendor
, driver
->device
, (driver
->ops
->scan_bus
? "bus " : ""));
1119 /* If I don't have a specific driver use the default operations. */
1120 switch (dev
->hdr_type
& 0x7f) { /* Header type */
1121 case PCI_HEADER_TYPE_NORMAL
:
1122 if ((dev
->class >> 8) == PCI_CLASS_BRIDGE_PCI
)
1124 dev
->ops
= &default_pci_ops_dev
;
1126 case PCI_HEADER_TYPE_BRIDGE
:
1127 if ((dev
->class >> 8) != PCI_CLASS_BRIDGE_PCI
)
1129 dev
->ops
= get_pci_bridge_ops(dev
);
1131 #if CONFIG(CARDBUS_PLUGIN_SUPPORT)
1132 case PCI_HEADER_TYPE_CARDBUS
:
1133 dev
->ops
= &default_cardbus_ops_bus
;
1140 "%s [%04x/%04x/%06x] has unknown header type %02x, ignoring.\n",
1141 dev_path(dev
), dev
->vendor
, dev
->device
,
1142 dev
->class >> 8, dev
->hdr_type
);
1148 * See if we have already allocated a device structure for a given devfn.
1150 * Given a PCI bus structure and a devfn number, find the device structure
1151 * corresponding to the devfn, if present. Then move the device structure
1152 * as the last child on the bus.
1154 * @param bus Pointer to the bus structure.
1155 * @param devfn A device/function number.
1156 * @return Pointer to the device structure found or NULL if we have not
1157 * allocated a device for this devfn yet.
1159 static struct device
*pci_scan_get_dev(struct bus
*bus
, unsigned int devfn
)
1161 struct device
*dev
, **prev
;
1163 prev
= &bus
->children
;
1164 for (dev
= bus
->children
; dev
; dev
= dev
->sibling
) {
1165 if (dev
->path
.type
== DEVICE_PATH_PCI
&& dev
->path
.pci
.devfn
== devfn
) {
1166 /* Unlink from the list. */
1167 *prev
= dev
->sibling
;
1168 dev
->sibling
= NULL
;
1171 prev
= &dev
->sibling
;
1175 * Just like alloc_dev() add the device to the list of devices on the
1176 * bus. When the list of devices was formed we removed all of the
1177 * parents children, and now we are interleaving static and dynamic
1178 * devices in order on the bus.
1181 struct device
*child
;
1183 /* Find the last child on the bus. */
1184 for (child
= bus
->children
; child
&& child
->sibling
;)
1185 child
= child
->sibling
;
1187 /* Place the device as last on the bus. */
1189 child
->sibling
= dev
;
1191 bus
->children
= dev
;
1200 * Determine the existence of a given PCI device. Allocate a new struct device
1201 * if dev==NULL was passed in and the device exists in hardware.
1203 * @param dev Pointer to the dev structure.
1204 * @param bus Pointer to the bus structure.
1205 * @param devfn A device/function number to look at.
1206 * @return The device structure for the device (if found), NULL otherwise.
1208 struct device
*pci_probe_dev(struct device
*dev
, struct bus
*bus
,
1214 /* Detect if a device is present. */
1216 struct device dummy
;
1218 dummy
.upstream
= bus
;
1219 dummy
.path
.type
= DEVICE_PATH_PCI
;
1220 dummy
.path
.pci
.devfn
= devfn
;
1222 id
= pci_read_config32(&dummy
, PCI_VENDOR_ID
);
1224 * Have we found something? Some broken boards return 0 if a
1225 * slot is empty, but the expected answer is 0xffffffff.
1227 if (id
== 0xffffffff)
1230 if ((id
== 0x00000000) || (id
== 0x0000ffff) ||
1231 (id
== 0xffff0000)) {
1232 printk(BIOS_SPEW
, "%s, bad id 0x%x\n",
1233 dev_path(&dummy
), id
);
1236 dev
= alloc_dev(bus
, &dummy
.path
);
1239 * Enable/disable the device. Once we have found the device-
1240 * specific operations this operations we will disable the
1241 * device with those as well.
1243 * This is geared toward devices that have subfunctions
1244 * that do not show up by default.
1246 * If a device is a stuff option on the motherboard
1247 * it may be absent and enable_dev() must cope.
1249 /* Run the magic enable sequence for the device. */
1250 if (dev
->chip_ops
&& dev
->chip_ops
->enable_dev
)
1251 dev
->chip_ops
->enable_dev(dev
);
1253 /* Now read the vendor and device ID. */
1254 id
= pci_read_config32(dev
, PCI_VENDOR_ID
);
1257 * If the device does not have a PCI ID disable it. Possibly
1258 * this is because we have already disabled the device. But
1259 * this also handles optional devices that may not always
1262 /* If the chain is fully enumerated quit */
1263 if ((id
== 0xffffffff) || (id
== 0x00000000) ||
1264 (id
== 0x0000ffff) || (id
== 0xffff0000)) {
1267 "PCI: Static device %s not found, disabling it.\n",
1275 /* Read the rest of the PCI configuration information. */
1276 hdr_type
= pci_read_config8(dev
, PCI_HEADER_TYPE
);
1277 class = pci_read_config32(dev
, PCI_CLASS_REVISION
);
1279 /* Store the interesting information in the device structure. */
1280 dev
->vendor
= id
& 0xffff;
1281 dev
->device
= (id
>> 16) & 0xffff;
1282 dev
->hdr_type
= hdr_type
;
1284 /* Class code, the upper 3 bytes of PCI_CLASS_REVISION. */
1285 dev
->class = class >> 8;
1287 /* Architectural/System devices always need to be bus masters. */
1288 if ((dev
->class >> 16) == PCI_BASE_CLASS_SYSTEM
&&
1289 CONFIG(PCI_ALLOW_BUS_MASTER_ANY_DEVICE
))
1290 dev
->command
|= PCI_COMMAND_MASTER
;
1293 * Look at the vendor and device ID, or at least the header type and
1294 * class and figure out which set of configuration methods to use.
1295 * Unless we already have some PCI ops.
1299 /* Now run the magic enable/disable sequence for the device. */
1300 if (dev
->ops
&& dev
->ops
->enable
)
1301 dev
->ops
->enable(dev
);
1303 /* Display the device. */
1304 printk(BIOS_DEBUG
, "%s [%04x/%04x] %s%s\n", dev_path(dev
),
1305 dev
->vendor
, dev
->device
, dev
->enabled
? "enabled" : "disabled",
1306 dev
->ops
? "" : " No operations");
1312 * Test for match between romstage and ramstage device instance.
1314 * @param dev Pointer to the device structure.
1315 * @param sdev Simple device model identifier, created with PCI_DEV().
1316 * @return Non-zero if bus:dev.fn of device matches.
1318 unsigned int pci_match_simple_dev(struct device
*dev
, pci_devfn_t sdev
)
1320 return dev
->upstream
->secondary
== PCI_DEV2BUS(sdev
) &&
1321 dev
->upstream
->segment_group
== PCI_DEV2SEG(sdev
) &&
1322 dev
->path
.pci
.devfn
== PCI_DEV2DEVFN(sdev
);
1326 * Test whether a capability is available along the whole path from the given
1327 * device to the host bridge.
1329 * @param dev Pointer to the device structure.
1330 * @param cap PCI_CAP_LIST_ID of the PCI capability we're looking for.
1331 * @return The next matching capability of the given device, if it is available
1332 * along the whole path, or zero if not.
1334 uint16_t pci_find_cap_recursive(const struct device
*dev
, uint16_t cap
)
1336 assert(dev
->upstream
);
1337 uint16_t pos
= pci_find_capability(dev
, cap
);
1338 const struct device
*bridge
= dev
->upstream
->dev
;
1339 while (bridge
&& (bridge
->path
.type
== DEVICE_PATH_PCI
)) {
1340 assert(bridge
->upstream
);
1341 if (!pci_find_capability(bridge
, cap
))
1343 bridge
= bridge
->upstream
->dev
;
1349 * PCI devices that are marked as "hidden" do not get probed. However, the same
1350 * initialization logic is still performed as if it were. This is useful when
1351 * devices would like to be described in the devicetree.cb file, and/or present
1352 * static PCI resources to the allocator, but the platform firmware hides the
1353 * device (makes the device invisible to PCI enumeration) before PCI enumeration
1356 * The expected semantics of PCI devices marked as 'hidden':
1357 * 1) The device is actually present under the specified BDF
1358 * 2) The device config space can still be accessed somehow, but the Vendor ID
1359 * indicates there is no device there (it reads as 0xffffffff).
1360 * 3) The device may still consume PCI resources. Typically, these would have
1361 * been hardcoded elsewhere.
1363 * @param dev Pointer to the device structure.
1365 static void pci_scan_hidden_device(struct device
*dev
)
1367 if (dev
->chip_ops
&& dev
->chip_ops
->enable_dev
)
1368 dev
->chip_ops
->enable_dev(dev
);
1371 * If chip_ops->enable_dev did not set dev->ops, then set to a default
1372 * .ops, because PCI enumeration is effectively being skipped, therefore
1373 * no PCI driver will bind to this device. However, children may want to
1374 * be enumerated, so this provides scan_static_bus for the .scan_bus
1377 if (dev
->ops
== NULL
)
1378 dev
->ops
= &default_hidden_pci_ops_dev
;
1380 if (dev
->ops
->enable
)
1381 dev
->ops
->enable(dev
);
1383 /* Display the device almost as if it were probed normally */
1384 printk(BIOS_DEBUG
, "%s [0000/%04x] hidden%s\n", dev_path(dev
),
1385 dev
->device
, dev
->ops
? "" : " No operations");
1389 * A PCIe Downstream Port normally leads to a Link with only Device 0 on it
1390 * (PCIe spec r5.0, sec 7.3.1). As an optimization, scan only for Device 0 in
1393 * @param bus Pointer to the bus structure.
1395 static bool pci_bus_only_one_child(struct bus
*bus
)
1397 struct device
*bridge
= bus
->dev
;
1398 u16 pcie_pos
, pcie_flags_reg
;
1404 if (bridge
->path
.type
!= DEVICE_PATH_PCI
)
1407 pcie_pos
= pci_find_capability(bridge
, PCI_CAP_ID_PCIE
);
1411 pcie_flags_reg
= pci_read_config16(bridge
, pcie_pos
+ PCI_EXP_FLAGS
);
1413 pcie_type
= (pcie_flags_reg
& PCI_EXP_FLAGS_TYPE
) >> 4;
1415 return pciexp_is_downstream_port(pcie_type
);
1421 * Determine the existence of devices and bridges on a PCI bus. If there are
1422 * bridges on the bus, recursively scan the buses behind the bridges.
1424 * @param bus Pointer to the bus structure.
1425 * @param min_devfn Minimum devfn to look at in the scan, usually 0x00.
1426 * @param max_devfn Maximum devfn to look at in the scan, usually 0xff.
1428 void pci_scan_bus(struct bus
*bus
, unsigned int min_devfn
,
1429 unsigned int max_devfn
)
1432 struct device
*dev
, **prev
;
1435 printk(BIOS_DEBUG
, "PCI: %s for segment group %02x bus %02x\n", __func__
,
1436 bus
->segment_group
, bus
->secondary
);
1438 /* Maximum sane devfn is 0xFF. */
1439 if (max_devfn
> 0xff) {
1440 printk(BIOS_ERR
, "PCI: %s limits devfn %x - devfn %x\n",
1441 __func__
, min_devfn
, max_devfn
);
1442 printk(BIOS_ERR
, "PCI: %s upper limit too big. Using 0xff.\n", __func__
);
1446 post_code(POSTCODE_ENTER_PCI_SCAN_BUS
);
1448 if (pci_bus_only_one_child(bus
))
1449 max_devfn
= MIN(max_devfn
, 0x07);
1452 * Probe all devices/functions on this bus with some optimization for
1453 * non-existence and single function devices.
1455 for (devfn
= min_devfn
; devfn
<= max_devfn
; devfn
++) {
1456 if (CONFIG(MINIMAL_PCI_SCANNING
)) {
1457 dev
= pcidev_path_behind(bus
, devfn
);
1458 if (!dev
|| !dev
->mandatory
)
1462 /* First thing setup the device structure. */
1463 dev
= pci_scan_get_dev(bus
, devfn
);
1465 /* Devices marked 'hidden' do not get probed */
1466 if (dev
&& dev
->hidden
) {
1467 pci_scan_hidden_device(dev
);
1469 /* Skip pci_probe_dev, go to next devfn */
1473 /* See if a device is present and setup the device structure. */
1474 dev
= pci_probe_dev(dev
, bus
, devfn
);
1477 * If this is not a multi function device, or the device is
1478 * not present don't waste time probing another function.
1479 * Skip to next device.
1481 if ((PCI_FUNC(devfn
) == 0x00) && (!dev
1482 || (dev
->enabled
&& ((dev
->hdr_type
& 0x80) != 0x80)))) {
1488 * Warn if any leftover static devices are found.
1489 * There's probably a problem in devicetree.cb.
1492 prev
= &bus
->children
;
1493 for (dev
= bus
->children
; dev
; dev
= dev
->sibling
) {
1495 * If static device is not PCI then enable it here and don't
1496 * treat it as a leftover device.
1498 if (dev
->path
.type
!= DEVICE_PATH_PCI
) {
1499 enable_static_device(dev
);
1504 * The device is only considered leftover if it is not hidden
1505 * and it has a Vendor ID of 0 (the default for a device that
1506 * could not be probed).
1508 if (dev
->vendor
!= 0 || dev
->hidden
) {
1509 prev
= &dev
->sibling
;
1513 /* Unlink it from list. */
1514 *prev
= dev
->sibling
;
1517 printk(BIOS_WARNING
, "PCI: Leftover static devices:\n");
1518 printk(BIOS_WARNING
, "%s\n", dev_path(dev
));
1522 printk(BIOS_WARNING
, "PCI: Check your devicetree.cb.\n");
1525 * For all children that implement scan_bus() (i.e. bridges)
1526 * scan the bus behind that child.
1532 * We've scanned the bus and so we know all about what's on the other
1533 * side of any bridges that may be on this bus plus any devices.
1534 * Return how far we've got finding sub-buses.
1536 post_code(POSTCODE_EXIT_PCI_SCAN_BUS
);
1545 static void pci_bridge_route(struct bus
*link
, scan_state state
)
1547 struct device
*dev
= link
->dev
;
1548 struct bus
*parent
= dev
->upstream
;
1549 uint8_t primary
, secondary
, subordinate
;
1551 if (state
== PCI_ROUTE_SCAN
) {
1552 link
->secondary
= parent
->subordinate
+ 1;
1553 link
->subordinate
= link
->secondary
+ dev
->hotplug_buses
;
1554 link
->max_subordinate
= parent
->max_subordinate
1555 ? parent
->max_subordinate
1556 : (PCI_BUSES_PER_SEGMENT_GROUP
- 1);
1557 link
->segment_group
= parent
->segment_group
;
1560 if (link
->secondary
> link
->max_subordinate
)
1561 die("%s: No more busses available!\n", __func__
);
1563 /* This ought to only happen with hotplug buses. */
1564 if (link
->subordinate
> link
->max_subordinate
) {
1565 printk(BIOS_WARNING
, "%s: Limiting subordinate busses\n", __func__
);
1566 link
->subordinate
= link
->max_subordinate
;
1569 if (state
== PCI_ROUTE_CLOSE
) {
1573 } else if (state
== PCI_ROUTE_SCAN
) {
1574 primary
= parent
->secondary
;
1575 secondary
= link
->secondary
;
1576 subordinate
= link
->max_subordinate
;
1577 } else if (state
== PCI_ROUTE_FINAL
) {
1578 primary
= parent
->secondary
;
1579 secondary
= link
->secondary
;
1580 subordinate
= link
->subordinate
;
1585 if (state
== PCI_ROUTE_SCAN
) {
1586 /* Clear all status bits and turn off memory, I/O and master enables. */
1587 link
->bridge_cmd
= pci_read_config16(dev
, PCI_COMMAND
);
1588 pci_write_config16(dev
, PCI_COMMAND
, 0x0000);
1589 pci_write_config16(dev
, PCI_STATUS
, 0xffff);
1593 * Configure the bus numbers for this bridge: the configuration
1594 * transactions will not be propagated by the bridge if it is not
1595 * correctly configured.
1597 pci_write_config8(dev
, PCI_PRIMARY_BUS
, primary
);
1598 pci_write_config8(dev
, PCI_SECONDARY_BUS
, secondary
);
1599 pci_write_config8(dev
, PCI_SUBORDINATE_BUS
, subordinate
);
1601 if (state
== PCI_ROUTE_FINAL
) {
1602 pci_write_config16(dev
, PCI_COMMAND
, link
->bridge_cmd
);
1603 parent
->subordinate
= link
->subordinate
;
1608 * Scan a PCI bridge and the buses behind the bridge.
1610 * Determine the existence of buses behind the bridge. Set up the bridge
1611 * according to the result of the scan.
1613 * This function is the default scan_bus() method for PCI bridge devices.
1615 * @param dev Pointer to the bridge device.
1616 * @param do_scan_bus TODO
1618 void do_pci_scan_bridge(struct device
*dev
,
1619 void (*do_scan_bus
) (struct bus
* bus
,
1620 unsigned int min_devfn
,
1621 unsigned int max_devfn
))
1625 printk(BIOS_SPEW
, "%s for %s\n", __func__
, dev_path(dev
));
1627 if (dev
->downstream
== NULL
) {
1629 link
= malloc(sizeof(*link
));
1631 die("Couldn't allocate a link!\n");
1632 memset(link
, 0, sizeof(*link
));
1634 dev
->downstream
= link
;
1637 bus
= dev
->downstream
;
1639 pci_bridge_vga_compat(bus
);
1641 pci_bridge_route(bus
, PCI_ROUTE_SCAN
);
1643 do_scan_bus(bus
, 0x00, 0xff);
1645 pci_bridge_route(bus
, PCI_ROUTE_FINAL
);
1649 * Scan a PCI bridge and the buses behind the bridge.
1651 * Determine the existence of buses behind the bridge. Set up the bridge
1652 * according to the result of the scan.
1654 * This function is the default scan_bus() method for PCI bridge devices.
1656 * @param dev Pointer to the bridge device.
1658 void pci_scan_bridge(struct device
*dev
)
1660 do_pci_scan_bridge(dev
, pci_scan_bus
);
1664 * Scan a PCI domain.
1666 * This function is the default scan_bus() method for PCI domains.
1668 * @param dev Pointer to the domain.
1670 void pci_host_bridge_scan_bus(struct device
*dev
)
1672 struct bus
*link
= dev
->downstream
;
1673 pci_scan_bus(link
, PCI_DEVFN(0, 0), 0xff);
1676 void pci_dev_disable_bus_master(const struct device
*dev
)
1678 pci_update_config16(dev
, PCI_COMMAND
, ~PCI_COMMAND_MASTER
, 0x0);
1682 * Take an INT_PIN number (0, 1 - 4) and convert
1683 * it to a string ("NO PIN", "PIN A" - "PIN D")
1685 * @param pin PCI Interrupt Pin number (0, 1 - 4)
1686 * @return A string corresponding to the pin number or "Invalid"
1688 const char *pin_to_str(int pin
)
1690 const char *str
[5] = {
1698 if (pin
>= 0 && pin
<= 4)
1701 return "Invalid PIN, not 0 - 4";
1705 * Get the PCI INT_PIN swizzle for a device defined as:
1706 * pin_parent = (pin_child + devn_child) % 4 + 1
1707 * where PIN A = 1 ... PIN_D = 4
1709 * Given a PCI device structure 'dev', find the interrupt pin
1710 * that will be triggered on its parent bridge device when
1711 * generating an interrupt. For example: Device 1:3.2 may
1712 * use INT_PIN A but will trigger PIN D on its parent bridge
1713 * device. In this case, this function will return 4 (PIN D).
1715 * @param dev A PCI device structure to swizzle interrupt pins for
1716 * @param *parent_bridge The PCI device structure for the bridge
1717 * device 'dev' is attached to
1718 * @return The interrupt pin number (1 - 4) that 'dev' will
1719 * trigger when generating an interrupt
1721 static int swizzle_irq_pins(struct device
*dev
, struct device
**parent_bridge
)
1723 struct device
*parent
; /* Our current device's parent device */
1724 struct device
*child
; /* The child device of the parent */
1725 uint8_t parent_bus
= 0; /* Parent Bus number */
1726 uint16_t parent_devfn
= 0; /* Parent Device and Function number */
1727 uint16_t child_devfn
= 0; /* Child Device and Function number */
1728 uint8_t swizzled_pin
= 0; /* Pin swizzled across a bridge */
1730 /* Start with PIN A = 0 ... D = 3 */
1731 swizzled_pin
= pci_read_config8(dev
, PCI_INTERRUPT_PIN
) - 1;
1733 /* While our current device has parent devices */
1735 for (parent
= child
->upstream
->dev
; parent
; parent
= parent
->upstream
->dev
) {
1736 parent_bus
= parent
->upstream
->secondary
;
1737 parent_devfn
= parent
->path
.pci
.devfn
;
1738 child_devfn
= child
->path
.pci
.devfn
;
1740 /* Swizzle the INT_PIN for any bridges not on root bus */
1741 swizzled_pin
= (PCI_SLOT(child_devfn
) + swizzled_pin
) % 4;
1742 printk(BIOS_SPEW
, "\tWith INT_PIN swizzled to %s\n"
1743 "\tAttached to bridge device %01X:%02Xh.%02Xh\n",
1744 pin_to_str(swizzled_pin
+ 1), parent_bus
,
1745 PCI_SLOT(parent_devfn
), PCI_FUNC(parent_devfn
));
1747 /* Continue until we find the root bus */
1748 if (parent_bus
> 0) {
1750 * We will go on to the next parent so this parent
1757 * Found the root bridge device,
1758 * fill in the structure and exit
1760 *parent_bridge
= parent
;
1765 /* End with PIN A = 1 ... D = 4 */
1766 return swizzled_pin
+ 1;
1770 * Given a device structure 'dev', find its interrupt pin
1771 * and its parent bridge 'parent_bdg' device structure.
1772 * If it is behind a bridge, it will return the interrupt
1773 * pin number (1 - 4) of the parent bridge that the device
1774 * interrupt pin has been swizzled to, otherwise it will
1775 * return the interrupt pin that is programmed into the
1776 * PCI config space of the target device. If 'dev' is
1777 * behind a bridge, it will fill in 'parent_bdg' with the
1778 * device structure of the bridge it is behind, otherwise
1779 * it will copy 'dev' into 'parent_bdg'.
1781 * @param dev A PCI device structure to get interrupt pins for.
1782 * @param *parent_bdg The PCI device structure for the bridge
1783 * device 'dev' is attached to.
1784 * @return The interrupt pin number (1 - 4) that 'dev' will
1785 * trigger when generating an interrupt.
1786 * Errors: -1 is returned if the device is not enabled
1787 * -2 is returned if a parent bridge could not be found.
1789 int get_pci_irq_pins(struct device
*dev
, struct device
**parent_bdg
)
1791 uint8_t bus
= 0; /* The bus this device is on */
1792 uint16_t devfn
= 0; /* This device's device and function numbers */
1793 uint8_t int_pin
= 0; /* Interrupt pin used by the device */
1794 uint8_t target_pin
= 0; /* Interrupt pin we want to assign an IRQ to */
1796 /* Make sure this device is enabled */
1797 if (!(dev
->enabled
&& (dev
->path
.type
== DEVICE_PATH_PCI
)))
1800 bus
= dev
->upstream
->secondary
;
1801 devfn
= dev
->path
.pci
.devfn
;
1803 /* Get and validate the interrupt pin used. Only 1-4 are allowed */
1804 int_pin
= pci_read_config8(dev
, PCI_INTERRUPT_PIN
);
1805 if (int_pin
< 1 || int_pin
> 4)
1808 printk(BIOS_SPEW
, "PCI IRQ: Found device %01X:%02X.%02X using %s\n",
1809 bus
, PCI_SLOT(devfn
), PCI_FUNC(devfn
), pin_to_str(int_pin
));
1811 /* If this device is on a bridge, swizzle its INT_PIN */
1813 /* Swizzle its INT_PINs */
1814 target_pin
= swizzle_irq_pins(dev
, parent_bdg
);
1816 /* Make sure the swizzle returned valid structures */
1817 if (parent_bdg
== NULL
) {
1818 printk(BIOS_WARNING
, "Could not find parent bridge for this device!\n");
1821 } else { /* Device is not behind a bridge */
1822 target_pin
= int_pin
; /* Return its own interrupt pin */
1823 *parent_bdg
= dev
; /* Return its own structure */
1826 /* Target pin is the interrupt pin we want to assign an IRQ to */
1830 #if CONFIG(PC80_SYSTEM)
1832 * Assign IRQ numbers.
1834 * This function assigns IRQs for all functions contained within the indicated
1835 * device address. If the device does not exist or does not require interrupts
1836 * then this function has no effect.
1838 * This function should be called for each PCI slot in your system.
1840 * @param dev Pointer to dev structure.
1841 * @param pIntAtoD An array of IRQ #s that are assigned to PINTA through PINTD
1842 * of this slot. The particular IRQ #s that are passed in depend on the
1843 * routing inside your southbridge and on your board.
1845 void pci_assign_irqs(struct device
*dev
, const unsigned char pIntAtoD
[4])
1849 /* Each device may contain up to eight functions. */
1850 slot
= dev
->path
.pci
.devfn
>> 3;
1852 for (; dev
; dev
= dev
->sibling
) {
1853 if (dev
->path
.pci
.devfn
>> 3 != slot
)
1856 line
= pci_read_config8(dev
, PCI_INTERRUPT_PIN
);
1858 /* PCI spec says all values except 1..4 are reserved. */
1859 if ((line
< 1) || (line
> 4))
1862 irq
= pIntAtoD
[line
- 1];
1864 printk(BIOS_DEBUG
, "Assigning IRQ %d to %s\n", irq
, dev_path(dev
));
1866 pci_write_config8(dev
, PCI_INTERRUPT_LINE
, irq
);
1868 /* Change to level triggered. */
1869 i8259_configure_irq_trigger(irq
, IRQ_LEVEL_TRIGGERED
);