1 /* Generate random permutations.
3 Copyright (C) 2006-2024 Free Software Foundation, Inc.
5 This program is free software: you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation, either version 3 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program. If not, see <https://www.gnu.org/licenses/>. */
18 /* Written by Paul Eggert. */
26 #include <stdckdint.h>
30 #include "attribute.h"
34 /* Return an upper bound on the number of random bytes needed to
35 generate the first H elements of a random permutation of N
36 elements. H must not exceed N. */
39 randperm_bound (size_t h
, size_t n
)
41 /* Upper bound on number of bits needed to generate the first number
42 of the permutation. */
43 unsigned int lg_n
= stdc_bit_width (n
) + 1;
45 /* Upper bound on number of bits needed to generate the first H elements. */
47 if (ckd_mul (&ar
, lg_n
, h
))
50 /* Convert the bit count to a byte count. */
51 size_t bound
= ar
/ CHAR_BIT
+ (ar
% CHAR_BIT
!= 0);
56 /* Swap elements I and J in array V. */
59 swap (size_t *v
, size_t i
, size_t j
)
66 /* Structures and functions for a sparse_map abstract data type that's
67 used to effectively swap elements I and J in array V like swap(),
68 but in a more memory efficient manner (when the number of permutations
69 performed is significantly less than the size of the input). */
78 sparse_hash_ (void const *x
, size_t table_size
)
80 struct sparse_ent_
const *ent
= x
;
81 return ent
->index
% table_size
;
85 sparse_cmp_ (void const *x
, void const *y
)
87 struct sparse_ent_
const *ent1
= x
;
88 struct sparse_ent_
const *ent2
= y
;
89 return ent1
->index
== ent2
->index
;
92 typedef Hash_table sparse_map
;
94 /* Initialize the structure for the sparse map,
95 when a best guess as to the number of entries
96 specified with SIZE_HINT. */
99 sparse_new (size_t size_hint
)
101 return hash_initialize (size_hint
, nullptr, sparse_hash_
, sparse_cmp_
, free
);
104 /* Swap the values for I and J. If a value is not already present
105 then assume it's equal to the index. Update the value for
106 index I in array V. */
109 sparse_swap (sparse_map
*sv
, size_t *v
, size_t i
, size_t j
)
111 struct sparse_ent_
*v1
= hash_remove (sv
, &(struct sparse_ent_
) {i
,0});
112 struct sparse_ent_
*v2
= hash_remove (sv
, &(struct sparse_ent_
) {j
,0});
114 /* FIXME: reduce the frequency of these mallocs. */
117 v1
= xmalloc (sizeof *v1
);
118 v1
->index
= v1
->val
= i
;
122 v2
= xmalloc (sizeof *v2
);
123 v2
->index
= v2
->val
= j
;
129 if (!hash_insert (sv
, v1
))
131 if (!hash_insert (sv
, v2
))
138 sparse_free (sparse_map
*sv
)
144 /* From R, allocate and return a malloc'd array of the first H elements
145 of a random permutation of N elements. H must not exceed N.
146 Return nullptr if H is zero. */
149 randperm_new (struct randint_source
*r
, size_t h
, size_t n
)
160 v
= xmalloc (sizeof *v
);
161 v
[0] = randint_choose (r
, n
);
166 /* The algorithm is essentially the same in both
167 the sparse and non sparse case. In the sparse case we use
168 a hash to implement sparse storage for the set of n numbers
169 we're shuffling. When to use the sparse method was
170 determined with the help of this script:
173 for n in $(seq 2 32); do
174 for h in $(seq 2 32); do
175 test $h -gt $n && continue
177 test $s = o && shuf=shuf || shuf=./shuf
178 num=$(env time -f "$s:${h},${n} = %e,%M" \
179 $shuf -i0-$((2**$n-2)) -n$((2**$h-2)) | wc -l)
180 test $num = $((2**$h-2)) || echo "$s:${h},${n} = failed" >&2
185 This showed that if sparseness = n/h, then:
187 sparseness = 128 => .125 mem used, and about same speed
188 sparseness = 64 => .25 mem used, but 1.5 times slower
189 sparseness = 32 => .5 mem used, but 2 times slower
191 Also the memory usage was only significant when n > 128Ki
193 bool sparse
= (n
>= (128 * 1024)) && (n
/ h
>= 32);
200 sv
= sparse_new (h
* 2);
203 v
= xnmalloc (h
, sizeof *v
);
207 sv
= nullptr; /* To placate GCC's -Wuninitialized. */
208 v
= xnmalloc (n
, sizeof *v
);
209 for (i
= 0; i
< n
; i
++)
213 for (i
= 0; i
< h
; i
++)
215 size_t j
= i
+ randint_choose (r
, n
- i
);
217 sparse_swap (sv
, v
, i
, j
);
225 v
= xnrealloc (v
, h
, sizeof *v
);