mb/google/fatcat: Keep GSPIx interface default PCI
[coreboot2.git] / util / cbfstool / cbfs-mkpayload.c
blob9a356e8b3fc4e3c6b3ad8d37327c64e0df92fd3a
1 /* SPDX-License-Identifier: GPL-2.0-only */
3 #include <stdio.h>
4 #include <stdlib.h>
5 #include <string.h>
6 #include <commonlib/endian.h>
8 #include "elfparsing.h"
9 #include "common.h"
10 #include "cbfs.h"
11 #include "fv.h"
12 #include "coff.h"
13 #include "fdt.h"
15 /* serialize the seg array into the buffer.
16 * The buffer is assumed to be large enough.
18 void xdr_segs(struct buffer *output,
19 struct cbfs_payload_segment *segs, int nseg)
21 struct buffer outheader;
22 int i;
24 outheader.data = output->data;
25 outheader.size = 0;
27 for(i = 0; i < nseg; i++){
28 xdr_be.put32(&outheader, segs[i].type);
29 xdr_be.put32(&outheader, segs[i].compression);
30 xdr_be.put32(&outheader, segs[i].offset);
31 xdr_be.put64(&outheader, segs[i].load_addr);
32 xdr_be.put32(&outheader, segs[i].len);
33 xdr_be.put32(&outheader, segs[i].mem_len);
37 void xdr_get_seg(struct cbfs_payload_segment *out,
38 struct cbfs_payload_segment *in)
40 struct buffer inheader;
42 inheader.data = (void *)in;
43 inheader.size = sizeof(*in);
45 out->type = xdr_be.get32(&inheader);
46 out->compression = xdr_be.get32(&inheader);
47 out->offset = xdr_be.get32(&inheader);
48 out->load_addr = xdr_be.get64(&inheader);
49 out->len = xdr_be.get32(&inheader);
50 out->mem_len = xdr_be.get32(&inheader);
53 int parse_elf_to_payload(const struct buffer *input, struct buffer *output,
54 enum cbfs_compression algo)
56 Elf64_Phdr *phdr;
57 Elf64_Ehdr ehdr;
58 char *header;
59 int headers;
60 int segments = 1;
61 int isize = 0, osize = 0;
62 int doffset = 0;
63 struct cbfs_payload_segment *segs = NULL;
64 int i;
65 int ret = 0;
67 comp_func_ptr compress = compression_function(algo);
68 if (!compress)
69 return -1;
71 if (elf_headers(input, &ehdr, &phdr, NULL) < 0)
72 return -1;
74 DEBUG("start: parse_elf_to_payload\n");
75 headers = ehdr.e_phnum;
76 header = input->data;
78 /* Count the number of segment headers - we only care about PT_LOAD
79 headers, because that's what we're actually going to load */
80 for (i = 0; i < headers; i++) {
81 if (phdr[i].p_type != PT_LOAD)
82 continue;
84 /* Empty segments are never interesting */
85 if (phdr[i].p_memsz == 0)
86 continue;
88 isize += phdr[i].p_filesz;
90 segments++;
92 /* Allocate and initialize the segment header array */
93 segs = calloc(segments, sizeof(*segs));
94 if (segs == NULL) {
95 ret = -1;
96 goto out;
98 /* Allocate a block of memory to store the data in */
99 if (buffer_create(output, (segments * sizeof(*segs)) + isize,
100 input->name) != 0) {
101 ret = -1;
102 goto out;
104 memset(output->data, 0, output->size);
106 doffset = (segments * sizeof(*segs));
108 /* set up for output marshaling. This is a bit
109 * tricky as we are marshaling the headers at the front,
110 * and the data starting after the headers. We need to convert
111 * the headers to the right format but the data
112 * passes through unchanged. Unlike most XDR code,
113 * we are doing these two concurrently. The doffset is
114 * used to compute the address for the raw data, and the
115 * outheader is used to marshal the headers. To make it simpler
116 * for The Reader, we set up the headers in a separate array,
117 * then marshal them all at once to the output.
119 segments = 0;
121 for (i = 0; i < headers; i++) {
122 if (phdr[i].p_type != PT_LOAD)
123 continue;
124 if (phdr[i].p_memsz == 0)
125 continue;
126 if (phdr[i].p_filesz == 0) {
127 segs[segments].type = PAYLOAD_SEGMENT_BSS;
128 segs[segments].load_addr = phdr[i].p_paddr;
129 segs[segments].mem_len = phdr[i].p_memsz;
130 segs[segments].offset = doffset;
132 segments++;
133 continue;
136 if (phdr[i].p_flags & PF_X)
137 segs[segments].type = PAYLOAD_SEGMENT_CODE;
138 else
139 segs[segments].type = PAYLOAD_SEGMENT_DATA;
140 segs[segments].load_addr = phdr[i].p_paddr;
141 segs[segments].mem_len = phdr[i].p_memsz;
142 segs[segments].offset = doffset;
144 /* If the compression failed or made the section is larger,
145 use the original stuff */
147 int len;
148 if (compress((char *)&header[phdr[i].p_offset],
149 phdr[i].p_filesz, output->data + doffset, &len) ||
150 (unsigned int)len > phdr[i].p_filesz) {
151 WARN("Compression failed or would make the data bigger "
152 "- disabled.\n");
153 segs[segments].compression = 0;
154 segs[segments].len = phdr[i].p_filesz;
155 memcpy(output->data + doffset,
156 &header[phdr[i].p_offset], phdr[i].p_filesz);
157 } else {
158 segs[segments].compression = algo;
159 segs[segments].len = len;
162 doffset += segs[segments].len;
163 osize += segs[segments].len;
165 segments++;
168 segs[segments].type = PAYLOAD_SEGMENT_ENTRY;
169 segs[segments++].load_addr = ehdr.e_entry;
171 output->size = (segments * sizeof(*segs)) + osize;
172 xdr_segs(output, segs, segments);
174 out:
175 if (segs) free(segs);
176 if (phdr) free(phdr);
177 return ret;
180 int parse_flat_binary_to_payload(const struct buffer *input,
181 struct buffer *output,
182 uint64_t loadaddress,
183 uint64_t entrypoint,
184 enum cbfs_compression algo)
186 comp_func_ptr compress;
187 struct cbfs_payload_segment segs[2] = { {0} };
188 int doffset, len = 0;
190 compress = compression_function(algo);
191 if (!compress)
192 return -1;
194 DEBUG("start: parse_flat_binary_to_payload\n");
195 if (buffer_create(output, (sizeof(segs) + input->size),
196 input->name) != 0)
197 return -1;
198 memset(output->data, 0, output->size);
200 doffset = (2 * sizeof(*segs));
202 /* Prepare code segment */
203 segs[0].type = PAYLOAD_SEGMENT_CODE;
204 segs[0].load_addr = loadaddress;
205 segs[0].mem_len = input->size;
206 segs[0].offset = doffset;
208 if (!compress(input->data, input->size, output->data + doffset, &len) &&
209 (unsigned int)len < input->size) {
210 segs[0].compression = algo;
211 segs[0].len = len;
212 } else {
213 WARN("Compression failed or would make the data bigger "
214 "- disabled.\n");
215 segs[0].compression = 0;
216 segs[0].len = input->size;
217 memcpy(output->data + doffset, input->data, input->size);
220 /* prepare entry point segment */
221 segs[1].type = PAYLOAD_SEGMENT_ENTRY;
222 segs[1].load_addr = entrypoint;
223 output->size = doffset + segs[0].len;
224 xdr_segs(output, segs, 2);
225 return 0;
228 int parse_fv_to_payload(const struct buffer *input, struct buffer *output,
229 enum cbfs_compression algo)
231 comp_func_ptr compress;
232 struct cbfs_payload_segment segs[2] = { {0} };
233 int doffset, len = 0;
234 firmware_volume_header_t *fv;
235 firmware_volume_ext_header_t *fvh_ext;
236 ffs_file_header_t *fh;
237 common_section_header_t *cs;
238 dos_header_t *dh;
239 coff_header_t *ch;
240 int dh_offset;
242 uint32_t loadaddress = 0;
243 uint32_t entrypoint = 0;
245 compress = compression_function(algo);
246 if (!compress)
247 return -1;
249 DEBUG("start: parse_fv_to_payload\n");
251 fv = (firmware_volume_header_t *)input->data;
252 if (fv->signature != FV_SIGNATURE) {
253 INFO("Not a UEFI firmware volume.\n");
254 return -1;
257 fh = (ffs_file_header_t *)(input->data + fv->header_length);
258 if (fv->ext_header_offs != 0) {
259 fvh_ext = (firmware_volume_ext_header_t *)((uintptr_t)fv + fv->ext_header_offs);
260 fh = (ffs_file_header_t *)((uintptr_t)fvh_ext + fvh_ext->ext_header_size);
261 fh = (ffs_file_header_t *)(((uintptr_t)fh + 7) & ~7);
264 while (fh->file_type == FILETYPE_PAD) {
265 unsigned long offset = (fh->size[2] << 16) | (fh->size[1] << 8) | fh->size[0];
266 DEBUG("skipping %lu bytes of FV padding\n", offset);
267 fh = (ffs_file_header_t *)(((uintptr_t)fh) + offset);
269 if (fh->file_type != FILETYPE_SEC) {
270 ERROR("Not a usable UEFI firmware volume.\n");
271 INFO("First file in first FV not a SEC core.\n");
272 return -1;
275 cs = (common_section_header_t *)&fh[1];
276 while (cs->section_type == SECTION_RAW) {
277 unsigned long offset = (cs->size[2] << 16) | (cs->size[1] << 8) | cs->size[0];
278 DEBUG("skipping %lu bytes of section padding\n", offset);
279 cs = (common_section_header_t *)(((uintptr_t)cs) + offset);
281 if (cs->section_type != SECTION_PE32) {
282 ERROR("Not a usable UEFI firmware volume.\n");
283 INFO("Section type not PE32.\n");
284 return -1;
287 dh = (dos_header_t *)&cs[1];
288 if (dh->signature != DOS_MAGIC) {
289 ERROR("Not a usable UEFI firmware volume.\n");
290 INFO("DOS header signature wrong.\n");
291 return -1;
294 dh_offset = (unsigned long)dh - (unsigned long)input->data;
295 DEBUG("dos header offset = %x\n", dh_offset);
297 ch = (coff_header_t *)(((uintptr_t)dh)+dh->e_lfanew);
299 if (ch->machine == MACHINE_TYPE_X86) {
300 pe_opt_header_32_t *ph;
301 ph = (pe_opt_header_32_t *)&ch[1];
302 if (ph->signature != PE_HDR_32_MAGIC) {
303 WARN("PE header signature incorrect.\n");
304 return -1;
306 DEBUG("image base %x\n", ph->image_addr);
307 DEBUG("entry point %x\n", ph->entry_point);
309 loadaddress = ph->image_addr - dh_offset;
310 entrypoint = ph->image_addr + ph->entry_point;
311 } else if (ch->machine == MACHINE_TYPE_X64 || ch->machine == MACHINE_TYPE_ARM64) {
312 pe_opt_header_64_t *ph;
313 ph = (pe_opt_header_64_t *)&ch[1];
314 if (ph->signature != PE_HDR_64_MAGIC) {
315 WARN("PE header signature incorrect.\n");
316 return -1;
318 DEBUG("image base %lx\n", (unsigned long)ph->image_addr);
319 DEBUG("entry point %x\n", ph->entry_point);
321 loadaddress = ph->image_addr - dh_offset;
322 entrypoint = ph->image_addr + ph->entry_point;
323 } else {
324 ERROR("Machine type not x86, x64, or arm64.\n");
325 return -1;
328 if (buffer_create(output, (sizeof(segs) + input->size),
329 input->name) != 0)
330 return -1;
332 memset(output->data, 0, output->size);
334 doffset = (sizeof(segs));
336 /* Prepare code segment */
337 segs[0].type = PAYLOAD_SEGMENT_CODE;
338 segs[0].load_addr = loadaddress;
339 segs[0].mem_len = input->size;
340 segs[0].offset = doffset;
342 if (!compress(input->data, input->size, output->data + doffset, &len) &&
343 (unsigned int)len < input->size) {
344 segs[0].compression = algo;
345 segs[0].len = len;
346 } else {
347 WARN("Compression failed or would make the data bigger "
348 "- disabled.\n");
349 segs[0].compression = 0;
350 segs[0].len = input->size;
351 memcpy(output->data + doffset, input->data, input->size);
354 /* prepare entry point segment */
355 segs[1].type = PAYLOAD_SEGMENT_ENTRY;
356 segs[1].load_addr = entrypoint;
357 output->size = doffset + segs[0].len;
358 xdr_segs(output, segs, 2);
359 return 0;
363 int parse_fit_to_payload(const struct buffer *input, struct buffer *output,
364 enum cbfs_compression algo)
366 struct fdt_header *fdt_h;
368 DEBUG("start: parse_fit_to_payload\n");
370 fdt_h = buffer_get(input);
371 if (read_be32(&fdt_h->magic) != FDT_HEADER_MAGIC) {
372 INFO("Not a FIT payload.\n");
373 return -1;
377 * For developers:
378 * Compress the kernel binary you're sourcing in your its-script
379 * manually with LZ4 or LZMA and add 'compression = "lz4"' or "lzma" to
380 * the kernel@1 node in the its-script before assembling the image with
381 * mkimage.
383 if (algo != CBFS_COMPRESS_NONE) {
384 ERROR("FIT images don't support whole-image compression,"
385 " compress the kernel component instead!\n");
386 return -1;
389 if (buffer_create(output, buffer_size(input), input->name) != 0)
390 return -1;
392 memcpy(buffer_get(output), buffer_get(input), buffer_size(input));
394 DEBUG("done\n");
396 return 0;