treewide: Move device_tree to commonlib
[coreboot2.git] / util / cbfstool / cbfs_image.c
blob740a3b2a1e7cd53a4721e86983d1059f8e0714eb
1 /* CBFS Image Manipulation */
2 /* SPDX-License-Identifier: GPL-2.0-only */
4 #include <inttypes.h>
5 #include <libgen.h>
6 #include <stddef.h>
7 #include <stdio.h>
8 #include <stdlib.h>
9 #include <string.h>
10 #include <strings.h>
11 #include <commonlib/endian.h>
12 #include <vb2_sha.h>
14 #include "common.h"
15 #include "cbfs_image.h"
16 #include "elfparsing.h"
17 #include "rmodule.h"
19 /* Even though the file-adding functions---cbfs_add_entry() and
20 * cbfs_add_entry_at()---perform their sizing checks against the beginning of
21 * the subsequent section rather than a stable recorded value such as an empty
22 * file header's len field, it's possible to prove two interesting properties
23 * about their behavior:
24 * - Placing a new file within an empty entry located below an existing file
25 * entry will never leave an aligned flash address containing neither the
26 * beginning of a file header nor part of a file.
27 * - Placing a new file in an empty entry at the very end of the image such
28 * that it fits, but leaves no room for a final header, is guaranteed not to
29 * change the total amount of space for entries, even if that new file is
30 * later removed from the CBFS.
31 * These properties are somewhat nonobvious from the implementation, so the
32 * reader is encouraged to blame this comment and examine the full proofs
33 * in the commit message before making significant changes that would risk
34 * removing said guarantees.
37 static const char *lookup_name_by_type(const struct typedesc_t *desc, uint32_t type,
38 const char *default_value)
40 int i;
41 for (i = 0; desc[i].name; i++)
42 if (desc[i].type == type)
43 return desc[i].name;
44 return default_value;
47 static int lookup_type_by_name(const struct typedesc_t *desc, const char *name)
49 int i;
50 for (i = 0; desc[i].name && strcasecmp(name, desc[i].name); ++i);
51 return desc[i].name ? (int)desc[i].type : -1;
54 static const char *get_cbfs_entry_type_name(uint32_t type)
56 return lookup_name_by_type(filetypes, type, "(unknown)");
59 int cbfs_parse_comp_algo(const char *name)
61 return lookup_type_by_name(types_cbfs_compression, name);
64 /* CBFS image */
66 size_t cbfs_calculate_file_header_size(const char *name)
68 return (sizeof(struct cbfs_file) +
69 align_up(strlen(name) + 1, CBFS_ATTRIBUTE_ALIGN));
72 /* Only call on legacy CBFSes possessing a master header. */
73 static int cbfs_fix_legacy_size(struct cbfs_image *image, char *hdr_loc)
75 assert(image);
76 assert(cbfs_is_legacy_cbfs(image));
77 // A bug in old cbfstool may produce extra few bytes (by alignment) and
78 // cause cbfstool to overwrite things after free space -- which is
79 // usually CBFS header on x86. We need to workaround that.
80 // Except when we run across a file that contains the actual header,
81 // in which case this image is a safe, new-style
82 // `cbfstool add-master-header` based image.
84 struct cbfs_file *entry, *first = NULL, *last = NULL;
85 for (first = entry = cbfs_find_first_entry(image);
86 entry && cbfs_is_valid_entry(image, entry);
87 entry = cbfs_find_next_entry(image, entry)) {
88 /* Is the header guarded by a CBFS file entry? Then exit */
89 if (((char *)entry) + be32toh(entry->offset) == hdr_loc)
90 return 0;
91 last = entry;
93 if ((char *)first < (char *)hdr_loc &&
94 (char *)entry > (char *)hdr_loc) {
95 WARN("CBFS image was created with old cbfstool with size bug. "
96 "Fixing size in last entry...\n");
97 last->len = htobe32(be32toh(last->len) - image->header.align);
98 DEBUG("Last entry has been changed from 0x%x to 0x%x.\n",
99 cbfs_get_entry_addr(image, entry),
100 cbfs_get_entry_addr(image,
101 cbfs_find_next_entry(image, last)));
103 return 0;
106 void cbfs_put_header(void *dest, const struct cbfs_header *header)
108 struct buffer outheader;
110 outheader.data = dest;
111 outheader.size = 0;
113 xdr_be.put32(&outheader, header->magic);
114 xdr_be.put32(&outheader, header->version);
115 xdr_be.put32(&outheader, header->romsize);
116 xdr_be.put32(&outheader, header->bootblocksize);
117 xdr_be.put32(&outheader, header->align);
118 xdr_be.put32(&outheader, header->offset);
119 xdr_be.put32(&outheader, header->architecture);
122 static void cbfs_decode_payload_segment(struct cbfs_payload_segment *output,
123 struct cbfs_payload_segment *input)
125 struct buffer seg = {
126 .data = (void *)input,
127 .size = sizeof(*input),
129 output->type = xdr_be.get32(&seg);
130 output->compression = xdr_be.get32(&seg);
131 output->offset = xdr_be.get32(&seg);
132 output->load_addr = xdr_be.get64(&seg);
133 output->len = xdr_be.get32(&seg);
134 output->mem_len = xdr_be.get32(&seg);
135 assert(seg.size == 0);
138 static int cbfs_file_get_compression_info(struct cbfs_file *entry,
139 uint32_t *decompressed_size)
141 unsigned int compression = CBFS_COMPRESS_NONE;
142 if (decompressed_size)
143 *decompressed_size = be32toh(entry->len);
144 for (struct cbfs_file_attribute *attr = cbfs_file_first_attr(entry);
145 attr != NULL;
146 attr = cbfs_file_next_attr(entry, attr)) {
147 if (be32toh(attr->tag) == CBFS_FILE_ATTR_TAG_COMPRESSION) {
148 struct cbfs_file_attr_compression *ac =
149 (struct cbfs_file_attr_compression *)attr;
150 compression = be32toh(ac->compression);
151 if (decompressed_size)
152 *decompressed_size =
153 be32toh(ac->decompressed_size);
156 return compression;
159 static struct cbfs_file_attr_hash *cbfs_file_get_next_hash(
160 struct cbfs_file *entry, struct cbfs_file_attr_hash *cur)
162 struct cbfs_file_attribute *attr = (struct cbfs_file_attribute *)cur;
163 if (attr == NULL) {
164 attr = cbfs_file_first_attr(entry);
165 if (attr == NULL)
166 return NULL;
167 if (be32toh(attr->tag) == CBFS_FILE_ATTR_TAG_HASH)
168 return (struct cbfs_file_attr_hash *)attr;
170 while ((attr = cbfs_file_next_attr(entry, attr)) != NULL) {
171 if (be32toh(attr->tag) == CBFS_FILE_ATTR_TAG_HASH)
172 return (struct cbfs_file_attr_hash *)attr;
174 return NULL;
177 void cbfs_get_header(struct cbfs_header *header, void *src)
179 struct buffer outheader;
181 outheader.data = src; /* We're not modifying the data */
182 outheader.size = 0;
184 header->magic = xdr_be.get32(&outheader);
185 header->version = xdr_be.get32(&outheader);
186 header->romsize = xdr_be.get32(&outheader);
187 header->bootblocksize = xdr_be.get32(&outheader);
188 header->align = xdr_be.get32(&outheader);
189 header->offset = xdr_be.get32(&outheader);
190 header->architecture = xdr_be.get32(&outheader);
193 int cbfs_image_create(struct cbfs_image *image, size_t entries_size)
195 assert(image);
196 assert(image->buffer.data);
198 size_t empty_header_len = cbfs_calculate_file_header_size("");
199 uint32_t entries_offset = 0;
200 uint32_t align = CBFS_ALIGNMENT;
201 if (image->has_header) {
202 entries_offset = image->header.offset;
204 if (entries_offset > image->buffer.size) {
205 ERROR("CBFS file entries are located outside CBFS itself\n");
206 return -1;
209 align = image->header.align;
212 // This attribute must be given in order to prove that this module
213 // correctly preserves certain CBFS properties. See the block comment
214 // near the top of this file (and the associated commit message).
215 if (align < empty_header_len) {
216 ERROR("CBFS must be aligned to at least %zu bytes\n",
217 empty_header_len);
218 return -1;
221 if (entries_size > image->buffer.size - entries_offset) {
222 ERROR("CBFS doesn't have enough space to fit its file entries\n");
223 return -1;
226 if (empty_header_len > entries_size) {
227 ERROR("CBFS is too small to fit any header\n");
228 return -1;
230 struct cbfs_file *entry_header =
231 (struct cbfs_file *)(image->buffer.data + entries_offset);
232 // This alignment is necessary in order to prove that this module
233 // correctly preserves certain CBFS properties. See the block comment
234 // near the top of this file (and the associated commit message).
235 entries_size -= entries_size % align;
237 size_t capacity = entries_size - empty_header_len;
238 LOG("Created CBFS (capacity = %zu bytes)\n", capacity);
239 return cbfs_create_empty_entry(entry_header, CBFS_TYPE_NULL,
240 capacity, "");
243 int cbfs_legacy_image_create(struct cbfs_image *image,
244 uint32_t architecture,
245 uint32_t align,
246 struct buffer *bootblock,
247 uint32_t bootblock_offset,
248 uint32_t header_offset,
249 uint32_t entries_offset)
251 assert(image);
252 assert(image->buffer.data);
253 assert(bootblock);
255 int32_t *rel_offset;
256 uint32_t cbfs_len;
257 void *header_loc;
258 size_t size = image->buffer.size;
260 DEBUG("cbfs_image_create: bootblock=0x%x+0x%zx, "
261 "header=0x%x+0x%zx, entries_offset=0x%x\n",
262 bootblock_offset, bootblock->size, header_offset,
263 sizeof(image->header), entries_offset);
265 DEBUG("cbfs_create_image: (real offset) bootblock=0x%x, "
266 "header=0x%x, entries_offset=0x%x\n",
267 bootblock_offset, header_offset, entries_offset);
269 // Prepare bootblock
270 if (bootblock_offset + bootblock->size > size) {
271 ERROR("Bootblock (0x%x+0x%zx) exceed ROM size (0x%zx)\n",
272 bootblock_offset, bootblock->size, size);
273 return -1;
275 if (entries_offset > bootblock_offset &&
276 entries_offset < bootblock->size) {
277 ERROR("Bootblock (0x%x+0x%zx) overlap CBFS data (0x%x)\n",
278 bootblock_offset, bootblock->size, entries_offset);
279 return -1;
281 memcpy(image->buffer.data + bootblock_offset, bootblock->data,
282 bootblock->size);
284 // Prepare header
285 if (header_offset + sizeof(image->header) > size - sizeof(int32_t)) {
286 ERROR("Header (0x%x+0x%zx) exceed ROM size (0x%zx)\n",
287 header_offset, sizeof(image->header), size);
288 return -1;
290 image->header.magic = CBFS_HEADER_MAGIC;
291 image->header.version = CBFS_HEADER_VERSION;
292 image->header.romsize = size;
293 image->header.bootblocksize = bootblock->size;
294 image->header.align = align;
295 image->header.offset = entries_offset;
296 image->header.architecture = architecture;
298 header_loc = (image->buffer.data + header_offset);
299 cbfs_put_header(header_loc, &image->header);
300 image->has_header = true;
302 // The last 4 byte of the image contain the relative offset from the end
303 // of the image to the master header as a 32-bit signed integer. x86
304 // relies on this also being its (memory-mapped, top-aligned) absolute
305 // 32-bit address by virtue of how two's complement numbers work.
306 assert(size % sizeof(int32_t) == 0);
307 rel_offset = (int32_t *)(image->buffer.data + size - sizeof(int32_t));
308 *rel_offset = header_offset - size;
310 // Prepare entries
311 if (align_up(entries_offset, align) != entries_offset) {
312 ERROR("Offset (0x%x) must be aligned to 0x%x.\n",
313 entries_offset, align);
314 return -1;
316 // To calculate available length, find
317 // e = min(bootblock, header, rel_offset) where e > entries_offset.
318 cbfs_len = size - sizeof(int32_t);
319 if (bootblock_offset > entries_offset && bootblock_offset < cbfs_len)
320 cbfs_len = bootblock_offset;
321 if (header_offset > entries_offset && header_offset < cbfs_len)
322 cbfs_len = header_offset;
324 if (cbfs_image_create(image, cbfs_len - entries_offset))
325 return -1;
326 return 0;
329 int cbfs_image_from_buffer(struct cbfs_image *out, struct buffer *in,
330 uint32_t offset)
332 assert(out);
333 assert(in);
334 assert(in->data);
336 buffer_clone(&out->buffer, in);
337 out->has_header = false;
339 if (cbfs_is_valid_cbfs(out)) {
340 return 0;
343 void *header_loc = cbfs_find_header(in->data, in->size, offset);
344 if (header_loc) {
345 cbfs_get_header(&out->header, header_loc);
346 out->has_header = true;
347 cbfs_fix_legacy_size(out, header_loc);
348 return 0;
349 } else if (offset != HEADER_OFFSET_UNKNOWN) {
350 ERROR("The -H switch is only valid on legacy images having CBFS master headers.\n");
352 ERROR("Selected image region is not a valid CBFS.\n");
353 return 1;
356 int cbfs_copy_instance(struct cbfs_image *image, struct buffer *dst)
358 assert(image);
360 struct cbfs_file *src_entry, *dst_entry;
361 size_t align;
362 ssize_t last_entry_size;
364 size_t copy_end = buffer_size(dst);
366 align = CBFS_ALIGNMENT;
368 dst_entry = (struct cbfs_file *)buffer_get(dst);
370 /* Copy non-empty files */
371 for (src_entry = cbfs_find_first_entry(image);
372 src_entry && cbfs_is_valid_entry(image, src_entry);
373 src_entry = cbfs_find_next_entry(image, src_entry)) {
374 size_t entry_size;
376 if ((src_entry->type == htobe32(CBFS_TYPE_NULL)) ||
377 (src_entry->type == htobe32(CBFS_TYPE_CBFSHEADER)) ||
378 (src_entry->type == htobe32(CBFS_TYPE_DELETED)))
379 continue;
381 entry_size = htobe32(src_entry->len) + htobe32(src_entry->offset);
382 memcpy(dst_entry, src_entry, entry_size);
383 dst_entry = (struct cbfs_file *)(
384 (uintptr_t)dst_entry + align_up(entry_size, align));
386 if ((size_t)((uint8_t *)dst_entry - (uint8_t *)buffer_get(dst))
387 >= copy_end) {
388 ERROR("Ran out of room in copy region.\n");
389 return 1;
393 /* Last entry size is all the room above it, except for top 4 bytes
394 * which may be used by the master header pointer. This messes with
395 * the ability to stash something "top-aligned" into the region, but
396 * keeps things simpler. */
397 last_entry_size = copy_end -
398 ((uint8_t *)dst_entry - (uint8_t *)buffer_get(dst)) -
399 cbfs_calculate_file_header_size("") - sizeof(int32_t);
401 if (last_entry_size < 0)
402 WARN("No room to create the last entry!\n");
403 else
404 return cbfs_create_empty_entry(dst_entry, CBFS_TYPE_NULL,
405 last_entry_size, "");
407 return 0;
410 int cbfs_expand_to_region(struct buffer *region)
412 if (buffer_get(region) == NULL)
413 return 1;
415 struct cbfs_image image;
416 memset(&image, 0, sizeof(image));
417 if (cbfs_image_from_buffer(&image, region, HEADER_OFFSET_UNKNOWN)) {
418 ERROR("reading CBFS failed!\n");
419 return 1;
422 uint32_t region_sz = buffer_size(region);
424 struct cbfs_file *entry;
425 for (entry = buffer_get(region);
426 cbfs_is_valid_entry(&image, entry);
427 entry = cbfs_find_next_entry(&image, entry)) {
428 /* just iterate through */
431 /* entry now points to the first aligned address after the last valid
432 * file header. That's either outside the image or exactly the place
433 * where we need to create a new file.
435 int last_entry_size = region_sz -
436 ((uint8_t *)entry - (uint8_t *)buffer_get(region)) -
437 cbfs_calculate_file_header_size("") - sizeof(int32_t);
439 if (last_entry_size > 0) {
440 if (cbfs_create_empty_entry(entry, CBFS_TYPE_NULL,
441 last_entry_size, ""))
442 return 1;
444 /* If the last entry was an empty file, merge them. */
445 cbfs_legacy_walk(&image, cbfs_merge_empty_entry, NULL);
448 return 0;
451 int cbfs_truncate_space(struct buffer *region, uint32_t *size)
453 if (buffer_get(region) == NULL)
454 return 1;
456 struct cbfs_image image;
457 memset(&image, 0, sizeof(image));
458 if (cbfs_image_from_buffer(&image, region, HEADER_OFFSET_UNKNOWN)) {
459 ERROR("reading CBFS failed!\n");
460 return 1;
463 struct cbfs_file *entry, *trailer;
464 for (trailer = entry = buffer_get(region);
465 cbfs_is_valid_entry(&image, entry);
466 trailer = entry,
467 entry = cbfs_find_next_entry(&image, entry)) {
468 /* just iterate through */
471 /* trailer now points to the last valid CBFS entry's header.
472 * If that file is empty, remove it and report its header's offset as
473 * maximum size.
475 if ((strlen(trailer->filename) != 0) &&
476 (trailer->type != htobe32(CBFS_TYPE_NULL)) &&
477 (trailer->type != htobe32(CBFS_TYPE_DELETED))) {
478 /* nothing to truncate. Return de-facto CBFS size in case it
479 * was already truncated. */
480 *size = (uint8_t *)entry - (uint8_t *)buffer_get(region);
481 return 0;
483 *size = (uint8_t *)trailer - (uint8_t *)buffer_get(region);
484 memset(trailer, 0xff, buffer_size(region) - *size);
486 return 0;
489 static size_t cbfs_file_entry_metadata_size(const struct cbfs_file *f)
491 return be32toh(f->offset);
494 static size_t cbfs_file_entry_data_size(const struct cbfs_file *f)
496 return be32toh(f->len);
499 static size_t cbfs_file_entry_size(const struct cbfs_file *f)
501 return cbfs_file_entry_metadata_size(f) + cbfs_file_entry_data_size(f);
504 int cbfs_compact_instance(struct cbfs_image *image)
506 assert(image);
508 struct cbfs_file *prev;
509 struct cbfs_file *cur;
511 /* The prev entry will always be an empty entry. */
512 prev = NULL;
515 * Note: this function does not honor alignment or fixed location files.
516 * It's behavior is akin to cbfs_copy_instance() in that it expects
517 * the caller to understand the ramifications of compacting a
518 * fragmented CBFS image.
521 for (cur = cbfs_find_first_entry(image);
522 cur && cbfs_is_valid_entry(image, cur);
523 cur = cbfs_find_next_entry(image, cur)) {
524 size_t prev_size;
525 size_t cur_size;
526 size_t empty_metadata_size;
527 size_t spill_size;
529 /* Current entry is empty. Kepp track of it. */
530 if (cur->type == CBFS_TYPE_NULL || cur->type == CBFS_TYPE_DELETED) {
531 prev = cur;
532 continue;
535 /* Need to ensure the previous entry is an empty one. */
536 if (prev == NULL)
537 continue;
539 /* At this point prev is an empty entry. Put the non-empty
540 * file in prev's location. Then add a new empty entry. This
541 * essentialy bubbles empty entries towards the end. */
543 prev_size = cbfs_file_entry_size(prev);
544 cur_size = cbfs_file_entry_size(cur);
547 * Adjust the empty file size by the actual space occupied
548 * bewtween the beginning of the empty file and the non-empty
549 * file.
551 prev_size += (cbfs_get_entry_addr(image, cur) -
552 cbfs_get_entry_addr(image, prev)) - prev_size;
554 /* Move the non-empty file over the empty file. */
555 memmove(prev, cur, cur_size);
558 * Get location of the empty file. Note that since prev was
559 * overwritten with the non-empty file the previously moved
560 * file needs to be used to calculate the empty file's location.
562 cur = cbfs_find_next_entry(image, prev);
565 * The total space to work with for swapping the 2 entries
566 * consists of the 2 files' sizes combined. However, the
567 * cbfs_file entries start on CBFS_ALIGNMENT boundaries.
568 * Because of this the empty file size may end up smaller
569 * because of the non-empty file's metadata and data length.
571 * Calculate the spill size which is the amount of data lost
572 * due to the alignment constraints after moving the non-empty
573 * file.
575 spill_size = (cbfs_get_entry_addr(image, cur) -
576 cbfs_get_entry_addr(image, prev)) - cur_size;
578 empty_metadata_size = cbfs_calculate_file_header_size("");
580 /* Check if new empty size can contain the metadata. */
581 if (empty_metadata_size + spill_size > prev_size) {
582 ERROR("Unable to swap '%s' with prev empty entry.\n",
583 prev->filename);
584 return 1;
587 /* Update the empty file's size. */
588 prev_size -= spill_size + empty_metadata_size;
590 /* Create new empty file. */
591 if (cbfs_create_empty_entry(cur, CBFS_TYPE_NULL,
592 prev_size, ""))
593 return 1;
595 /* Merge any potential empty entries together. */
596 cbfs_legacy_walk(image, cbfs_merge_empty_entry, NULL);
599 * Since current switched to an empty file keep track of it.
600 * Even if any empty files were merged the empty entry still
601 * starts at previously calculated location.
603 prev = cur;
606 return 0;
609 int cbfs_image_delete(struct cbfs_image *image)
611 if (image == NULL)
612 return 0;
614 buffer_delete(&image->buffer);
615 return 0;
618 /* Tries to add an entry with its data (CBFS_SUBHEADER) at given offset. */
619 static int cbfs_add_entry_at(struct cbfs_image *image,
620 struct cbfs_file *entry,
621 const void *data,
622 uint32_t content_offset,
623 const struct cbfs_file *header,
624 const size_t len_align)
626 struct cbfs_file *next = cbfs_find_next_entry(image, entry);
627 uint32_t addr = cbfs_get_entry_addr(image, entry),
628 addr_next = cbfs_get_entry_addr(image, next);
629 uint32_t min_entry_size = cbfs_calculate_file_header_size("");
630 uint32_t len, header_offset;
631 uint32_t align = image->has_header ? image->header.align :
632 CBFS_ALIGNMENT;
633 uint32_t header_size = be32toh(header->offset);
635 header_offset = content_offset - header_size;
636 if (header_offset % align)
637 header_offset -= header_offset % align;
638 if (header_offset < addr) {
639 ERROR("No space to hold cbfs_file header.");
640 return -1;
643 // Process buffer BEFORE content_offset.
644 if (header_offset - addr > min_entry_size) {
645 DEBUG("|min|...|header|content|... <create new entry>\n");
646 len = header_offset - addr - min_entry_size;
647 if (cbfs_create_empty_entry(entry, CBFS_TYPE_NULL, len, ""))
648 return -1;
649 if (verbose > 1) cbfs_print_entry_info(image, entry, stderr);
650 entry = cbfs_find_next_entry(image, entry);
651 addr = cbfs_get_entry_addr(image, entry);
654 len = content_offset - addr - header_size;
655 memcpy(entry, header, header_size);
656 if (len != 0) {
658 * The header moved backwards a bit to accommodate cbfs_file
659 * alignment requirements, so patch up ->offset to still point
660 * to file data. Move attributes forward so the end of the
661 * attribute list still matches the end of the metadata.
663 uint32_t offset = be32toh(entry->offset);
664 uint32_t attrs = be32toh(entry->attributes_offset);
665 DEBUG("|..|header|content|... <use offset to create entry>\n");
666 DEBUG("before: attr_offset=0x%x, offset=0x%x\n", attrs, offset);
667 if (attrs == 0) {
668 memset((uint8_t *)entry + offset, 0, len);
669 } else {
670 uint8_t *p = (uint8_t *)entry + attrs;
671 memmove(p + len, p, offset - attrs);
672 memset(p, 0, len);
673 attrs += len;
674 entry->attributes_offset = htobe32(attrs);
676 offset += len;
677 entry->offset = htobe32(offset);
678 DEBUG("after: attr_offset=0x%x, offset=0x%x\n", attrs, offset);
681 // Ready to fill data into entry.
682 DEBUG("content_offset: 0x%x, entry location: %x\n",
683 content_offset, (int)((char*)CBFS_SUBHEADER(entry) -
684 image->buffer.data));
685 assert((char*)CBFS_SUBHEADER(entry) - image->buffer.data ==
686 (ptrdiff_t)content_offset);
687 memcpy(CBFS_SUBHEADER(entry), data, be32toh(entry->len));
688 if (verbose > 1) cbfs_print_entry_info(image, entry, stderr);
690 // Align the length to a multiple of len_align
691 if (len_align &&
692 ((be32toh(entry->offset) + be32toh(entry->len)) % len_align)) {
693 size_t off = (be32toh(entry->offset) + be32toh(entry->len)) % len_align;
694 entry->len = htobe32(be32toh(entry->len) + len_align - off);
697 // Process buffer AFTER entry.
698 entry = cbfs_find_next_entry(image, entry);
699 addr = cbfs_get_entry_addr(image, entry);
700 if (addr == addr_next)
701 return 0;
703 assert(addr < addr_next);
704 if (addr_next - addr < min_entry_size) {
705 DEBUG("No need for new \"empty\" entry\n");
706 /* No need to increase the size of the just
707 * stored file to extend to next file. Alignment
708 * of next file takes care of this.
710 return 0;
713 len = addr_next - addr - min_entry_size;
714 /* keep space for master header pointer */
715 if ((uint8_t *)entry + min_entry_size + len >
716 (uint8_t *)buffer_get(&image->buffer) +
717 buffer_size(&image->buffer) - sizeof(int32_t)) {
718 len -= sizeof(int32_t);
720 if (cbfs_create_empty_entry(entry, CBFS_TYPE_NULL, len, ""))
721 return -1;
722 if (verbose > 1) cbfs_print_entry_info(image, entry, stderr);
723 return 0;
726 int cbfs_add_entry(struct cbfs_image *image, struct buffer *buffer,
727 uint32_t content_offset,
728 struct cbfs_file *header,
729 const size_t len_align)
731 assert(image);
732 assert(buffer);
733 assert(buffer->data);
734 assert(!IS_HOST_SPACE_ADDRESS(content_offset));
736 const char *name = header->filename;
738 /* This is so special rows in cbfstool print -k -v output stay unambiguous. */
739 if (name[0] == '[') {
740 ERROR("CBFS file name `%s` must not start with `[`\n", name);
741 return -1;
744 uint32_t entry_type;
745 uint32_t addr, addr_next;
746 struct cbfs_file *entry, *next;
747 uint32_t need_size;
748 uint32_t header_size = be32toh(header->offset);
750 need_size = header_size + buffer->size;
751 DEBUG("cbfs_add_entry('%s'@0x%x) => need_size = %u+%zu=%u\n",
752 name, content_offset, header_size, buffer->size, need_size);
754 // Merge empty entries.
755 DEBUG("(trying to merge empty entries...)\n");
756 cbfs_legacy_walk(image, cbfs_merge_empty_entry, NULL);
758 for (entry = cbfs_find_first_entry(image);
759 entry && cbfs_is_valid_entry(image, entry);
760 entry = cbfs_find_next_entry(image, entry)) {
762 entry_type = be32toh(entry->type);
763 if (entry_type != CBFS_TYPE_NULL)
764 continue;
766 addr = cbfs_get_entry_addr(image, entry);
767 next = cbfs_find_next_entry(image, entry);
768 addr_next = cbfs_get_entry_addr(image, next);
770 DEBUG("cbfs_add_entry: space at 0x%x+0x%x(%d) bytes\n",
771 addr, addr_next - addr, addr_next - addr);
773 /* Will the file fit? Don't yet worry if we have space for a new
774 * "empty" entry. We take care of that later.
776 if (addr + need_size > addr_next)
777 continue;
779 // Test for complicated cases
780 if (content_offset > 0) {
781 if (addr_next < content_offset) {
782 DEBUG("Not for specified offset yet");
783 continue;
784 } else if (addr > content_offset) {
785 DEBUG("Exceed specified content_offset.");
786 break;
787 } else if (addr + header_size > content_offset) {
788 ERROR("Not enough space for header.\n");
789 break;
790 } else if (content_offset + buffer->size > addr_next) {
791 ERROR("Not enough space for content.\n");
792 break;
796 // TODO there are more few tricky cases that we may
797 // want to fit by altering offset.
799 if (content_offset == 0) {
800 // we tested every condition earlier under which
801 // placing the file there might fail
802 content_offset = addr + header_size;
805 DEBUG("section 0x%x+0x%x for content_offset 0x%x.\n",
806 addr, addr_next - addr, content_offset);
808 if (cbfs_add_entry_at(image, entry, buffer->data,
809 content_offset, header, len_align) == 0) {
810 return 0;
812 break;
815 ERROR("Could not add [%s, %zd bytes (%zd KB)@0x%x]; too big?\n",
816 buffer->name, buffer->size, buffer->size / 1024, content_offset);
817 return -1;
820 struct cbfs_file *cbfs_get_entry(struct cbfs_image *image, const char *name)
822 struct cbfs_file *entry;
823 for (entry = cbfs_find_first_entry(image);
824 entry && cbfs_is_valid_entry(image, entry);
825 entry = cbfs_find_next_entry(image, entry)) {
826 if (strcasecmp(entry->filename, name) == 0) {
827 DEBUG("cbfs_get_entry: found %s\n", name);
828 return entry;
831 return NULL;
834 static int cbfs_payload_decompress(struct cbfs_payload_segment *segments,
835 struct buffer *buff, int num_seg)
837 struct buffer new_buffer;
838 struct buffer seg_buffer;
839 size_t new_buff_sz;
840 char *in_ptr;
841 char *out_ptr;
842 size_t new_offset;
843 decomp_func_ptr decompress;
845 new_offset = num_seg * sizeof(*segments);
846 new_buff_sz = num_seg * sizeof(*segments);
848 /* Find out and allocate the amount of memory occupied
849 * by the binary data */
850 for (int i = 0; i < num_seg; i++)
851 new_buff_sz += segments[i].mem_len;
853 if (buffer_create(&new_buffer, new_buff_sz, "decompressed_buff"))
854 return -1;
856 in_ptr = buffer_get(buff) + new_offset;
857 out_ptr = buffer_get(&new_buffer) + new_offset;
859 for (int i = 0; i < num_seg; i++) {
860 struct buffer tbuff;
861 size_t decomp_size;
863 /* Segments BSS and ENTRY do not have binary data. */
864 if (segments[i].type == PAYLOAD_SEGMENT_BSS ||
865 segments[i].type == PAYLOAD_SEGMENT_ENTRY) {
866 continue;
867 } else if (segments[i].type == PAYLOAD_SEGMENT_DEPRECATED_PARAMS) {
868 memcpy(out_ptr, in_ptr, segments[i].len);
869 segments[i].offset = new_offset;
870 new_offset += segments[i].len;
871 in_ptr += segments[i].len;
872 out_ptr += segments[i].len;
873 segments[i].compression = CBFS_COMPRESS_NONE;
874 continue;
877 /* The payload uses an unknown compression algorithm. */
878 decompress = decompression_function(segments[i].compression);
879 if (decompress == NULL) {
880 ERROR("Unknown decompression algorithm: %u\n",
881 segments[i].compression);
882 return -1;
885 if (buffer_create(&tbuff, segments[i].mem_len, "segment")) {
886 buffer_delete(&new_buffer);
887 return -1;
890 if (decompress(in_ptr, segments[i].len, buffer_get(&tbuff),
891 (int) buffer_size(&tbuff),
892 &decomp_size)) {
893 ERROR("Couldn't decompress payload segment %u\n", i);
894 buffer_delete(&new_buffer);
895 buffer_delete(&tbuff);
896 return -1;
899 memcpy(out_ptr, buffer_get(&tbuff), decomp_size);
901 in_ptr += segments[i].len;
903 /* Update the offset of the segment. */
904 segments[i].offset = new_offset;
905 /* True decompressed size is just the data size. No metadata */
906 segments[i].len = decomp_size;
907 /* Segment is not compressed. */
908 segments[i].compression = CBFS_COMPRESS_NONE;
910 /* Update the offset and output buffer pointer. */
911 new_offset += decomp_size;
912 out_ptr += decomp_size;
914 buffer_delete(&tbuff);
917 buffer_splice(&seg_buffer, &new_buffer, 0, 0);
918 xdr_segs(&seg_buffer, segments, num_seg);
920 buffer_delete(buff);
921 *buff = new_buffer;
923 return 0;
926 static int init_elf_from_arch(Elf64_Ehdr *ehdr, uint32_t cbfs_arch)
928 int endian;
929 int nbits;
930 int machine;
932 switch (cbfs_arch) {
933 case CBFS_ARCHITECTURE_X86:
934 endian = ELFDATA2LSB;
935 nbits = ELFCLASS32;
936 machine = EM_386;
937 break;
938 case CBFS_ARCHITECTURE_ARM:
939 endian = ELFDATA2LSB;
940 nbits = ELFCLASS32;
941 machine = EM_ARM;
942 break;
943 case CBFS_ARCHITECTURE_AARCH64:
944 endian = ELFDATA2LSB;
945 nbits = ELFCLASS64;
946 machine = EM_AARCH64;
947 break;
948 case CBFS_ARCHITECTURE_MIPS:
949 endian = ELFDATA2LSB;
950 nbits = ELFCLASS32;
951 machine = EM_MIPS;
952 break;
953 case CBFS_ARCHITECTURE_RISCV:
954 endian = ELFDATA2LSB;
955 nbits = ELFCLASS32;
956 machine = EM_RISCV;
957 break;
958 default:
959 ERROR("Unsupported arch: %x\n", cbfs_arch);
960 return -1;
963 elf_init_eheader(ehdr, machine, nbits, endian);
964 return 0;
967 static int cbfs_stage_make_elf(struct buffer *buff, uint32_t arch,
968 struct cbfs_file *entry)
970 Elf64_Ehdr ehdr;
971 Elf64_Shdr shdr;
972 struct elf_writer *ew;
973 struct buffer elf_out;
974 size_t empty_sz;
975 int rmod_ret;
977 if (arch == CBFS_ARCHITECTURE_UNKNOWN) {
978 ERROR("You need to specify -m ARCH.\n");
979 return -1;
982 struct cbfs_file_attr_stageheader *stage = NULL;
983 for (struct cbfs_file_attribute *attr = cbfs_file_first_attr(entry);
984 attr != NULL; attr = cbfs_file_next_attr(entry, attr)) {
985 if (be32toh(attr->tag) == CBFS_FILE_ATTR_TAG_STAGEHEADER) {
986 stage = (struct cbfs_file_attr_stageheader *)attr;
987 break;
991 if (stage == NULL) {
992 ERROR("Stage header not found for %s\n", entry->filename);
993 return -1;
996 if (init_elf_from_arch(&ehdr, arch))
997 return -1;
999 /* Attempt rmodule translation first. */
1000 rmod_ret = rmodule_stage_to_elf(&ehdr, buff);
1002 if (rmod_ret < 0) {
1003 ERROR("rmodule parsing failed\n");
1004 return -1;
1005 } else if (rmod_ret == 0)
1006 return 0;
1008 /* Rmodule couldn't do anything with the data. Continue on with SELF. */
1010 ehdr.e_entry = be64toh(stage->loadaddr) + be32toh(stage->entry_offset);
1012 ew = elf_writer_init(&ehdr);
1013 if (ew == NULL) {
1014 ERROR("Unable to init ELF writer.\n");
1015 return -1;
1018 memset(&shdr, 0, sizeof(shdr));
1019 shdr.sh_type = SHT_PROGBITS;
1020 shdr.sh_flags = SHF_WRITE | SHF_ALLOC | SHF_EXECINSTR;
1021 shdr.sh_addr = be64toh(stage->loadaddr);
1022 shdr.sh_size = buffer_size(buff);
1023 empty_sz = be32toh(stage->memlen) - buffer_size(buff);
1025 if (elf_writer_add_section(ew, &shdr, buff, ".program")) {
1026 ERROR("Unable to add ELF section: .program\n");
1027 elf_writer_destroy(ew);
1028 return -1;
1031 if (empty_sz != 0) {
1032 struct buffer b;
1034 buffer_init(&b, NULL, NULL, 0);
1035 memset(&shdr, 0, sizeof(shdr));
1036 shdr.sh_type = SHT_NOBITS;
1037 shdr.sh_flags = SHF_WRITE | SHF_ALLOC;
1038 shdr.sh_addr = be64toh(stage->loadaddr) + buffer_size(buff);
1039 shdr.sh_size = empty_sz;
1040 if (elf_writer_add_section(ew, &shdr, &b, ".empty")) {
1041 ERROR("Unable to add ELF section: .empty\n");
1042 elf_writer_destroy(ew);
1043 return -1;
1047 if (elf_writer_serialize(ew, &elf_out)) {
1048 ERROR("Unable to create ELF file from stage.\n");
1049 elf_writer_destroy(ew);
1050 return -1;
1053 /* Flip buffer with the created ELF one. */
1054 buffer_delete(buff);
1055 *buff = elf_out;
1057 elf_writer_destroy(ew);
1059 return 0;
1062 static int cbfs_payload_make_elf(struct buffer *buff, uint32_t arch,
1063 unused struct cbfs_file *entry)
1065 Elf64_Ehdr ehdr;
1066 Elf64_Shdr shdr;
1067 struct cbfs_payload_segment *segs = NULL;
1068 struct elf_writer *ew = NULL;
1069 struct buffer elf_out;
1070 int segments = 0;
1071 int retval = -1;
1073 if (arch == CBFS_ARCHITECTURE_UNKNOWN) {
1074 ERROR("You need to specify -m ARCH.\n");
1075 goto out;
1078 /* Count the number of segments inside buffer */
1079 while (true) {
1080 uint32_t payload_type = 0;
1082 struct cbfs_payload_segment *seg;
1084 seg = buffer_get(buff);
1085 payload_type = read_be32(&seg[segments].type);
1087 if (payload_type == PAYLOAD_SEGMENT_CODE) {
1088 segments++;
1089 } else if (payload_type == PAYLOAD_SEGMENT_DATA) {
1090 segments++;
1091 } else if (payload_type == PAYLOAD_SEGMENT_BSS) {
1092 segments++;
1093 } else if (payload_type == PAYLOAD_SEGMENT_DEPRECATED_PARAMS) {
1094 segments++;
1095 } else if (payload_type == PAYLOAD_SEGMENT_ENTRY) {
1096 /* The last segment in a payload is always ENTRY as
1097 * specified by the parse_elf_to_payload() function.
1098 * Therefore there is no need to continue looking for
1099 * segments.*/
1100 segments++;
1101 break;
1102 } else {
1103 ERROR("Unknown payload segment type: %x\n",
1104 payload_type);
1105 goto out;
1109 segs = malloc(segments * sizeof(*segs));
1111 /* Decode xdr segments */
1112 for (int i = 0; i < segments; i++) {
1113 struct cbfs_payload_segment *serialized_seg = buffer_get(buff);
1114 xdr_get_seg(&segs[i], &serialized_seg[i]);
1117 if (cbfs_payload_decompress(segs, buff, segments)) {
1118 ERROR("Failed to decompress payload.\n");
1119 goto out;
1122 if (init_elf_from_arch(&ehdr, arch))
1123 goto out;
1125 ehdr.e_entry = segs[segments-1].load_addr;
1127 ew = elf_writer_init(&ehdr);
1128 if (ew == NULL) {
1129 ERROR("Unable to init ELF writer.\n");
1130 goto out;
1133 for (int i = 0; i < segments; i++) {
1134 struct buffer tbuff;
1135 size_t empty_sz = 0;
1137 memset(&shdr, 0, sizeof(shdr));
1138 char *name = NULL;
1140 if (segs[i].type == PAYLOAD_SEGMENT_CODE) {
1141 shdr.sh_type = SHT_PROGBITS;
1142 shdr.sh_flags = SHF_WRITE | SHF_ALLOC | SHF_EXECINSTR;
1143 shdr.sh_addr = segs[i].load_addr;
1144 shdr.sh_size = segs[i].len;
1145 empty_sz = segs[i].mem_len - segs[i].len;
1146 name = strdup(".text");
1147 buffer_splice(&tbuff, buff, segs[i].offset,
1148 segs[i].len);
1149 } else if (segs[i].type == PAYLOAD_SEGMENT_DATA) {
1150 shdr.sh_type = SHT_PROGBITS;
1151 shdr.sh_flags = SHF_ALLOC | SHF_WRITE;
1152 shdr.sh_addr = segs[i].load_addr;
1153 shdr.sh_size = segs[i].len;
1154 empty_sz = segs[i].mem_len - segs[i].len;
1155 name = strdup(".data");
1156 buffer_splice(&tbuff, buff, segs[i].offset,
1157 segs[i].len);
1158 } else if (segs[i].type == PAYLOAD_SEGMENT_BSS) {
1159 shdr.sh_type = SHT_NOBITS;
1160 shdr.sh_flags = SHF_ALLOC | SHF_WRITE;
1161 shdr.sh_addr = segs[i].load_addr;
1162 shdr.sh_size = segs[i].len;
1163 name = strdup(".bss");
1164 buffer_splice(&tbuff, buff, 0, 0);
1165 } else if (segs[i].type == PAYLOAD_SEGMENT_DEPRECATED_PARAMS) {
1166 shdr.sh_type = SHT_NOTE;
1167 shdr.sh_flags = 0;
1168 shdr.sh_size = segs[i].len;
1169 name = strdup(".note.pinfo");
1170 buffer_splice(&tbuff, buff, segs[i].offset,
1171 segs[i].len);
1172 } else if (segs[i].type == PAYLOAD_SEGMENT_ENTRY) {
1173 break;
1174 } else {
1175 ERROR("unknown ELF segment type\n");
1176 goto out;
1179 if (!name) {
1180 ERROR("out of memory\n");
1181 goto out;
1184 if (elf_writer_add_section(ew, &shdr, &tbuff, name)) {
1185 ERROR("Unable to add ELF section: %s\n", name);
1186 free(name);
1187 goto out;
1189 free(name);
1191 if (empty_sz != 0) {
1192 struct buffer b;
1194 buffer_init(&b, NULL, NULL, 0);
1195 memset(&shdr, 0, sizeof(shdr));
1196 shdr.sh_type = SHT_NOBITS;
1197 shdr.sh_flags = SHF_WRITE | SHF_ALLOC;
1198 shdr.sh_addr = segs[i].load_addr + segs[i].len;
1199 shdr.sh_size = empty_sz;
1200 name = strdup(".empty");
1201 if (!name) {
1202 ERROR("out of memory\n");
1203 goto out;
1205 if (elf_writer_add_section(ew, &shdr, &b, name)) {
1206 ERROR("Unable to add ELF section: %s\n", name);
1207 free(name);
1208 goto out;
1210 free(name);
1214 if (elf_writer_serialize(ew, &elf_out)) {
1215 ERROR("Unable to create ELF file from payload.\n");
1216 goto out;
1219 /* Flip buffer with the created ELF one. */
1220 buffer_delete(buff);
1221 *buff = elf_out;
1222 retval = 0;
1224 out:
1225 free(segs);
1226 elf_writer_destroy(ew);
1227 return retval;
1230 int cbfs_export_entry(struct cbfs_image *image, const char *entry_name,
1231 const char *filename, uint32_t arch, bool do_processing)
1233 struct cbfs_file *entry = cbfs_get_entry(image, entry_name);
1234 struct buffer buffer;
1235 if (!entry) {
1236 ERROR("File not found: %s\n", entry_name);
1237 return -1;
1240 unsigned int compressed_size = be32toh(entry->len);
1241 unsigned int decompressed_size = 0;
1242 unsigned int compression = cbfs_file_get_compression_info(entry,
1243 &decompressed_size);
1244 unsigned int buffer_len;
1245 decomp_func_ptr decompress;
1247 if (do_processing) {
1248 decompress = decompression_function(compression);
1249 if (!decompress) {
1250 ERROR("looking up decompression routine failed\n");
1251 return -1;
1253 buffer_len = decompressed_size;
1254 } else {
1255 /* Force nop decompression */
1256 decompress = decompression_function(CBFS_COMPRESS_NONE);
1257 buffer_len = compressed_size;
1260 LOG("Found file %.30s at 0x%x, type %.12s, compressed %d, size %d\n",
1261 entry_name, cbfs_get_entry_addr(image, entry),
1262 get_cbfs_entry_type_name(be32toh(entry->type)), compressed_size,
1263 decompressed_size);
1265 buffer_init(&buffer, strdup("(cbfs_export_entry)"), NULL, 0);
1266 buffer.data = malloc(buffer_len);
1267 buffer.size = buffer_len;
1269 if (decompress(CBFS_SUBHEADER(entry), compressed_size,
1270 buffer.data, buffer.size, NULL)) {
1271 ERROR("decompression failed for %s\n", entry_name);
1272 buffer_delete(&buffer);
1273 return -1;
1277 * We want to export stages and payloads as ELFs, not with coreboot's
1278 * custom stage/SELF binary formats, so we need to do extra processing
1279 * to turn them back into an ELF.
1281 if (do_processing) {
1282 int (*make_elf)(struct buffer *, uint32_t,
1283 struct cbfs_file *) = NULL;
1284 switch (be32toh(entry->type)) {
1285 case CBFS_TYPE_STAGE:
1286 make_elf = cbfs_stage_make_elf;
1287 break;
1288 case CBFS_TYPE_SELF:
1289 make_elf = cbfs_payload_make_elf;
1290 break;
1292 if (make_elf && make_elf(&buffer, arch, entry)) {
1293 ERROR("Failed to write %s into %s.\n",
1294 entry_name, filename);
1295 buffer_delete(&buffer);
1296 return -1;
1300 if (buffer_write_file(&buffer, filename) != 0) {
1301 ERROR("Failed to write %s into %s.\n",
1302 entry_name, filename);
1303 buffer_delete(&buffer);
1304 return -1;
1307 buffer_delete(&buffer);
1308 INFO("Successfully dumped the file to: %s\n", filename);
1309 return 0;
1312 int cbfs_remove_entry(struct cbfs_image *image, const char *name)
1314 struct cbfs_file *entry;
1315 entry = cbfs_get_entry(image, name);
1316 if (!entry) {
1317 ERROR("CBFS file %s not found.\n", name);
1318 return -1;
1320 DEBUG("cbfs_remove_entry: Removed %s @ 0x%x\n",
1321 entry->filename, cbfs_get_entry_addr(image, entry));
1322 entry->type = htobe32(CBFS_TYPE_DELETED);
1323 cbfs_legacy_walk(image, cbfs_merge_empty_entry, NULL);
1324 return 0;
1327 int cbfs_print_header_info(struct cbfs_image *image)
1329 char *name = strdup(image->buffer.name);
1330 assert(image);
1331 printf("%s: %zd kB, bootblocksize %d, romsize %d, offset 0x%x\n"
1332 "alignment: %d bytes, architecture: %s\n\n",
1333 basename(name),
1334 image->buffer.size / 1024,
1335 image->header.bootblocksize,
1336 image->header.romsize,
1337 image->header.offset,
1338 image->header.align,
1339 arch_to_string(image->header.architecture));
1340 free(name);
1341 return 0;
1344 static int cbfs_print_stage_info(struct cbfs_file *entry, FILE* fp)
1347 struct cbfs_file_attr_stageheader *stage = NULL;
1348 for (struct cbfs_file_attribute *attr = cbfs_file_first_attr(entry);
1349 attr != NULL; attr = cbfs_file_next_attr(entry, attr)) {
1350 if (be32toh(attr->tag) == CBFS_FILE_ATTR_TAG_STAGEHEADER) {
1351 stage = (struct cbfs_file_attr_stageheader *)attr;
1352 break;
1356 if (stage == NULL) {
1357 fprintf(fp, " ERROR: stage header not found!\n");
1358 return -1;
1361 fprintf(fp,
1362 " entry: 0x%" PRIx64 ", load: 0x%" PRIx64 ", "
1363 "memlen: %d\n",
1364 be64toh(stage->loadaddr) + be32toh(stage->entry_offset),
1365 be64toh(stage->loadaddr),
1366 be32toh(stage->memlen));
1367 return 0;
1370 static int cbfs_print_decoded_payload_segment_info(
1371 struct cbfs_payload_segment *seg, FILE *fp)
1373 /* The input (seg) must be already decoded by
1374 * cbfs_decode_payload_segment.
1376 switch (seg->type) {
1377 case PAYLOAD_SEGMENT_CODE:
1378 case PAYLOAD_SEGMENT_DATA:
1379 fprintf(fp, " %s (%s compression, offset: 0x%x, "
1380 "load: 0x%" PRIx64 ", length: %d/%d)\n",
1381 (seg->type == PAYLOAD_SEGMENT_CODE ?
1382 "code " : "data"),
1383 lookup_name_by_type(types_cbfs_compression,
1384 seg->compression,
1385 "(unknown)"),
1386 seg->offset, seg->load_addr, seg->len,
1387 seg->mem_len);
1388 break;
1390 case PAYLOAD_SEGMENT_ENTRY:
1391 fprintf(fp, " entry (0x%" PRIx64 ")\n",
1392 seg->load_addr);
1393 break;
1395 case PAYLOAD_SEGMENT_BSS:
1396 fprintf(fp, " BSS (address 0x%016" PRIx64 ", "
1397 "length 0x%x)\n",
1398 seg->load_addr, seg->len);
1399 break;
1401 case PAYLOAD_SEGMENT_DEPRECATED_PARAMS:
1402 fprintf(fp, " parameters (deprecated)\n");
1403 break;
1405 default:
1406 fprintf(fp, " 0x%x (%s compression, offset: 0x%x, "
1407 "load: 0x%" PRIx64 ", length: %d/%d\n",
1408 seg->type,
1409 lookup_name_by_type(types_cbfs_compression,
1410 seg->compression,
1411 "(unknown)"),
1412 seg->offset, seg->load_addr, seg->len,
1413 seg->mem_len);
1414 break;
1416 return 0;
1419 int cbfs_print_entry_info(struct cbfs_image *image, struct cbfs_file *entry,
1420 void *arg)
1422 const char *name = entry->filename;
1423 struct cbfs_payload_segment *payload;
1424 FILE *fp = (FILE *)arg;
1426 if (!cbfs_is_valid_entry(image, entry)) {
1427 ERROR("cbfs_print_entry_info: Invalid entry at 0x%x\n",
1428 cbfs_get_entry_addr(image, entry));
1429 return -1;
1431 if (!fp)
1432 fp = stdout;
1434 unsigned int decompressed_size = 0;
1435 unsigned int compression = cbfs_file_get_compression_info(entry,
1436 &decompressed_size);
1437 const char *compression_name = lookup_name_by_type(
1438 types_cbfs_compression, compression, "????");
1440 if (compression == CBFS_COMPRESS_NONE)
1441 fprintf(fp, "%-30s 0x%-8x %-12s %8d %-4s\n",
1442 *name ? name : "(empty)",
1443 cbfs_get_entry_addr(image, entry),
1444 get_cbfs_entry_type_name(be32toh(entry->type)),
1445 be32toh(entry->len),
1446 compression_name
1448 else
1449 fprintf(fp, "%-30s 0x%-8x %-12s %8d %-4s (%d decompressed)\n",
1450 *name ? name : "(empty)",
1451 cbfs_get_entry_addr(image, entry),
1452 get_cbfs_entry_type_name(be32toh(entry->type)),
1453 be32toh(entry->len),
1454 compression_name,
1455 decompressed_size
1458 if (!verbose)
1459 return 0;
1461 struct cbfs_file_attr_hash *attr = NULL;
1462 while ((attr = cbfs_file_get_next_hash(entry, attr)) != NULL) {
1463 size_t hash_len = vb2_digest_size(attr->hash.algo);
1464 if (!hash_len) {
1465 fprintf(fp, "invalid/unsupported hash algorithm: %d\n",
1466 attr->hash.algo);
1467 break;
1469 char *hash_str = bintohex(attr->hash.raw, hash_len);
1470 int valid = vb2_hash_verify(false, CBFS_SUBHEADER(entry),
1471 be32toh(entry->len), &attr->hash) == VB2_SUCCESS;
1472 const char *valid_str = valid ? "valid" : "invalid";
1474 fprintf(fp, " hash %s:%s %s\n",
1475 vb2_get_hash_algorithm_name(attr->hash.algo),
1476 hash_str, valid_str);
1477 free(hash_str);
1480 DEBUG(" cbfs_file=0x%x, offset=0x%x, content_address=0x%x+0x%x\n",
1481 cbfs_get_entry_addr(image, entry), be32toh(entry->offset),
1482 cbfs_get_entry_addr(image, entry) + be32toh(entry->offset),
1483 be32toh(entry->len));
1485 /* note the components of the subheader may be in host order ... */
1486 switch (be32toh(entry->type)) {
1487 case CBFS_TYPE_STAGE:
1488 cbfs_print_stage_info(entry, fp);
1489 break;
1491 case CBFS_TYPE_SELF:
1492 payload = (struct cbfs_payload_segment *)
1493 CBFS_SUBHEADER(entry);
1494 while (payload) {
1495 struct cbfs_payload_segment seg;
1496 cbfs_decode_payload_segment(&seg, payload);
1497 cbfs_print_decoded_payload_segment_info(
1498 &seg, fp);
1499 if (seg.type == PAYLOAD_SEGMENT_ENTRY)
1500 break;
1501 else
1502 payload ++;
1504 break;
1505 default:
1506 break;
1508 return 0;
1512 * The format of this output has been stable for many years. Since it is meant
1513 * to be parsed by scripts, we should probably not lightly make changes to it as
1514 * that could break older scripts expecting a different format.
1516 * Until CB:41119, the `-v` flag made no difference when `-k` was selected, so
1517 * presumably no scripts were using that combination. That's why that patch left
1518 * the output for `-k` by itself alone to avoid breaking legacy scripts, and
1519 * expanded `-k -v` to allow an arbitrary number of `<key>:<value>` tokens at
1520 * the end of each row behind the legacy column output. So the new output format
1521 * stability rules should be that `-k` will stay as it is, and `-k -v` may be
1522 * expanded to add more `<key>:<value>` tokens to the end of a row. Scripts that
1523 * want to parse `-k -v` output should be written to gracefully ignore any extra
1524 * such tokens where they don't recognize the key.
1526 * The `-k -v` output may also include extra rows that start with a `[`. These
1527 * do not represent a CBFS file and can instead be used to display data that is
1528 * associated with the CBFS as a whole and not any single file. Currently
1529 * defined are `[FMAP REGION]\t<region name>` and
1530 * `[METADATA HASH]\t<hash>:<algo>`. More may be defined in the future and
1531 * scripts parsing `-k -v` output should be written to gracefully ignore any
1532 * rows starting with `[` that they don't recognize.
1534 * The format for existing `<key:value>` tokens or `[` rows should never be
1535 * changed once they are added.
1537 static int cbfs_print_parseable_entry_info(struct cbfs_image *image,
1538 struct cbfs_file *entry, void *arg)
1540 FILE *fp = (FILE *)arg;
1541 const char *name;
1542 const char *type;
1543 size_t offset;
1544 size_t metadata_size;
1545 size_t data_size;
1546 const char *sep = "\t";
1548 if (!cbfs_is_valid_entry(image, entry)) {
1549 ERROR("cbfs_print_entry_info: Invalid entry at 0x%x\n",
1550 cbfs_get_entry_addr(image, entry));
1551 return -1;
1554 name = entry->filename;
1555 if (*name == '\0')
1556 name = "(empty)";
1557 type = get_cbfs_entry_type_name(be32toh(entry->type)),
1558 metadata_size = be32toh(entry->offset);
1559 data_size = be32toh(entry->len);
1560 offset = cbfs_get_entry_addr(image, entry);
1562 fprintf(fp, "%s%s", name, sep);
1563 fprintf(fp, "0x%zx%s", offset, sep);
1564 fprintf(fp, "%s%s", type, sep);
1565 fprintf(fp, "0x%zx%s", metadata_size, sep);
1566 fprintf(fp, "0x%zx%s", data_size, sep);
1567 fprintf(fp, "0x%zx", metadata_size + data_size);
1569 if (verbose) {
1570 unsigned int decompressed_size = 0;
1571 unsigned int compression = cbfs_file_get_compression_info(entry,
1572 &decompressed_size);
1573 if (compression != CBFS_COMPRESS_NONE)
1574 fprintf(fp, "%scomp:%s:0x%x", sep, lookup_name_by_type(
1575 types_cbfs_compression, compression, "????"),
1576 decompressed_size);
1578 struct cbfs_file_attr_hash *attr = NULL;
1579 while ((attr = cbfs_file_get_next_hash(entry, attr)) != NULL) {
1580 size_t hash_len = vb2_digest_size(attr->hash.algo);
1581 if (!hash_len)
1582 continue;
1583 char *hash_str = bintohex(attr->hash.raw, hash_len);
1584 int valid = vb2_hash_verify(false, CBFS_SUBHEADER(entry),
1585 be32toh(entry->len), &attr->hash) == VB2_SUCCESS;
1586 fprintf(fp, "%shash:%s:%s:%s", sep,
1587 vb2_get_hash_algorithm_name(attr->hash.algo),
1588 hash_str, valid ? "valid" : "invalid");
1589 free(hash_str);
1592 fprintf(fp, "\n");
1594 return 0;
1597 void cbfs_print_directory(struct cbfs_image *image)
1599 if (cbfs_is_legacy_cbfs(image))
1600 cbfs_print_header_info(image);
1601 printf("%-30s %-10s %-12s Size Comp\n", "Name", "Offset", "Type");
1602 cbfs_legacy_walk(image, cbfs_print_entry_info, NULL);
1605 void cbfs_print_parseable_directory(struct cbfs_image *image)
1607 size_t i;
1608 const char *header[] = {
1609 "Name",
1610 "Offset",
1611 "Type",
1612 "Metadata Size",
1613 "Data Size",
1614 "Total Size",
1616 const char *sep = "\t";
1618 for (i = 0; i < ARRAY_SIZE(header) - 1; i++)
1619 fprintf(stdout, "%s%s", header[i], sep);
1620 fprintf(stdout, "%s\n", header[i]);
1621 cbfs_legacy_walk(image, cbfs_print_parseable_entry_info, stdout);
1624 int cbfs_merge_empty_entry(struct cbfs_image *image, struct cbfs_file *entry,
1625 unused void *arg)
1627 struct cbfs_file *next;
1628 uint32_t next_addr = 0;
1630 /* We don't return here even if this entry is already empty because we
1631 want to merge the empty entries following after it. */
1633 /* Loop until non-empty entry is found, starting from the current entry.
1634 After the loop, next_addr points to the next non-empty entry. */
1635 next = entry;
1636 while (be32toh(next->type) == CBFS_TYPE_DELETED ||
1637 be32toh(next->type) == CBFS_TYPE_NULL) {
1638 next = cbfs_find_next_entry(image, next);
1639 if (!next)
1640 break;
1641 next_addr = cbfs_get_entry_addr(image, next);
1642 if (!cbfs_is_valid_entry(image, next))
1643 /* 'next' could be the end of cbfs */
1644 break;
1647 if (!next_addr)
1648 /* Nothing to empty */
1649 return 0;
1651 /* We can return here if we find only a single empty entry.
1652 For simplicity, we just proceed (and make it empty again). */
1654 /* We're creating one empty entry for combined empty spaces */
1655 uint32_t addr = cbfs_get_entry_addr(image, entry);
1656 size_t len = next_addr - addr - cbfs_calculate_file_header_size("");
1657 DEBUG("join_empty_entry: [0x%x, 0x%x) len=%zu\n", addr, next_addr, len);
1658 return cbfs_create_empty_entry(entry, CBFS_TYPE_NULL, len, "");
1661 int cbfs_legacy_walk(struct cbfs_image *image, cbfs_entry_callback callback,
1662 void *arg)
1664 int count = 0;
1665 struct cbfs_file *entry;
1666 for (entry = cbfs_find_first_entry(image);
1667 entry && cbfs_is_valid_entry(image, entry);
1668 entry = cbfs_find_next_entry(image, entry)) {
1669 count ++;
1670 if (callback(image, entry, arg) != 0)
1671 break;
1673 return count;
1676 static int cbfs_header_valid(struct cbfs_header *header)
1678 if ((be32toh(header->magic) == CBFS_HEADER_MAGIC) &&
1679 ((be32toh(header->version) == CBFS_HEADER_VERSION1) ||
1680 (be32toh(header->version) == CBFS_HEADER_VERSION2)) &&
1681 (be32toh(header->offset) < be32toh(header->romsize)))
1682 return 1;
1683 return 0;
1686 struct cbfs_header *cbfs_find_header(char *data, size_t size,
1687 uint32_t forced_offset)
1689 size_t offset;
1690 int found = 0;
1691 int32_t rel_offset;
1692 struct cbfs_header *header, *result = NULL;
1694 if (forced_offset < (size - sizeof(struct cbfs_header))) {
1695 /* Check if the forced header is valid. */
1696 header = (struct cbfs_header *)(data + forced_offset);
1697 if (cbfs_header_valid(header))
1698 return header;
1699 return NULL;
1702 // Try finding relative offset of master header at end of file first.
1703 rel_offset = *(int32_t *)(data + size - sizeof(int32_t));
1704 offset = size + rel_offset;
1705 DEBUG("relative offset: %#zx(-%#zx), offset: %#zx\n",
1706 (size_t)rel_offset, (size_t)-rel_offset, offset);
1708 if (offset >= size - sizeof(*header) ||
1709 !cbfs_header_valid((struct cbfs_header *)(data + offset))) {
1710 // Some use cases append non-CBFS data to the end of the ROM.
1711 DEBUG("relative offset seems wrong, scanning whole image...\n");
1712 offset = 0;
1715 for (; offset + sizeof(*header) < size; offset++) {
1716 header = (struct cbfs_header *)(data + offset);
1717 if (!cbfs_header_valid(header))
1718 continue;
1719 if (!found++)
1720 result = header;
1722 if (found > 1)
1723 // Top-aligned images usually have a working relative offset
1724 // field, so this is more likely to happen on bottom-aligned
1725 // ones (where the first header is the "outermost" one)
1726 WARN("Multiple (%d) CBFS headers found, using the first one.\n",
1727 found);
1728 return result;
1732 struct cbfs_file *cbfs_find_first_entry(struct cbfs_image *image)
1734 assert(image);
1735 if (image->has_header)
1736 /* header.offset is relative to start of flash, not
1737 * start of region, so use it with the full image.
1739 return (struct cbfs_file *)
1740 (buffer_get_original_backing(&image->buffer) +
1741 image->header.offset);
1742 else
1743 return (struct cbfs_file *)buffer_get(&image->buffer);
1746 struct cbfs_file *cbfs_find_next_entry(struct cbfs_image *image,
1747 struct cbfs_file *entry)
1749 uint32_t addr = cbfs_get_entry_addr(image, entry);
1750 int align = image->has_header ? image->header.align : CBFS_ALIGNMENT;
1751 assert(entry && cbfs_is_valid_entry(image, entry));
1752 addr += be32toh(entry->offset) + be32toh(entry->len);
1753 addr = align_up(addr, align);
1754 return (struct cbfs_file *)(image->buffer.data + addr);
1757 uint32_t cbfs_get_entry_addr(struct cbfs_image *image, struct cbfs_file *entry)
1759 assert(image && image->buffer.data && entry);
1760 return (int32_t)((char *)entry - image->buffer.data);
1763 int cbfs_is_valid_cbfs(struct cbfs_image *image)
1765 return buffer_check_magic(&image->buffer, CBFS_FILE_MAGIC,
1766 strlen(CBFS_FILE_MAGIC));
1769 int cbfs_is_legacy_cbfs(struct cbfs_image *image)
1771 return image->has_header;
1774 int cbfs_is_valid_entry(struct cbfs_image *image, struct cbfs_file *entry)
1776 uint32_t offset = cbfs_get_entry_addr(image, entry);
1778 if (offset >= image->buffer.size)
1779 return 0;
1781 struct buffer entry_data;
1782 buffer_clone(&entry_data, &image->buffer);
1783 buffer_seek(&entry_data, offset);
1784 return buffer_check_magic(&entry_data, CBFS_FILE_MAGIC,
1785 strlen(CBFS_FILE_MAGIC));
1788 struct cbfs_file *cbfs_create_file_header(int type,
1789 size_t len, const char *name)
1791 size_t header_size = cbfs_calculate_file_header_size(name);
1792 if (header_size > CBFS_METADATA_MAX_SIZE) {
1793 ERROR("'%s' name too long to fit in CBFS header\n", name);
1794 return NULL;
1797 struct cbfs_file *entry = malloc(CBFS_METADATA_MAX_SIZE);
1798 memset(entry, CBFS_CONTENT_DEFAULT_VALUE, CBFS_METADATA_MAX_SIZE);
1799 memcpy(entry->magic, CBFS_FILE_MAGIC, sizeof(entry->magic));
1800 entry->type = htobe32(type);
1801 entry->len = htobe32(len);
1802 entry->attributes_offset = 0;
1803 entry->offset = htobe32(header_size);
1804 memset(entry->filename, 0, be32toh(entry->offset) - sizeof(*entry));
1805 strcpy(entry->filename, name);
1806 return entry;
1809 int cbfs_create_empty_entry(struct cbfs_file *entry, int type,
1810 size_t len, const char *name)
1812 struct cbfs_file *tmp = cbfs_create_file_header(type, len, name);
1813 if (!tmp)
1814 return -1;
1816 memcpy(entry, tmp, be32toh(tmp->offset));
1817 free(tmp);
1818 memset(CBFS_SUBHEADER(entry), CBFS_CONTENT_DEFAULT_VALUE, len);
1819 return 0;
1822 struct cbfs_file_attribute *cbfs_file_first_attr(struct cbfs_file *file)
1824 /* attributes_offset should be 0 when there is no attribute, but all
1825 * values that point into the cbfs_file header are invalid, too. */
1826 if (be32toh(file->attributes_offset) <= sizeof(*file))
1827 return NULL;
1829 /* There needs to be enough space for the file header and one
1830 * attribute header for this to make sense. */
1831 if (be32toh(file->offset) <=
1832 sizeof(*file) + sizeof(struct cbfs_file_attribute))
1833 return NULL;
1835 return (struct cbfs_file_attribute *)
1836 (((uint8_t *)file) + be32toh(file->attributes_offset));
1839 struct cbfs_file_attribute *cbfs_file_next_attr(struct cbfs_file *file,
1840 struct cbfs_file_attribute *attr)
1842 /* ex falso sequitur quodlibet */
1843 if (attr == NULL)
1844 return NULL;
1846 /* Is there enough space for another attribute? */
1847 if ((uint8_t *)attr + be32toh(attr->len) +
1848 sizeof(struct cbfs_file_attribute) >
1849 (uint8_t *)file + be32toh(file->offset))
1850 return NULL;
1852 struct cbfs_file_attribute *next = (struct cbfs_file_attribute *)
1853 (((uint8_t *)attr) + be32toh(attr->len));
1854 /* If any, "unused" attributes must come last. */
1855 if (be32toh(next->tag) == CBFS_FILE_ATTR_TAG_UNUSED)
1856 return NULL;
1857 if (be32toh(next->tag) == CBFS_FILE_ATTR_TAG_UNUSED2)
1858 return NULL;
1860 return next;
1863 struct cbfs_file_attribute *cbfs_add_file_attr(struct cbfs_file *header,
1864 uint32_t tag,
1865 uint32_t size)
1867 assert(IS_ALIGNED(size, CBFS_ATTRIBUTE_ALIGN));
1868 struct cbfs_file_attribute *attr, *next;
1869 next = cbfs_file_first_attr(header);
1870 do {
1871 attr = next;
1872 next = cbfs_file_next_attr(header, attr);
1873 } while (next != NULL);
1874 uint32_t header_size = be32toh(header->offset) + size;
1875 if (header_size > CBFS_METADATA_MAX_SIZE) {
1876 DEBUG("exceeding allocated space for cbfs_file headers");
1877 return NULL;
1879 /* attr points to the last valid attribute now.
1880 * If NULL, we have to create the first one. */
1881 if (attr == NULL) {
1882 /* New attributes start where the header ends.
1883 * header->offset is later set to accommodate the
1884 * additional structure.
1885 * No endianness translation necessary here, because both
1886 * fields are encoded the same way. */
1887 header->attributes_offset = header->offset;
1888 attr = (struct cbfs_file_attribute *)
1889 (((uint8_t *)header) +
1890 be32toh(header->attributes_offset));
1891 } else {
1892 attr = (struct cbfs_file_attribute *)
1893 (((uint8_t *)attr) +
1894 be32toh(attr->len));
1896 header->offset = htobe32(header_size);
1897 /* Attributes are expected to be small (much smaller than a flash page)
1898 and not really meant to be overwritten in-place. To avoid surprising
1899 values in reserved fields of attribute structures, initialize them to
1900 0, not 0xff. */
1901 memset(attr, 0, size);
1902 attr->tag = htobe32(tag);
1903 attr->len = htobe32(size);
1904 return attr;
1907 int cbfs_add_file_hash(struct cbfs_file *header, struct buffer *buffer,
1908 enum vb2_hash_algorithm alg)
1910 if (!vb2_digest_size(alg))
1911 return -1;
1913 struct cbfs_file_attr_hash *attr =
1914 (struct cbfs_file_attr_hash *)cbfs_add_file_attr(header,
1915 CBFS_FILE_ATTR_TAG_HASH, cbfs_file_attr_hash_size(alg));
1917 if (attr == NULL)
1918 return -1;
1920 if (vb2_hash_calculate(false, buffer_get(buffer), buffer_size(buffer),
1921 alg, &attr->hash) != VB2_SUCCESS)
1922 return -1;
1924 return 0;
1927 /* Finds a place to hold whole data in same memory page. */
1928 static int is_in_same_page(uint32_t start, uint32_t size, uint32_t page)
1930 if (!page)
1931 return 1;
1932 return (start / page) == (start + size - 1) / page;
1935 /* Tests if data can fit in a range by given offset:
1936 * start ->| metadata_size | offset (+ size) |<- end
1938 static int is_in_range(size_t start, size_t end, size_t metadata_size,
1939 size_t offset, size_t size)
1941 return (offset >= start + metadata_size && offset + size <= end);
1944 static size_t absolute_align(const struct cbfs_image *image, size_t val,
1945 size_t align)
1947 const size_t region_offset = buffer_offset(&image->buffer);
1948 /* To perform alignment on absolute address, take the region offset */
1949 /* of the image into account. */
1950 return align_up(val + region_offset, align) - region_offset;
1954 int32_t cbfs_locate_entry(struct cbfs_image *image, size_t size,
1955 size_t page_size, size_t align, size_t metadata_size)
1957 struct cbfs_file *entry;
1958 size_t need_len;
1959 size_t addr, addr_next, addr2, addr3, offset;
1961 /* Default values: allow fitting anywhere in ROM. */
1962 if (!page_size)
1963 page_size = image->has_header ? image->header.romsize :
1964 image->buffer.size;
1965 if (!align)
1966 align = 1;
1968 if (size > page_size)
1969 ERROR("Input file size (%zd) greater than page size (%zd).\n",
1970 size, page_size);
1972 size_t image_align = image->has_header ? image->header.align :
1973 CBFS_ALIGNMENT;
1974 if (page_size % image_align)
1975 WARN("%s: Page size (%#zx) not aligned with CBFS image (%#zx).\n",
1976 __func__, page_size, image_align);
1978 need_len = metadata_size + size;
1980 // Merge empty entries to build get max available space.
1981 cbfs_legacy_walk(image, cbfs_merge_empty_entry, NULL);
1983 /* Three cases of content location on memory page:
1984 * case 1.
1985 * | PAGE 1 | PAGE 2 |
1986 * | <header><content>| Fit. Return start of content.
1988 * case 2.
1989 * | PAGE 1 | PAGE 2 |
1990 * | <header><content> | Fits when we shift content to align
1991 * shift-> | <header>|<content> | at starting of PAGE 2.
1993 * case 3. (large content filling whole page)
1994 * | PAGE 1 | PAGE 2 | PAGE 3 |
1995 * | <header>< content > | Can't fit. If we shift content to
1996 * |trial-> <header>< content > | PAGE 2, header can't fit in free
1997 * | shift-> <header><content> space, so we must use PAGE 3.
1999 * The returned address can be then used as "base-address" (-b) in add-*
2000 * commands (will be re-calculated and positioned by cbfs_add_entry_at).
2001 * For stage targets, the address is also used to re-link stage before
2002 * being added into CBFS.
2004 for (entry = cbfs_find_first_entry(image);
2005 entry && cbfs_is_valid_entry(image, entry);
2006 entry = cbfs_find_next_entry(image, entry)) {
2008 uint32_t type = be32toh(entry->type);
2009 if (type != CBFS_TYPE_NULL)
2010 continue;
2012 addr = cbfs_get_entry_addr(image, entry);
2013 addr_next = cbfs_get_entry_addr(image, cbfs_find_next_entry(
2014 image, entry));
2015 if (addr_next - addr < need_len)
2016 continue;
2018 offset = absolute_align(image, addr + metadata_size, align);
2019 if (is_in_same_page(offset, size, page_size) &&
2020 is_in_range(addr, addr_next, metadata_size, offset, size)) {
2021 DEBUG("cbfs_locate_entry: FIT (PAGE1).");
2022 return offset;
2025 addr2 = align_up(addr, page_size);
2026 offset = absolute_align(image, addr2, align);
2027 if (is_in_range(addr, addr_next, metadata_size, offset, size)) {
2028 DEBUG("cbfs_locate_entry: OVERLAP (PAGE2).");
2029 return offset;
2032 /* Assume page_size >= metadata_size so adding one page will
2033 * definitely provide the space for header. */
2034 assert(page_size >= metadata_size);
2035 addr3 = addr2 + page_size;
2036 offset = absolute_align(image, addr3, align);
2037 if (is_in_range(addr, addr_next, metadata_size, offset, size)) {
2038 DEBUG("cbfs_locate_entry: OVERLAP+ (PAGE3).");
2039 return offset;
2042 return -1;