1 /* LzmaEnc.c -- LZMA Encoder
2 2009-11-24 : Igor Pavlov : Public domain */
10 #define kBlockSizeMax ((1 << LZMA_NUM_BLOCK_SIZE_BITS) - 1)
12 #define kBlockSize (9 << 10)
13 #define kUnpackBlockSize (1 << 18)
14 #define kMatchArraySize (1 << 21)
15 #define kMatchRecordMaxSize ((LZMA_MATCH_LEN_MAX * 2 + 3) * LZMA_MATCH_LEN_MAX)
17 #define kNumMaxDirectBits (31)
19 #define kNumTopBits 24
20 #define kTopValue ((uint32_t)1 << kNumTopBits)
22 #define kNumBitModelTotalBits 11
23 #define kBitModelTotal (1 << kNumBitModelTotalBits)
24 #define kNumMoveBits 5
25 #define kProbInitValue (kBitModelTotal >> 1)
27 #define kNumMoveReducingBits 4
28 #define kNumBitPriceShiftBits 4
29 #define kBitPrice (1 << kNumBitPriceShiftBits)
31 void LzmaEncProps_Init(struct CLzmaEncProps
*p
)
34 p
->dictSize
= p
->mc
= 0;
35 p
->lc
= p
->lp
= p
->pb
= p
->algo
= p
->fb
= p
->btMode
= p
->numHashBytes
= p
->numThreads
= -1;
39 void LzmaEncProps_Normalize(struct CLzmaEncProps
*p
)
42 if (level
< 0) level
= 5;
44 if (p
->dictSize
== 0) p
->dictSize
= (level
<= 5 ? (1 << (level
* 2 + 14)) : (level
== 6 ? (1 << 25) : (1 << 26)));
45 if (p
->lc
< 0) p
->lc
= 3;
46 if (p
->lp
< 0) p
->lp
= 0;
47 if (p
->pb
< 0) p
->pb
= 2;
48 if (p
->algo
< 0) p
->algo
= (level
< 5 ? 0 : 1);
49 if (p
->fb
< 0) p
->fb
= (level
< 7 ? 32 : 64);
50 if (p
->btMode
< 0) p
->btMode
= (p
->algo
== 0 ? 0 : 1);
51 if (p
->numHashBytes
< 0) p
->numHashBytes
= 4;
52 if (p
->mc
== 0) p
->mc
= (16 + (p
->fb
>> 1)) >> (p
->btMode
? 0 : 1);
53 if (p
->numThreads
< 0)
57 uint32_t LzmaEncProps_GetDictSize(const struct CLzmaEncProps
*props2
)
59 struct CLzmaEncProps props
= *props2
;
60 LzmaEncProps_Normalize(&props
);
61 return props
.dictSize
;
64 #define kNumLogBits (9 + (int)sizeof(size_t) / 2)
65 #define kDicLogSizeMaxCompress ((kNumLogBits - 1) * 2 + 7)
67 static void LzmaEnc_FastPosInit(uint8_t *g_FastPos
)
73 for (slotFast
= 2; slotFast
< kNumLogBits
* 2; slotFast
++)
75 uint32_t k
= (1 << ((slotFast
>> 1) - 1));
77 for (j
= 0; j
< k
; j
++, c
++)
78 g_FastPos
[c
] = (uint8_t)slotFast
;
82 #define BSR2_RET(pos, res) { uint32_t macro_i = 6 + ((kNumLogBits - 1) & \
83 (0 - (((((uint32_t)1 << (kNumLogBits + 6)) - 1) - pos) >> 31))); \
84 res = p->g_FastPos[pos >> macro_i] + (macro_i * 2); }
86 #define BSR2_RET(pos, res) { res = (pos < (1 << (kNumLogBits + 6))) ? \
87 p->g_FastPos[pos >> 6] + 12 : \
88 p->g_FastPos[pos >> (6 + kNumLogBits - 1)] + (6 + (kNumLogBits - 1)) * 2; }
91 #define GetPosSlot1(pos) p->g_FastPos[pos]
92 #define GetPosSlot2(pos, res) { BSR2_RET(pos, res); }
93 #define GetPosSlot(pos, res) { if (pos < kNumFullDistances) res = p->g_FastPos[pos]; else BSR2_RET(pos, res); }
95 #define LZMA_NUM_REPS 4
97 typedef unsigned CState
;
112 uint32_t backs
[LZMA_NUM_REPS
];
115 #define kNumOpts (1 << 12)
117 #define kNumLenToPosStates 4
118 #define kNumPosSlotBits 6
119 #define kDicLogSizeMin 0
120 #define kDicLogSizeMax 32
121 #define kDistTableSizeMax (kDicLogSizeMax * 2)
124 #define kNumAlignBits 4
125 #define kAlignTableSize (1 << kNumAlignBits)
126 #define kAlignMask (kAlignTableSize - 1)
128 #define kStartPosModelIndex 4
129 #define kEndPosModelIndex 14
130 #define kNumPosModels (kEndPosModelIndex - kStartPosModelIndex)
132 #define kNumFullDistances (1 << (kEndPosModelIndex >> 1))
134 typedef uint16_t CLzmaProb
;
137 #define LZMA_PB_MAX 4
138 #define LZMA_LC_MAX 8
139 #define LZMA_LP_MAX 4
141 #define LZMA_NUM_PB_STATES_MAX (1 << LZMA_PB_MAX)
144 #define kLenNumLowBits 3
145 #define kLenNumLowSymbols (1 << kLenNumLowBits)
146 #define kLenNumMidBits 3
147 #define kLenNumMidSymbols (1 << kLenNumMidBits)
148 #define kLenNumHighBits 8
149 #define kLenNumHighSymbols (1 << kLenNumHighBits)
151 #define kLenNumSymbolsTotal (kLenNumLowSymbols + kLenNumMidSymbols + kLenNumHighSymbols)
153 #define LZMA_MATCH_LEN_MIN 2
154 #define LZMA_MATCH_LEN_MAX (LZMA_MATCH_LEN_MIN + kLenNumSymbolsTotal - 1)
156 #define kNumStates 12
162 CLzmaProb low
[LZMA_NUM_PB_STATES_MAX
<< kLenNumLowBits
];
163 CLzmaProb mid
[LZMA_NUM_PB_STATES_MAX
<< kLenNumMidBits
];
164 CLzmaProb high
[kLenNumHighSymbols
];
170 uint32_t prices
[LZMA_NUM_PB_STATES_MAX
][kLenNumSymbolsTotal
];
172 uint32_t counters
[LZMA_NUM_PB_STATES_MAX
];
184 struct ISeqOutStream
*outStream
;
193 CLzmaProb isMatch
[kNumStates
][LZMA_NUM_PB_STATES_MAX
];
194 CLzmaProb isRep
[kNumStates
];
195 CLzmaProb isRepG0
[kNumStates
];
196 CLzmaProb isRepG1
[kNumStates
];
197 CLzmaProb isRepG2
[kNumStates
];
198 CLzmaProb isRep0Long
[kNumStates
][LZMA_NUM_PB_STATES_MAX
];
200 CLzmaProb posSlotEncoder
[kNumLenToPosStates
][1 << kNumPosSlotBits
];
201 CLzmaProb posEncoders
[kNumFullDistances
- kEndPosModelIndex
];
202 CLzmaProb posAlignEncoder
[1 << kNumAlignBits
];
204 struct CLenPriceEnc lenEnc
;
205 struct CLenPriceEnc repLenEnc
;
207 uint32_t reps
[LZMA_NUM_REPS
];
213 struct IMatchFinder matchFinder
;
214 void *matchFinderObj
;
216 struct CMatchFinder matchFinderBase
;
218 uint32_t optimumEndIndex
;
219 uint32_t optimumCurrentIndex
;
221 uint32_t longestMatchLength
;
224 struct COptimal opt
[kNumOpts
];
227 uint8_t g_FastPos
[1 << kNumLogBits
];
230 uint32_t ProbPrices
[kBitModelTotal
>> kNumMoveReducingBits
];
231 uint32_t matches
[LZMA_MATCH_LEN_MAX
* 2 + 2 + 1];
232 uint32_t numFastuint8_ts
;
233 uint32_t additionalOffset
;
234 uint32_t reps
[LZMA_NUM_REPS
];
237 uint32_t posSlotPrices
[kNumLenToPosStates
][kDistTableSizeMax
];
238 uint32_t distancesPrices
[kNumLenToPosStates
][kNumFullDistances
];
239 uint32_t alignPrices
[kAlignTableSize
];
240 uint32_t alignPriceCount
;
242 uint32_t distTableSize
;
245 unsigned lpMask
, pbMask
;
249 CLzmaProb isMatch
[kNumStates
][LZMA_NUM_PB_STATES_MAX
];
250 CLzmaProb isRep
[kNumStates
];
251 CLzmaProb isRepG0
[kNumStates
];
252 CLzmaProb isRepG1
[kNumStates
];
253 CLzmaProb isRepG2
[kNumStates
];
254 CLzmaProb isRep0Long
[kNumStates
][LZMA_NUM_PB_STATES_MAX
];
256 CLzmaProb posSlotEncoder
[kNumLenToPosStates
][1 << kNumPosSlotBits
];
257 CLzmaProb posEncoders
[kNumFullDistances
- kEndPosModelIndex
];
258 CLzmaProb posAlignEncoder
[1 << kNumAlignBits
];
260 struct CLenPriceEnc lenEnc
;
261 struct CLenPriceEnc repLenEnc
;
271 uint32_t matchPriceCount
;
277 uint32_t matchFinderCycles
;
281 struct CSaveState saveState
;
284 /*static void LzmaEnc_SaveState(CLzmaEncHandle pp)
286 CLzmaEnc *p = (CLzmaEnc *)pp;
287 CSaveState *dest = &p->saveState;
289 dest->lenEnc = p->lenEnc;
290 dest->repLenEnc = p->repLenEnc;
291 dest->state = p->state;
293 for (i = 0; i < kNumStates; i++)
295 memcpy(dest->isMatch[i], p->isMatch[i], sizeof(p->isMatch[i]));
296 memcpy(dest->isRep0Long[i], p->isRep0Long[i], sizeof(p->isRep0Long[i]));
298 for (i = 0; i < kNumLenToPosStates; i++)
299 memcpy(dest->posSlotEncoder[i], p->posSlotEncoder[i], sizeof(p->posSlotEncoder[i]));
300 memcpy(dest->isRep, p->isRep, sizeof(p->isRep));
301 memcpy(dest->isRepG0, p->isRepG0, sizeof(p->isRepG0));
302 memcpy(dest->isRepG1, p->isRepG1, sizeof(p->isRepG1));
303 memcpy(dest->isRepG2, p->isRepG2, sizeof(p->isRepG2));
304 memcpy(dest->posEncoders, p->posEncoders, sizeof(p->posEncoders));
305 memcpy(dest->posAlignEncoder, p->posAlignEncoder, sizeof(p->posAlignEncoder));
306 memcpy(dest->reps, p->reps, sizeof(p->reps));
307 memcpy(dest->litProbs, p->litProbs, (0x300 << p->lclp) * sizeof(CLzmaProb));
310 /*static void LzmaEnc_RestoreState(CLzmaEncHandle pp)
312 CLzmaEnc *dest = (CLzmaEnc *)pp;
313 const CSaveState *p = &dest->saveState;
315 dest->lenEnc = p->lenEnc;
316 dest->repLenEnc = p->repLenEnc;
317 dest->state = p->state;
319 for (i = 0; i < kNumStates; i++)
321 memcpy(dest->isMatch[i], p->isMatch[i], sizeof(p->isMatch[i]));
322 memcpy(dest->isRep0Long[i], p->isRep0Long[i], sizeof(p->isRep0Long[i]));
324 for (i = 0; i < kNumLenToPosStates; i++)
325 memcpy(dest->posSlotEncoder[i], p->posSlotEncoder[i], sizeof(p->posSlotEncoder[i]));
326 memcpy(dest->isRep, p->isRep, sizeof(p->isRep));
327 memcpy(dest->isRepG0, p->isRepG0, sizeof(p->isRepG0));
328 memcpy(dest->isRepG1, p->isRepG1, sizeof(p->isRepG1));
329 memcpy(dest->isRepG2, p->isRepG2, sizeof(p->isRepG2));
330 memcpy(dest->posEncoders, p->posEncoders, sizeof(p->posEncoders));
331 memcpy(dest->posAlignEncoder, p->posAlignEncoder, sizeof(p->posAlignEncoder));
332 memcpy(dest->reps, p->reps, sizeof(p->reps));
333 memcpy(dest->litProbs, p->litProbs, (0x300 << dest->lclp) * sizeof(CLzmaProb));
336 SRes
LzmaEnc_SetProps(CLzmaEncHandle pp
, const struct CLzmaEncProps
*props2
)
338 struct CLzmaEnc
*p
= (struct CLzmaEnc
*)pp
;
339 struct CLzmaEncProps props
= *props2
;
340 LzmaEncProps_Normalize(&props
);
342 if (props
.lc
> LZMA_LC_MAX
|| props
.lp
> LZMA_LP_MAX
|| props
.pb
> LZMA_PB_MAX
||
343 props
.dictSize
> (1 << kDicLogSizeMaxCompress
) || props
.dictSize
> (1 << 30))
344 return SZ_ERROR_PARAM
;
345 p
->dictSize
= props
.dictSize
;
346 p
->matchFinderCycles
= props
.mc
;
348 unsigned fb
= props
.fb
;
351 if (fb
> LZMA_MATCH_LEN_MAX
)
352 fb
= LZMA_MATCH_LEN_MAX
;
353 p
->numFastuint8_ts
= fb
;
358 p
->fastMode
= (props
.algo
== 0);
359 p
->matchFinderBase
.btMode
= props
.btMode
;
361 uint32_t numHashBytes
= 4;
364 if (props
.numHashBytes
< 2)
366 else if (props
.numHashBytes
< 4)
367 numHashBytes
= props
.numHashBytes
;
369 p
->matchFinderBase
.numHashBytes
= numHashBytes
;
372 p
->matchFinderBase
.cutValue
= props
.mc
;
374 p
->writeEndMark
= props
.writeEndMark
;
379 static const int kLiteralNextStates
[kNumStates
] = {0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 4, 5};
380 static const int kMatchNextStates
[kNumStates
] = {7, 7, 7, 7, 7, 7, 7, 10, 10, 10, 10, 10};
381 static const int kRepNextStates
[kNumStates
] = {8, 8, 8, 8, 8, 8, 8, 11, 11, 11, 11, 11};
382 static const int kShortRepNextStates
[kNumStates
]= {9, 9, 9, 9, 9, 9, 9, 11, 11, 11, 11, 11};
384 #define IsCharState(s) ((s) < 7)
386 #define GetLenToPosState(len) (((len) < kNumLenToPosStates + 1) ? (len) - 2 : kNumLenToPosStates - 1)
388 #define kInfinityPrice (1 << 30)
390 static void RangeEnc_Construct(struct CRangeEnc
*p
)
396 #define RangeEnc_GetProcessed(p) ((p)->processed + ((p)->buf - (p)->bufBase) + (p)->cacheSize)
398 #define RC_BUF_SIZE (1 << 16)
399 static int RangeEnc_Alloc(struct CRangeEnc
*p
, struct ISzAlloc
*alloc
)
403 p
->bufBase
= (uint8_t *)alloc
->Alloc(alloc
, RC_BUF_SIZE
);
406 p
->bufLim
= p
->bufBase
+ RC_BUF_SIZE
;
411 static void RangeEnc_Free(struct CRangeEnc
*p
, struct ISzAlloc
*alloc
)
413 alloc
->Free(alloc
, p
->bufBase
);
417 static void RangeEnc_Init(struct CRangeEnc
*p
)
421 p
->range
= 0xFFFFFFFF;
431 static void RangeEnc_FlushStream(struct CRangeEnc
*p
)
436 num
= p
->buf
- p
->bufBase
;
437 if (num
!= p
->outStream
->Write(p
->outStream
, p
->bufBase
, num
))
438 p
->res
= SZ_ERROR_WRITE
;
443 static void RangeEnc_ShiftLow(struct CRangeEnc
*p
)
445 if ((uint32_t)p
->low
< (uint32_t)0xFF000000 || (int)(p
->low
>> 32) != 0)
447 uint8_t temp
= p
->cache
;
450 uint8_t *buf
= p
->buf
;
451 *buf
++ = (uint8_t)(temp
+ (uint8_t)(p
->low
>> 32));
453 if (buf
== p
->bufLim
)
454 RangeEnc_FlushStream(p
);
457 while (--p
->cacheSize
!= 0);
458 p
->cache
= (uint8_t)((uint32_t)p
->low
>> 24);
461 p
->low
= (uint32_t)p
->low
<< 8;
464 static void RangeEnc_FlushData(struct CRangeEnc
*p
)
467 for (i
= 0; i
< 5; i
++)
468 RangeEnc_ShiftLow(p
);
471 static void RangeEnc_EncodeDirectBits(struct CRangeEnc
*p
, uint32_t value
, int numBits
)
476 p
->low
+= p
->range
& (0 - ((value
>> --numBits
) & 1));
477 if (p
->range
< kTopValue
)
480 RangeEnc_ShiftLow(p
);
483 while (numBits
!= 0);
486 static void RangeEnc_EncodeBit(struct CRangeEnc
*p
, CLzmaProb
*prob
, uint32_t symbol
)
488 uint32_t ttt
= *prob
;
489 uint32_t newBound
= (p
->range
>> kNumBitModelTotalBits
) * ttt
;
493 ttt
+= (kBitModelTotal
- ttt
) >> kNumMoveBits
;
498 p
->range
-= newBound
;
499 ttt
-= ttt
>> kNumMoveBits
;
501 *prob
= (CLzmaProb
)ttt
;
502 if (p
->range
< kTopValue
)
505 RangeEnc_ShiftLow(p
);
509 static void LitEnc_Encode(struct CRangeEnc
*p
, CLzmaProb
*probs
, uint32_t symbol
)
514 RangeEnc_EncodeBit(p
, probs
+ (symbol
>> 8), (symbol
>> 7) & 1);
517 while (symbol
< 0x10000);
520 static void LitEnc_EncodeMatched(struct CRangeEnc
*p
, CLzmaProb
*probs
, uint32_t symbol
, uint32_t matchuint8_t
)
522 uint32_t offs
= 0x100;
527 RangeEnc_EncodeBit(p
, probs
+ (offs
+ (matchuint8_t
& offs
) + (symbol
>> 8)), (symbol
>> 7) & 1);
529 offs
&= ~(matchuint8_t
^ symbol
);
531 while (symbol
< 0x10000);
534 static void LzmaEnc_InitPriceTables(uint32_t *ProbPrices
)
537 for (i
= (1 << kNumMoveReducingBits
) / 2; i
< kBitModelTotal
; i
+= (1 << kNumMoveReducingBits
))
539 const int kCyclesBits
= kNumBitPriceShiftBits
;
541 uint32_t bitCount
= 0;
543 for (j
= 0; j
< kCyclesBits
; j
++)
547 while (w
>= ((uint32_t)1 << 16))
553 ProbPrices
[i
>> kNumMoveReducingBits
] = ((kNumBitModelTotalBits
<< kCyclesBits
) - 15 - bitCount
);
558 #define GET_PRICE(prob, symbol) \
559 p->ProbPrices[((prob) ^ (((-(int)(symbol))) & (kBitModelTotal - 1))) >> kNumMoveReducingBits];
561 #define GET_PRICEa(prob, symbol) \
562 ProbPrices[((prob) ^ ((-((int)(symbol))) & (kBitModelTotal - 1))) >> kNumMoveReducingBits];
564 #define GET_PRICE_0(prob) p->ProbPrices[(prob) >> kNumMoveReducingBits]
565 #define GET_PRICE_1(prob) p->ProbPrices[((prob) ^ (kBitModelTotal - 1)) >> kNumMoveReducingBits]
567 #define GET_PRICE_0a(prob) ProbPrices[(prob) >> kNumMoveReducingBits]
568 #define GET_PRICE_1a(prob) ProbPrices[((prob) ^ (kBitModelTotal - 1)) >> kNumMoveReducingBits]
570 static uint32_t LitEnc_GetPrice(const CLzmaProb
*probs
, uint32_t symbol
, uint32_t *ProbPrices
)
576 price
+= GET_PRICEa(probs
[symbol
>> 8], (symbol
>> 7) & 1);
579 while (symbol
< 0x10000);
583 static uint32_t LitEnc_GetPriceMatched(const CLzmaProb
*probs
, uint32_t symbol
, uint32_t matchuint8_t
, uint32_t *ProbPrices
)
586 uint32_t offs
= 0x100;
591 price
+= GET_PRICEa(probs
[offs
+ (matchuint8_t
& offs
) + (symbol
>> 8)], (symbol
>> 7) & 1);
593 offs
&= ~(matchuint8_t
^ symbol
);
595 while (symbol
< 0x10000);
600 static void RcTree_Encode(struct CRangeEnc
*rc
, CLzmaProb
*probs
, int numBitLevels
, uint32_t symbol
)
604 for (i
= numBitLevels
; i
!= 0;)
608 bit
= (symbol
>> i
) & 1;
609 RangeEnc_EncodeBit(rc
, probs
+ m
, bit
);
614 static void RcTree_ReverseEncode(struct CRangeEnc
*rc
, CLzmaProb
*probs
, int numBitLevels
, uint32_t symbol
)
618 for (i
= 0; i
< numBitLevels
; i
++)
620 uint32_t bit
= symbol
& 1;
621 RangeEnc_EncodeBit(rc
, probs
+ m
, bit
);
627 static uint32_t RcTree_GetPrice(const CLzmaProb
*probs
, int numBitLevels
, uint32_t symbol
, uint32_t *ProbPrices
)
630 symbol
|= (1 << numBitLevels
);
633 price
+= GET_PRICEa(probs
[symbol
>> 1], symbol
& 1);
639 static uint32_t RcTree_ReverseGetPrice(const CLzmaProb
*probs
, int numBitLevels
, uint32_t symbol
, uint32_t *ProbPrices
)
644 for (i
= numBitLevels
; i
!= 0; i
--)
646 uint32_t bit
= symbol
& 1;
648 price
+= GET_PRICEa(probs
[m
], bit
);
655 static void LenEnc_Init(struct CLenEnc
*p
)
658 p
->choice
= p
->choice2
= kProbInitValue
;
659 for (i
= 0; i
< (LZMA_NUM_PB_STATES_MAX
<< kLenNumLowBits
); i
++)
660 p
->low
[i
] = kProbInitValue
;
661 for (i
= 0; i
< (LZMA_NUM_PB_STATES_MAX
<< kLenNumMidBits
); i
++)
662 p
->mid
[i
] = kProbInitValue
;
663 for (i
= 0; i
< kLenNumHighSymbols
; i
++)
664 p
->high
[i
] = kProbInitValue
;
667 static void LenEnc_Encode(struct CLenEnc
*p
, struct CRangeEnc
*rc
, uint32_t symbol
, uint32_t posState
)
669 if (symbol
< kLenNumLowSymbols
)
671 RangeEnc_EncodeBit(rc
, &p
->choice
, 0);
672 RcTree_Encode(rc
, p
->low
+ (posState
<< kLenNumLowBits
), kLenNumLowBits
, symbol
);
676 RangeEnc_EncodeBit(rc
, &p
->choice
, 1);
677 if (symbol
< kLenNumLowSymbols
+ kLenNumMidSymbols
)
679 RangeEnc_EncodeBit(rc
, &p
->choice2
, 0);
680 RcTree_Encode(rc
, p
->mid
+ (posState
<< kLenNumMidBits
), kLenNumMidBits
, symbol
- kLenNumLowSymbols
);
684 RangeEnc_EncodeBit(rc
, &p
->choice2
, 1);
685 RcTree_Encode(rc
, p
->high
, kLenNumHighBits
, symbol
- kLenNumLowSymbols
- kLenNumMidSymbols
);
690 static void LenEnc_SetPrices(struct CLenEnc
*p
, uint32_t posState
, uint32_t numSymbols
, uint32_t *prices
, uint32_t *ProbPrices
)
692 uint32_t a0
= GET_PRICE_0a(p
->choice
);
693 uint32_t a1
= GET_PRICE_1a(p
->choice
);
694 uint32_t b0
= a1
+ GET_PRICE_0a(p
->choice2
);
695 uint32_t b1
= a1
+ GET_PRICE_1a(p
->choice2
);
697 for (i
= 0; i
< kLenNumLowSymbols
; i
++)
701 prices
[i
] = a0
+ RcTree_GetPrice(p
->low
+ (posState
<< kLenNumLowBits
), kLenNumLowBits
, i
, ProbPrices
);
703 for (; i
< kLenNumLowSymbols
+ kLenNumMidSymbols
; i
++)
707 prices
[i
] = b0
+ RcTree_GetPrice(p
->mid
+ (posState
<< kLenNumMidBits
), kLenNumMidBits
, i
- kLenNumLowSymbols
, ProbPrices
);
709 for (; i
< numSymbols
; i
++)
710 prices
[i
] = b1
+ RcTree_GetPrice(p
->high
, kLenNumHighBits
, i
- kLenNumLowSymbols
- kLenNumMidSymbols
, ProbPrices
);
713 static void LenPriceEnc_UpdateTable(struct CLenPriceEnc
*p
, uint32_t posState
, uint32_t *ProbPrices
)
715 LenEnc_SetPrices(&p
->p
, posState
, p
->tableSize
, p
->prices
[posState
], ProbPrices
);
716 p
->counters
[posState
] = p
->tableSize
;
719 static void LenPriceEnc_UpdateTables(struct CLenPriceEnc
*p
, uint32_t numPosStates
, uint32_t *ProbPrices
)
722 for (posState
= 0; posState
< numPosStates
; posState
++)
723 LenPriceEnc_UpdateTable(p
, posState
, ProbPrices
);
726 static void LenEnc_Encode2(struct CLenPriceEnc
*p
, struct CRangeEnc
*rc
, uint32_t symbol
, uint32_t posState
, bool updatePrice
, uint32_t *ProbPrices
)
728 LenEnc_Encode(&p
->p
, rc
, symbol
, posState
);
730 if (--p
->counters
[posState
] == 0)
731 LenPriceEnc_UpdateTable(p
, posState
, ProbPrices
);
737 static void MovePos(struct CLzmaEnc
*p
, uint32_t num
)
741 p
->additionalOffset
+= num
;
742 p
->matchFinder
.Skip(p
->matchFinderObj
, num
);
746 static uint32_t ReadMatchDistances(struct CLzmaEnc
*p
, uint32_t *numDistancePairsRes
)
748 uint32_t lenRes
= 0, numPairs
;
749 p
->numAvail
= p
->matchFinder
.GetNumAvailableBytes(p
->matchFinderObj
);
750 numPairs
= p
->matchFinder
.GetMatches(p
->matchFinderObj
, p
->matches
);
753 lenRes
= p
->matches
[numPairs
- 2];
754 if (lenRes
== p
->numFastuint8_ts
)
756 const uint8_t *pby
= p
->matchFinder
.GetPointerToCurrentPos(p
->matchFinderObj
) - 1;
757 uint32_t distance
= p
->matches
[numPairs
- 1] + 1;
758 uint32_t numAvail
= p
->numAvail
;
759 if (numAvail
> LZMA_MATCH_LEN_MAX
)
760 numAvail
= LZMA_MATCH_LEN_MAX
;
762 const uint8_t *pby2
= pby
- distance
;
763 for (; lenRes
< numAvail
&& pby
[lenRes
] == pby2
[lenRes
]; lenRes
++);
767 p
->additionalOffset
++;
768 *numDistancePairsRes
= numPairs
;
773 #define MakeAsChar(p) (p)->backPrev = (uint32_t)(-1); (p)->prev1IsChar = false;
774 #define MakeAsShortRep(p) (p)->backPrev = 0; (p)->prev1IsChar = false;
775 #define IsShortRep(p) ((p)->backPrev == 0)
777 static uint32_t GetRepLen1Price(struct CLzmaEnc
*p
, uint32_t state
, uint32_t posState
)
780 GET_PRICE_0(p
->isRepG0
[state
]) +
781 GET_PRICE_0(p
->isRep0Long
[state
][posState
]);
784 static uint32_t GetPureRepPrice(struct CLzmaEnc
*p
, uint32_t repIndex
, uint32_t state
, uint32_t posState
)
789 price
= GET_PRICE_0(p
->isRepG0
[state
]);
790 price
+= GET_PRICE_1(p
->isRep0Long
[state
][posState
]);
794 price
= GET_PRICE_1(p
->isRepG0
[state
]);
796 price
+= GET_PRICE_0(p
->isRepG1
[state
]);
799 price
+= GET_PRICE_1(p
->isRepG1
[state
]);
800 price
+= GET_PRICE(p
->isRepG2
[state
], repIndex
- 2);
806 static uint32_t GetRepPrice(struct CLzmaEnc
*p
, uint32_t repIndex
, uint32_t len
, uint32_t state
, uint32_t posState
)
808 return p
->repLenEnc
.prices
[posState
][len
- LZMA_MATCH_LEN_MIN
] +
809 GetPureRepPrice(p
, repIndex
, state
, posState
);
812 static uint32_t Backward(struct CLzmaEnc
*p
, uint32_t *backRes
, uint32_t cur
)
814 uint32_t posMem
= p
->opt
[cur
].posPrev
;
815 uint32_t backMem
= p
->opt
[cur
].backPrev
;
816 p
->optimumEndIndex
= cur
;
819 if (p
->opt
[cur
].prev1IsChar
)
821 MakeAsChar(&p
->opt
[posMem
])
822 p
->opt
[posMem
].posPrev
= posMem
- 1;
823 if (p
->opt
[cur
].prev2
)
825 p
->opt
[posMem
- 1].prev1IsChar
= false;
826 p
->opt
[posMem
- 1].posPrev
= p
->opt
[cur
].posPrev2
;
827 p
->opt
[posMem
- 1].backPrev
= p
->opt
[cur
].backPrev2
;
831 uint32_t posPrev
= posMem
;
832 uint32_t backCur
= backMem
;
834 backMem
= p
->opt
[posPrev
].backPrev
;
835 posMem
= p
->opt
[posPrev
].posPrev
;
837 p
->opt
[posPrev
].backPrev
= backCur
;
838 p
->opt
[posPrev
].posPrev
= cur
;
843 *backRes
= p
->opt
[0].backPrev
;
844 p
->optimumCurrentIndex
= p
->opt
[0].posPrev
;
845 return p
->optimumCurrentIndex
;
848 #define LIT_PROBS(pos, prevuint8_t) (p->litProbs + ((((pos) & p->lpMask) << p->lc) + ((prevuint8_t) >> (8 - p->lc))) * 0x300)
850 static uint32_t GetOptimum(struct CLzmaEnc
*p
, uint32_t position
, uint32_t *backRes
)
852 uint32_t numAvail
, mainLen
, numPairs
, repMaxIndex
, i
, posState
, lenEnd
, len
, cur
;
853 uint32_t matchPrice
, repMatchPrice
, normalMatchPrice
;
854 uint32_t reps
[LZMA_NUM_REPS
], repLens
[LZMA_NUM_REPS
];
857 uint8_t curuint8_t
, matchuint8_t
;
858 if (p
->optimumEndIndex
!= p
->optimumCurrentIndex
)
860 const struct COptimal
*opt
= &p
->opt
[p
->optimumCurrentIndex
];
861 uint32_t lenRes
= opt
->posPrev
- p
->optimumCurrentIndex
;
862 *backRes
= opt
->backPrev
;
863 p
->optimumCurrentIndex
= opt
->posPrev
;
866 p
->optimumCurrentIndex
= p
->optimumEndIndex
= 0;
868 if (p
->additionalOffset
== 0)
869 mainLen
= ReadMatchDistances(p
, &numPairs
);
872 mainLen
= p
->longestMatchLength
;
873 numPairs
= p
->numPairs
;
876 numAvail
= p
->numAvail
;
879 *backRes
= (uint32_t)(-1);
882 if (numAvail
> LZMA_MATCH_LEN_MAX
)
883 numAvail
= LZMA_MATCH_LEN_MAX
;
885 data
= p
->matchFinder
.GetPointerToCurrentPos(p
->matchFinderObj
) - 1;
887 for (i
= 0; i
< LZMA_NUM_REPS
; i
++)
890 const uint8_t *data2
;
891 reps
[i
] = p
->reps
[i
];
892 data2
= data
- (reps
[i
] + 1);
893 if (data
[0] != data2
[0] || data
[1] != data2
[1])
898 for (lenTest
= 2; lenTest
< numAvail
&& data
[lenTest
] == data2
[lenTest
]; lenTest
++);
899 repLens
[i
] = lenTest
;
900 if (lenTest
> repLens
[repMaxIndex
])
903 if (repLens
[repMaxIndex
] >= p
->numFastuint8_ts
)
906 *backRes
= repMaxIndex
;
907 lenRes
= repLens
[repMaxIndex
];
908 MovePos(p
, lenRes
- 1);
912 matches
= p
->matches
;
913 if (mainLen
>= p
->numFastuint8_ts
)
915 *backRes
= matches
[numPairs
- 1] + LZMA_NUM_REPS
;
916 MovePos(p
, mainLen
- 1);
920 matchuint8_t
= *(data
- (reps
[0] + 1));
922 if (mainLen
< 2 && curuint8_t
!= matchuint8_t
&& repLens
[repMaxIndex
] < 2)
924 *backRes
= (uint32_t)-1;
928 p
->opt
[0].state
= (CState
)p
->state
;
930 posState
= (position
& p
->pbMask
);
933 const CLzmaProb
*probs
= LIT_PROBS(position
, *(data
- 1));
934 p
->opt
[1].price
= GET_PRICE_0(p
->isMatch
[p
->state
][posState
]) +
935 (!IsCharState(p
->state
) ?
936 LitEnc_GetPriceMatched(probs
, curuint8_t
, matchuint8_t
, p
->ProbPrices
) :
937 LitEnc_GetPrice(probs
, curuint8_t
, p
->ProbPrices
));
940 MakeAsChar(&p
->opt
[1]);
942 matchPrice
= GET_PRICE_1(p
->isMatch
[p
->state
][posState
]);
943 repMatchPrice
= matchPrice
+ GET_PRICE_1(p
->isRep
[p
->state
]);
945 if (matchuint8_t
== curuint8_t
)
947 uint32_t shortRepPrice
= repMatchPrice
+ GetRepLen1Price(p
, p
->state
, posState
);
948 if (shortRepPrice
< p
->opt
[1].price
)
950 p
->opt
[1].price
= shortRepPrice
;
951 MakeAsShortRep(&p
->opt
[1]);
954 lenEnd
= ((mainLen
>= repLens
[repMaxIndex
]) ? mainLen
: repLens
[repMaxIndex
]);
958 *backRes
= p
->opt
[1].backPrev
;
962 p
->opt
[1].posPrev
= 0;
963 for (i
= 0; i
< LZMA_NUM_REPS
; i
++)
964 p
->opt
[0].backs
[i
] = reps
[i
];
968 p
->opt
[len
--].price
= kInfinityPrice
;
971 for (i
= 0; i
< LZMA_NUM_REPS
; i
++)
973 uint32_t repLen
= repLens
[i
];
977 price
= repMatchPrice
+ GetPureRepPrice(p
, i
, p
->state
, posState
);
980 uint32_t curAndLenPrice
= price
+ p
->repLenEnc
.prices
[posState
][repLen
- 2];
981 struct COptimal
*opt
= &p
->opt
[repLen
];
982 if (curAndLenPrice
< opt
->price
)
984 opt
->price
= curAndLenPrice
;
987 opt
->prev1IsChar
= false;
990 while (--repLen
>= 2);
993 normalMatchPrice
= matchPrice
+ GET_PRICE_0(p
->isRep
[p
->state
]);
995 len
= ((repLens
[0] >= 2) ? repLens
[0] + 1 : 2);
999 while (len
> matches
[offs
])
1003 struct COptimal
*opt
;
1004 uint32_t distance
= matches
[offs
+ 1];
1006 uint32_t curAndLenPrice
= normalMatchPrice
+ p
->lenEnc
.prices
[posState
][len
- LZMA_MATCH_LEN_MIN
];
1007 uint32_t lenToPosState
= GetLenToPosState(len
);
1008 if (distance
< kNumFullDistances
)
1009 curAndLenPrice
+= p
->distancesPrices
[lenToPosState
][distance
];
1013 GetPosSlot2(distance
, slot
);
1014 curAndLenPrice
+= p
->alignPrices
[distance
& kAlignMask
] + p
->posSlotPrices
[lenToPosState
][slot
];
1017 if (curAndLenPrice
< opt
->price
)
1019 opt
->price
= curAndLenPrice
;
1021 opt
->backPrev
= distance
+ LZMA_NUM_REPS
;
1022 opt
->prev1IsChar
= false;
1024 if (len
== matches
[offs
])
1027 if (offs
== numPairs
)
1037 uint32_t numAvailFull
, newLen
, posPrev
, state
, startLen
;
1038 uint32_t curPrice
, curAnd1Price
;
1040 struct COptimal
*curOpt
;
1041 struct COptimal
*nextOpt
;
1045 return Backward(p
, backRes
, cur
);
1047 newLen
= ReadMatchDistances(p
, &numPairs
);
1048 if (newLen
>= p
->numFastuint8_ts
)
1050 p
->numPairs
= numPairs
;
1051 p
->longestMatchLength
= newLen
;
1052 return Backward(p
, backRes
, cur
);
1055 curOpt
= &p
->opt
[cur
];
1056 posPrev
= curOpt
->posPrev
;
1057 if (curOpt
->prev1IsChar
)
1062 state
= p
->opt
[curOpt
->posPrev2
].state
;
1063 if (curOpt
->backPrev2
< LZMA_NUM_REPS
)
1064 state
= kRepNextStates
[state
];
1066 state
= kMatchNextStates
[state
];
1069 state
= p
->opt
[posPrev
].state
;
1070 state
= kLiteralNextStates
[state
];
1073 state
= p
->opt
[posPrev
].state
;
1074 if (posPrev
== cur
- 1)
1076 if (IsShortRep(curOpt
))
1077 state
= kShortRepNextStates
[state
];
1079 state
= kLiteralNextStates
[state
];
1084 const struct COptimal
*prevOpt
;
1085 if (curOpt
->prev1IsChar
&& curOpt
->prev2
)
1087 posPrev
= curOpt
->posPrev2
;
1088 pos
= curOpt
->backPrev2
;
1089 state
= kRepNextStates
[state
];
1093 pos
= curOpt
->backPrev
;
1094 if (pos
< LZMA_NUM_REPS
)
1095 state
= kRepNextStates
[state
];
1097 state
= kMatchNextStates
[state
];
1099 prevOpt
= &p
->opt
[posPrev
];
1100 if (pos
< LZMA_NUM_REPS
)
1102 reps
[0] = prevOpt
->backs
[pos
];
1103 for (i
= 1; i
<= pos
; i
++)
1104 reps
[i
] = prevOpt
->backs
[i
- 1];
1105 for (; i
< LZMA_NUM_REPS
; i
++)
1106 reps
[i
] = prevOpt
->backs
[i
];
1110 reps
[0] = (pos
- LZMA_NUM_REPS
);
1111 for (i
= 1; i
< LZMA_NUM_REPS
; i
++)
1112 reps
[i
] = prevOpt
->backs
[i
- 1];
1115 curOpt
->state
= (CState
)state
;
1117 curOpt
->backs
[0] = reps
[0];
1118 curOpt
->backs
[1] = reps
[1];
1119 curOpt
->backs
[2] = reps
[2];
1120 curOpt
->backs
[3] = reps
[3];
1122 curPrice
= curOpt
->price
;
1124 data
= p
->matchFinder
.GetPointerToCurrentPos(p
->matchFinderObj
) - 1;
1126 matchuint8_t
= *(data
- (reps
[0] + 1));
1128 posState
= (position
& p
->pbMask
);
1130 curAnd1Price
= curPrice
+ GET_PRICE_0(p
->isMatch
[state
][posState
]);
1132 const CLzmaProb
*probs
= LIT_PROBS(position
, *(data
- 1));
1134 (!IsCharState(state
) ?
1135 LitEnc_GetPriceMatched(probs
, curuint8_t
, matchuint8_t
, p
->ProbPrices
) :
1136 LitEnc_GetPrice(probs
, curuint8_t
, p
->ProbPrices
));
1139 nextOpt
= &p
->opt
[cur
+ 1];
1141 if (curAnd1Price
< nextOpt
->price
)
1143 nextOpt
->price
= curAnd1Price
;
1144 nextOpt
->posPrev
= cur
;
1145 MakeAsChar(nextOpt
);
1149 matchPrice
= curPrice
+ GET_PRICE_1(p
->isMatch
[state
][posState
]);
1150 repMatchPrice
= matchPrice
+ GET_PRICE_1(p
->isRep
[state
]);
1152 if (matchuint8_t
== curuint8_t
&& !(nextOpt
->posPrev
< cur
&& nextOpt
->backPrev
== 0))
1154 uint32_t shortRepPrice
= repMatchPrice
+ GetRepLen1Price(p
, state
, posState
);
1155 if (shortRepPrice
<= nextOpt
->price
)
1157 nextOpt
->price
= shortRepPrice
;
1158 nextOpt
->posPrev
= cur
;
1159 MakeAsShortRep(nextOpt
);
1163 numAvailFull
= p
->numAvail
;
1165 uint32_t temp
= kNumOpts
- 1 - cur
;
1166 if (temp
< numAvailFull
)
1167 numAvailFull
= temp
;
1170 if (numAvailFull
< 2)
1172 numAvail
= (numAvailFull
<= p
->numFastuint8_ts
? numAvailFull
: p
->numFastuint8_ts
);
1174 if (!nextIsChar
&& matchuint8_t
!= curuint8_t
) /* speed optimization */
1176 /* try Literal + rep0 */
1179 const uint8_t *data2
= data
- (reps
[0] + 1);
1180 uint32_t limit
= p
->numFastuint8_ts
+ 1;
1181 if (limit
> numAvailFull
)
1182 limit
= numAvailFull
;
1184 for (temp
= 1; temp
< limit
&& data
[temp
] == data2
[temp
]; temp
++);
1185 lenTest2
= temp
- 1;
1188 uint32_t state2
= kLiteralNextStates
[state
];
1189 uint32_t posStateNext
= (position
+ 1) & p
->pbMask
;
1190 uint32_t nextRepMatchPrice
= curAnd1Price
+
1191 GET_PRICE_1(p
->isMatch
[state2
][posStateNext
]) +
1192 GET_PRICE_1(p
->isRep
[state2
]);
1193 /* for (; lenTest2 >= 2; lenTest2--) */
1195 uint32_t curAndLenPrice
;
1196 struct COptimal
*opt
;
1197 uint32_t offset
= cur
+ 1 + lenTest2
;
1198 while (lenEnd
< offset
)
1199 p
->opt
[++lenEnd
].price
= kInfinityPrice
;
1200 curAndLenPrice
= nextRepMatchPrice
+ GetRepPrice(p
, 0, lenTest2
, state2
, posStateNext
);
1201 opt
= &p
->opt
[offset
];
1202 if (curAndLenPrice
< opt
->price
)
1204 opt
->price
= curAndLenPrice
;
1205 opt
->posPrev
= cur
+ 1;
1207 opt
->prev1IsChar
= true;
1214 startLen
= 2; /* speed optimization */
1217 for (repIndex
= 0; repIndex
< LZMA_NUM_REPS
; repIndex
++)
1220 uint32_t lenTestTemp
;
1222 const uint8_t *data2
= data
- (reps
[repIndex
] + 1);
1223 if (data
[0] != data2
[0] || data
[1] != data2
[1])
1225 for (lenTest
= 2; lenTest
< numAvail
&& data
[lenTest
] == data2
[lenTest
]; lenTest
++);
1226 while (lenEnd
< cur
+ lenTest
)
1227 p
->opt
[++lenEnd
].price
= kInfinityPrice
;
1228 lenTestTemp
= lenTest
;
1229 price
= repMatchPrice
+ GetPureRepPrice(p
, repIndex
, state
, posState
);
1232 uint32_t curAndLenPrice
= price
+ p
->repLenEnc
.prices
[posState
][lenTest
- 2];
1233 struct COptimal
*opt
= &p
->opt
[cur
+ lenTest
];
1234 if (curAndLenPrice
< opt
->price
)
1236 opt
->price
= curAndLenPrice
;
1238 opt
->backPrev
= repIndex
;
1239 opt
->prev1IsChar
= false;
1242 while (--lenTest
>= 2);
1243 lenTest
= lenTestTemp
;
1246 startLen
= lenTest
+ 1;
1250 uint32_t lenTest2
= lenTest
+ 1;
1251 uint32_t limit
= lenTest2
+ p
->numFastuint8_ts
;
1252 uint32_t nextRepMatchPrice
;
1253 if (limit
> numAvailFull
)
1254 limit
= numAvailFull
;
1255 for (; lenTest2
< limit
&& data
[lenTest2
] == data2
[lenTest2
]; lenTest2
++);
1256 lenTest2
-= lenTest
+ 1;
1259 uint32_t state2
= kRepNextStates
[state
];
1260 uint32_t posStateNext
= (position
+ lenTest
) & p
->pbMask
;
1261 uint32_t curAndLenCharPrice
=
1262 price
+ p
->repLenEnc
.prices
[posState
][lenTest
- 2] +
1263 GET_PRICE_0(p
->isMatch
[state2
][posStateNext
]) +
1264 LitEnc_GetPriceMatched(LIT_PROBS(position
+ lenTest
, data
[lenTest
- 1]),
1265 data
[lenTest
], data2
[lenTest
], p
->ProbPrices
);
1266 state2
= kLiteralNextStates
[state2
];
1267 posStateNext
= (position
+ lenTest
+ 1) & p
->pbMask
;
1268 nextRepMatchPrice
= curAndLenCharPrice
+
1269 GET_PRICE_1(p
->isMatch
[state2
][posStateNext
]) +
1270 GET_PRICE_1(p
->isRep
[state2
]);
1272 /* for (; lenTest2 >= 2; lenTest2--) */
1274 uint32_t curAndLenPrice
;
1275 struct COptimal
*opt
;
1276 uint32_t offset
= cur
+ lenTest
+ 1 + lenTest2
;
1277 while (lenEnd
< offset
)
1278 p
->opt
[++lenEnd
].price
= kInfinityPrice
;
1279 curAndLenPrice
= nextRepMatchPrice
+ GetRepPrice(p
, 0, lenTest2
, state2
, posStateNext
);
1280 opt
= &p
->opt
[offset
];
1281 if (curAndLenPrice
< opt
->price
)
1283 opt
->price
= curAndLenPrice
;
1284 opt
->posPrev
= cur
+ lenTest
+ 1;
1286 opt
->prev1IsChar
= true;
1288 opt
->posPrev2
= cur
;
1289 opt
->backPrev2
= repIndex
;
1296 /* for (uint32_t lenTest = 2; lenTest <= newLen; lenTest++) */
1297 if (newLen
> numAvail
)
1300 for (numPairs
= 0; newLen
> matches
[numPairs
]; numPairs
+= 2);
1301 matches
[numPairs
] = newLen
;
1304 if (newLen
>= startLen
)
1306 uint32_t offs
, curBack
, posSlot
;
1309 normalMatchPrice
= matchPrice
+ GET_PRICE_0(p
->isRep
[state
]);
1311 while (lenEnd
< cur
+ newLen
)
1312 p
->opt
[++lenEnd
].price
= kInfinityPrice
;
1315 while (startLen
> matches
[offs
])
1317 curBack
= matches
[offs
+ 1];
1318 GetPosSlot2(curBack
, posSlot
);
1319 for (lenTest
= /*2*/ startLen
; ; lenTest
++)
1321 uint32_t curAndLenPrice
= normalMatchPrice
+ p
->lenEnc
.prices
[posState
][lenTest
- LZMA_MATCH_LEN_MIN
];
1322 uint32_t lenToPosState
= GetLenToPosState(lenTest
);
1323 struct COptimal
*opt
;
1324 if (curBack
< kNumFullDistances
)
1325 curAndLenPrice
+= p
->distancesPrices
[lenToPosState
][curBack
];
1327 curAndLenPrice
+= p
->posSlotPrices
[lenToPosState
][posSlot
] + p
->alignPrices
[curBack
& kAlignMask
];
1329 opt
= &p
->opt
[cur
+ lenTest
];
1330 if (curAndLenPrice
< opt
->price
)
1332 opt
->price
= curAndLenPrice
;
1334 opt
->backPrev
= curBack
+ LZMA_NUM_REPS
;
1335 opt
->prev1IsChar
= false;
1338 if (/*_maxMode && */lenTest
== matches
[offs
])
1340 /* Try Match + Literal + Rep0 */
1341 const uint8_t *data2
= data
- (curBack
+ 1);
1342 uint32_t lenTest2
= lenTest
+ 1;
1343 uint32_t limit
= lenTest2
+ p
->numFastuint8_ts
;
1344 uint32_t nextRepMatchPrice
;
1345 if (limit
> numAvailFull
)
1346 limit
= numAvailFull
;
1347 for (; lenTest2
< limit
&& data
[lenTest2
] == data2
[lenTest2
]; lenTest2
++);
1348 lenTest2
-= lenTest
+ 1;
1351 uint32_t state2
= kMatchNextStates
[state
];
1352 uint32_t posStateNext
= (position
+ lenTest
) & p
->pbMask
;
1353 uint32_t curAndLenCharPrice
= curAndLenPrice
+
1354 GET_PRICE_0(p
->isMatch
[state2
][posStateNext
]) +
1355 LitEnc_GetPriceMatched(LIT_PROBS(position
+ lenTest
, data
[lenTest
- 1]),
1356 data
[lenTest
], data2
[lenTest
], p
->ProbPrices
);
1357 state2
= kLiteralNextStates
[state2
];
1358 posStateNext
= (posStateNext
+ 1) & p
->pbMask
;
1359 nextRepMatchPrice
= curAndLenCharPrice
+
1360 GET_PRICE_1(p
->isMatch
[state2
][posStateNext
]) +
1361 GET_PRICE_1(p
->isRep
[state2
]);
1363 /* for (; lenTest2 >= 2; lenTest2--) */
1365 uint32_t offset
= cur
+ lenTest
+ 1 + lenTest2
;
1366 while (lenEnd
< offset
)
1367 p
->opt
[++lenEnd
].price
= kInfinityPrice
;
1368 curAndLenPrice
= nextRepMatchPrice
+ GetRepPrice(p
, 0, lenTest2
, state2
, posStateNext
);
1369 opt
= &p
->opt
[offset
];
1370 if (curAndLenPrice
< opt
->price
)
1372 opt
->price
= curAndLenPrice
;
1373 opt
->posPrev
= cur
+ lenTest
+ 1;
1375 opt
->prev1IsChar
= true;
1377 opt
->posPrev2
= cur
;
1378 opt
->backPrev2
= curBack
+ LZMA_NUM_REPS
;
1383 if (offs
== numPairs
)
1385 curBack
= matches
[offs
+ 1];
1386 if (curBack
>= kNumFullDistances
)
1387 GetPosSlot2(curBack
, posSlot
);
1394 #define ChangePair(smallDist, bigDist) (((bigDist) >> 7) > (smallDist))
1396 static uint32_t GetOptimumFast(struct CLzmaEnc
*p
, uint32_t *backRes
)
1398 uint32_t numAvail
, mainLen
, mainDist
, numPairs
, repIndex
, repLen
, i
;
1399 const uint8_t *data
;
1400 const uint32_t *matches
;
1402 if (p
->additionalOffset
== 0)
1403 mainLen
= ReadMatchDistances(p
, &numPairs
);
1406 mainLen
= p
->longestMatchLength
;
1407 numPairs
= p
->numPairs
;
1410 numAvail
= p
->numAvail
;
1411 *backRes
= (uint32_t)-1;
1414 if (numAvail
> LZMA_MATCH_LEN_MAX
)
1415 numAvail
= LZMA_MATCH_LEN_MAX
;
1416 data
= p
->matchFinder
.GetPointerToCurrentPos(p
->matchFinderObj
) - 1;
1418 repLen
= repIndex
= 0;
1419 for (i
= 0; i
< LZMA_NUM_REPS
; i
++)
1422 const uint8_t *data2
= data
- (p
->reps
[i
] + 1);
1423 if (data
[0] != data2
[0] || data
[1] != data2
[1])
1425 for (len
= 2; len
< numAvail
&& data
[len
] == data2
[len
]; len
++);
1426 if (len
>= p
->numFastuint8_ts
)
1429 MovePos(p
, len
- 1);
1439 matches
= p
->matches
;
1440 if (mainLen
>= p
->numFastuint8_ts
)
1442 *backRes
= matches
[numPairs
- 1] + LZMA_NUM_REPS
;
1443 MovePos(p
, mainLen
- 1);
1447 mainDist
= 0; /* for GCC */
1450 mainDist
= matches
[numPairs
- 1];
1451 while (numPairs
> 2 && mainLen
== matches
[numPairs
- 4] + 1)
1453 if (!ChangePair(matches
[numPairs
- 3], mainDist
))
1456 mainLen
= matches
[numPairs
- 2];
1457 mainDist
= matches
[numPairs
- 1];
1459 if (mainLen
== 2 && mainDist
>= 0x80)
1463 if (repLen
>= 2 && (
1464 (repLen
+ 1 >= mainLen
) ||
1465 (repLen
+ 2 >= mainLen
&& mainDist
>= (1 << 9)) ||
1466 (repLen
+ 3 >= mainLen
&& mainDist
>= (1 << 15))))
1468 *backRes
= repIndex
;
1469 MovePos(p
, repLen
- 1);
1473 if (mainLen
< 2 || numAvail
<= 2)
1476 p
->longestMatchLength
= ReadMatchDistances(p
, &p
->numPairs
);
1477 if (p
->longestMatchLength
>= 2)
1479 uint32_t newDistance
= matches
[p
->numPairs
- 1];
1480 if ((p
->longestMatchLength
>= mainLen
&& newDistance
< mainDist
) ||
1481 (p
->longestMatchLength
== mainLen
+ 1 && !ChangePair(mainDist
, newDistance
)) ||
1482 (p
->longestMatchLength
> mainLen
+ 1) ||
1483 (p
->longestMatchLength
+ 1 >= mainLen
&& mainLen
>= 3 && ChangePair(newDistance
, mainDist
)))
1487 data
= p
->matchFinder
.GetPointerToCurrentPos(p
->matchFinderObj
) - 1;
1488 for (i
= 0; i
< LZMA_NUM_REPS
; i
++)
1490 uint32_t len
, limit
;
1491 const uint8_t *data2
= data
- (p
->reps
[i
] + 1);
1492 if (data
[0] != data2
[0] || data
[1] != data2
[1])
1494 limit
= mainLen
- 1;
1495 for (len
= 2; len
< limit
&& data
[len
] == data2
[len
]; len
++);
1499 *backRes
= mainDist
+ LZMA_NUM_REPS
;
1500 MovePos(p
, mainLen
- 2);
1504 static void WriteEndMarker(struct CLzmaEnc
*p
, uint32_t posState
)
1507 RangeEnc_EncodeBit(&p
->rc
, &p
->isMatch
[p
->state
][posState
], 1);
1508 RangeEnc_EncodeBit(&p
->rc
, &p
->isRep
[p
->state
], 0);
1509 p
->state
= kMatchNextStates
[p
->state
];
1510 len
= LZMA_MATCH_LEN_MIN
;
1511 LenEnc_Encode2(&p
->lenEnc
, &p
->rc
, len
- LZMA_MATCH_LEN_MIN
, posState
, !p
->fastMode
, p
->ProbPrices
);
1512 RcTree_Encode(&p
->rc
, p
->posSlotEncoder
[GetLenToPosState(len
)], kNumPosSlotBits
, (1 << kNumPosSlotBits
) - 1);
1513 RangeEnc_EncodeDirectBits(&p
->rc
, (((uint32_t)1 << 30) - 1) >> kNumAlignBits
, 30 - kNumAlignBits
);
1514 RcTree_ReverseEncode(&p
->rc
, p
->posAlignEncoder
, kNumAlignBits
, kAlignMask
);
1517 static SRes
CheckErrors(struct CLzmaEnc
*p
)
1519 if (p
->result
!= SZ_OK
)
1521 if (p
->rc
.res
!= SZ_OK
)
1522 p
->result
= SZ_ERROR_WRITE
;
1523 if (p
->matchFinderBase
.result
!= SZ_OK
)
1524 p
->result
= SZ_ERROR_READ
;
1525 if (p
->result
!= SZ_OK
)
1530 static SRes
Flush(struct CLzmaEnc
*p
, uint32_t nowPos
)
1532 /* ReleaseMFStream(); */
1534 if (p
->writeEndMark
)
1535 WriteEndMarker(p
, nowPos
& p
->pbMask
);
1536 RangeEnc_FlushData(&p
->rc
);
1537 RangeEnc_FlushStream(&p
->rc
);
1538 return CheckErrors(p
);
1541 static void FillAlignPrices(struct CLzmaEnc
*p
)
1544 for (i
= 0; i
< kAlignTableSize
; i
++)
1545 p
->alignPrices
[i
] = RcTree_ReverseGetPrice(p
->posAlignEncoder
, kNumAlignBits
, i
, p
->ProbPrices
);
1546 p
->alignPriceCount
= 0;
1549 static void FillDistancesPrices(struct CLzmaEnc
*p
)
1551 uint32_t tempPrices
[kNumFullDistances
];
1552 uint32_t i
, lenToPosState
;
1553 for (i
= kStartPosModelIndex
; i
< kNumFullDistances
; i
++)
1555 uint32_t posSlot
= GetPosSlot1(i
);
1556 uint32_t footerBits
= ((posSlot
>> 1) - 1);
1557 uint32_t base
= ((2 | (posSlot
& 1)) << footerBits
);
1558 tempPrices
[i
] = RcTree_ReverseGetPrice(p
->posEncoders
+ base
- posSlot
- 1, footerBits
, i
- base
, p
->ProbPrices
);
1561 for (lenToPosState
= 0; lenToPosState
< kNumLenToPosStates
; lenToPosState
++)
1564 const CLzmaProb
*encoder
= p
->posSlotEncoder
[lenToPosState
];
1565 uint32_t *posSlotPrices
= p
->posSlotPrices
[lenToPosState
];
1566 for (posSlot
= 0; posSlot
< p
->distTableSize
; posSlot
++)
1567 posSlotPrices
[posSlot
] = RcTree_GetPrice(encoder
, kNumPosSlotBits
, posSlot
, p
->ProbPrices
);
1568 for (posSlot
= kEndPosModelIndex
; posSlot
< p
->distTableSize
; posSlot
++)
1569 posSlotPrices
[posSlot
] += ((((posSlot
>> 1) - 1) - kNumAlignBits
) << kNumBitPriceShiftBits
);
1572 uint32_t *distancesPrices
= p
->distancesPrices
[lenToPosState
];
1573 for (i
= 0; i
< kStartPosModelIndex
; i
++)
1574 distancesPrices
[i
] = posSlotPrices
[i
];
1575 for (; i
< kNumFullDistances
; i
++)
1576 distancesPrices
[i
] = posSlotPrices
[GetPosSlot1(i
)] + tempPrices
[i
];
1579 p
->matchPriceCount
= 0;
1582 static void LzmaEnc_Construct(struct CLzmaEnc
*p
)
1584 RangeEnc_Construct(&p
->rc
);
1585 MatchFinder_Construct(&p
->matchFinderBase
);
1588 struct CLzmaEncProps props
;
1589 LzmaEncProps_Init(&props
);
1590 LzmaEnc_SetProps(p
, &props
);
1593 #ifndef LZMA_LOG_BSR
1594 LzmaEnc_FastPosInit(p
->g_FastPos
);
1597 LzmaEnc_InitPriceTables(p
->ProbPrices
);
1599 p
->saveState
.litProbs
= 0;
1602 CLzmaEncHandle
LzmaEnc_Create(struct ISzAlloc
*alloc
)
1605 p
= alloc
->Alloc(alloc
, sizeof(struct CLzmaEnc
));
1607 LzmaEnc_Construct((struct CLzmaEnc
*)p
);
1611 static void LzmaEnc_FreeLits(struct CLzmaEnc
*p
, struct ISzAlloc
*alloc
)
1613 alloc
->Free(alloc
, p
->litProbs
);
1614 alloc
->Free(alloc
, p
->saveState
.litProbs
);
1616 p
->saveState
.litProbs
= 0;
1619 static void LzmaEnc_Destruct(struct CLzmaEnc
*p
, struct ISzAlloc
*alloc
, struct ISzAlloc
*allocBig
)
1621 MatchFinder_Free(&p
->matchFinderBase
, allocBig
);
1622 LzmaEnc_FreeLits(p
, alloc
);
1623 RangeEnc_Free(&p
->rc
, alloc
);
1626 void LzmaEnc_Destroy(CLzmaEncHandle p
, struct ISzAlloc
*alloc
, struct ISzAlloc
*allocBig
)
1628 LzmaEnc_Destruct((struct CLzmaEnc
*)p
, alloc
, allocBig
);
1629 alloc
->Free(alloc
, p
);
1632 static SRes
LzmaEnc_CodeOneBlock(struct CLzmaEnc
*p
, bool useLimits
, uint32_t maxPackSize
, uint32_t maxUnpackSize
)
1634 uint32_t nowPos32
, startPos32
;
1637 p
->matchFinder
.Init(p
->matchFinderObj
);
1643 RINOK(CheckErrors(p
));
1645 nowPos32
= (uint32_t)p
->nowPos64
;
1646 startPos32
= nowPos32
;
1648 if (p
->nowPos64
== 0)
1652 if (p
->matchFinder
.GetNumAvailableBytes(p
->matchFinderObj
) == 0)
1653 return Flush(p
, nowPos32
);
1654 ReadMatchDistances(p
, &numPairs
);
1655 RangeEnc_EncodeBit(&p
->rc
, &p
->isMatch
[p
->state
][0], 0);
1656 p
->state
= kLiteralNextStates
[p
->state
];
1657 curuint8_t
= p
->matchFinder
.GetIndexByte(p
->matchFinderObj
, 0 - p
->additionalOffset
);
1658 LitEnc_Encode(&p
->rc
, p
->litProbs
, curuint8_t
);
1659 p
->additionalOffset
--;
1663 if (p
->matchFinder
.GetNumAvailableBytes(p
->matchFinderObj
) != 0)
1666 uint32_t pos
, len
, posState
;
1669 len
= GetOptimumFast(p
, &pos
);
1671 len
= GetOptimum(p
, nowPos32
, &pos
);
1673 posState
= nowPos32
& p
->pbMask
;
1674 if (len
== 1 && pos
== (uint32_t)-1)
1678 const uint8_t *data
;
1680 RangeEnc_EncodeBit(&p
->rc
, &p
->isMatch
[p
->state
][posState
], 0);
1681 data
= p
->matchFinder
.GetPointerToCurrentPos(p
->matchFinderObj
) - p
->additionalOffset
;
1683 probs
= LIT_PROBS(nowPos32
, *(data
- 1));
1684 if (IsCharState(p
->state
))
1685 LitEnc_Encode(&p
->rc
, probs
, curuint8_t
);
1687 LitEnc_EncodeMatched(&p
->rc
, probs
, curuint8_t
, *(data
- p
->reps
[0] - 1));
1688 p
->state
= kLiteralNextStates
[p
->state
];
1692 RangeEnc_EncodeBit(&p
->rc
, &p
->isMatch
[p
->state
][posState
], 1);
1693 if (pos
< LZMA_NUM_REPS
)
1695 RangeEnc_EncodeBit(&p
->rc
, &p
->isRep
[p
->state
], 1);
1698 RangeEnc_EncodeBit(&p
->rc
, &p
->isRepG0
[p
->state
], 0);
1699 RangeEnc_EncodeBit(&p
->rc
, &p
->isRep0Long
[p
->state
][posState
], ((len
== 1) ? 0 : 1));
1703 uint32_t distance
= p
->reps
[pos
];
1704 RangeEnc_EncodeBit(&p
->rc
, &p
->isRepG0
[p
->state
], 1);
1706 RangeEnc_EncodeBit(&p
->rc
, &p
->isRepG1
[p
->state
], 0);
1709 RangeEnc_EncodeBit(&p
->rc
, &p
->isRepG1
[p
->state
], 1);
1710 RangeEnc_EncodeBit(&p
->rc
, &p
->isRepG2
[p
->state
], pos
- 2);
1712 p
->reps
[3] = p
->reps
[2];
1713 p
->reps
[2] = p
->reps
[1];
1715 p
->reps
[1] = p
->reps
[0];
1716 p
->reps
[0] = distance
;
1719 p
->state
= kShortRepNextStates
[p
->state
];
1722 LenEnc_Encode2(&p
->repLenEnc
, &p
->rc
, len
- LZMA_MATCH_LEN_MIN
, posState
, !p
->fastMode
, p
->ProbPrices
);
1723 p
->state
= kRepNextStates
[p
->state
];
1729 RangeEnc_EncodeBit(&p
->rc
, &p
->isRep
[p
->state
], 0);
1730 p
->state
= kMatchNextStates
[p
->state
];
1731 LenEnc_Encode2(&p
->lenEnc
, &p
->rc
, len
- LZMA_MATCH_LEN_MIN
, posState
, !p
->fastMode
, p
->ProbPrices
);
1732 pos
-= LZMA_NUM_REPS
;
1733 GetPosSlot(pos
, posSlot
);
1734 RcTree_Encode(&p
->rc
, p
->posSlotEncoder
[GetLenToPosState(len
)], kNumPosSlotBits
, posSlot
);
1736 if (posSlot
>= kStartPosModelIndex
)
1738 uint32_t footerBits
= ((posSlot
>> 1) - 1);
1739 uint32_t base
= ((2 | (posSlot
& 1)) << footerBits
);
1740 uint32_t posReduced
= pos
- base
;
1742 if (posSlot
< kEndPosModelIndex
)
1743 RcTree_ReverseEncode(&p
->rc
, p
->posEncoders
+ base
- posSlot
- 1, footerBits
, posReduced
);
1746 RangeEnc_EncodeDirectBits(&p
->rc
, posReduced
>> kNumAlignBits
, footerBits
- kNumAlignBits
);
1747 RcTree_ReverseEncode(&p
->rc
, p
->posAlignEncoder
, kNumAlignBits
, posReduced
& kAlignMask
);
1748 p
->alignPriceCount
++;
1751 p
->reps
[3] = p
->reps
[2];
1752 p
->reps
[2] = p
->reps
[1];
1753 p
->reps
[1] = p
->reps
[0];
1755 p
->matchPriceCount
++;
1758 p
->additionalOffset
-= len
;
1760 if (p
->additionalOffset
== 0)
1765 if (p
->matchPriceCount
>= (1 << 7))
1766 FillDistancesPrices(p
);
1767 if (p
->alignPriceCount
>= kAlignTableSize
)
1770 if (p
->matchFinder
.GetNumAvailableBytes(p
->matchFinderObj
) == 0)
1772 processed
= nowPos32
- startPos32
;
1775 if (processed
+ kNumOpts
+ 300 >= maxUnpackSize
||
1776 RangeEnc_GetProcessed(&p
->rc
) + kNumOpts
* 2 >= maxPackSize
)
1779 else if (processed
>= (1 << 15))
1781 p
->nowPos64
+= nowPos32
- startPos32
;
1782 return CheckErrors(p
);
1786 p
->nowPos64
+= nowPos32
- startPos32
;
1787 return Flush(p
, nowPos32
);
1790 #define kBigHashDicLimit ((uint32_t)1 << 24)
1792 static SRes
LzmaEnc_Alloc(struct CLzmaEnc
*p
, uint32_t keepWindowSize
, struct ISzAlloc
*alloc
, struct ISzAlloc
*allocBig
)
1794 uint32_t beforeSize
= kNumOpts
;
1795 if (!RangeEnc_Alloc(&p
->rc
, alloc
))
1796 return SZ_ERROR_MEM
;
1799 unsigned lclp
= p
->lc
+ p
->lp
;
1800 if (p
->litProbs
== 0 || p
->saveState
.litProbs
== 0 || p
->lclp
!= lclp
)
1802 LzmaEnc_FreeLits(p
, alloc
);
1803 p
->litProbs
= (CLzmaProb
*)alloc
->Alloc(alloc
, (0x300 << lclp
) * sizeof(CLzmaProb
));
1804 p
->saveState
.litProbs
= (CLzmaProb
*)alloc
->Alloc(alloc
, (0x300 << lclp
) * sizeof(CLzmaProb
));
1805 if (p
->litProbs
== 0 || p
->saveState
.litProbs
== 0)
1807 LzmaEnc_FreeLits(p
, alloc
);
1808 return SZ_ERROR_MEM
;
1814 p
->matchFinderBase
.bigHash
= (p
->dictSize
> kBigHashDicLimit
);
1816 if (beforeSize
+ p
->dictSize
< keepWindowSize
)
1817 beforeSize
= keepWindowSize
- p
->dictSize
;
1820 if (!MatchFinder_Create(&p
->matchFinderBase
, p
->dictSize
, beforeSize
, p
->numFastuint8_ts
, LZMA_MATCH_LEN_MAX
, allocBig
))
1821 return SZ_ERROR_MEM
;
1822 p
->matchFinderObj
= &p
->matchFinderBase
;
1823 MatchFinder_CreateVTable(&p
->matchFinderBase
, &p
->matchFinder
);
1828 static void LzmaEnc_Init(struct CLzmaEnc
*p
)
1832 for (i
= 0 ; i
< LZMA_NUM_REPS
; i
++)
1835 RangeEnc_Init(&p
->rc
);
1838 for (i
= 0; i
< kNumStates
; i
++)
1841 for (j
= 0; j
< LZMA_NUM_PB_STATES_MAX
; j
++)
1843 p
->isMatch
[i
][j
] = kProbInitValue
;
1844 p
->isRep0Long
[i
][j
] = kProbInitValue
;
1846 p
->isRep
[i
] = kProbInitValue
;
1847 p
->isRepG0
[i
] = kProbInitValue
;
1848 p
->isRepG1
[i
] = kProbInitValue
;
1849 p
->isRepG2
[i
] = kProbInitValue
;
1853 uint32_t num
= 0x300 << (p
->lp
+ p
->lc
);
1854 for (i
= 0; i
< num
; i
++)
1855 p
->litProbs
[i
] = kProbInitValue
;
1859 for (i
= 0; i
< kNumLenToPosStates
; i
++)
1861 CLzmaProb
*probs
= p
->posSlotEncoder
[i
];
1863 for (j
= 0; j
< (1 << kNumPosSlotBits
); j
++)
1864 probs
[j
] = kProbInitValue
;
1868 for (i
= 0; i
< kNumFullDistances
- kEndPosModelIndex
; i
++)
1869 p
->posEncoders
[i
] = kProbInitValue
;
1872 LenEnc_Init(&p
->lenEnc
.p
);
1873 LenEnc_Init(&p
->repLenEnc
.p
);
1875 for (i
= 0; i
< (1 << kNumAlignBits
); i
++)
1876 p
->posAlignEncoder
[i
] = kProbInitValue
;
1878 p
->optimumEndIndex
= 0;
1879 p
->optimumCurrentIndex
= 0;
1880 p
->additionalOffset
= 0;
1882 p
->pbMask
= (1 << p
->pb
) - 1;
1883 p
->lpMask
= (1 << p
->lp
) - 1;
1886 static void LzmaEnc_InitPrices(struct CLzmaEnc
*p
)
1890 FillDistancesPrices(p
);
1894 p
->lenEnc
.tableSize
=
1895 p
->repLenEnc
.tableSize
=
1896 p
->numFastuint8_ts
+ 1 - LZMA_MATCH_LEN_MIN
;
1897 LenPriceEnc_UpdateTables(&p
->lenEnc
, 1 << p
->pb
, p
->ProbPrices
);
1898 LenPriceEnc_UpdateTables(&p
->repLenEnc
, 1 << p
->pb
, p
->ProbPrices
);
1901 static SRes
LzmaEnc_AllocAndInit(struct CLzmaEnc
*p
, uint32_t keepWindowSize
, struct ISzAlloc
*alloc
, struct ISzAlloc
*allocBig
)
1904 for (i
= 0; i
< (uint32_t)kDicLogSizeMaxCompress
; i
++)
1905 if (p
->dictSize
<= ((uint32_t)1 << i
))
1907 p
->distTableSize
= i
* 2;
1909 p
->finished
= false;
1911 RINOK(LzmaEnc_Alloc(p
, keepWindowSize
, alloc
, allocBig
));
1913 LzmaEnc_InitPrices(p
);
1918 static SRes
LzmaEnc_Prepare(CLzmaEncHandle pp
, struct ISeqOutStream
*outStream
, struct ISeqInStream
*inStream
,
1919 struct ISzAlloc
*alloc
, struct ISzAlloc
*allocBig
)
1921 struct CLzmaEnc
*p
= (struct CLzmaEnc
*)pp
;
1922 p
->matchFinderBase
.stream
= inStream
;
1924 p
->rc
.outStream
= outStream
;
1925 return LzmaEnc_AllocAndInit(p
, 0, alloc
, allocBig
);
1928 /*static SRes LzmaEnc_PrepareForLzma2(CLzmaEncHandle pp,
1929 ISeqInStream *inStream, uint32_t keepWindowSize,
1930 ISzAlloc *alloc, ISzAlloc *allocBig)
1932 CLzmaEnc *p = (CLzmaEnc *)pp;
1933 p->matchFinderBase.stream = inStream;
1935 return LzmaEnc_AllocAndInit(p, keepWindowSize, alloc, allocBig);
1938 static void LzmaEnc_SetInputBuf(struct CLzmaEnc
*p
, const uint8_t *src
, size_t srcLen
)
1940 p
->matchFinderBase
.directInput
= 1;
1941 p
->matchFinderBase
.bufferBase
= (uint8_t *)src
;
1942 p
->matchFinderBase
.directInputRem
= srcLen
;
1945 static SRes
LzmaEnc_MemPrepare(CLzmaEncHandle pp
, const uint8_t *src
, size_t srcLen
,
1946 uint32_t keepWindowSize
, struct ISzAlloc
*alloc
, struct ISzAlloc
*allocBig
)
1948 struct CLzmaEnc
*p
= (struct CLzmaEnc
*)pp
;
1949 LzmaEnc_SetInputBuf(p
, src
, srcLen
);
1952 return LzmaEnc_AllocAndInit(p
, keepWindowSize
, alloc
, allocBig
);
1955 static void LzmaEnc_Finish(CLzmaEncHandle pp
)
1960 struct CSeqOutStreamBuf
1962 struct ISeqOutStream funcTable
;
1968 static size_t MyWrite(void *pp
, const void *data
, size_t size
)
1970 struct CSeqOutStreamBuf
*p
= (struct CSeqOutStreamBuf
*)pp
;
1976 memcpy(p
->data
, data
, size
);
1983 /*static uint32_t LzmaEnc_GetNumAvailableBytes(CLzmaEncHandle pp)
1985 const CLzmaEnc *p = (CLzmaEnc *)pp;
1986 return p->matchFinder.GetNumAvailableBytes(p->matchFinderObj);
1989 /*static const uint8_t *LzmaEnc_GetCurBuf(CLzmaEncHandle pp)
1991 const CLzmaEnc *p = (CLzmaEnc *)pp;
1992 return p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - p->additionalOffset;
1995 /*static SRes LzmaEnc_CodeOneMemBlock(CLzmaEncHandle pp, bool reInit,
1996 uint8_t *dest, size_t *destLen, uint32_t desiredPackSize, uint32_t *unpackSize)
1998 CLzmaEnc *p = (CLzmaEnc *)pp;
2001 CSeqOutStreamBuf outStream;
2003 outStream.funcTable.Write = MyWrite;
2004 outStream.data = dest;
2005 outStream.rem = *destLen;
2006 outStream.overflow = false;
2008 p->writeEndMark = false;
2009 p->finished = false;
2014 LzmaEnc_InitPrices(p);
2015 nowPos64 = p->nowPos64;
2016 RangeEnc_Init(&p->rc);
2017 p->rc.outStream = &outStream.funcTable;
2019 res = LzmaEnc_CodeOneBlock(p, true, desiredPackSize, *unpackSize);
2021 *unpackSize = (uint32_t)(p->nowPos64 - nowPos64);
2022 *destLen -= outStream.rem;
2023 if (outStream.overflow)
2024 return SZ_ERROR_OUTPUT_EOF;
2029 static SRes
LzmaEnc_Encode2(struct CLzmaEnc
*p
, struct ICompressProgress
*progress
)
2035 res
= LzmaEnc_CodeOneBlock(p
, false, 0, 0);
2036 if (res
!= SZ_OK
|| p
->finished
!= 0)
2040 res
= progress
->Progress(progress
, p
->nowPos64
, RangeEnc_GetProcessed(&p
->rc
));
2043 res
= SZ_ERROR_PROGRESS
;
2052 SRes
LzmaEnc_Encode(CLzmaEncHandle pp
, struct ISeqOutStream
*outStream
, struct ISeqInStream
*inStream
, struct ICompressProgress
*progress
,
2053 struct ISzAlloc
*alloc
, struct ISzAlloc
*allocBig
)
2055 RINOK(LzmaEnc_Prepare(pp
, outStream
, inStream
, alloc
, allocBig
));
2056 return LzmaEnc_Encode2((struct CLzmaEnc
*)pp
, progress
);
2059 SRes
LzmaEnc_WriteProperties(CLzmaEncHandle pp
, uint8_t *props
, size_t *size
)
2061 struct CLzmaEnc
*p
= (struct CLzmaEnc
*)pp
;
2063 uint32_t dictSize
= p
->dictSize
;
2064 if (*size
< LZMA_PROPS_SIZE
)
2065 return SZ_ERROR_PARAM
;
2066 *size
= LZMA_PROPS_SIZE
;
2067 props
[0] = (uint8_t)((p
->pb
* 5 + p
->lp
) * 9 + p
->lc
);
2069 for (i
= 11; i
<= 30; i
++)
2071 if (dictSize
<= ((uint32_t)2 << i
))
2073 dictSize
= (2 << i
);
2076 if (dictSize
<= ((uint32_t)3 << i
))
2078 dictSize
= (3 << i
);
2083 for (i
= 0; i
< 4; i
++)
2084 props
[1 + i
] = (uint8_t)(dictSize
>> (8 * i
));
2088 SRes
LzmaEnc_MemEncode(CLzmaEncHandle pp
, uint8_t *dest
, size_t *destLen
, const uint8_t *src
, size_t srcLen
,
2089 int writeEndMark
, struct ICompressProgress
*progress
, struct ISzAlloc
*alloc
, struct ISzAlloc
*allocBig
)
2092 struct CLzmaEnc
*p
= (struct CLzmaEnc
*)pp
;
2094 struct CSeqOutStreamBuf outStream
;
2096 LzmaEnc_SetInputBuf(p
, src
, srcLen
);
2098 outStream
.funcTable
.Write
= MyWrite
;
2099 outStream
.data
= dest
;
2100 outStream
.rem
= *destLen
;
2101 outStream
.overflow
= false;
2103 p
->writeEndMark
= writeEndMark
;
2105 p
->rc
.outStream
= &outStream
.funcTable
;
2106 res
= LzmaEnc_MemPrepare(pp
, src
, srcLen
, 0, alloc
, allocBig
);
2108 res
= LzmaEnc_Encode2(p
, progress
);
2110 *destLen
-= outStream
.rem
;
2111 if (outStream
.overflow
)
2112 return SZ_ERROR_OUTPUT_EOF
;
2116 SRes
LzmaEncode(uint8_t *dest
, size_t *destLen
, const uint8_t *src
, size_t srcLen
,
2117 const struct CLzmaEncProps
*props
, uint8_t *propsEncoded
, size_t *propsSize
, int writeEndMark
,
2118 struct ICompressProgress
*progress
, struct ISzAlloc
*alloc
, struct ISzAlloc
*allocBig
)
2120 struct CLzmaEnc
*p
= (struct CLzmaEnc
*)LzmaEnc_Create(alloc
);
2123 return SZ_ERROR_MEM
;
2125 res
= LzmaEnc_SetProps(p
, props
);
2128 res
= LzmaEnc_WriteProperties(p
, propsEncoded
, propsSize
);
2130 res
= LzmaEnc_MemEncode(p
, dest
, destLen
, src
, srcLen
,
2131 writeEndMark
, progress
, alloc
, allocBig
);
2134 LzmaEnc_Destroy(p
, alloc
, allocBig
);