1 /* SPDX-License-Identifier: GPL-2.0-only */
4 #include <acpi/acpigen.h>
5 #include <console/console.h>
7 #include <cpu/intel/speedstep.h>
8 #include <cpu/intel/turbo.h>
9 #include <cpu/x86/msr.h>
10 #include <device/device.h>
13 #include "model_2065x.h"
16 static int get_cores_per_package(void)
19 struct cpuid_result result
;
22 get_fms(&c
, cpuid_eax(1));
26 result
= cpuid_ext(0xb, 1);
27 cores
= result
.ebx
& 0xff;
32 static void generate_C_state_entries(void)
37 static acpi_tstate_t tss_table_fine
[] = {
38 { 100, 1000, 0, 0x00, 0 },
39 { 94, 940, 0, 0x1f, 0 },
40 { 88, 880, 0, 0x1e, 0 },
41 { 82, 820, 0, 0x1d, 0 },
42 { 75, 760, 0, 0x1c, 0 },
43 { 69, 700, 0, 0x1b, 0 },
44 { 63, 640, 0, 0x1a, 0 },
45 { 57, 580, 0, 0x19, 0 },
46 { 50, 520, 0, 0x18, 0 },
47 { 44, 460, 0, 0x17, 0 },
48 { 38, 400, 0, 0x16, 0 },
49 { 32, 340, 0, 0x15, 0 },
50 { 25, 280, 0, 0x14, 0 },
51 { 19, 220, 0, 0x13, 0 },
52 { 13, 160, 0, 0x12, 0 },
55 static acpi_tstate_t tss_table_coarse
[] = {
56 { 100, 1000, 0, 0x00, 0 },
57 { 88, 875, 0, 0x1f, 0 },
58 { 75, 750, 0, 0x1e, 0 },
59 { 63, 625, 0, 0x1d, 0 },
60 { 50, 500, 0, 0x1c, 0 },
61 { 38, 375, 0, 0x1b, 0 },
62 { 25, 250, 0, 0x1a, 0 },
63 { 13, 125, 0, 0x19, 0 },
66 static void generate_T_state_entries(int core
, int cores_per_package
)
68 /* Indicate SW_ALL coordination for T-states */
69 acpigen_write_TSD_package(core
, cores_per_package
, SW_ALL
);
71 /* Indicate FFixedHW so OS will use MSR */
72 acpigen_write_empty_PTC();
74 /* Set a T-state limit that can be modified in NVS */
75 acpigen_write_TPC("\\TLVL");
78 * CPUID.(EAX=6):EAX[5] indicates support
79 * for extended throttle levels.
81 if (cpuid_eax(6) & (1 << 5))
82 acpigen_write_TSS_package(
83 ARRAY_SIZE(tss_table_fine
), tss_table_fine
);
85 acpigen_write_TSS_package(
86 ARRAY_SIZE(tss_table_coarse
), tss_table_coarse
);
89 static int calculate_power(int tdp
, int p1_ratio
, int ratio
)
95 * M = ((1.1 - ((p1_ratio - ratio) * 0.00625)) / 1.1) ^ 2
97 * Power = (ratio / p1_ratio) * m * tdp
100 m
= (110000 - ((p1_ratio
- ratio
) * 625)) / 11;
103 power
= ((ratio
* 100000 / p1_ratio
) / 100);
104 power
*= (m
/ 100) * (tdp
/ 1000);
110 static void generate_P_state_entries(int core
, int cores_per_package
)
112 int ratio_min
, ratio_max
, ratio_turbo
, ratio_step
;
113 int coord_type
, power_max
, num_entries
;
114 int ratio
, power
, clock
, clock_max
;
117 /* Determine P-state coordination type from MISC_PWR_MGMT[0] */
118 msr
= rdmsr(MSR_MISC_PWR_MGMT
);
119 if (msr
.lo
& MISC_PWR_MGMT_EIST_HW_DIS
)
124 /* Get bus ratio limits and calculate clock speeds */
125 msr
= rdmsr(MSR_PLATFORM_INFO
);
126 ratio_min
= (msr
.hi
>> (40-32)) & 0xff; /* Max Efficiency Ratio */
128 /* Max Non-Turbo Ratio */
129 ratio_max
= (msr
.lo
>> 8) & 0xff;
131 clock_max
= ratio_max
* IRONLAKE_BCLK
+ ratio_max
/ 3;
133 /* Calculate CPU TDP in mW */
136 /* Write _PCT indicating use of FFixedHW */
137 acpigen_write_empty_PCT();
139 /* Write _PPC with no limit on supported P-state */
140 acpigen_write_PPC_NVS();
142 /* Write PSD indicating configured coordination type */
143 acpigen_write_PSD_package(core
, cores_per_package
, coord_type
);
145 /* Add P-state entries in _PSS table */
146 acpigen_write_name("_PSS");
148 /* Determine ratio points */
149 ratio_step
= PSS_RATIO_STEP
;
150 num_entries
= (ratio_max
- ratio_min
) / ratio_step
;
151 while (num_entries
> PSS_MAX_ENTRIES
-1) {
156 /* P[T] is Turbo state if enabled */
157 if (get_turbo_state() == TURBO_ENABLED
) {
158 /* _PSS package count including Turbo */
159 acpigen_write_package(num_entries
+ 2);
161 msr
= rdmsr(MSR_TURBO_RATIO_LIMIT
);
162 ratio_turbo
= msr
.lo
& 0xff;
164 /* Add entry for Turbo ratio */
165 acpigen_write_PSS_package(
166 clock_max
+ 1, /*MHz*/
168 PSS_LATENCY_TRANSITION
, /*lat1*/
169 PSS_LATENCY_BUSMASTER
, /*lat2*/
170 ratio_turbo
, /*control*/
171 ratio_turbo
); /*status*/
173 /* _PSS package count without Turbo */
174 acpigen_write_package(num_entries
+ 1);
177 /* First regular entry is max non-turbo ratio */
178 acpigen_write_PSS_package(
181 PSS_LATENCY_TRANSITION
, /*lat1*/
182 PSS_LATENCY_BUSMASTER
, /*lat2*/
183 ratio_max
, /*control*/
184 ratio_max
); /*status*/
186 /* Generate the remaining entries */
187 for (ratio
= ratio_min
+ ((num_entries
- 1) * ratio_step
);
188 ratio
>= ratio_min
; ratio
-= ratio_step
) {
189 /* Calculate power at this ratio */
190 power
= calculate_power(power_max
, ratio_max
, ratio
);
191 clock
= ratio
* IRONLAKE_BCLK
+ ratio
/ 3;
193 acpigen_write_PSS_package(
196 PSS_LATENCY_TRANSITION
, /*lat1*/
197 PSS_LATENCY_BUSMASTER
, /*lat2*/
202 /* Fix package length */
206 static void generate_cpu_entry(int cpu
, int core
, int cores_per_package
)
208 /* Generate Scope(\_SB) { Device(CPUx */
209 acpigen_write_processor_device(cpu
* cores_per_package
+ core
);
211 /* Generate P-state tables */
212 generate_P_state_entries(cpu
, cores_per_package
);
214 /* Generate C-state tables */
215 generate_C_state_entries();
217 /* Generate T-state tables */
218 generate_T_state_entries(cpu
, cores_per_package
);
220 acpigen_write_processor_device_end();
223 void generate_cpu_entries(const struct device
*device
)
225 int totalcores
= dev_count_cpu();
226 int cores_per_package
= get_cores_per_package();
227 int numcpus
= totalcores
/ cores_per_package
;
229 printk(BIOS_DEBUG
, "Found %d CPU(s) with %d core(s) each.\n",
230 numcpus
, cores_per_package
);
232 for (int cpu_id
= 0; cpu_id
< numcpus
; cpu_id
++)
233 for (int core_id
= 0; core_id
< cores_per_package
; core_id
++)
234 generate_cpu_entry(cpu_id
, core_id
, cores_per_package
);
236 /* PPKG is usually used for thermal management
237 of the first and only package. */
238 acpigen_write_processor_package("PPKG", 0, cores_per_package
);
240 /* Add a method to notify processor nodes */
241 acpigen_write_processor_cnot(cores_per_package
);
244 struct chip_operations cpu_intel_model_2065x_ops
= {
245 .name
= "Intel Arrandale CPU",