1 /* Extended regular expression matching and search library,
3 (Implements POSIX draft P1003.2/D11.2, except for some of the
4 internationalization features.)
6 Copyright (C) 1993, 1994, 1995, 1996, 1997 Free Software Foundation, Inc.
8 the C library, however. The master source lives in /gd/gnu/lib.
10 NOTE: The canonical source of this file is maintained with the
11 GNU C Library. Bugs can be reported to bug-glibc@prep.ai.mit.edu.
13 This program is free software; you can redistribute it and/or modify it
14 under the terms of the GNU General Public License as published by the
15 Free Software Foundation; either version 2, or (at your option) any
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software Foundation,
25 Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
27 /* AIX requires this to be the first thing in the file. */
28 #if defined (_AIX) && !defined (REGEX_MALLOC)
39 #if defined(STDC_HEADERS) && !defined(emacs)
42 /* We need this for `regex.h', and perhaps for the Emacs include files. */
43 #include <sys/types.h>
46 /* For platform which support the ISO C amendement 1 functionality we
47 support user defined character classes. */
48 #if defined _LIBC || (defined HAVE_WCTYPE_H && defined HAVE_WCHAR_H)
53 /* This is for other GNU distributions with internationalized messages. */
54 #if HAVE_LIBINTL_H || defined (_LIBC)
57 # define gettext(msgid) (msgid)
61 /* This define is so xgettext can find the internationalizable
63 #define gettext_noop(String) String
66 /* The `emacs' switch turns on certain matching commands
67 that make sense only in Emacs. */
76 /* If we are not linking with Emacs proper,
77 we can't use the relocating allocator
78 even if config.h says that we can. */
81 #if defined (STDC_HEADERS) || defined (_LIBC)
88 /* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
89 If nothing else has been done, use the method below. */
90 #ifdef INHIBIT_STRING_HEADER
91 #if !(defined (HAVE_BZERO) && defined (HAVE_BCOPY))
92 #if !defined (bzero) && !defined (bcopy)
93 #undef INHIBIT_STRING_HEADER
98 /* This is the normal way of making sure we have a bcopy and a bzero.
99 This is used in most programs--a few other programs avoid this
100 by defining INHIBIT_STRING_HEADER. */
101 #ifndef INHIBIT_STRING_HEADER
102 #if defined (HAVE_STRING_H) || defined (STDC_HEADERS) || defined (_LIBC)
105 #define bcmp(s1, s2, n) memcmp ((s1), (s2), (n))
108 #define bcopy(s, d, n) memcpy ((d), (s), (n))
111 #define bzero(s, n) memset ((s), 0, (n))
118 /* Define the syntax stuff for \<, \>, etc. */
120 /* This must be nonzero for the wordchar and notwordchar pattern
121 commands in re_match_2. */
126 #ifdef SWITCH_ENUM_BUG
127 #define SWITCH_ENUM_CAST(x) ((int)(x))
129 #define SWITCH_ENUM_CAST(x) (x)
134 extern char *re_syntax_table
;
136 #else /* not SYNTAX_TABLE */
138 /* How many characters in the character set. */
139 #define CHAR_SET_SIZE 256
141 static char re_syntax_table
[CHAR_SET_SIZE
];
152 bzero (re_syntax_table
, sizeof re_syntax_table
);
154 for (c
= 'a'; c
<= 'z'; c
++)
155 re_syntax_table
[c
] = Sword
;
157 for (c
= 'A'; c
<= 'Z'; c
++)
158 re_syntax_table
[c
] = Sword
;
160 for (c
= '0'; c
<= '9'; c
++)
161 re_syntax_table
[c
] = Sword
;
163 re_syntax_table
['_'] = Sword
;
168 #endif /* not SYNTAX_TABLE */
170 #define SYNTAX(c) re_syntax_table[c]
172 #endif /* not emacs */
174 /* Get the interface, including the syntax bits. */
177 /* isalpha etc. are used for the character classes. */
180 /* Jim Meyering writes:
182 "... Some ctype macros are valid only for character codes that
183 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
184 using /bin/cc or gcc but without giving an ansi option). So, all
185 ctype uses should be through macros like ISPRINT... If
186 STDC_HEADERS is defined, then autoconf has verified that the ctype
187 macros don't need to be guarded with references to isascii. ...
188 Defining isascii to 1 should let any compiler worth its salt
189 eliminate the && through constant folding." */
191 #if defined (STDC_HEADERS) || (!defined (isascii) && !defined (HAVE_ISASCII))
194 #define ISASCII(c) isascii(c)
198 #define ISBLANK(c) (ISASCII (c) && isblank (c))
200 #define ISBLANK(c) ((c) == ' ' || (c) == '\t')
203 #define ISGRAPH(c) (ISASCII (c) && isgraph (c))
205 #define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
208 #define ISPRINT(c) (ISASCII (c) && isprint (c))
209 #define ISDIGIT(c) (ISASCII (c) && isdigit (c))
210 #define ISALNUM(c) (ISASCII (c) && isalnum (c))
211 #define ISALPHA(c) (ISASCII (c) && isalpha (c))
212 #define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
213 #define ISLOWER(c) (ISASCII (c) && islower (c))
214 #define ISPUNCT(c) (ISASCII (c) && ispunct (c))
215 #define ISSPACE(c) (ISASCII (c) && isspace (c))
216 #define ISUPPER(c) (ISASCII (c) && isupper (c))
217 #define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
220 #define NULL (void *)0
223 /* We remove any previous definition of `SIGN_EXTEND_CHAR',
224 since ours (we hope) works properly with all combinations of
225 machines, compilers, `char' and `unsigned char' argument types.
226 (Per Bothner suggested the basic approach.) */
227 #undef SIGN_EXTEND_CHAR
229 #define SIGN_EXTEND_CHAR(c) ((signed char) (c))
230 #else /* not __STDC__ */
231 /* As in Harbison and Steele. */
232 #define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
235 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
236 use `alloca' instead of `malloc'. This is because using malloc in
237 re_search* or re_match* could cause memory leaks when C-g is used in
238 Emacs; also, malloc is slower and causes storage fragmentation. On
239 the other hand, malloc is more portable, and easier to debug.
241 Because we sometimes use alloca, some routines have to be macros,
242 not functions -- `alloca'-allocated space disappears at the end of the
243 function it is called in. */
247 #define REGEX_ALLOCATE malloc
248 #define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
249 #define REGEX_FREE free
251 #else /* not REGEX_MALLOC */
253 /* Emacs already defines alloca, sometimes. */
256 /* Make alloca work the best possible way. */
258 #define alloca __builtin_alloca
259 #else /* not __GNUC__ */
262 #else /* not __GNUC__ or HAVE_ALLOCA_H */
263 #if 0 /* It is a bad idea to declare alloca. We always cast the result. */
264 #ifndef _AIX /* Already did AIX, up at the top. */
266 #endif /* not _AIX */
268 #endif /* not HAVE_ALLOCA_H */
269 #endif /* not __GNUC__ */
271 #endif /* not alloca */
273 #define REGEX_ALLOCATE alloca
275 /* Assumes a `char *destination' variable. */
276 #define REGEX_REALLOCATE(source, osize, nsize) \
277 (destination = (char *) alloca (nsize), \
278 bcopy (source, destination, osize), \
281 /* No need to do anything to free, after alloca. */
282 #define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
284 #endif /* not REGEX_MALLOC */
286 /* Define how to allocate the failure stack. */
288 #if defined (REL_ALLOC) && defined (REGEX_MALLOC)
290 #define REGEX_ALLOCATE_STACK(size) \
291 r_alloc (&failure_stack_ptr, (size))
292 #define REGEX_REALLOCATE_STACK(source, osize, nsize) \
293 r_re_alloc (&failure_stack_ptr, (nsize))
294 #define REGEX_FREE_STACK(ptr) \
295 r_alloc_free (&failure_stack_ptr)
297 #else /* not using relocating allocator */
301 #define REGEX_ALLOCATE_STACK malloc
302 #define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
303 #define REGEX_FREE_STACK free
305 #else /* not REGEX_MALLOC */
307 #define REGEX_ALLOCATE_STACK alloca
309 #define REGEX_REALLOCATE_STACK(source, osize, nsize) \
310 REGEX_REALLOCATE (source, osize, nsize)
311 /* No need to explicitly free anything. */
312 #define REGEX_FREE_STACK(arg)
314 #endif /* not REGEX_MALLOC */
315 #endif /* not using relocating allocator */
318 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
319 `string1' or just past its end. This works if PTR is NULL, which is
321 #define FIRST_STRING_P(ptr) \
322 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
324 /* (Re)Allocate N items of type T using malloc, or fail. */
325 #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
326 #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
327 #define RETALLOC_IF(addr, n, t) \
328 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
329 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
331 #define BYTEWIDTH 8 /* In bits. */
333 #define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
337 #define MAX(a, b) ((a) > (b) ? (a) : (b))
338 #define MIN(a, b) ((a) < (b) ? (a) : (b))
340 typedef char boolean
;
344 static int re_match_2_internal ();
346 /* These are the command codes that appear in compiled regular
347 expressions. Some opcodes are followed by argument bytes. A
348 command code can specify any interpretation whatsoever for its
349 arguments. Zero bytes may appear in the compiled regular expression. */
355 /* Succeed right away--no more backtracking. */
358 /* Followed by one byte giving n, then by n literal bytes. */
361 /* Matches any (more or less) character. */
364 /* Matches any one char belonging to specified set. First
365 following byte is number of bitmap bytes. Then come bytes
366 for a bitmap saying which chars are in. Bits in each byte
367 are ordered low-bit-first. A character is in the set if its
368 bit is 1. A character too large to have a bit in the map is
369 automatically not in the set. */
372 /* Same parameters as charset, but match any character that is
373 not one of those specified. */
376 /* Start remembering the text that is matched, for storing in a
377 register. Followed by one byte with the register number, in
378 the range 0 to one less than the pattern buffer's re_nsub
379 field. Then followed by one byte with the number of groups
380 inner to this one. (This last has to be part of the
381 start_memory only because we need it in the on_failure_jump
385 /* Stop remembering the text that is matched and store it in a
386 memory register. Followed by one byte with the register
387 number, in the range 0 to one less than `re_nsub' in the
388 pattern buffer, and one byte with the number of inner groups,
389 just like `start_memory'. (We need the number of inner
390 groups here because we don't have any easy way of finding the
391 corresponding start_memory when we're at a stop_memory.) */
394 /* Match a duplicate of something remembered. Followed by one
395 byte containing the register number. */
398 /* Fail unless at beginning of line. */
401 /* Fail unless at end of line. */
404 /* Succeeds if at beginning of buffer (if emacs) or at beginning
405 of string to be matched (if not). */
408 /* Analogously, for end of buffer/string. */
411 /* Followed by two byte relative address to which to jump. */
414 /* Same as jump, but marks the end of an alternative. */
417 /* Followed by two-byte relative address of place to resume at
418 in case of failure. */
421 /* Like on_failure_jump, but pushes a placeholder instead of the
422 current string position when executed. */
423 on_failure_keep_string_jump
,
425 /* Throw away latest failure point and then jump to following
426 two-byte relative address. */
429 /* Change to pop_failure_jump if know won't have to backtrack to
430 match; otherwise change to jump. This is used to jump
431 back to the beginning of a repeat. If what follows this jump
432 clearly won't match what the repeat does, such that we can be
433 sure that there is no use backtracking out of repetitions
434 already matched, then we change it to a pop_failure_jump.
435 Followed by two-byte address. */
438 /* Jump to following two-byte address, and push a dummy failure
439 point. This failure point will be thrown away if an attempt
440 is made to use it for a failure. A `+' construct makes this
441 before the first repeat. Also used as an intermediary kind
442 of jump when compiling an alternative. */
445 /* Push a dummy failure point and continue. Used at the end of
449 /* Followed by two-byte relative address and two-byte number n.
450 After matching N times, jump to the address upon failure. */
453 /* Followed by two-byte relative address, and two-byte number n.
454 Jump to the address N times, then fail. */
457 /* Set the following two-byte relative address to the
458 subsequent two-byte number. The address *includes* the two
462 wordchar
, /* Matches any word-constituent character. */
463 notwordchar
, /* Matches any char that is not a word-constituent. */
465 wordbeg
, /* Succeeds if at word beginning. */
466 wordend
, /* Succeeds if at word end. */
468 wordbound
, /* Succeeds if at a word boundary. */
469 notwordbound
/* Succeeds if not at a word boundary. */
472 ,before_dot
, /* Succeeds if before point. */
473 at_dot
, /* Succeeds if at point. */
474 after_dot
, /* Succeeds if after point. */
476 /* Matches any character whose syntax is specified. Followed by
477 a byte which contains a syntax code, e.g., Sword. */
480 /* Matches any character whose syntax is not that specified. */
485 /* Common operations on the compiled pattern. */
487 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */
489 #define STORE_NUMBER(destination, number) \
491 (destination)[0] = (number) & 0377; \
492 (destination)[1] = (number) >> 8; \
495 /* Same as STORE_NUMBER, except increment DESTINATION to
496 the byte after where the number is stored. Therefore, DESTINATION
497 must be an lvalue. */
499 #define STORE_NUMBER_AND_INCR(destination, number) \
501 STORE_NUMBER (destination, number); \
502 (destination) += 2; \
505 /* Put into DESTINATION a number stored in two contiguous bytes starting
508 #define EXTRACT_NUMBER(destination, source) \
510 (destination) = *(source) & 0377; \
511 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
515 static void extract_number
_RE_ARGS ((int *dest
, unsigned char *source
));
517 extract_number (dest
, source
)
519 unsigned char *source
;
521 int temp
= SIGN_EXTEND_CHAR (*(source
+ 1));
522 *dest
= *source
& 0377;
526 #ifndef EXTRACT_MACROS /* To debug the macros. */
527 #undef EXTRACT_NUMBER
528 #define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
529 #endif /* not EXTRACT_MACROS */
533 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
534 SOURCE must be an lvalue. */
536 #define EXTRACT_NUMBER_AND_INCR(destination, source) \
538 EXTRACT_NUMBER (destination, source); \
543 static void extract_number_and_incr
_RE_ARGS ((int *destination
,
544 unsigned char **source
));
546 extract_number_and_incr (destination
, source
)
548 unsigned char **source
;
550 extract_number (destination
, *source
);
554 #ifndef EXTRACT_MACROS
555 #undef EXTRACT_NUMBER_AND_INCR
556 #define EXTRACT_NUMBER_AND_INCR(dest, src) \
557 extract_number_and_incr (&dest, &src)
558 #endif /* not EXTRACT_MACROS */
562 /* If DEBUG is defined, Regex prints many voluminous messages about what
563 it is doing (if the variable `debug' is nonzero). If linked with the
564 main program in `iregex.c', you can enter patterns and strings
565 interactively. And if linked with the main program in `main.c' and
566 the other test files, you can run the already-written tests. */
570 /* We use standard I/O for debugging. */
573 /* It is useful to test things that ``must'' be true when debugging. */
576 static int debug
= 0;
578 #define DEBUG_STATEMENT(e) e
579 #define DEBUG_PRINT1(x) if (debug) printf (x)
580 #define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
581 #define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
582 #define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
583 #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
584 if (debug) print_partial_compiled_pattern (s, e)
585 #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
586 if (debug) print_double_string (w, s1, sz1, s2, sz2)
589 /* Print the fastmap in human-readable form. */
592 print_fastmap (fastmap
)
595 unsigned was_a_range
= 0;
598 while (i
< (1 << BYTEWIDTH
))
604 while (i
< (1 << BYTEWIDTH
) && fastmap
[i
])
620 /* Print a compiled pattern string in human-readable form, starting at
621 the START pointer into it and ending just before the pointer END. */
624 print_partial_compiled_pattern (start
, end
)
625 unsigned char *start
;
630 unsigned char *p
= start
;
631 unsigned char *pend
= end
;
639 /* Loop over pattern commands. */
642 printf ("%d:\t", p
- start
);
644 switch ((re_opcode_t
) *p
++)
652 printf ("/exactn/%d", mcnt
);
663 printf ("/start_memory/%d/%d", mcnt
, *p
++);
668 printf ("/stop_memory/%d/%d", mcnt
, *p
++);
672 printf ("/duplicate/%d", *p
++);
682 register int c
, last
= -100;
683 register int in_range
= 0;
685 printf ("/charset [%s",
686 (re_opcode_t
) *(p
- 1) == charset_not
? "^" : "");
688 assert (p
+ *p
< pend
);
690 for (c
= 0; c
< 256; c
++)
692 && (p
[1 + (c
/8)] & (1 << (c
% 8))))
694 /* Are we starting a range? */
695 if (last
+ 1 == c
&& ! in_range
)
700 /* Have we broken a range? */
701 else if (last
+ 1 != c
&& in_range
)
730 case on_failure_jump
:
731 extract_number_and_incr (&mcnt
, &p
);
732 printf ("/on_failure_jump to %d", p
+ mcnt
- start
);
735 case on_failure_keep_string_jump
:
736 extract_number_and_incr (&mcnt
, &p
);
737 printf ("/on_failure_keep_string_jump to %d", p
+ mcnt
- start
);
740 case dummy_failure_jump
:
741 extract_number_and_incr (&mcnt
, &p
);
742 printf ("/dummy_failure_jump to %d", p
+ mcnt
- start
);
745 case push_dummy_failure
:
746 printf ("/push_dummy_failure");
750 extract_number_and_incr (&mcnt
, &p
);
751 printf ("/maybe_pop_jump to %d", p
+ mcnt
- start
);
754 case pop_failure_jump
:
755 extract_number_and_incr (&mcnt
, &p
);
756 printf ("/pop_failure_jump to %d", p
+ mcnt
- start
);
760 extract_number_and_incr (&mcnt
, &p
);
761 printf ("/jump_past_alt to %d", p
+ mcnt
- start
);
765 extract_number_and_incr (&mcnt
, &p
);
766 printf ("/jump to %d", p
+ mcnt
- start
);
770 extract_number_and_incr (&mcnt
, &p
);
772 extract_number_and_incr (&mcnt2
, &p
);
773 printf ("/succeed_n to %d, %d times", p1
- start
, mcnt2
);
777 extract_number_and_incr (&mcnt
, &p
);
779 extract_number_and_incr (&mcnt2
, &p
);
780 printf ("/jump_n to %d, %d times", p1
- start
, mcnt2
);
784 extract_number_and_incr (&mcnt
, &p
);
786 extract_number_and_incr (&mcnt2
, &p
);
787 printf ("/set_number_at location %d to %d", p1
- start
, mcnt2
);
791 printf ("/wordbound");
795 printf ("/notwordbound");
807 printf ("/before_dot");
815 printf ("/after_dot");
819 printf ("/syntaxspec");
821 printf ("/%d", mcnt
);
825 printf ("/notsyntaxspec");
827 printf ("/%d", mcnt
);
832 printf ("/wordchar");
836 printf ("/notwordchar");
848 printf ("?%d", *(p
-1));
854 printf ("%d:\tend of pattern.\n", p
- start
);
859 print_compiled_pattern (bufp
)
860 struct re_pattern_buffer
*bufp
;
862 unsigned char *buffer
= bufp
->buffer
;
864 print_partial_compiled_pattern (buffer
, buffer
+ bufp
->used
);
865 printf ("%ld bytes used/%ld bytes allocated.\n",
866 bufp
->used
, bufp
->allocated
);
868 if (bufp
->fastmap_accurate
&& bufp
->fastmap
)
870 printf ("fastmap: ");
871 print_fastmap (bufp
->fastmap
);
874 printf ("re_nsub: %d\t", bufp
->re_nsub
);
875 printf ("regs_alloc: %d\t", bufp
->regs_allocated
);
876 printf ("can_be_null: %d\t", bufp
->can_be_null
);
877 printf ("newline_anchor: %d\n", bufp
->newline_anchor
);
878 printf ("no_sub: %d\t", bufp
->no_sub
);
879 printf ("not_bol: %d\t", bufp
->not_bol
);
880 printf ("not_eol: %d\t", bufp
->not_eol
);
881 printf ("syntax: %lx\n", bufp
->syntax
);
882 /* Perhaps we should print the translate table? */
887 print_double_string (where
, string1
, size1
, string2
, size2
)
900 if (FIRST_STRING_P (where
))
902 for (this_char
= where
- string1
; this_char
< size1
; this_char
++)
903 putchar (string1
[this_char
]);
908 for (this_char
= where
- string2
; this_char
< size2
; this_char
++)
909 putchar (string2
[this_char
]);
920 #else /* not DEBUG */
925 #define DEBUG_STATEMENT(e)
926 #define DEBUG_PRINT1(x)
927 #define DEBUG_PRINT2(x1, x2)
928 #define DEBUG_PRINT3(x1, x2, x3)
929 #define DEBUG_PRINT4(x1, x2, x3, x4)
930 #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
931 #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
933 #endif /* not DEBUG */
935 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
936 also be assigned to arbitrarily: each pattern buffer stores its own
937 syntax, so it can be changed between regex compilations. */
938 /* This has no initializer because initialized variables in Emacs
939 become read-only after dumping. */
940 reg_syntax_t re_syntax_options
;
943 /* Specify the precise syntax of regexps for compilation. This provides
944 for compatibility for various utilities which historically have
945 different, incompatible syntaxes.
947 The argument SYNTAX is a bit mask comprised of the various bits
948 defined in regex.h. We return the old syntax. */
951 re_set_syntax (syntax
)
954 reg_syntax_t ret
= re_syntax_options
;
956 re_syntax_options
= syntax
;
958 if (syntax
& RE_DEBUG
)
960 else if (debug
) /* was on but now is not */
966 /* This table gives an error message for each of the error codes listed
967 in regex.h. Obviously the order here has to be same as there.
968 POSIX doesn't require that we do anything for REG_NOERROR,
969 but why not be nice? */
971 static const char *re_error_msgid
[] =
973 gettext_noop ("Success"), /* REG_NOERROR */
974 gettext_noop ("No match"), /* REG_NOMATCH */
975 gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
976 gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
977 gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
978 gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
979 gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
980 gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
981 gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
982 gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
983 gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
984 gettext_noop ("Invalid range end"), /* REG_ERANGE */
985 gettext_noop ("Memory exhausted"), /* REG_ESPACE */
986 gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
987 gettext_noop ("Premature end of regular expression"), /* REG_EEND */
988 gettext_noop ("Regular expression too big"), /* REG_ESIZE */
989 gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
992 /* Avoiding alloca during matching, to placate r_alloc. */
994 /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
995 searching and matching functions should not call alloca. On some
996 systems, alloca is implemented in terms of malloc, and if we're
997 using the relocating allocator routines, then malloc could cause a
998 relocation, which might (if the strings being searched are in the
999 ralloc heap) shift the data out from underneath the regexp
1002 Here's another reason to avoid allocation: Emacs
1003 processes input from X in a signal handler; processing X input may
1004 call malloc; if input arrives while a matching routine is calling
1005 malloc, then we're scrod. But Emacs can't just block input while
1006 calling matching routines; then we don't notice interrupts when
1007 they come in. So, Emacs blocks input around all regexp calls
1008 except the matching calls, which it leaves unprotected, in the
1009 faith that they will not malloc. */
1011 /* Normally, this is fine. */
1012 #define MATCH_MAY_ALLOCATE
1014 /* When using GNU C, we are not REALLY using the C alloca, no matter
1015 what config.h may say. So don't take precautions for it. */
1020 /* The match routines may not allocate if (1) they would do it with malloc
1021 and (2) it's not safe for them to use malloc.
1022 Note that if REL_ALLOC is defined, matching would not use malloc for the
1023 failure stack, but we would still use it for the register vectors;
1024 so REL_ALLOC should not affect this. */
1025 #if (defined (C_ALLOCA) || defined (REGEX_MALLOC)) && defined (emacs)
1026 #undef MATCH_MAY_ALLOCATE
1030 /* Failure stack declarations and macros; both re_compile_fastmap and
1031 re_match_2 use a failure stack. These have to be macros because of
1032 REGEX_ALLOCATE_STACK. */
1035 /* Number of failure points for which to initially allocate space
1036 when matching. If this number is exceeded, we allocate more
1037 space, so it is not a hard limit. */
1038 #ifndef INIT_FAILURE_ALLOC
1039 #define INIT_FAILURE_ALLOC 5
1042 /* Roughly the maximum number of failure points on the stack. Would be
1043 exactly that if always used MAX_FAILURE_ITEMS items each time we failed.
1044 This is a variable only so users of regex can assign to it; we never
1045 change it ourselves. */
1049 #if defined (MATCH_MAY_ALLOCATE)
1050 /* 4400 was enough to cause a crash on Alpha OSF/1,
1051 whose default stack limit is 2mb. */
1052 long int re_max_failures
= 4000;
1054 long int re_max_failures
= 2000;
1057 union fail_stack_elt
1059 unsigned char *pointer
;
1063 typedef union fail_stack_elt fail_stack_elt_t
;
1067 fail_stack_elt_t
*stack
;
1068 unsigned long int size
;
1069 unsigned long int avail
; /* Offset of next open position. */
1072 #else /* not INT_IS_16BIT */
1074 #if defined (MATCH_MAY_ALLOCATE)
1075 /* 4400 was enough to cause a crash on Alpha OSF/1,
1076 whose default stack limit is 2mb. */
1077 int re_max_failures
= 20000;
1079 int re_max_failures
= 2000;
1082 union fail_stack_elt
1084 unsigned char *pointer
;
1088 typedef union fail_stack_elt fail_stack_elt_t
;
1092 fail_stack_elt_t
*stack
;
1094 unsigned avail
; /* Offset of next open position. */
1097 #endif /* INT_IS_16BIT */
1099 #define FAIL_STACK_EMPTY() (fail_stack.avail == 0)
1100 #define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
1101 #define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1104 /* Define macros to initialize and free the failure stack.
1105 Do `return -2' if the alloc fails. */
1107 #ifdef MATCH_MAY_ALLOCATE
1108 #define INIT_FAIL_STACK() \
1110 fail_stack.stack = (fail_stack_elt_t *) \
1111 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t)); \
1113 if (fail_stack.stack == NULL) \
1116 fail_stack.size = INIT_FAILURE_ALLOC; \
1117 fail_stack.avail = 0; \
1120 #define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
1122 #define INIT_FAIL_STACK() \
1124 fail_stack.avail = 0; \
1127 #define RESET_FAIL_STACK()
1131 /* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
1133 Return 1 if succeeds, and 0 if either ran out of memory
1134 allocating space for it or it was already too large.
1136 REGEX_REALLOCATE_STACK requires `destination' be declared. */
1138 #define DOUBLE_FAIL_STACK(fail_stack) \
1139 ((fail_stack).size > (unsigned) (re_max_failures * MAX_FAILURE_ITEMS) \
1141 : ((fail_stack).stack = (fail_stack_elt_t *) \
1142 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1143 (fail_stack).size * sizeof (fail_stack_elt_t), \
1144 ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)), \
1146 (fail_stack).stack == NULL \
1148 : ((fail_stack).size <<= 1, \
1152 /* Push pointer POINTER on FAIL_STACK.
1153 Return 1 if was able to do so and 0 if ran out of memory allocating
1155 #define PUSH_PATTERN_OP(POINTER, FAIL_STACK) \
1156 ((FAIL_STACK_FULL () \
1157 && !DOUBLE_FAIL_STACK (FAIL_STACK)) \
1159 : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER, \
1162 /* Push a pointer value onto the failure stack.
1163 Assumes the variable `fail_stack'. Probably should only
1164 be called from within `PUSH_FAILURE_POINT'. */
1165 #define PUSH_FAILURE_POINTER(item) \
1166 fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (item)
1168 /* This pushes an integer-valued item onto the failure stack.
1169 Assumes the variable `fail_stack'. Probably should only
1170 be called from within `PUSH_FAILURE_POINT'. */
1171 #define PUSH_FAILURE_INT(item) \
1172 fail_stack.stack[fail_stack.avail++].integer = (item)
1174 /* Push a fail_stack_elt_t value onto the failure stack.
1175 Assumes the variable `fail_stack'. Probably should only
1176 be called from within `PUSH_FAILURE_POINT'. */
1177 #define PUSH_FAILURE_ELT(item) \
1178 fail_stack.stack[fail_stack.avail++] = (item)
1180 /* These three POP... operations complement the three PUSH... operations.
1181 All assume that `fail_stack' is nonempty. */
1182 #define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1183 #define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1184 #define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1186 /* Used to omit pushing failure point id's when we're not debugging. */
1188 #define DEBUG_PUSH PUSH_FAILURE_INT
1189 #define DEBUG_POP(item_addr) (item_addr)->integer = POP_FAILURE_INT ()
1191 #define DEBUG_PUSH(item)
1192 #define DEBUG_POP(item_addr)
1196 /* Push the information about the state we will need
1197 if we ever fail back to it.
1199 Requires variables fail_stack, regstart, regend, reg_info, and
1200 num_regs be declared. DOUBLE_FAIL_STACK requires `destination' be
1203 Does `return FAILURE_CODE' if runs out of memory. */
1205 #define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \
1207 char *destination; \
1208 /* Must be int, so when we don't save any registers, the arithmetic \
1209 of 0 + -1 isn't done as unsigned. */ \
1210 /* Can't be int, since there is not a shred of a guarantee that int \
1211 is wide enough to hold a value of something to which pointer can \
1215 DEBUG_STATEMENT (failure_id++); \
1216 DEBUG_STATEMENT (nfailure_points_pushed++); \
1217 DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \
1218 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\
1219 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1221 DEBUG_PRINT2 (" slots needed: %d\n", NUM_FAILURE_ITEMS); \
1222 DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \
1224 /* Ensure we have enough space allocated for what we will push. */ \
1225 while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \
1227 if (!DOUBLE_FAIL_STACK (fail_stack)) \
1228 return failure_code; \
1230 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \
1231 (fail_stack).size); \
1232 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1235 /* Push the info, starting with the registers. */ \
1236 DEBUG_PRINT1 ("\n"); \
1239 for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
1242 DEBUG_PRINT2 (" Pushing reg: %d\n", this_reg); \
1243 DEBUG_STATEMENT (num_regs_pushed++); \
1245 DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
1246 PUSH_FAILURE_POINTER (regstart[this_reg]); \
1248 DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
1249 PUSH_FAILURE_POINTER (regend[this_reg]); \
1251 DEBUG_PRINT2 (" info: 0x%x\n ", reg_info[this_reg]); \
1252 DEBUG_PRINT2 (" match_null=%d", \
1253 REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \
1254 DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \
1255 DEBUG_PRINT2 (" matched_something=%d", \
1256 MATCHED_SOMETHING (reg_info[this_reg])); \
1257 DEBUG_PRINT2 (" ever_matched=%d", \
1258 EVER_MATCHED_SOMETHING (reg_info[this_reg])); \
1259 DEBUG_PRINT1 ("\n"); \
1260 PUSH_FAILURE_ELT (reg_info[this_reg].word); \
1263 DEBUG_PRINT2 (" Pushing low active reg: %d\n", lowest_active_reg);\
1264 PUSH_FAILURE_INT (lowest_active_reg); \
1266 DEBUG_PRINT2 (" Pushing high active reg: %d\n", highest_active_reg);\
1267 PUSH_FAILURE_INT (highest_active_reg); \
1269 DEBUG_PRINT2 (" Pushing pattern 0x%x:\n", pattern_place); \
1270 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \
1271 PUSH_FAILURE_POINTER (pattern_place); \
1273 DEBUG_PRINT2 (" Pushing string 0x%x: `", string_place); \
1274 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \
1276 DEBUG_PRINT1 ("'\n"); \
1277 PUSH_FAILURE_POINTER (string_place); \
1279 DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \
1280 DEBUG_PUSH (failure_id); \
1283 /* This is the number of items that are pushed and popped on the stack
1284 for each register. */
1285 #define NUM_REG_ITEMS 3
1287 /* Individual items aside from the registers. */
1289 #define NUM_NONREG_ITEMS 5 /* Includes failure point id. */
1291 #define NUM_NONREG_ITEMS 4
1294 /* We push at most this many items on the stack. */
1295 /* We used to use (num_regs - 1), which is the number of registers
1296 this regexp will save; but that was changed to 5
1297 to avoid stack overflow for a regexp with lots of parens. */
1298 #define MAX_FAILURE_ITEMS (5 * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
1300 /* We actually push this many items. */
1301 #define NUM_FAILURE_ITEMS \
1303 ? 0 : highest_active_reg - lowest_active_reg + 1) \
1307 /* How many items can still be added to the stack without overflowing it. */
1308 #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1311 /* Pops what PUSH_FAIL_STACK pushes.
1313 We restore into the parameters, all of which should be lvalues:
1314 STR -- the saved data position.
1315 PAT -- the saved pattern position.
1316 LOW_REG, HIGH_REG -- the highest and lowest active registers.
1317 REGSTART, REGEND -- arrays of string positions.
1318 REG_INFO -- array of information about each subexpression.
1320 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1321 `pend', `string1', `size1', `string2', and `size2'. */
1323 #define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
1325 DEBUG_STATEMENT (fail_stack_elt_t failure_id;) \
1327 const unsigned char *string_temp; \
1329 assert (!FAIL_STACK_EMPTY ()); \
1331 /* Remove failure points and point to how many regs pushed. */ \
1332 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1333 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
1334 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
1336 assert (fail_stack.avail >= NUM_NONREG_ITEMS); \
1338 DEBUG_POP (&failure_id); \
1339 DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \
1341 /* If the saved string location is NULL, it came from an \
1342 on_failure_keep_string_jump opcode, and we want to throw away the \
1343 saved NULL, thus retaining our current position in the string. */ \
1344 string_temp = POP_FAILURE_POINTER (); \
1345 if (string_temp != NULL) \
1346 str = (const char *) string_temp; \
1348 DEBUG_PRINT2 (" Popping string 0x%x: `", str); \
1349 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1350 DEBUG_PRINT1 ("'\n"); \
1352 pat = (unsigned char *) POP_FAILURE_POINTER (); \
1353 DEBUG_PRINT2 (" Popping pattern 0x%x:\n", pat); \
1354 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1356 /* Restore register info. */ \
1357 high_reg = (active_reg_t) POP_FAILURE_INT (); \
1358 DEBUG_PRINT2 (" Popping high active reg: %d\n", high_reg); \
1360 low_reg = (active_reg_t) POP_FAILURE_INT (); \
1361 DEBUG_PRINT2 (" Popping low active reg: %d\n", low_reg); \
1364 for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \
1366 DEBUG_PRINT2 (" Popping reg: %d\n", this_reg); \
1368 reg_info[this_reg].word = POP_FAILURE_ELT (); \
1369 DEBUG_PRINT2 (" info: 0x%x\n", reg_info[this_reg]); \
1371 regend[this_reg] = (const char *) POP_FAILURE_POINTER (); \
1372 DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
1374 regstart[this_reg] = (const char *) POP_FAILURE_POINTER (); \
1375 DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
1379 for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) \
1381 reg_info[this_reg].word.integer = 0; \
1382 regend[this_reg] = 0; \
1383 regstart[this_reg] = 0; \
1385 highest_active_reg = high_reg; \
1388 set_regs_matched_done = 0; \
1389 DEBUG_STATEMENT (nfailure_points_popped++); \
1390 } /* POP_FAILURE_POINT */
1394 /* Structure for per-register (a.k.a. per-group) information.
1395 Other register information, such as the
1396 starting and ending positions (which are addresses), and the list of
1397 inner groups (which is a bits list) are maintained in separate
1400 We are making a (strictly speaking) nonportable assumption here: that
1401 the compiler will pack our bit fields into something that fits into
1402 the type of `word', i.e., is something that fits into one item on the
1406 /* Declarations and macros for re_match_2. */
1410 fail_stack_elt_t word
;
1413 /* This field is one if this group can match the empty string,
1414 zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */
1415 #define MATCH_NULL_UNSET_VALUE 3
1416 unsigned match_null_string_p
: 2;
1417 unsigned is_active
: 1;
1418 unsigned matched_something
: 1;
1419 unsigned ever_matched_something
: 1;
1421 } register_info_type
;
1423 #define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p)
1424 #define IS_ACTIVE(R) ((R).bits.is_active)
1425 #define MATCHED_SOMETHING(R) ((R).bits.matched_something)
1426 #define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something)
1429 /* Call this when have matched a real character; it sets `matched' flags
1430 for the subexpressions which we are currently inside. Also records
1431 that those subexprs have matched. */
1432 #define SET_REGS_MATCHED() \
1435 if (!set_regs_matched_done) \
1438 set_regs_matched_done = 1; \
1439 for (r = lowest_active_reg; r <= highest_active_reg; r++) \
1441 MATCHED_SOMETHING (reg_info[r]) \
1442 = EVER_MATCHED_SOMETHING (reg_info[r]) \
1449 /* Registers are set to a sentinel when they haven't yet matched. */
1450 static char reg_unset_dummy
;
1451 #define REG_UNSET_VALUE (®_unset_dummy)
1452 #define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
1454 /* Subroutine declarations and macros for regex_compile. */
1456 static reg_errcode_t regex_compile
_RE_ARGS ((const char *pattern
, size_t size
,
1457 reg_syntax_t syntax
,
1458 struct re_pattern_buffer
*bufp
));
1459 static void store_op1
_RE_ARGS ((re_opcode_t op
, unsigned char *loc
, int arg
));
1460 static void store_op2
_RE_ARGS ((re_opcode_t op
, unsigned char *loc
,
1461 int arg1
, int arg2
));
1462 static void insert_op1
_RE_ARGS ((re_opcode_t op
, unsigned char *loc
,
1463 int arg
, unsigned char *end
));
1464 static void insert_op2
_RE_ARGS ((re_opcode_t op
, unsigned char *loc
,
1465 int arg1
, int arg2
, unsigned char *end
));
1466 static boolean at_begline_loc_p
_RE_ARGS ((const char *pattern
, const char *p
,
1467 reg_syntax_t syntax
));
1468 static boolean at_endline_loc_p
_RE_ARGS ((const char *p
, const char *pend
,
1469 reg_syntax_t syntax
));
1470 static reg_errcode_t compile_range
_RE_ARGS ((const char **p_ptr
,
1473 reg_syntax_t syntax
,
1476 /* Fetch the next character in the uncompiled pattern---translating it
1477 if necessary. Also cast from a signed character in the constant
1478 string passed to us by the user to an unsigned char that we can use
1479 as an array index (in, e.g., `translate'). */
1481 #define PATFETCH(c) \
1482 do {if (p == pend) return REG_EEND; \
1483 c = (unsigned char) *p++; \
1484 if (translate) c = (unsigned char) translate[c]; \
1488 /* Fetch the next character in the uncompiled pattern, with no
1490 #define PATFETCH_RAW(c) \
1491 do {if (p == pend) return REG_EEND; \
1492 c = (unsigned char) *p++; \
1495 /* Go backwards one character in the pattern. */
1496 #define PATUNFETCH p--
1499 /* If `translate' is non-null, return translate[D], else just D. We
1500 cast the subscript to translate because some data is declared as
1501 `char *', to avoid warnings when a string constant is passed. But
1502 when we use a character as a subscript we must make it unsigned. */
1504 #define TRANSLATE(d) \
1505 (translate ? (char) translate[(unsigned char) (d)] : (d))
1509 /* Macros for outputting the compiled pattern into `buffer'. */
1511 /* If the buffer isn't allocated when it comes in, use this. */
1512 #define INIT_BUF_SIZE 32
1514 /* Make sure we have at least N more bytes of space in buffer. */
1515 #define GET_BUFFER_SPACE(n) \
1516 while ((unsigned long) (b - bufp->buffer + (n)) > bufp->allocated) \
1519 /* Make sure we have one more byte of buffer space and then add C to it. */
1520 #define BUF_PUSH(c) \
1522 GET_BUFFER_SPACE (1); \
1523 *b++ = (unsigned char) (c); \
1527 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1528 #define BUF_PUSH_2(c1, c2) \
1530 GET_BUFFER_SPACE (2); \
1531 *b++ = (unsigned char) (c1); \
1532 *b++ = (unsigned char) (c2); \
1536 /* As with BUF_PUSH_2, except for three bytes. */
1537 #define BUF_PUSH_3(c1, c2, c3) \
1539 GET_BUFFER_SPACE (3); \
1540 *b++ = (unsigned char) (c1); \
1541 *b++ = (unsigned char) (c2); \
1542 *b++ = (unsigned char) (c3); \
1546 /* Store a jump with opcode OP at LOC to location TO. We store a
1547 relative address offset by the three bytes the jump itself occupies. */
1548 #define STORE_JUMP(op, loc, to) \
1549 store_op1 (op, loc, (int) ((to) - (loc) - 3))
1551 /* Likewise, for a two-argument jump. */
1552 #define STORE_JUMP2(op, loc, to, arg) \
1553 store_op2 (op, loc, (int) ((to) - (loc) - 3), arg)
1555 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
1556 #define INSERT_JUMP(op, loc, to) \
1557 insert_op1 (op, loc, (int) ((to) - (loc) - 3), b)
1559 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1560 #define INSERT_JUMP2(op, loc, to, arg) \
1561 insert_op2 (op, loc, (int) ((to) - (loc) - 3), arg, b)
1564 /* This is not an arbitrary limit: the arguments which represent offsets
1565 into the pattern are two bytes long. So if 2^16 bytes turns out to
1566 be too small, many things would have to change. */
1567 /* Any other compiler which, like MSC, has allocation limit below 2^16
1568 bytes will have to use approach similar to what was done below for
1569 MSC and drop MAX_BUF_SIZE a bit. Otherwise you may end up
1570 reallocating to 0 bytes. Such thing is not going to work too well.
1571 You have been warned!! */
1572 #if defined(_MSC_VER) && !defined(WIN32)
1573 /* Microsoft C 16-bit versions limit malloc to approx 65512 bytes.
1574 The REALLOC define eliminates a flurry of conversion warnings,
1575 but is not required. */
1576 #define MAX_BUF_SIZE 65500L
1577 #define REALLOC(p,s) realloc ((p), (size_t) (s))
1579 #define MAX_BUF_SIZE (1L << 16)
1580 #define REALLOC(p,s) realloc ((p), (s))
1583 /* Extend the buffer by twice its current size via realloc and
1584 reset the pointers that pointed into the old block to point to the
1585 correct places in the new one. If extending the buffer results in it
1586 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1587 #define EXTEND_BUFFER() \
1589 unsigned char *old_buffer = bufp->buffer; \
1590 if (bufp->allocated == MAX_BUF_SIZE) \
1592 bufp->allocated <<= 1; \
1593 if (bufp->allocated > MAX_BUF_SIZE) \
1594 bufp->allocated = MAX_BUF_SIZE; \
1595 bufp->buffer = (unsigned char *) REALLOC (bufp->buffer, bufp->allocated);\
1596 if (bufp->buffer == NULL) \
1597 return REG_ESPACE; \
1598 /* If the buffer moved, move all the pointers into it. */ \
1599 if (old_buffer != bufp->buffer) \
1601 b = (b - old_buffer) + bufp->buffer; \
1602 begalt = (begalt - old_buffer) + bufp->buffer; \
1603 if (fixup_alt_jump) \
1604 fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\
1606 laststart = (laststart - old_buffer) + bufp->buffer; \
1607 if (pending_exact) \
1608 pending_exact = (pending_exact - old_buffer) + bufp->buffer; \
1613 /* Since we have one byte reserved for the register number argument to
1614 {start,stop}_memory, the maximum number of groups we can report
1615 things about is what fits in that byte. */
1616 #define MAX_REGNUM 255
1618 /* But patterns can have more than `MAX_REGNUM' registers. We just
1619 ignore the excess. */
1620 typedef unsigned regnum_t
;
1623 /* Macros for the compile stack. */
1625 /* Since offsets can go either forwards or backwards, this type needs to
1626 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1627 /* int may be not enough when sizeof(int) == 2. */
1628 typedef long pattern_offset_t
;
1632 pattern_offset_t begalt_offset
;
1633 pattern_offset_t fixup_alt_jump
;
1634 pattern_offset_t inner_group_offset
;
1635 pattern_offset_t laststart_offset
;
1637 } compile_stack_elt_t
;
1642 compile_stack_elt_t
*stack
;
1644 unsigned avail
; /* Offset of next open position. */
1645 } compile_stack_type
;
1648 #define INIT_COMPILE_STACK_SIZE 32
1650 #define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1651 #define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1653 /* The next available element. */
1654 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1657 /* Set the bit for character C in a list. */
1658 #define SET_LIST_BIT(c) \
1659 (b[((unsigned char) (c)) / BYTEWIDTH] \
1660 |= 1 << (((unsigned char) c) % BYTEWIDTH))
1663 /* Get the next unsigned number in the uncompiled pattern. */
1664 #define GET_UNSIGNED_NUMBER(num) \
1668 while (ISDIGIT (c)) \
1672 num = num * 10 + c - '0'; \
1680 #if defined _LIBC || (defined HAVE_WCTYPE_H && defined HAVE_WCHAR_H)
1681 /* The GNU C library provides support for user-defined character classes
1682 and the functions from ISO C amendement 1. */
1683 # ifdef CHARCLASS_NAME_MAX
1684 # define CHAR_CLASS_MAX_LENGTH CHARCLASS_NAME_MAX
1686 /* This shouldn't happen but some implementation might still have this
1687 problem. Use a reasonable default value. */
1688 # define CHAR_CLASS_MAX_LENGTH 256
1691 # define IS_CHAR_CLASS(string) wctype (string)
1693 # define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */
1695 # define IS_CHAR_CLASS(string) \
1696 (STREQ (string, "alpha") || STREQ (string, "upper") \
1697 || STREQ (string, "lower") || STREQ (string, "digit") \
1698 || STREQ (string, "alnum") || STREQ (string, "xdigit") \
1699 || STREQ (string, "space") || STREQ (string, "print") \
1700 || STREQ (string, "punct") || STREQ (string, "graph") \
1701 || STREQ (string, "cntrl") || STREQ (string, "blank"))
1704 #ifndef MATCH_MAY_ALLOCATE
1706 /* If we cannot allocate large objects within re_match_2_internal,
1707 we make the fail stack and register vectors global.
1708 The fail stack, we grow to the maximum size when a regexp
1710 The register vectors, we adjust in size each time we
1711 compile a regexp, according to the number of registers it needs. */
1713 static fail_stack_type fail_stack
;
1715 /* Size with which the following vectors are currently allocated.
1716 That is so we can make them bigger as needed,
1717 but never make them smaller. */
1718 static int regs_allocated_size
;
1720 static const char ** regstart
, ** regend
;
1721 static const char ** old_regstart
, ** old_regend
;
1722 static const char **best_regstart
, **best_regend
;
1723 static register_info_type
*reg_info
;
1724 static const char **reg_dummy
;
1725 static register_info_type
*reg_info_dummy
;
1727 /* Make the register vectors big enough for NUM_REGS registers,
1728 but don't make them smaller. */
1731 regex_grow_registers (num_regs
)
1734 if (num_regs
> regs_allocated_size
)
1736 RETALLOC_IF (regstart
, num_regs
, const char *);
1737 RETALLOC_IF (regend
, num_regs
, const char *);
1738 RETALLOC_IF (old_regstart
, num_regs
, const char *);
1739 RETALLOC_IF (old_regend
, num_regs
, const char *);
1740 RETALLOC_IF (best_regstart
, num_regs
, const char *);
1741 RETALLOC_IF (best_regend
, num_regs
, const char *);
1742 RETALLOC_IF (reg_info
, num_regs
, register_info_type
);
1743 RETALLOC_IF (reg_dummy
, num_regs
, const char *);
1744 RETALLOC_IF (reg_info_dummy
, num_regs
, register_info_type
);
1746 regs_allocated_size
= num_regs
;
1750 #endif /* not MATCH_MAY_ALLOCATE */
1752 static boolean group_in_compile_stack
_RE_ARGS ((compile_stack_type
1756 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
1757 Returns one of error codes defined in `regex.h', or zero for success.
1759 Assumes the `allocated' (and perhaps `buffer') and `translate'
1760 fields are set in BUFP on entry.
1762 If it succeeds, results are put in BUFP (if it returns an error, the
1763 contents of BUFP are undefined):
1764 `buffer' is the compiled pattern;
1765 `syntax' is set to SYNTAX;
1766 `used' is set to the length of the compiled pattern;
1767 `fastmap_accurate' is zero;
1768 `re_nsub' is the number of subexpressions in PATTERN;
1769 `not_bol' and `not_eol' are zero;
1771 The `fastmap' and `newline_anchor' fields are neither
1772 examined nor set. */
1774 /* Return, freeing storage we allocated. */
1775 #define FREE_STACK_RETURN(value) \
1776 return (free (compile_stack.stack), value)
1778 static reg_errcode_t
1779 regex_compile (pattern
, size
, syntax
, bufp
)
1780 const char *pattern
;
1782 reg_syntax_t syntax
;
1783 struct re_pattern_buffer
*bufp
;
1785 /* We fetch characters from PATTERN here. Even though PATTERN is
1786 `char *' (i.e., signed), we declare these variables as unsigned, so
1787 they can be reliably used as array indices. */
1788 register unsigned char c
, c1
;
1790 /* A random temporary spot in PATTERN. */
1793 /* Points to the end of the buffer, where we should append. */
1794 register unsigned char *b
;
1796 /* Keeps track of unclosed groups. */
1797 compile_stack_type compile_stack
;
1799 /* Points to the current (ending) position in the pattern. */
1800 const char *p
= pattern
;
1801 const char *pend
= pattern
+ size
;
1803 /* How to translate the characters in the pattern. */
1804 RE_TRANSLATE_TYPE translate
= bufp
->translate
;
1806 /* Address of the count-byte of the most recently inserted `exactn'
1807 command. This makes it possible to tell if a new exact-match
1808 character can be added to that command or if the character requires
1809 a new `exactn' command. */
1810 unsigned char *pending_exact
= 0;
1812 /* Address of start of the most recently finished expression.
1813 This tells, e.g., postfix * where to find the start of its
1814 operand. Reset at the beginning of groups and alternatives. */
1815 unsigned char *laststart
= 0;
1817 /* Address of beginning of regexp, or inside of last group. */
1818 unsigned char *begalt
;
1820 /* Place in the uncompiled pattern (i.e., the {) to
1821 which to go back if the interval is invalid. */
1822 const char *beg_interval
;
1824 /* Address of the place where a forward jump should go to the end of
1825 the containing expression. Each alternative of an `or' -- except the
1826 last -- ends with a forward jump of this sort. */
1827 unsigned char *fixup_alt_jump
= 0;
1829 /* Counts open-groups as they are encountered. Remembered for the
1830 matching close-group on the compile stack, so the same register
1831 number is put in the stop_memory as the start_memory. */
1832 regnum_t regnum
= 0;
1835 DEBUG_PRINT1 ("\nCompiling pattern: ");
1838 unsigned debug_count
;
1840 for (debug_count
= 0; debug_count
< size
; debug_count
++)
1841 putchar (pattern
[debug_count
]);
1846 /* Initialize the compile stack. */
1847 compile_stack
.stack
= TALLOC (INIT_COMPILE_STACK_SIZE
, compile_stack_elt_t
);
1848 if (compile_stack
.stack
== NULL
)
1851 compile_stack
.size
= INIT_COMPILE_STACK_SIZE
;
1852 compile_stack
.avail
= 0;
1854 /* Initialize the pattern buffer. */
1855 bufp
->syntax
= syntax
;
1856 bufp
->fastmap_accurate
= 0;
1857 bufp
->not_bol
= bufp
->not_eol
= 0;
1859 /* Set `used' to zero, so that if we return an error, the pattern
1860 printer (for debugging) will think there's no pattern. We reset it
1864 /* Always count groups, whether or not bufp->no_sub is set. */
1867 #if !defined (emacs) && !defined (SYNTAX_TABLE)
1868 /* Initialize the syntax table. */
1869 init_syntax_once ();
1872 if (bufp
->allocated
== 0)
1875 { /* If zero allocated, but buffer is non-null, try to realloc
1876 enough space. This loses if buffer's address is bogus, but
1877 that is the user's responsibility. */
1878 RETALLOC (bufp
->buffer
, INIT_BUF_SIZE
, unsigned char);
1881 { /* Caller did not allocate a buffer. Do it for them. */
1882 bufp
->buffer
= TALLOC (INIT_BUF_SIZE
, unsigned char);
1884 if (!bufp
->buffer
) FREE_STACK_RETURN (REG_ESPACE
);
1886 bufp
->allocated
= INIT_BUF_SIZE
;
1889 begalt
= b
= bufp
->buffer
;
1891 /* Loop through the uncompiled pattern until we're at the end. */
1900 if ( /* If at start of pattern, it's an operator. */
1902 /* If context independent, it's an operator. */
1903 || syntax
& RE_CONTEXT_INDEP_ANCHORS
1904 /* Otherwise, depends on what's come before. */
1905 || at_begline_loc_p (pattern
, p
, syntax
))
1915 if ( /* If at end of pattern, it's an operator. */
1917 /* If context independent, it's an operator. */
1918 || syntax
& RE_CONTEXT_INDEP_ANCHORS
1919 /* Otherwise, depends on what's next. */
1920 || at_endline_loc_p (p
, pend
, syntax
))
1930 if ((syntax
& RE_BK_PLUS_QM
)
1931 || (syntax
& RE_LIMITED_OPS
))
1935 /* If there is no previous pattern... */
1938 if (syntax
& RE_CONTEXT_INVALID_OPS
)
1939 FREE_STACK_RETURN (REG_BADRPT
);
1940 else if (!(syntax
& RE_CONTEXT_INDEP_OPS
))
1945 /* Are we optimizing this jump? */
1946 boolean keep_string_p
= false;
1948 /* 1 means zero (many) matches is allowed. */
1949 char zero_times_ok
= 0, many_times_ok
= 0;
1951 /* If there is a sequence of repetition chars, collapse it
1952 down to just one (the right one). We can't combine
1953 interval operators with these because of, e.g., `a{2}*',
1954 which should only match an even number of `a's. */
1958 zero_times_ok
|= c
!= '+';
1959 many_times_ok
|= c
!= '?';
1967 || (!(syntax
& RE_BK_PLUS_QM
) && (c
== '+' || c
== '?')))
1970 else if (syntax
& RE_BK_PLUS_QM
&& c
== '\\')
1972 if (p
== pend
) FREE_STACK_RETURN (REG_EESCAPE
);
1975 if (!(c1
== '+' || c1
== '?'))
1990 /* If we get here, we found another repeat character. */
1993 /* Star, etc. applied to an empty pattern is equivalent
1994 to an empty pattern. */
1998 /* Now we know whether or not zero matches is allowed
1999 and also whether or not two or more matches is allowed. */
2001 { /* More than one repetition is allowed, so put in at the
2002 end a backward relative jump from `b' to before the next
2003 jump we're going to put in below (which jumps from
2004 laststart to after this jump).
2006 But if we are at the `*' in the exact sequence `.*\n',
2007 insert an unconditional jump backwards to the .,
2008 instead of the beginning of the loop. This way we only
2009 push a failure point once, instead of every time
2010 through the loop. */
2011 assert (p
- 1 > pattern
);
2013 /* Allocate the space for the jump. */
2014 GET_BUFFER_SPACE (3);
2016 /* We know we are not at the first character of the pattern,
2017 because laststart was nonzero. And we've already
2018 incremented `p', by the way, to be the character after
2019 the `*'. Do we have to do something analogous here
2020 for null bytes, because of RE_DOT_NOT_NULL? */
2021 if (TRANSLATE (*(p
- 2)) == TRANSLATE ('.')
2023 && p
< pend
&& TRANSLATE (*p
) == TRANSLATE ('\n')
2024 && !(syntax
& RE_DOT_NEWLINE
))
2025 { /* We have .*\n. */
2026 STORE_JUMP (jump
, b
, laststart
);
2027 keep_string_p
= true;
2030 /* Anything else. */
2031 STORE_JUMP (maybe_pop_jump
, b
, laststart
- 3);
2033 /* We've added more stuff to the buffer. */
2037 /* On failure, jump from laststart to b + 3, which will be the
2038 end of the buffer after this jump is inserted. */
2039 GET_BUFFER_SPACE (3);
2040 INSERT_JUMP (keep_string_p
? on_failure_keep_string_jump
2048 /* At least one repetition is required, so insert a
2049 `dummy_failure_jump' before the initial
2050 `on_failure_jump' instruction of the loop. This
2051 effects a skip over that instruction the first time
2052 we hit that loop. */
2053 GET_BUFFER_SPACE (3);
2054 INSERT_JUMP (dummy_failure_jump
, laststart
, laststart
+ 6);
2069 boolean had_char_class
= false;
2071 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2073 /* Ensure that we have enough space to push a charset: the
2074 opcode, the length count, and the bitset; 34 bytes in all. */
2075 GET_BUFFER_SPACE (34);
2079 /* We test `*p == '^' twice, instead of using an if
2080 statement, so we only need one BUF_PUSH. */
2081 BUF_PUSH (*p
== '^' ? charset_not
: charset
);
2085 /* Remember the first position in the bracket expression. */
2088 /* Push the number of bytes in the bitmap. */
2089 BUF_PUSH ((1 << BYTEWIDTH
) / BYTEWIDTH
);
2091 /* Clear the whole map. */
2092 bzero (b
, (1 << BYTEWIDTH
) / BYTEWIDTH
);
2094 /* charset_not matches newline according to a syntax bit. */
2095 if ((re_opcode_t
) b
[-2] == charset_not
2096 && (syntax
& RE_HAT_LISTS_NOT_NEWLINE
))
2097 SET_LIST_BIT ('\n');
2099 /* Read in characters and ranges, setting map bits. */
2102 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2106 /* \ might escape characters inside [...] and [^...]. */
2107 if ((syntax
& RE_BACKSLASH_ESCAPE_IN_LISTS
) && c
== '\\')
2109 if (p
== pend
) FREE_STACK_RETURN (REG_EESCAPE
);
2116 /* Could be the end of the bracket expression. If it's
2117 not (i.e., when the bracket expression is `[]' so
2118 far), the ']' character bit gets set way below. */
2119 if (c
== ']' && p
!= p1
+ 1)
2122 /* Look ahead to see if it's a range when the last thing
2123 was a character class. */
2124 if (had_char_class
&& c
== '-' && *p
!= ']')
2125 FREE_STACK_RETURN (REG_ERANGE
);
2127 /* Look ahead to see if it's a range when the last thing
2128 was a character: if this is a hyphen not at the
2129 beginning or the end of a list, then it's the range
2132 && !(p
- 2 >= pattern
&& p
[-2] == '[')
2133 && !(p
- 3 >= pattern
&& p
[-3] == '[' && p
[-2] == '^')
2137 = compile_range (&p
, pend
, translate
, syntax
, b
);
2138 if (ret
!= REG_NOERROR
) FREE_STACK_RETURN (ret
);
2141 else if (p
[0] == '-' && p
[1] != ']')
2142 { /* This handles ranges made up of characters only. */
2145 /* Move past the `-'. */
2148 ret
= compile_range (&p
, pend
, translate
, syntax
, b
);
2149 if (ret
!= REG_NOERROR
) FREE_STACK_RETURN (ret
);
2152 /* See if we're at the beginning of a possible character
2155 else if (syntax
& RE_CHAR_CLASSES
&& c
== '[' && *p
== ':')
2156 { /* Leave room for the null. */
2157 char str
[CHAR_CLASS_MAX_LENGTH
+ 1];
2162 /* If pattern is `[[:'. */
2163 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2168 if (c
== ':' || c
== ']' || p
== pend
2169 || c1
== CHAR_CLASS_MAX_LENGTH
)
2175 /* If isn't a word bracketed by `[:' and:`]':
2176 undo the ending character, the letters, and leave
2177 the leading `:' and `[' (but set bits for them). */
2178 if (c
== ':' && *p
== ']')
2180 #if defined _LIBC || (defined HAVE_WCTYPE_H && defined HAVE_WCHAR_H)
2181 boolean is_lower
= STREQ (str
, "lower");
2182 boolean is_upper
= STREQ (str
, "upper");
2188 FREE_STACK_RETURN (REG_ECTYPE
);
2190 /* Throw away the ] at the end of the character
2194 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2196 for (ch
= 0; ch
< 1 << BYTEWIDTH
; ++ch
)
2198 if (iswctype (btowc (ch
), wt
))
2201 if (translate
&& (is_upper
|| is_lower
)
2202 && (ISUPPER (ch
) || ISLOWER (ch
)))
2206 had_char_class
= true;
2209 boolean is_alnum
= STREQ (str
, "alnum");
2210 boolean is_alpha
= STREQ (str
, "alpha");
2211 boolean is_blank
= STREQ (str
, "blank");
2212 boolean is_cntrl
= STREQ (str
, "cntrl");
2213 boolean is_digit
= STREQ (str
, "digit");
2214 boolean is_graph
= STREQ (str
, "graph");
2215 boolean is_lower
= STREQ (str
, "lower");
2216 boolean is_print
= STREQ (str
, "print");
2217 boolean is_punct
= STREQ (str
, "punct");
2218 boolean is_space
= STREQ (str
, "space");
2219 boolean is_upper
= STREQ (str
, "upper");
2220 boolean is_xdigit
= STREQ (str
, "xdigit");
2222 if (!IS_CHAR_CLASS (str
))
2223 FREE_STACK_RETURN (REG_ECTYPE
);
2225 /* Throw away the ] at the end of the character
2229 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2231 for (ch
= 0; ch
< 1 << BYTEWIDTH
; ch
++)
2233 /* This was split into 3 if's to
2234 avoid an arbitrary limit in some compiler. */
2235 if ( (is_alnum
&& ISALNUM (ch
))
2236 || (is_alpha
&& ISALPHA (ch
))
2237 || (is_blank
&& ISBLANK (ch
))
2238 || (is_cntrl
&& ISCNTRL (ch
)))
2240 if ( (is_digit
&& ISDIGIT (ch
))
2241 || (is_graph
&& ISGRAPH (ch
))
2242 || (is_lower
&& ISLOWER (ch
))
2243 || (is_print
&& ISPRINT (ch
)))
2245 if ( (is_punct
&& ISPUNCT (ch
))
2246 || (is_space
&& ISSPACE (ch
))
2247 || (is_upper
&& ISUPPER (ch
))
2248 || (is_xdigit
&& ISXDIGIT (ch
)))
2250 if ( translate
&& (is_upper
|| is_lower
)
2251 && (ISUPPER (ch
) || ISLOWER (ch
)))
2254 had_char_class
= true;
2255 #endif /* libc || wctype.h */
2264 had_char_class
= false;
2269 had_char_class
= false;
2274 /* Discard any (non)matching list bytes that are all 0 at the
2275 end of the map. Decrease the map-length byte too. */
2276 while ((int) b
[-1] > 0 && b
[b
[-1] - 1] == 0)
2284 if (syntax
& RE_NO_BK_PARENS
)
2291 if (syntax
& RE_NO_BK_PARENS
)
2298 if (syntax
& RE_NEWLINE_ALT
)
2305 if (syntax
& RE_NO_BK_VBAR
)
2312 if (syntax
& RE_INTERVALS
&& syntax
& RE_NO_BK_BRACES
)
2313 goto handle_interval
;
2319 if (p
== pend
) FREE_STACK_RETURN (REG_EESCAPE
);
2321 /* Do not translate the character after the \, so that we can
2322 distinguish, e.g., \B from \b, even if we normally would
2323 translate, e.g., B to b. */
2329 if (syntax
& RE_NO_BK_PARENS
)
2330 goto normal_backslash
;
2336 if (COMPILE_STACK_FULL
)
2338 RETALLOC (compile_stack
.stack
, compile_stack
.size
<< 1,
2339 compile_stack_elt_t
);
2340 if (compile_stack
.stack
== NULL
) return REG_ESPACE
;
2342 compile_stack
.size
<<= 1;
2345 /* These are the values to restore when we hit end of this
2346 group. They are all relative offsets, so that if the
2347 whole pattern moves because of realloc, they will still
2349 COMPILE_STACK_TOP
.begalt_offset
= begalt
- bufp
->buffer
;
2350 COMPILE_STACK_TOP
.fixup_alt_jump
2351 = fixup_alt_jump
? fixup_alt_jump
- bufp
->buffer
+ 1 : 0;
2352 COMPILE_STACK_TOP
.laststart_offset
= b
- bufp
->buffer
;
2353 COMPILE_STACK_TOP
.regnum
= regnum
;
2355 /* We will eventually replace the 0 with the number of
2356 groups inner to this one. But do not push a
2357 start_memory for groups beyond the last one we can
2358 represent in the compiled pattern. */
2359 if (regnum
<= MAX_REGNUM
)
2361 COMPILE_STACK_TOP
.inner_group_offset
= b
- bufp
->buffer
+ 2;
2362 BUF_PUSH_3 (start_memory
, regnum
, 0);
2365 compile_stack
.avail
++;
2370 /* If we've reached MAX_REGNUM groups, then this open
2371 won't actually generate any code, so we'll have to
2372 clear pending_exact explicitly. */
2378 if (syntax
& RE_NO_BK_PARENS
) goto normal_backslash
;
2380 if (COMPILE_STACK_EMPTY
)
2381 if (syntax
& RE_UNMATCHED_RIGHT_PAREN_ORD
)
2382 goto normal_backslash
;
2384 FREE_STACK_RETURN (REG_ERPAREN
);
2388 { /* Push a dummy failure point at the end of the
2389 alternative for a possible future
2390 `pop_failure_jump' to pop. See comments at
2391 `push_dummy_failure' in `re_match_2'. */
2392 BUF_PUSH (push_dummy_failure
);
2394 /* We allocated space for this jump when we assigned
2395 to `fixup_alt_jump', in the `handle_alt' case below. */
2396 STORE_JUMP (jump_past_alt
, fixup_alt_jump
, b
- 1);
2399 /* See similar code for backslashed left paren above. */
2400 if (COMPILE_STACK_EMPTY
)
2401 if (syntax
& RE_UNMATCHED_RIGHT_PAREN_ORD
)
2404 FREE_STACK_RETURN (REG_ERPAREN
);
2406 /* Since we just checked for an empty stack above, this
2407 ``can't happen''. */
2408 assert (compile_stack
.avail
!= 0);
2410 /* We don't just want to restore into `regnum', because
2411 later groups should continue to be numbered higher,
2412 as in `(ab)c(de)' -- the second group is #2. */
2413 regnum_t this_group_regnum
;
2415 compile_stack
.avail
--;
2416 begalt
= bufp
->buffer
+ COMPILE_STACK_TOP
.begalt_offset
;
2418 = COMPILE_STACK_TOP
.fixup_alt_jump
2419 ? bufp
->buffer
+ COMPILE_STACK_TOP
.fixup_alt_jump
- 1
2421 laststart
= bufp
->buffer
+ COMPILE_STACK_TOP
.laststart_offset
;
2422 this_group_regnum
= COMPILE_STACK_TOP
.regnum
;
2423 /* If we've reached MAX_REGNUM groups, then this open
2424 won't actually generate any code, so we'll have to
2425 clear pending_exact explicitly. */
2428 /* We're at the end of the group, so now we know how many
2429 groups were inside this one. */
2430 if (this_group_regnum
<= MAX_REGNUM
)
2432 unsigned char *inner_group_loc
2433 = bufp
->buffer
+ COMPILE_STACK_TOP
.inner_group_offset
;
2435 *inner_group_loc
= regnum
- this_group_regnum
;
2436 BUF_PUSH_3 (stop_memory
, this_group_regnum
,
2437 regnum
- this_group_regnum
);
2443 case '|': /* `\|'. */
2444 if (syntax
& RE_LIMITED_OPS
|| syntax
& RE_NO_BK_VBAR
)
2445 goto normal_backslash
;
2447 if (syntax
& RE_LIMITED_OPS
)
2450 /* Insert before the previous alternative a jump which
2451 jumps to this alternative if the former fails. */
2452 GET_BUFFER_SPACE (3);
2453 INSERT_JUMP (on_failure_jump
, begalt
, b
+ 6);
2457 /* The alternative before this one has a jump after it
2458 which gets executed if it gets matched. Adjust that
2459 jump so it will jump to this alternative's analogous
2460 jump (put in below, which in turn will jump to the next
2461 (if any) alternative's such jump, etc.). The last such
2462 jump jumps to the correct final destination. A picture:
2468 If we are at `b', then fixup_alt_jump right now points to a
2469 three-byte space after `a'. We'll put in the jump, set
2470 fixup_alt_jump to right after `b', and leave behind three
2471 bytes which we'll fill in when we get to after `c'. */
2474 STORE_JUMP (jump_past_alt
, fixup_alt_jump
, b
);
2476 /* Mark and leave space for a jump after this alternative,
2477 to be filled in later either by next alternative or
2478 when know we're at the end of a series of alternatives. */
2480 GET_BUFFER_SPACE (3);
2489 /* If \{ is a literal. */
2490 if (!(syntax
& RE_INTERVALS
)
2491 /* If we're at `\{' and it's not the open-interval
2493 || ((syntax
& RE_INTERVALS
) && (syntax
& RE_NO_BK_BRACES
))
2494 || (p
- 2 == pattern
&& p
== pend
))
2495 goto normal_backslash
;
2499 /* If got here, then the syntax allows intervals. */
2501 /* At least (most) this many matches must be made. */
2502 int lower_bound
= -1, upper_bound
= -1;
2504 beg_interval
= p
- 1;
2508 if (syntax
& RE_NO_BK_BRACES
)
2509 goto unfetch_interval
;
2511 FREE_STACK_RETURN (REG_EBRACE
);
2514 GET_UNSIGNED_NUMBER (lower_bound
);
2518 GET_UNSIGNED_NUMBER (upper_bound
);
2519 if (upper_bound
< 0) upper_bound
= RE_DUP_MAX
;
2522 /* Interval such as `{1}' => match exactly once. */
2523 upper_bound
= lower_bound
;
2525 if (lower_bound
< 0 || upper_bound
> RE_DUP_MAX
2526 || lower_bound
> upper_bound
)
2528 if (syntax
& RE_NO_BK_BRACES
)
2529 goto unfetch_interval
;
2531 FREE_STACK_RETURN (REG_BADBR
);
2534 if (!(syntax
& RE_NO_BK_BRACES
))
2536 if (c
!= '\\') FREE_STACK_RETURN (REG_EBRACE
);
2543 if (syntax
& RE_NO_BK_BRACES
)
2544 goto unfetch_interval
;
2546 FREE_STACK_RETURN (REG_BADBR
);
2549 /* We just parsed a valid interval. */
2551 /* If it's invalid to have no preceding re. */
2554 if (syntax
& RE_CONTEXT_INVALID_OPS
)
2555 FREE_STACK_RETURN (REG_BADRPT
);
2556 else if (syntax
& RE_CONTEXT_INDEP_OPS
)
2559 goto unfetch_interval
;
2562 /* If the upper bound is zero, don't want to succeed at
2563 all; jump from `laststart' to `b + 3', which will be
2564 the end of the buffer after we insert the jump. */
2565 if (upper_bound
== 0)
2567 GET_BUFFER_SPACE (3);
2568 INSERT_JUMP (jump
, laststart
, b
+ 3);
2572 /* Otherwise, we have a nontrivial interval. When
2573 we're all done, the pattern will look like:
2574 set_number_at <jump count> <upper bound>
2575 set_number_at <succeed_n count> <lower bound>
2576 succeed_n <after jump addr> <succeed_n count>
2578 jump_n <succeed_n addr> <jump count>
2579 (The upper bound and `jump_n' are omitted if
2580 `upper_bound' is 1, though.) */
2582 { /* If the upper bound is > 1, we need to insert
2583 more at the end of the loop. */
2584 unsigned nbytes
= 10 + (upper_bound
> 1) * 10;
2586 GET_BUFFER_SPACE (nbytes
);
2588 /* Initialize lower bound of the `succeed_n', even
2589 though it will be set during matching by its
2590 attendant `set_number_at' (inserted next),
2591 because `re_compile_fastmap' needs to know.
2592 Jump to the `jump_n' we might insert below. */
2593 INSERT_JUMP2 (succeed_n
, laststart
,
2594 b
+ 5 + (upper_bound
> 1) * 5,
2598 /* Code to initialize the lower bound. Insert
2599 before the `succeed_n'. The `5' is the last two
2600 bytes of this `set_number_at', plus 3 bytes of
2601 the following `succeed_n'. */
2602 insert_op2 (set_number_at
, laststart
, 5, lower_bound
, b
);
2605 if (upper_bound
> 1)
2606 { /* More than one repetition is allowed, so
2607 append a backward jump to the `succeed_n'
2608 that starts this interval.
2610 When we've reached this during matching,
2611 we'll have matched the interval once, so
2612 jump back only `upper_bound - 1' times. */
2613 STORE_JUMP2 (jump_n
, b
, laststart
+ 5,
2617 /* The location we want to set is the second
2618 parameter of the `jump_n'; that is `b-2' as
2619 an absolute address. `laststart' will be
2620 the `set_number_at' we're about to insert;
2621 `laststart+3' the number to set, the source
2622 for the relative address. But we are
2623 inserting into the middle of the pattern --
2624 so everything is getting moved up by 5.
2625 Conclusion: (b - 2) - (laststart + 3) + 5,
2626 i.e., b - laststart.
2628 We insert this at the beginning of the loop
2629 so that if we fail during matching, we'll
2630 reinitialize the bounds. */
2631 insert_op2 (set_number_at
, laststart
, b
- laststart
,
2632 upper_bound
- 1, b
);
2637 beg_interval
= NULL
;
2642 /* If an invalid interval, match the characters as literals. */
2643 assert (beg_interval
);
2645 beg_interval
= NULL
;
2647 /* normal_char and normal_backslash need `c'. */
2650 if (!(syntax
& RE_NO_BK_BRACES
))
2652 if (p
> pattern
&& p
[-1] == '\\')
2653 goto normal_backslash
;
2658 /* There is no way to specify the before_dot and after_dot
2659 operators. rms says this is ok. --karl */
2667 BUF_PUSH_2 (syntaxspec
, syntax_spec_code
[c
]);
2673 BUF_PUSH_2 (notsyntaxspec
, syntax_spec_code
[c
]);
2679 if (re_syntax_options
& RE_NO_GNU_OPS
)
2682 BUF_PUSH (wordchar
);
2687 if (re_syntax_options
& RE_NO_GNU_OPS
)
2690 BUF_PUSH (notwordchar
);
2695 if (re_syntax_options
& RE_NO_GNU_OPS
)
2701 if (re_syntax_options
& RE_NO_GNU_OPS
)
2707 if (re_syntax_options
& RE_NO_GNU_OPS
)
2709 BUF_PUSH (wordbound
);
2713 if (re_syntax_options
& RE_NO_GNU_OPS
)
2715 BUF_PUSH (notwordbound
);
2719 if (re_syntax_options
& RE_NO_GNU_OPS
)
2725 if (re_syntax_options
& RE_NO_GNU_OPS
)
2730 case '1': case '2': case '3': case '4': case '5':
2731 case '6': case '7': case '8': case '9':
2732 if (syntax
& RE_NO_BK_REFS
)
2738 FREE_STACK_RETURN (REG_ESUBREG
);
2740 /* Can't back reference to a subexpression if inside of it. */
2741 if (group_in_compile_stack (compile_stack
, (regnum_t
) c1
))
2745 BUF_PUSH_2 (duplicate
, c1
);
2751 if (syntax
& RE_BK_PLUS_QM
)
2754 goto normal_backslash
;
2758 /* You might think it would be useful for \ to mean
2759 not to translate; but if we don't translate it
2760 it will never match anything. */
2768 /* Expects the character in `c'. */
2770 /* If no exactn currently being built. */
2773 /* If last exactn not at current position. */
2774 || pending_exact
+ *pending_exact
+ 1 != b
2776 /* We have only one byte following the exactn for the count. */
2777 || *pending_exact
== (1 << BYTEWIDTH
) - 1
2779 /* If followed by a repetition operator. */
2780 || *p
== '*' || *p
== '^'
2781 || ((syntax
& RE_BK_PLUS_QM
)
2782 ? *p
== '\\' && (p
[1] == '+' || p
[1] == '?')
2783 : (*p
== '+' || *p
== '?'))
2784 || ((syntax
& RE_INTERVALS
)
2785 && ((syntax
& RE_NO_BK_BRACES
)
2787 : (p
[0] == '\\' && p
[1] == '{'))))
2789 /* Start building a new exactn. */
2793 BUF_PUSH_2 (exactn
, 0);
2794 pending_exact
= b
- 1;
2801 } /* while p != pend */
2804 /* Through the pattern now. */
2807 STORE_JUMP (jump_past_alt
, fixup_alt_jump
, b
);
2809 if (!COMPILE_STACK_EMPTY
)
2810 FREE_STACK_RETURN (REG_EPAREN
);
2812 /* If we don't want backtracking, force success
2813 the first time we reach the end of the compiled pattern. */
2814 if (syntax
& RE_NO_POSIX_BACKTRACKING
)
2817 free (compile_stack
.stack
);
2819 /* We have succeeded; set the length of the buffer. */
2820 bufp
->used
= b
- bufp
->buffer
;
2825 DEBUG_PRINT1 ("\nCompiled pattern: \n");
2826 print_compiled_pattern (bufp
);
2830 #ifndef MATCH_MAY_ALLOCATE
2831 /* Initialize the failure stack to the largest possible stack. This
2832 isn't necessary unless we're trying to avoid calling alloca in
2833 the search and match routines. */
2835 int num_regs
= bufp
->re_nsub
+ 1;
2837 /* Since DOUBLE_FAIL_STACK refuses to double only if the current size
2838 is strictly greater than re_max_failures, the largest possible stack
2839 is 2 * re_max_failures failure points. */
2840 if (fail_stack
.size
< (2 * re_max_failures
* MAX_FAILURE_ITEMS
))
2842 fail_stack
.size
= (2 * re_max_failures
* MAX_FAILURE_ITEMS
);
2845 if (! fail_stack
.stack
)
2847 = (fail_stack_elt_t
*) xmalloc (fail_stack
.size
2848 * sizeof (fail_stack_elt_t
));
2851 = (fail_stack_elt_t
*) xrealloc (fail_stack
.stack
,
2853 * sizeof (fail_stack_elt_t
)));
2854 #else /* not emacs */
2855 if (! fail_stack
.stack
)
2857 = (fail_stack_elt_t
*) malloc (fail_stack
.size
2858 * sizeof (fail_stack_elt_t
));
2861 = (fail_stack_elt_t
*) realloc (fail_stack
.stack
,
2863 * sizeof (fail_stack_elt_t
)));
2864 #endif /* not emacs */
2867 regex_grow_registers (num_regs
);
2869 #endif /* not MATCH_MAY_ALLOCATE */
2872 } /* regex_compile */
2874 /* Subroutines for `regex_compile'. */
2876 /* Store OP at LOC followed by two-byte integer parameter ARG. */
2879 store_op1 (op
, loc
, arg
)
2884 *loc
= (unsigned char) op
;
2885 STORE_NUMBER (loc
+ 1, arg
);
2889 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
2892 store_op2 (op
, loc
, arg1
, arg2
)
2897 *loc
= (unsigned char) op
;
2898 STORE_NUMBER (loc
+ 1, arg1
);
2899 STORE_NUMBER (loc
+ 3, arg2
);
2903 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
2904 for OP followed by two-byte integer parameter ARG. */
2907 insert_op1 (op
, loc
, arg
, end
)
2913 register unsigned char *pfrom
= end
;
2914 register unsigned char *pto
= end
+ 3;
2916 while (pfrom
!= loc
)
2919 store_op1 (op
, loc
, arg
);
2923 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
2926 insert_op2 (op
, loc
, arg1
, arg2
, end
)
2932 register unsigned char *pfrom
= end
;
2933 register unsigned char *pto
= end
+ 5;
2935 while (pfrom
!= loc
)
2938 store_op2 (op
, loc
, arg1
, arg2
);
2942 /* P points to just after a ^ in PATTERN. Return true if that ^ comes
2943 after an alternative or a begin-subexpression. We assume there is at
2944 least one character before the ^. */
2947 at_begline_loc_p (pattern
, p
, syntax
)
2948 const char *pattern
, *p
;
2949 reg_syntax_t syntax
;
2951 const char *prev
= p
- 2;
2952 boolean prev_prev_backslash
= prev
> pattern
&& prev
[-1] == '\\';
2955 /* After a subexpression? */
2956 (*prev
== '(' && (syntax
& RE_NO_BK_PARENS
|| prev_prev_backslash
))
2957 /* After an alternative? */
2958 || (*prev
== '|' && (syntax
& RE_NO_BK_VBAR
|| prev_prev_backslash
));
2962 /* The dual of at_begline_loc_p. This one is for $. We assume there is
2963 at least one character after the $, i.e., `P < PEND'. */
2966 at_endline_loc_p (p
, pend
, syntax
)
2967 const char *p
, *pend
;
2968 reg_syntax_t syntax
;
2970 const char *next
= p
;
2971 boolean next_backslash
= *next
== '\\';
2972 const char *next_next
= p
+ 1 < pend
? p
+ 1 : 0;
2975 /* Before a subexpression? */
2976 (syntax
& RE_NO_BK_PARENS
? *next
== ')'
2977 : next_backslash
&& next_next
&& *next_next
== ')')
2978 /* Before an alternative? */
2979 || (syntax
& RE_NO_BK_VBAR
? *next
== '|'
2980 : next_backslash
&& next_next
&& *next_next
== '|');
2984 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
2985 false if it's not. */
2988 group_in_compile_stack (compile_stack
, regnum
)
2989 compile_stack_type compile_stack
;
2994 for (this_element
= compile_stack
.avail
- 1;
2997 if (compile_stack
.stack
[this_element
].regnum
== regnum
)
3004 /* Read the ending character of a range (in a bracket expression) from the
3005 uncompiled pattern *P_PTR (which ends at PEND). We assume the
3006 starting character is in `P[-2]'. (`P[-1]' is the character `-'.)
3007 Then we set the translation of all bits between the starting and
3008 ending characters (inclusive) in the compiled pattern B.
3010 Return an error code.
3012 We use these short variable names so we can use the same macros as
3013 `regex_compile' itself. */
3015 static reg_errcode_t
3016 compile_range (p_ptr
, pend
, translate
, syntax
, b
)
3017 const char **p_ptr
, *pend
;
3018 RE_TRANSLATE_TYPE translate
;
3019 reg_syntax_t syntax
;
3024 const char *p
= *p_ptr
;
3025 unsigned int range_start
, range_end
;
3030 /* Even though the pattern is a signed `char *', we need to fetch
3031 with unsigned char *'s; if the high bit of the pattern character
3032 is set, the range endpoints will be negative if we fetch using a
3035 We also want to fetch the endpoints without translating them; the
3036 appropriate translation is done in the bit-setting loop below. */
3037 /* The SVR4 compiler on the 3B2 had trouble with unsigned const char *. */
3038 range_start
= ((const unsigned char *) p
)[-2];
3039 range_end
= ((const unsigned char *) p
)[0];
3041 /* Have to increment the pointer into the pattern string, so the
3042 caller isn't still at the ending character. */
3045 /* If the start is after the end, the range is empty. */
3046 if (range_start
> range_end
)
3047 return syntax
& RE_NO_EMPTY_RANGES
? REG_ERANGE
: REG_NOERROR
;
3049 /* Here we see why `this_char' has to be larger than an `unsigned
3050 char' -- the range is inclusive, so if `range_end' == 0xff
3051 (assuming 8-bit characters), we would otherwise go into an infinite
3052 loop, since all characters <= 0xff. */
3053 for (this_char
= range_start
; this_char
<= range_end
; this_char
++)
3055 SET_LIST_BIT (TRANSLATE (this_char
));
3061 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
3062 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
3063 characters can start a string that matches the pattern. This fastmap
3064 is used by re_search to skip quickly over impossible starting points.
3066 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
3067 area as BUFP->fastmap.
3069 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
3072 Returns 0 if we succeed, -2 if an internal error. */
3075 re_compile_fastmap (bufp
)
3076 struct re_pattern_buffer
*bufp
;
3079 #ifdef MATCH_MAY_ALLOCATE
3080 fail_stack_type fail_stack
;
3082 #ifndef REGEX_MALLOC
3086 register char *fastmap
= bufp
->fastmap
;
3087 unsigned char *pattern
= bufp
->buffer
;
3088 unsigned char *p
= pattern
;
3089 register unsigned char *pend
= pattern
+ bufp
->used
;
3092 /* This holds the pointer to the failure stack, when
3093 it is allocated relocatably. */
3094 fail_stack_elt_t
*failure_stack_ptr
;
3097 /* Assume that each path through the pattern can be null until
3098 proven otherwise. We set this false at the bottom of switch
3099 statement, to which we get only if a particular path doesn't
3100 match the empty string. */
3101 boolean path_can_be_null
= true;
3103 /* We aren't doing a `succeed_n' to begin with. */
3104 boolean succeed_n_p
= false;
3106 assert (fastmap
!= NULL
&& p
!= NULL
);
3109 bzero (fastmap
, 1 << BYTEWIDTH
); /* Assume nothing's valid. */
3110 bufp
->fastmap_accurate
= 1; /* It will be when we're done. */
3111 bufp
->can_be_null
= 0;
3115 if (p
== pend
|| *p
== succeed
)
3117 /* We have reached the (effective) end of pattern. */
3118 if (!FAIL_STACK_EMPTY ())
3120 bufp
->can_be_null
|= path_can_be_null
;
3122 /* Reset for next path. */
3123 path_can_be_null
= true;
3125 p
= fail_stack
.stack
[--fail_stack
.avail
].pointer
;
3133 /* We should never be about to go beyond the end of the pattern. */
3136 switch (SWITCH_ENUM_CAST ((re_opcode_t
) *p
++))
3139 /* I guess the idea here is to simply not bother with a fastmap
3140 if a backreference is used, since it's too hard to figure out
3141 the fastmap for the corresponding group. Setting
3142 `can_be_null' stops `re_search_2' from using the fastmap, so
3143 that is all we do. */
3145 bufp
->can_be_null
= 1;
3149 /* Following are the cases which match a character. These end
3158 for (j
= *p
++ * BYTEWIDTH
- 1; j
>= 0; j
--)
3159 if (p
[j
/ BYTEWIDTH
] & (1 << (j
% BYTEWIDTH
)))
3165 /* Chars beyond end of map must be allowed. */
3166 for (j
= *p
* BYTEWIDTH
; j
< (1 << BYTEWIDTH
); j
++)
3169 for (j
= *p
++ * BYTEWIDTH
- 1; j
>= 0; j
--)
3170 if (!(p
[j
/ BYTEWIDTH
] & (1 << (j
% BYTEWIDTH
))))
3176 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
3177 if (SYNTAX (j
) == Sword
)
3183 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
3184 if (SYNTAX (j
) != Sword
)
3191 int fastmap_newline
= fastmap
['\n'];
3193 /* `.' matches anything ... */
3194 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
3197 /* ... except perhaps newline. */
3198 if (!(bufp
->syntax
& RE_DOT_NEWLINE
))
3199 fastmap
['\n'] = fastmap_newline
;
3201 /* Return if we have already set `can_be_null'; if we have,
3202 then the fastmap is irrelevant. Something's wrong here. */
3203 else if (bufp
->can_be_null
)
3206 /* Otherwise, have to check alternative paths. */
3213 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
3214 if (SYNTAX (j
) == (enum syntaxcode
) k
)
3221 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
3222 if (SYNTAX (j
) != (enum syntaxcode
) k
)
3227 /* All cases after this match the empty string. These end with
3247 case push_dummy_failure
:
3252 case pop_failure_jump
:
3253 case maybe_pop_jump
:
3256 case dummy_failure_jump
:
3257 EXTRACT_NUMBER_AND_INCR (j
, p
);
3262 /* Jump backward implies we just went through the body of a
3263 loop and matched nothing. Opcode jumped to should be
3264 `on_failure_jump' or `succeed_n'. Just treat it like an
3265 ordinary jump. For a * loop, it has pushed its failure
3266 point already; if so, discard that as redundant. */
3267 if ((re_opcode_t
) *p
!= on_failure_jump
3268 && (re_opcode_t
) *p
!= succeed_n
)
3272 EXTRACT_NUMBER_AND_INCR (j
, p
);
3275 /* If what's on the stack is where we are now, pop it. */
3276 if (!FAIL_STACK_EMPTY ()
3277 && fail_stack
.stack
[fail_stack
.avail
- 1].pointer
== p
)
3283 case on_failure_jump
:
3284 case on_failure_keep_string_jump
:
3285 handle_on_failure_jump
:
3286 EXTRACT_NUMBER_AND_INCR (j
, p
);
3288 /* For some patterns, e.g., `(a?)?', `p+j' here points to the
3289 end of the pattern. We don't want to push such a point,
3290 since when we restore it above, entering the switch will
3291 increment `p' past the end of the pattern. We don't need
3292 to push such a point since we obviously won't find any more
3293 fastmap entries beyond `pend'. Such a pattern can match
3294 the null string, though. */
3297 if (!PUSH_PATTERN_OP (p
+ j
, fail_stack
))
3299 RESET_FAIL_STACK ();
3304 bufp
->can_be_null
= 1;
3308 EXTRACT_NUMBER_AND_INCR (k
, p
); /* Skip the n. */
3309 succeed_n_p
= false;
3316 /* Get to the number of times to succeed. */
3319 /* Increment p past the n for when k != 0. */
3320 EXTRACT_NUMBER_AND_INCR (k
, p
);
3324 succeed_n_p
= true; /* Spaghetti code alert. */
3325 goto handle_on_failure_jump
;
3342 abort (); /* We have listed all the cases. */
3345 /* Getting here means we have found the possible starting
3346 characters for one path of the pattern -- and that the empty
3347 string does not match. We need not follow this path further.
3348 Instead, look at the next alternative (remembered on the
3349 stack), or quit if no more. The test at the top of the loop
3350 does these things. */
3351 path_can_be_null
= false;
3355 /* Set `can_be_null' for the last path (also the first path, if the
3356 pattern is empty). */
3357 bufp
->can_be_null
|= path_can_be_null
;
3360 RESET_FAIL_STACK ();
3362 } /* re_compile_fastmap */
3364 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
3365 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
3366 this memory for recording register information. STARTS and ENDS
3367 must be allocated using the malloc library routine, and must each
3368 be at least NUM_REGS * sizeof (regoff_t) bytes long.
3370 If NUM_REGS == 0, then subsequent matches should allocate their own
3373 Unless this function is called, the first search or match using
3374 PATTERN_BUFFER will allocate its own register data, without
3375 freeing the old data. */
3378 re_set_registers (bufp
, regs
, num_regs
, starts
, ends
)
3379 struct re_pattern_buffer
*bufp
;
3380 struct re_registers
*regs
;
3382 regoff_t
*starts
, *ends
;
3386 bufp
->regs_allocated
= REGS_REALLOCATE
;
3387 regs
->num_regs
= num_regs
;
3388 regs
->start
= starts
;
3393 bufp
->regs_allocated
= REGS_UNALLOCATED
;
3395 regs
->start
= regs
->end
= (regoff_t
*) 0;
3399 /* Searching routines. */
3401 /* Like re_search_2, below, but only one string is specified, and
3402 doesn't let you say where to stop matching. */
3405 re_search (bufp
, string
, size
, startpos
, range
, regs
)
3406 struct re_pattern_buffer
*bufp
;
3408 int size
, startpos
, range
;
3409 struct re_registers
*regs
;
3411 return re_search_2 (bufp
, NULL
, 0, string
, size
, startpos
, range
,
3416 /* Using the compiled pattern in BUFP->buffer, first tries to match the
3417 virtual concatenation of STRING1 and STRING2, starting first at index
3418 STARTPOS, then at STARTPOS + 1, and so on.
3420 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
3422 RANGE is how far to scan while trying to match. RANGE = 0 means try
3423 only at STARTPOS; in general, the last start tried is STARTPOS +
3426 In REGS, return the indices of the virtual concatenation of STRING1
3427 and STRING2 that matched the entire BUFP->buffer and its contained
3430 Do not consider matching one past the index STOP in the virtual
3431 concatenation of STRING1 and STRING2.
3433 We return either the position in the strings at which the match was
3434 found, -1 if no match, or -2 if error (such as failure
3438 re_search_2 (bufp
, string1
, size1
, string2
, size2
, startpos
, range
, regs
, stop
)
3439 struct re_pattern_buffer
*bufp
;
3440 const char *string1
, *string2
;
3444 struct re_registers
*regs
;
3448 register char *fastmap
= bufp
->fastmap
;
3449 register RE_TRANSLATE_TYPE translate
= bufp
->translate
;
3450 int total_size
= size1
+ size2
;
3451 int endpos
= startpos
+ range
;
3453 /* Check for out-of-range STARTPOS. */
3454 if (startpos
< 0 || startpos
> total_size
)
3457 /* Fix up RANGE if it might eventually take us outside
3458 the virtual concatenation of STRING1 and STRING2.
3459 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
3461 range
= 0 - startpos
;
3462 else if (endpos
> total_size
)
3463 range
= total_size
- startpos
;
3465 /* If the search isn't to be a backwards one, don't waste time in a
3466 search for a pattern that must be anchored. */
3467 if (bufp
->used
> 0 && (re_opcode_t
) bufp
->buffer
[0] == begbuf
&& range
> 0)
3476 /* In a forward search for something that starts with \=.
3477 don't keep searching past point. */
3478 if (bufp
->used
> 0 && (re_opcode_t
) bufp
->buffer
[0] == at_dot
&& range
> 0)
3480 range
= PT
- startpos
;
3486 /* Update the fastmap now if not correct already. */
3487 if (fastmap
&& !bufp
->fastmap_accurate
)
3488 if (re_compile_fastmap (bufp
) == -2)
3491 /* Loop through the string, looking for a place to start matching. */
3494 /* If a fastmap is supplied, skip quickly over characters that
3495 cannot be the start of a match. If the pattern can match the
3496 null string, however, we don't need to skip characters; we want
3497 the first null string. */
3498 if (fastmap
&& startpos
< total_size
&& !bufp
->can_be_null
)
3500 if (range
> 0) /* Searching forwards. */
3502 register const char *d
;
3503 register int lim
= 0;
3506 if (startpos
< size1
&& startpos
+ range
>= size1
)
3507 lim
= range
- (size1
- startpos
);
3509 d
= (startpos
>= size1
? string2
- size1
: string1
) + startpos
;
3511 /* Written out as an if-else to avoid testing `translate'
3515 && !fastmap
[(unsigned char)
3516 translate
[(unsigned char) *d
++]])
3519 while (range
> lim
&& !fastmap
[(unsigned char) *d
++])
3522 startpos
+= irange
- range
;
3524 else /* Searching backwards. */
3526 register char c
= (size1
== 0 || startpos
>= size1
3527 ? string2
[startpos
- size1
]
3528 : string1
[startpos
]);
3530 if (!fastmap
[(unsigned char) TRANSLATE (c
)])
3535 /* If can't match the null string, and that's all we have left, fail. */
3536 if (range
>= 0 && startpos
== total_size
&& fastmap
3537 && !bufp
->can_be_null
)
3540 val
= re_match_2_internal (bufp
, string1
, size1
, string2
, size2
,
3541 startpos
, regs
, stop
);
3542 #ifndef REGEX_MALLOC
3571 /* This converts PTR, a pointer into one of the search strings `string1'
3572 and `string2' into an offset from the beginning of that string. */
3573 #define POINTER_TO_OFFSET(ptr) \
3574 (FIRST_STRING_P (ptr) \
3575 ? ((regoff_t) ((ptr) - string1)) \
3576 : ((regoff_t) ((ptr) - string2 + size1)))
3578 /* Macros for dealing with the split strings in re_match_2. */
3580 #define MATCHING_IN_FIRST_STRING (dend == end_match_1)
3582 /* Call before fetching a character with *d. This switches over to
3583 string2 if necessary. */
3584 #define PREFETCH() \
3587 /* End of string2 => fail. */ \
3588 if (dend == end_match_2) \
3590 /* End of string1 => advance to string2. */ \
3592 dend = end_match_2; \
3596 /* Test if at very beginning or at very end of the virtual concatenation
3597 of `string1' and `string2'. If only one string, it's `string2'. */
3598 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
3599 #define AT_STRINGS_END(d) ((d) == end2)
3602 /* Test if D points to a character which is word-constituent. We have
3603 two special cases to check for: if past the end of string1, look at
3604 the first character in string2; and if before the beginning of
3605 string2, look at the last character in string1. */
3606 #define WORDCHAR_P(d) \
3607 (SYNTAX ((d) == end1 ? *string2 \
3608 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
3611 /* Disabled due to a compiler bug -- see comment at case wordbound */
3613 /* Test if the character before D and the one at D differ with respect
3614 to being word-constituent. */
3615 #define AT_WORD_BOUNDARY(d) \
3616 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
3617 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
3620 /* Free everything we malloc. */
3621 #ifdef MATCH_MAY_ALLOCATE
3622 #define FREE_VAR(var) if (var) REGEX_FREE (var); var = NULL
3623 #define FREE_VARIABLES() \
3625 REGEX_FREE_STACK (fail_stack.stack); \
3626 FREE_VAR (regstart); \
3627 FREE_VAR (regend); \
3628 FREE_VAR (old_regstart); \
3629 FREE_VAR (old_regend); \
3630 FREE_VAR (best_regstart); \
3631 FREE_VAR (best_regend); \
3632 FREE_VAR (reg_info); \
3633 FREE_VAR (reg_dummy); \
3634 FREE_VAR (reg_info_dummy); \
3637 #define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
3638 #endif /* not MATCH_MAY_ALLOCATE */
3640 /* These values must meet several constraints. They must not be valid
3641 register values; since we have a limit of 255 registers (because
3642 we use only one byte in the pattern for the register number), we can
3643 use numbers larger than 255. They must differ by 1, because of
3644 NUM_FAILURE_ITEMS above. And the value for the lowest register must
3645 be larger than the value for the highest register, so we do not try
3646 to actually save any registers when none are active. */
3647 #define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
3648 #define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
3650 /* Matching routines. */
3652 #ifndef emacs /* Emacs never uses this. */
3653 /* re_match is like re_match_2 except it takes only a single string. */
3656 re_match (bufp
, string
, size
, pos
, regs
)
3657 struct re_pattern_buffer
*bufp
;
3660 struct re_registers
*regs
;
3662 int result
= re_match_2_internal (bufp
, NULL
, 0, string
, size
,
3664 #ifndef REGEX_MALLOC
3671 #endif /* not emacs */
3673 static boolean group_match_null_string_p
_RE_ARGS ((unsigned char **p
,
3675 register_info_type
*reg_info
));
3676 static boolean alt_match_null_string_p
_RE_ARGS ((unsigned char *p
,
3678 register_info_type
*reg_info
));
3679 static boolean common_op_match_null_string_p
_RE_ARGS ((unsigned char **p
,
3681 register_info_type
*reg_info
));
3682 static int bcmp_translate
_RE_ARGS ((const char *s1
, const char *s2
,
3683 int len
, char *translate
));
3685 /* re_match_2 matches the compiled pattern in BUFP against the
3686 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
3687 and SIZE2, respectively). We start matching at POS, and stop
3690 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
3691 store offsets for the substring each group matched in REGS. See the
3692 documentation for exactly how many groups we fill.
3694 We return -1 if no match, -2 if an internal error (such as the
3695 failure stack overflowing). Otherwise, we return the length of the
3696 matched substring. */
3699 re_match_2 (bufp
, string1
, size1
, string2
, size2
, pos
, regs
, stop
)
3700 struct re_pattern_buffer
*bufp
;
3701 const char *string1
, *string2
;
3704 struct re_registers
*regs
;
3707 int result
= re_match_2_internal (bufp
, string1
, size1
, string2
, size2
,
3709 #ifndef REGEX_MALLOC
3717 /* This is a separate function so that we can force an alloca cleanup
3720 re_match_2_internal (bufp
, string1
, size1
, string2
, size2
, pos
, regs
, stop
)
3721 struct re_pattern_buffer
*bufp
;
3722 const char *string1
, *string2
;
3725 struct re_registers
*regs
;
3728 /* General temporaries. */
3732 /* Just past the end of the corresponding string. */
3733 const char *end1
, *end2
;
3735 /* Pointers into string1 and string2, just past the last characters in
3736 each to consider matching. */
3737 const char *end_match_1
, *end_match_2
;
3739 /* Where we are in the data, and the end of the current string. */
3740 const char *d
, *dend
;
3742 /* Where we are in the pattern, and the end of the pattern. */
3743 unsigned char *p
= bufp
->buffer
;
3744 register unsigned char *pend
= p
+ bufp
->used
;
3746 /* Mark the opcode just after a start_memory, so we can test for an
3747 empty subpattern when we get to the stop_memory. */
3748 unsigned char *just_past_start_mem
= 0;
3750 /* We use this to map every character in the string. */
3751 RE_TRANSLATE_TYPE translate
= bufp
->translate
;
3753 /* Failure point stack. Each place that can handle a failure further
3754 down the line pushes a failure point on this stack. It consists of
3755 restart, regend, and reg_info for all registers corresponding to
3756 the subexpressions we're currently inside, plus the number of such
3757 registers, and, finally, two char *'s. The first char * is where
3758 to resume scanning the pattern; the second one is where to resume
3759 scanning the strings. If the latter is zero, the failure point is
3760 a ``dummy''; if a failure happens and the failure point is a dummy,
3761 it gets discarded and the next next one is tried. */
3762 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
3763 fail_stack_type fail_stack
;
3766 static unsigned failure_id
= 0;
3767 unsigned nfailure_points_pushed
= 0, nfailure_points_popped
= 0;
3771 /* This holds the pointer to the failure stack, when
3772 it is allocated relocatably. */
3773 fail_stack_elt_t
*failure_stack_ptr
;
3776 /* We fill all the registers internally, independent of what we
3777 return, for use in backreferences. The number here includes
3778 an element for register zero. */
3779 size_t num_regs
= bufp
->re_nsub
+ 1;
3781 /* The currently active registers. */
3782 active_reg_t lowest_active_reg
= NO_LOWEST_ACTIVE_REG
;
3783 active_reg_t highest_active_reg
= NO_HIGHEST_ACTIVE_REG
;
3785 /* Information on the contents of registers. These are pointers into
3786 the input strings; they record just what was matched (on this
3787 attempt) by a subexpression part of the pattern, that is, the
3788 regnum-th regstart pointer points to where in the pattern we began
3789 matching and the regnum-th regend points to right after where we
3790 stopped matching the regnum-th subexpression. (The zeroth register
3791 keeps track of what the whole pattern matches.) */
3792 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3793 const char **regstart
, **regend
;
3796 /* If a group that's operated upon by a repetition operator fails to
3797 match anything, then the register for its start will need to be
3798 restored because it will have been set to wherever in the string we
3799 are when we last see its open-group operator. Similarly for a
3801 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3802 const char **old_regstart
, **old_regend
;
3805 /* The is_active field of reg_info helps us keep track of which (possibly
3806 nested) subexpressions we are currently in. The matched_something
3807 field of reg_info[reg_num] helps us tell whether or not we have
3808 matched any of the pattern so far this time through the reg_num-th
3809 subexpression. These two fields get reset each time through any
3810 loop their register is in. */
3811 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
3812 register_info_type
*reg_info
;
3815 /* The following record the register info as found in the above
3816 variables when we find a match better than any we've seen before.
3817 This happens as we backtrack through the failure points, which in
3818 turn happens only if we have not yet matched the entire string. */
3819 unsigned best_regs_set
= false;
3820 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3821 const char **best_regstart
, **best_regend
;
3824 /* Logically, this is `best_regend[0]'. But we don't want to have to
3825 allocate space for that if we're not allocating space for anything
3826 else (see below). Also, we never need info about register 0 for
3827 any of the other register vectors, and it seems rather a kludge to
3828 treat `best_regend' differently than the rest. So we keep track of
3829 the end of the best match so far in a separate variable. We
3830 initialize this to NULL so that when we backtrack the first time
3831 and need to test it, it's not garbage. */
3832 const char *match_end
= NULL
;
3834 /* This helps SET_REGS_MATCHED avoid doing redundant work. */
3835 int set_regs_matched_done
= 0;
3837 /* Used when we pop values we don't care about. */
3838 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3839 const char **reg_dummy
;
3840 register_info_type
*reg_info_dummy
;
3844 /* Counts the total number of registers pushed. */
3845 unsigned num_regs_pushed
= 0;
3848 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
3852 #ifdef MATCH_MAY_ALLOCATE
3853 /* Do not bother to initialize all the register variables if there are
3854 no groups in the pattern, as it takes a fair amount of time. If
3855 there are groups, we include space for register 0 (the whole
3856 pattern), even though we never use it, since it simplifies the
3857 array indexing. We should fix this. */
3860 regstart
= REGEX_TALLOC (num_regs
, const char *);
3861 regend
= REGEX_TALLOC (num_regs
, const char *);
3862 old_regstart
= REGEX_TALLOC (num_regs
, const char *);
3863 old_regend
= REGEX_TALLOC (num_regs
, const char *);
3864 best_regstart
= REGEX_TALLOC (num_regs
, const char *);
3865 best_regend
= REGEX_TALLOC (num_regs
, const char *);
3866 reg_info
= REGEX_TALLOC (num_regs
, register_info_type
);
3867 reg_dummy
= REGEX_TALLOC (num_regs
, const char *);
3868 reg_info_dummy
= REGEX_TALLOC (num_regs
, register_info_type
);
3870 if (!(regstart
&& regend
&& old_regstart
&& old_regend
&& reg_info
3871 && best_regstart
&& best_regend
&& reg_dummy
&& reg_info_dummy
))
3879 /* We must initialize all our variables to NULL, so that
3880 `FREE_VARIABLES' doesn't try to free them. */
3881 regstart
= regend
= old_regstart
= old_regend
= best_regstart
3882 = best_regend
= reg_dummy
= NULL
;
3883 reg_info
= reg_info_dummy
= (register_info_type
*) NULL
;
3885 #endif /* MATCH_MAY_ALLOCATE */
3887 /* The starting position is bogus. */
3888 if (pos
< 0 || pos
> size1
+ size2
)
3894 /* Initialize subexpression text positions to -1 to mark ones that no
3895 start_memory/stop_memory has been seen for. Also initialize the
3896 register information struct. */
3897 for (mcnt
= 1; (unsigned) mcnt
< num_regs
; mcnt
++)
3899 regstart
[mcnt
] = regend
[mcnt
]
3900 = old_regstart
[mcnt
] = old_regend
[mcnt
] = REG_UNSET_VALUE
;
3902 REG_MATCH_NULL_STRING_P (reg_info
[mcnt
]) = MATCH_NULL_UNSET_VALUE
;
3903 IS_ACTIVE (reg_info
[mcnt
]) = 0;
3904 MATCHED_SOMETHING (reg_info
[mcnt
]) = 0;
3905 EVER_MATCHED_SOMETHING (reg_info
[mcnt
]) = 0;
3908 /* We move `string1' into `string2' if the latter's empty -- but not if
3909 `string1' is null. */
3910 if (size2
== 0 && string1
!= NULL
)
3917 end1
= string1
+ size1
;
3918 end2
= string2
+ size2
;
3920 /* Compute where to stop matching, within the two strings. */
3923 end_match_1
= string1
+ stop
;
3924 end_match_2
= string2
;
3929 end_match_2
= string2
+ stop
- size1
;
3932 /* `p' scans through the pattern as `d' scans through the data.
3933 `dend' is the end of the input string that `d' points within. `d'
3934 is advanced into the following input string whenever necessary, but
3935 this happens before fetching; therefore, at the beginning of the
3936 loop, `d' can be pointing at the end of a string, but it cannot
3938 if (size1
> 0 && pos
<= size1
)
3945 d
= string2
+ pos
- size1
;
3949 DEBUG_PRINT1 ("The compiled pattern is:\n");
3950 DEBUG_PRINT_COMPILED_PATTERN (bufp
, p
, pend
);
3951 DEBUG_PRINT1 ("The string to match is: `");
3952 DEBUG_PRINT_DOUBLE_STRING (d
, string1
, size1
, string2
, size2
);
3953 DEBUG_PRINT1 ("'\n");
3955 /* This loops over pattern commands. It exits by returning from the
3956 function if the match is complete, or it drops through if the match
3957 fails at this starting point in the input data. */
3961 DEBUG_PRINT2 ("\n%p: ", p
);
3963 DEBUG_PRINT2 ("\n0x%x: ", p
);
3967 { /* End of pattern means we might have succeeded. */
3968 DEBUG_PRINT1 ("end of pattern ... ");
3970 /* If we haven't matched the entire string, and we want the
3971 longest match, try backtracking. */
3972 if (d
!= end_match_2
)
3974 /* 1 if this match ends in the same string (string1 or string2)
3975 as the best previous match. */
3976 boolean same_str_p
= (FIRST_STRING_P (match_end
)
3977 == MATCHING_IN_FIRST_STRING
);
3978 /* 1 if this match is the best seen so far. */
3979 boolean best_match_p
;
3981 /* AIX compiler got confused when this was combined
3982 with the previous declaration. */
3984 best_match_p
= d
> match_end
;
3986 best_match_p
= !MATCHING_IN_FIRST_STRING
;
3988 DEBUG_PRINT1 ("backtracking.\n");
3990 if (!FAIL_STACK_EMPTY ())
3991 { /* More failure points to try. */
3993 /* If exceeds best match so far, save it. */
3994 if (!best_regs_set
|| best_match_p
)
3996 best_regs_set
= true;
3999 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
4001 for (mcnt
= 1; (unsigned) mcnt
< num_regs
; mcnt
++)
4003 best_regstart
[mcnt
] = regstart
[mcnt
];
4004 best_regend
[mcnt
] = regend
[mcnt
];
4010 /* If no failure points, don't restore garbage. And if
4011 last match is real best match, don't restore second
4013 else if (best_regs_set
&& !best_match_p
)
4016 /* Restore best match. It may happen that `dend ==
4017 end_match_1' while the restored d is in string2.
4018 For example, the pattern `x.*y.*z' against the
4019 strings `x-' and `y-z-', if the two strings are
4020 not consecutive in memory. */
4021 DEBUG_PRINT1 ("Restoring best registers.\n");
4024 dend
= ((d
>= string1
&& d
<= end1
)
4025 ? end_match_1
: end_match_2
);
4027 for (mcnt
= 1; (unsigned) mcnt
< num_regs
; mcnt
++)
4029 regstart
[mcnt
] = best_regstart
[mcnt
];
4030 regend
[mcnt
] = best_regend
[mcnt
];
4033 } /* d != end_match_2 */
4036 DEBUG_PRINT1 ("Accepting match.\n");
4038 /* If caller wants register contents data back, do it. */
4039 if (regs
&& !bufp
->no_sub
)
4041 /* Have the register data arrays been allocated? */
4042 if (bufp
->regs_allocated
== REGS_UNALLOCATED
)
4043 { /* No. So allocate them with malloc. We need one
4044 extra element beyond `num_regs' for the `-1' marker
4046 regs
->num_regs
= MAX (RE_NREGS
, num_regs
+ 1);
4047 regs
->start
= TALLOC (regs
->num_regs
, regoff_t
);
4048 regs
->end
= TALLOC (regs
->num_regs
, regoff_t
);
4049 if (regs
->start
== NULL
|| regs
->end
== NULL
)
4054 bufp
->regs_allocated
= REGS_REALLOCATE
;
4056 else if (bufp
->regs_allocated
== REGS_REALLOCATE
)
4057 { /* Yes. If we need more elements than were already
4058 allocated, reallocate them. If we need fewer, just
4060 if (regs
->num_regs
< num_regs
+ 1)
4062 regs
->num_regs
= num_regs
+ 1;
4063 RETALLOC (regs
->start
, regs
->num_regs
, regoff_t
);
4064 RETALLOC (regs
->end
, regs
->num_regs
, regoff_t
);
4065 if (regs
->start
== NULL
|| regs
->end
== NULL
)
4074 /* These braces fend off a "empty body in an else-statement"
4075 warning under GCC when assert expands to nothing. */
4076 assert (bufp
->regs_allocated
== REGS_FIXED
);
4079 /* Convert the pointer data in `regstart' and `regend' to
4080 indices. Register zero has to be set differently,
4081 since we haven't kept track of any info for it. */
4082 if (regs
->num_regs
> 0)
4084 regs
->start
[0] = pos
;
4085 regs
->end
[0] = (MATCHING_IN_FIRST_STRING
4086 ? ((regoff_t
) (d
- string1
))
4087 : ((regoff_t
) (d
- string2
+ size1
)));
4090 /* Go through the first `min (num_regs, regs->num_regs)'
4091 registers, since that is all we initialized. */
4092 for (mcnt
= 1; (unsigned) mcnt
< MIN (num_regs
, regs
->num_regs
);
4095 if (REG_UNSET (regstart
[mcnt
]) || REG_UNSET (regend
[mcnt
]))
4096 regs
->start
[mcnt
] = regs
->end
[mcnt
] = -1;
4100 = (regoff_t
) POINTER_TO_OFFSET (regstart
[mcnt
]);
4102 = (regoff_t
) POINTER_TO_OFFSET (regend
[mcnt
]);
4106 /* If the regs structure we return has more elements than
4107 were in the pattern, set the extra elements to -1. If
4108 we (re)allocated the registers, this is the case,
4109 because we always allocate enough to have at least one
4111 for (mcnt
= num_regs
; (unsigned) mcnt
< regs
->num_regs
; mcnt
++)
4112 regs
->start
[mcnt
] = regs
->end
[mcnt
] = -1;
4113 } /* regs && !bufp->no_sub */
4115 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
4116 nfailure_points_pushed
, nfailure_points_popped
,
4117 nfailure_points_pushed
- nfailure_points_popped
);
4118 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed
);
4120 mcnt
= d
- pos
- (MATCHING_IN_FIRST_STRING
4124 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt
);
4130 /* Otherwise match next pattern command. */
4131 switch (SWITCH_ENUM_CAST ((re_opcode_t
) *p
++))
4133 /* Ignore these. Used to ignore the n of succeed_n's which
4134 currently have n == 0. */
4136 DEBUG_PRINT1 ("EXECUTING no_op.\n");
4140 DEBUG_PRINT1 ("EXECUTING succeed.\n");
4143 /* Match the next n pattern characters exactly. The following
4144 byte in the pattern defines n, and the n bytes after that
4145 are the characters to match. */
4148 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt
);
4150 /* This is written out as an if-else so we don't waste time
4151 testing `translate' inside the loop. */
4157 if ((unsigned char) translate
[(unsigned char) *d
++]
4158 != (unsigned char) *p
++)
4168 if (*d
++ != (char) *p
++) goto fail
;
4172 SET_REGS_MATCHED ();
4176 /* Match any character except possibly a newline or a null. */
4178 DEBUG_PRINT1 ("EXECUTING anychar.\n");
4182 if ((!(bufp
->syntax
& RE_DOT_NEWLINE
) && TRANSLATE (*d
) == '\n')
4183 || (bufp
->syntax
& RE_DOT_NOT_NULL
&& TRANSLATE (*d
) == '\000'))
4186 SET_REGS_MATCHED ();
4187 DEBUG_PRINT2 (" Matched `%d'.\n", *d
);
4195 register unsigned char c
;
4196 boolean
not = (re_opcode_t
) *(p
- 1) == charset_not
;
4198 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
4201 c
= TRANSLATE (*d
); /* The character to match. */
4203 /* Cast to `unsigned' instead of `unsigned char' in case the
4204 bit list is a full 32 bytes long. */
4205 if (c
< (unsigned) (*p
* BYTEWIDTH
)
4206 && p
[1 + c
/ BYTEWIDTH
] & (1 << (c
% BYTEWIDTH
)))
4211 if (!not) goto fail
;
4213 SET_REGS_MATCHED ();
4219 /* The beginning of a group is represented by start_memory.
4220 The arguments are the register number in the next byte, and the
4221 number of groups inner to this one in the next. The text
4222 matched within the group is recorded (in the internal
4223 registers data structure) under the register number. */
4225 DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p
, p
[1]);
4227 /* Find out if this group can match the empty string. */
4228 p1
= p
; /* To send to group_match_null_string_p. */
4230 if (REG_MATCH_NULL_STRING_P (reg_info
[*p
]) == MATCH_NULL_UNSET_VALUE
)
4231 REG_MATCH_NULL_STRING_P (reg_info
[*p
])
4232 = group_match_null_string_p (&p1
, pend
, reg_info
);
4234 /* Save the position in the string where we were the last time
4235 we were at this open-group operator in case the group is
4236 operated upon by a repetition operator, e.g., with `(a*)*b'
4237 against `ab'; then we want to ignore where we are now in
4238 the string in case this attempt to match fails. */
4239 old_regstart
[*p
] = REG_MATCH_NULL_STRING_P (reg_info
[*p
])
4240 ? REG_UNSET (regstart
[*p
]) ? d
: regstart
[*p
]
4242 DEBUG_PRINT2 (" old_regstart: %d\n",
4243 POINTER_TO_OFFSET (old_regstart
[*p
]));
4246 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart
[*p
]));
4248 IS_ACTIVE (reg_info
[*p
]) = 1;
4249 MATCHED_SOMETHING (reg_info
[*p
]) = 0;
4251 /* Clear this whenever we change the register activity status. */
4252 set_regs_matched_done
= 0;
4254 /* This is the new highest active register. */
4255 highest_active_reg
= *p
;
4257 /* If nothing was active before, this is the new lowest active
4259 if (lowest_active_reg
== NO_LOWEST_ACTIVE_REG
)
4260 lowest_active_reg
= *p
;
4262 /* Move past the register number and inner group count. */
4264 just_past_start_mem
= p
;
4269 /* The stop_memory opcode represents the end of a group. Its
4270 arguments are the same as start_memory's: the register
4271 number, and the number of inner groups. */
4273 DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p
, p
[1]);
4275 /* We need to save the string position the last time we were at
4276 this close-group operator in case the group is operated
4277 upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
4278 against `aba'; then we want to ignore where we are now in
4279 the string in case this attempt to match fails. */
4280 old_regend
[*p
] = REG_MATCH_NULL_STRING_P (reg_info
[*p
])
4281 ? REG_UNSET (regend
[*p
]) ? d
: regend
[*p
]
4283 DEBUG_PRINT2 (" old_regend: %d\n",
4284 POINTER_TO_OFFSET (old_regend
[*p
]));
4287 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend
[*p
]));
4289 /* This register isn't active anymore. */
4290 IS_ACTIVE (reg_info
[*p
]) = 0;
4292 /* Clear this whenever we change the register activity status. */
4293 set_regs_matched_done
= 0;
4295 /* If this was the only register active, nothing is active
4297 if (lowest_active_reg
== highest_active_reg
)
4299 lowest_active_reg
= NO_LOWEST_ACTIVE_REG
;
4300 highest_active_reg
= NO_HIGHEST_ACTIVE_REG
;
4303 { /* We must scan for the new highest active register, since
4304 it isn't necessarily one less than now: consider
4305 (a(b)c(d(e)f)g). When group 3 ends, after the f), the
4306 new highest active register is 1. */
4307 unsigned char r
= *p
- 1;
4308 while (r
> 0 && !IS_ACTIVE (reg_info
[r
]))
4311 /* If we end up at register zero, that means that we saved
4312 the registers as the result of an `on_failure_jump', not
4313 a `start_memory', and we jumped to past the innermost
4314 `stop_memory'. For example, in ((.)*) we save
4315 registers 1 and 2 as a result of the *, but when we pop
4316 back to the second ), we are at the stop_memory 1.
4317 Thus, nothing is active. */
4320 lowest_active_reg
= NO_LOWEST_ACTIVE_REG
;
4321 highest_active_reg
= NO_HIGHEST_ACTIVE_REG
;
4324 highest_active_reg
= r
;
4327 /* If just failed to match something this time around with a
4328 group that's operated on by a repetition operator, try to
4329 force exit from the ``loop'', and restore the register
4330 information for this group that we had before trying this
4332 if ((!MATCHED_SOMETHING (reg_info
[*p
])
4333 || just_past_start_mem
== p
- 1)
4336 boolean is_a_jump_n
= false;
4340 switch ((re_opcode_t
) *p1
++)
4344 case pop_failure_jump
:
4345 case maybe_pop_jump
:
4347 case dummy_failure_jump
:
4348 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
4358 /* If the next operation is a jump backwards in the pattern
4359 to an on_failure_jump right before the start_memory
4360 corresponding to this stop_memory, exit from the loop
4361 by forcing a failure after pushing on the stack the
4362 on_failure_jump's jump in the pattern, and d. */
4363 if (mcnt
< 0 && (re_opcode_t
) *p1
== on_failure_jump
4364 && (re_opcode_t
) p1
[3] == start_memory
&& p1
[4] == *p
)
4366 /* If this group ever matched anything, then restore
4367 what its registers were before trying this last
4368 failed match, e.g., with `(a*)*b' against `ab' for
4369 regstart[1], and, e.g., with `((a*)*(b*)*)*'
4370 against `aba' for regend[3].
4372 Also restore the registers for inner groups for,
4373 e.g., `((a*)(b*))*' against `aba' (register 3 would
4374 otherwise get trashed). */
4376 if (EVER_MATCHED_SOMETHING (reg_info
[*p
]))
4380 EVER_MATCHED_SOMETHING (reg_info
[*p
]) = 0;
4382 /* Restore this and inner groups' (if any) registers. */
4383 for (r
= *p
; r
< (unsigned) *p
+ (unsigned) *(p
+ 1);
4386 regstart
[r
] = old_regstart
[r
];
4388 /* xx why this test? */
4389 if (old_regend
[r
] >= regstart
[r
])
4390 regend
[r
] = old_regend
[r
];
4394 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
4395 PUSH_FAILURE_POINT (p1
+ mcnt
, d
, -2);
4401 /* Move past the register number and the inner group count. */
4406 /* \<digit> has been turned into a `duplicate' command which is
4407 followed by the numeric value of <digit> as the register number. */
4410 register const char *d2
, *dend2
;
4411 int regno
= *p
++; /* Get which register to match against. */
4412 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno
);
4414 /* Can't back reference a group which we've never matched. */
4415 if (REG_UNSET (regstart
[regno
]) || REG_UNSET (regend
[regno
]))
4418 /* Where in input to try to start matching. */
4419 d2
= regstart
[regno
];
4421 /* Where to stop matching; if both the place to start and
4422 the place to stop matching are in the same string, then
4423 set to the place to stop, otherwise, for now have to use
4424 the end of the first string. */
4426 dend2
= ((FIRST_STRING_P (regstart
[regno
])
4427 == FIRST_STRING_P (regend
[regno
]))
4428 ? regend
[regno
] : end_match_1
);
4431 /* If necessary, advance to next segment in register
4435 if (dend2
== end_match_2
) break;
4436 if (dend2
== regend
[regno
]) break;
4438 /* End of string1 => advance to string2. */
4440 dend2
= regend
[regno
];
4442 /* At end of register contents => success */
4443 if (d2
== dend2
) break;
4445 /* If necessary, advance to next segment in data. */
4448 /* How many characters left in this segment to match. */
4451 /* Want how many consecutive characters we can match in
4452 one shot, so, if necessary, adjust the count. */
4453 if (mcnt
> dend2
- d2
)
4456 /* Compare that many; failure if mismatch, else move
4459 ? bcmp_translate (d
, d2
, mcnt
, translate
)
4460 : bcmp (d
, d2
, mcnt
))
4462 d
+= mcnt
, d2
+= mcnt
;
4464 /* Do this because we've match some characters. */
4465 SET_REGS_MATCHED ();
4471 /* begline matches the empty string at the beginning of the string
4472 (unless `not_bol' is set in `bufp'), and, if
4473 `newline_anchor' is set, after newlines. */
4475 DEBUG_PRINT1 ("EXECUTING begline.\n");
4477 if (AT_STRINGS_BEG (d
))
4479 if (!bufp
->not_bol
) break;
4481 else if (d
[-1] == '\n' && bufp
->newline_anchor
)
4485 /* In all other cases, we fail. */
4489 /* endline is the dual of begline. */
4491 DEBUG_PRINT1 ("EXECUTING endline.\n");
4493 if (AT_STRINGS_END (d
))
4495 if (!bufp
->not_eol
) break;
4498 /* We have to ``prefetch'' the next character. */
4499 else if ((d
== end1
? *string2
: *d
) == '\n'
4500 && bufp
->newline_anchor
)
4507 /* Match at the very beginning of the data. */
4509 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
4510 if (AT_STRINGS_BEG (d
))
4515 /* Match at the very end of the data. */
4517 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
4518 if (AT_STRINGS_END (d
))
4523 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
4524 pushes NULL as the value for the string on the stack. Then
4525 `pop_failure_point' will keep the current value for the
4526 string, instead of restoring it. To see why, consider
4527 matching `foo\nbar' against `.*\n'. The .* matches the foo;
4528 then the . fails against the \n. But the next thing we want
4529 to do is match the \n against the \n; if we restored the
4530 string value, we would be back at the foo.
4532 Because this is used only in specific cases, we don't need to
4533 check all the things that `on_failure_jump' does, to make
4534 sure the right things get saved on the stack. Hence we don't
4535 share its code. The only reason to push anything on the
4536 stack at all is that otherwise we would have to change
4537 `anychar's code to do something besides goto fail in this
4538 case; that seems worse than this. */
4539 case on_failure_keep_string_jump
:
4540 DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
4542 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
4544 DEBUG_PRINT3 (" %d (to %p):\n", mcnt
, p
+ mcnt
);
4546 DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt
, p
+ mcnt
);
4549 PUSH_FAILURE_POINT (p
+ mcnt
, NULL
, -2);
4553 /* Uses of on_failure_jump:
4555 Each alternative starts with an on_failure_jump that points
4556 to the beginning of the next alternative. Each alternative
4557 except the last ends with a jump that in effect jumps past
4558 the rest of the alternatives. (They really jump to the
4559 ending jump of the following alternative, because tensioning
4560 these jumps is a hassle.)
4562 Repeats start with an on_failure_jump that points past both
4563 the repetition text and either the following jump or
4564 pop_failure_jump back to this on_failure_jump. */
4565 case on_failure_jump
:
4567 DEBUG_PRINT1 ("EXECUTING on_failure_jump");
4569 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
4571 DEBUG_PRINT3 (" %d (to %p)", mcnt
, p
+ mcnt
);
4573 DEBUG_PRINT3 (" %d (to 0x%x)", mcnt
, p
+ mcnt
);
4576 /* If this on_failure_jump comes right before a group (i.e.,
4577 the original * applied to a group), save the information
4578 for that group and all inner ones, so that if we fail back
4579 to this point, the group's information will be correct.
4580 For example, in \(a*\)*\1, we need the preceding group,
4581 and in \(zz\(a*\)b*\)\2, we need the inner group. */
4583 /* We can't use `p' to check ahead because we push
4584 a failure point to `p + mcnt' after we do this. */
4587 /* We need to skip no_op's before we look for the
4588 start_memory in case this on_failure_jump is happening as
4589 the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
4591 while (p1
< pend
&& (re_opcode_t
) *p1
== no_op
)
4594 if (p1
< pend
&& (re_opcode_t
) *p1
== start_memory
)
4596 /* We have a new highest active register now. This will
4597 get reset at the start_memory we are about to get to,
4598 but we will have saved all the registers relevant to
4599 this repetition op, as described above. */
4600 highest_active_reg
= *(p1
+ 1) + *(p1
+ 2);
4601 if (lowest_active_reg
== NO_LOWEST_ACTIVE_REG
)
4602 lowest_active_reg
= *(p1
+ 1);
4605 DEBUG_PRINT1 (":\n");
4606 PUSH_FAILURE_POINT (p
+ mcnt
, d
, -2);
4610 /* A smart repeat ends with `maybe_pop_jump'.
4611 We change it to either `pop_failure_jump' or `jump'. */
4612 case maybe_pop_jump
:
4613 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
4614 DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt
);
4616 register unsigned char *p2
= p
;
4618 /* Compare the beginning of the repeat with what in the
4619 pattern follows its end. If we can establish that there
4620 is nothing that they would both match, i.e., that we
4621 would have to backtrack because of (as in, e.g., `a*a')
4622 then we can change to pop_failure_jump, because we'll
4623 never have to backtrack.
4625 This is not true in the case of alternatives: in
4626 `(a|ab)*' we do need to backtrack to the `ab' alternative
4627 (e.g., if the string was `ab'). But instead of trying to
4628 detect that here, the alternative has put on a dummy
4629 failure point which is what we will end up popping. */
4631 /* Skip over open/close-group commands.
4632 If what follows this loop is a ...+ construct,
4633 look at what begins its body, since we will have to
4634 match at least one of that. */
4638 && ((re_opcode_t
) *p2
== stop_memory
4639 || (re_opcode_t
) *p2
== start_memory
))
4641 else if (p2
+ 6 < pend
4642 && (re_opcode_t
) *p2
== dummy_failure_jump
)
4649 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
4650 to the `maybe_finalize_jump' of this case. Examine what
4653 /* If we're at the end of the pattern, we can change. */
4656 /* Consider what happens when matching ":\(.*\)"
4657 against ":/". I don't really understand this code
4659 p
[-3] = (unsigned char) pop_failure_jump
;
4661 (" End of pattern: change to `pop_failure_jump'.\n");
4664 else if ((re_opcode_t
) *p2
== exactn
4665 || (bufp
->newline_anchor
&& (re_opcode_t
) *p2
== endline
))
4667 register unsigned char c
4668 = *p2
== (unsigned char) endline
? '\n' : p2
[2];
4670 if ((re_opcode_t
) p1
[3] == exactn
&& p1
[5] != c
)
4672 p
[-3] = (unsigned char) pop_failure_jump
;
4673 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
4677 else if ((re_opcode_t
) p1
[3] == charset
4678 || (re_opcode_t
) p1
[3] == charset_not
)
4680 int not = (re_opcode_t
) p1
[3] == charset_not
;
4682 if (c
< (unsigned char) (p1
[4] * BYTEWIDTH
)
4683 && p1
[5 + c
/ BYTEWIDTH
] & (1 << (c
% BYTEWIDTH
)))
4686 /* `not' is equal to 1 if c would match, which means
4687 that we can't change to pop_failure_jump. */
4690 p
[-3] = (unsigned char) pop_failure_jump
;
4691 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4695 else if ((re_opcode_t
) *p2
== charset
)
4698 register unsigned char c
4699 = *p2
== (unsigned char) endline
? '\n' : p2
[2];
4703 if ((re_opcode_t
) p1
[3] == exactn
4704 && ! ((int) p2
[1] * BYTEWIDTH
> (int) p1
[5]
4705 && (p2
[2 + p1
[5] / BYTEWIDTH
]
4706 & (1 << (p1
[5] % BYTEWIDTH
)))))
4708 if ((re_opcode_t
) p1
[3] == exactn
4709 && ! ((int) p2
[1] * BYTEWIDTH
> (int) p1
[4]
4710 && (p2
[2 + p1
[4] / BYTEWIDTH
]
4711 & (1 << (p1
[4] % BYTEWIDTH
)))))
4714 p
[-3] = (unsigned char) pop_failure_jump
;
4715 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
4719 else if ((re_opcode_t
) p1
[3] == charset_not
)
4722 /* We win if the charset_not inside the loop
4723 lists every character listed in the charset after. */
4724 for (idx
= 0; idx
< (int) p2
[1]; idx
++)
4725 if (! (p2
[2 + idx
] == 0
4726 || (idx
< (int) p1
[4]
4727 && ((p2
[2 + idx
] & ~ p1
[5 + idx
]) == 0))))
4732 p
[-3] = (unsigned char) pop_failure_jump
;
4733 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4736 else if ((re_opcode_t
) p1
[3] == charset
)
4739 /* We win if the charset inside the loop
4740 has no overlap with the one after the loop. */
4742 idx
< (int) p2
[1] && idx
< (int) p1
[4];
4744 if ((p2
[2 + idx
] & p1
[5 + idx
]) != 0)
4747 if (idx
== p2
[1] || idx
== p1
[4])
4749 p
[-3] = (unsigned char) pop_failure_jump
;
4750 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4755 p
-= 2; /* Point at relative address again. */
4756 if ((re_opcode_t
) p
[-1] != pop_failure_jump
)
4758 p
[-1] = (unsigned char) jump
;
4759 DEBUG_PRINT1 (" Match => jump.\n");
4760 goto unconditional_jump
;
4762 /* Note fall through. */
4765 /* The end of a simple repeat has a pop_failure_jump back to
4766 its matching on_failure_jump, where the latter will push a
4767 failure point. The pop_failure_jump takes off failure
4768 points put on by this pop_failure_jump's matching
4769 on_failure_jump; we got through the pattern to here from the
4770 matching on_failure_jump, so didn't fail. */
4771 case pop_failure_jump
:
4773 /* We need to pass separate storage for the lowest and
4774 highest registers, even though we don't care about the
4775 actual values. Otherwise, we will restore only one
4776 register from the stack, since lowest will == highest in
4777 `pop_failure_point'. */
4778 active_reg_t dummy_low_reg
, dummy_high_reg
;
4779 unsigned char *pdummy
;
4782 DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
4783 POP_FAILURE_POINT (sdummy
, pdummy
,
4784 dummy_low_reg
, dummy_high_reg
,
4785 reg_dummy
, reg_dummy
, reg_info_dummy
);
4787 /* Note fall through. */
4791 DEBUG_PRINT2 ("\n%p: ", p
);
4793 DEBUG_PRINT2 ("\n0x%x: ", p
);
4795 /* Note fall through. */
4797 /* Unconditionally jump (without popping any failure points). */
4799 EXTRACT_NUMBER_AND_INCR (mcnt
, p
); /* Get the amount to jump. */
4800 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt
);
4801 p
+= mcnt
; /* Do the jump. */
4803 DEBUG_PRINT2 ("(to %p).\n", p
);
4805 DEBUG_PRINT2 ("(to 0x%x).\n", p
);
4810 /* We need this opcode so we can detect where alternatives end
4811 in `group_match_null_string_p' et al. */
4813 DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
4814 goto unconditional_jump
;
4817 /* Normally, the on_failure_jump pushes a failure point, which
4818 then gets popped at pop_failure_jump. We will end up at
4819 pop_failure_jump, also, and with a pattern of, say, `a+', we
4820 are skipping over the on_failure_jump, so we have to push
4821 something meaningless for pop_failure_jump to pop. */
4822 case dummy_failure_jump
:
4823 DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
4824 /* It doesn't matter what we push for the string here. What
4825 the code at `fail' tests is the value for the pattern. */
4826 PUSH_FAILURE_POINT (0, 0, -2);
4827 goto unconditional_jump
;
4830 /* At the end of an alternative, we need to push a dummy failure
4831 point in case we are followed by a `pop_failure_jump', because
4832 we don't want the failure point for the alternative to be
4833 popped. For example, matching `(a|ab)*' against `aab'
4834 requires that we match the `ab' alternative. */
4835 case push_dummy_failure
:
4836 DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
4837 /* See comments just above at `dummy_failure_jump' about the
4839 PUSH_FAILURE_POINT (0, 0, -2);
4842 /* Have to succeed matching what follows at least n times.
4843 After that, handle like `on_failure_jump'. */
4845 EXTRACT_NUMBER (mcnt
, p
+ 2);
4846 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt
);
4849 /* Originally, this is how many times we HAVE to succeed. */
4854 STORE_NUMBER_AND_INCR (p
, mcnt
);
4856 DEBUG_PRINT3 (" Setting %p to %d.\n", p
- 2, mcnt
);
4858 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p
- 2, mcnt
);
4864 DEBUG_PRINT2 (" Setting two bytes from %p to no_op.\n", p
+2);
4866 DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n", p
+2);
4868 p
[2] = (unsigned char) no_op
;
4869 p
[3] = (unsigned char) no_op
;
4875 EXTRACT_NUMBER (mcnt
, p
+ 2);
4876 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt
);
4878 /* Originally, this is how many times we CAN jump. */
4882 STORE_NUMBER (p
+ 2, mcnt
);
4884 DEBUG_PRINT3 (" Setting %p to %d.\n", p
+ 2, mcnt
);
4886 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p
+ 2, mcnt
);
4888 goto unconditional_jump
;
4890 /* If don't have to jump any more, skip over the rest of command. */
4897 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
4899 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
4901 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
4903 DEBUG_PRINT3 (" Setting %p to %d.\n", p1
, mcnt
);
4905 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1
, mcnt
);
4907 STORE_NUMBER (p1
, mcnt
);
4912 /* The DEC Alpha C compiler 3.x generates incorrect code for the
4913 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
4914 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
4915 macro and introducing temporary variables works around the bug. */
4918 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
4919 if (AT_WORD_BOUNDARY (d
))
4924 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
4925 if (AT_WORD_BOUNDARY (d
))
4931 boolean prevchar
, thischar
;
4933 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
4934 if (AT_STRINGS_BEG (d
) || AT_STRINGS_END (d
))
4937 prevchar
= WORDCHAR_P (d
- 1);
4938 thischar
= WORDCHAR_P (d
);
4939 if (prevchar
!= thischar
)
4946 boolean prevchar
, thischar
;
4948 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
4949 if (AT_STRINGS_BEG (d
) || AT_STRINGS_END (d
))
4952 prevchar
= WORDCHAR_P (d
- 1);
4953 thischar
= WORDCHAR_P (d
);
4954 if (prevchar
!= thischar
)
4961 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
4962 if (WORDCHAR_P (d
) && (AT_STRINGS_BEG (d
) || !WORDCHAR_P (d
- 1)))
4967 DEBUG_PRINT1 ("EXECUTING wordend.\n");
4968 if (!AT_STRINGS_BEG (d
) && WORDCHAR_P (d
- 1)
4969 && (!WORDCHAR_P (d
) || AT_STRINGS_END (d
)))
4975 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
4976 if (PTR_CHAR_POS ((unsigned char *) d
) >= point
)
4981 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
4982 if (PTR_CHAR_POS ((unsigned char *) d
) != point
)
4987 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
4988 if (PTR_CHAR_POS ((unsigned char *) d
) <= point
)
4993 DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt
);
4998 DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
5002 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
5004 if (SYNTAX (d
[-1]) != (enum syntaxcode
) mcnt
)
5006 SET_REGS_MATCHED ();
5010 DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt
);
5012 goto matchnotsyntax
;
5015 DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
5019 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
5021 if (SYNTAX (d
[-1]) == (enum syntaxcode
) mcnt
)
5023 SET_REGS_MATCHED ();
5026 #else /* not emacs */
5028 DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
5030 if (!WORDCHAR_P (d
))
5032 SET_REGS_MATCHED ();
5037 DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
5041 SET_REGS_MATCHED ();
5044 #endif /* not emacs */
5049 continue; /* Successfully executed one pattern command; keep going. */
5052 /* We goto here if a matching operation fails. */
5054 if (!FAIL_STACK_EMPTY ())
5055 { /* A restart point is known. Restore to that state. */
5056 DEBUG_PRINT1 ("\nFAIL:\n");
5057 POP_FAILURE_POINT (d
, p
,
5058 lowest_active_reg
, highest_active_reg
,
5059 regstart
, regend
, reg_info
);
5061 /* If this failure point is a dummy, try the next one. */
5065 /* If we failed to the end of the pattern, don't examine *p. */
5069 boolean is_a_jump_n
= false;
5071 /* If failed to a backwards jump that's part of a repetition
5072 loop, need to pop this failure point and use the next one. */
5073 switch ((re_opcode_t
) *p
)
5077 case maybe_pop_jump
:
5078 case pop_failure_jump
:
5081 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
5084 if ((is_a_jump_n
&& (re_opcode_t
) *p1
== succeed_n
)
5086 && (re_opcode_t
) *p1
== on_failure_jump
))
5094 if (d
>= string1
&& d
<= end1
)
5098 break; /* Matching at this starting point really fails. */
5102 goto restore_best_regs
;
5106 return -1; /* Failure to match. */
5109 /* Subroutine definitions for re_match_2. */
5112 /* We are passed P pointing to a register number after a start_memory.
5114 Return true if the pattern up to the corresponding stop_memory can
5115 match the empty string, and false otherwise.
5117 If we find the matching stop_memory, sets P to point to one past its number.
5118 Otherwise, sets P to an undefined byte less than or equal to END.
5120 We don't handle duplicates properly (yet). */
5123 group_match_null_string_p (p
, end
, reg_info
)
5124 unsigned char **p
, *end
;
5125 register_info_type
*reg_info
;
5128 /* Point to after the args to the start_memory. */
5129 unsigned char *p1
= *p
+ 2;
5133 /* Skip over opcodes that can match nothing, and return true or
5134 false, as appropriate, when we get to one that can't, or to the
5135 matching stop_memory. */
5137 switch ((re_opcode_t
) *p1
)
5139 /* Could be either a loop or a series of alternatives. */
5140 case on_failure_jump
:
5142 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
5144 /* If the next operation is not a jump backwards in the
5149 /* Go through the on_failure_jumps of the alternatives,
5150 seeing if any of the alternatives cannot match nothing.
5151 The last alternative starts with only a jump,
5152 whereas the rest start with on_failure_jump and end
5153 with a jump, e.g., here is the pattern for `a|b|c':
5155 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
5156 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
5159 So, we have to first go through the first (n-1)
5160 alternatives and then deal with the last one separately. */
5163 /* Deal with the first (n-1) alternatives, which start
5164 with an on_failure_jump (see above) that jumps to right
5165 past a jump_past_alt. */
5167 while ((re_opcode_t
) p1
[mcnt
-3] == jump_past_alt
)
5169 /* `mcnt' holds how many bytes long the alternative
5170 is, including the ending `jump_past_alt' and
5173 if (!alt_match_null_string_p (p1
, p1
+ mcnt
- 3,
5177 /* Move to right after this alternative, including the
5181 /* Break if it's the beginning of an n-th alternative
5182 that doesn't begin with an on_failure_jump. */
5183 if ((re_opcode_t
) *p1
!= on_failure_jump
)
5186 /* Still have to check that it's not an n-th
5187 alternative that starts with an on_failure_jump. */
5189 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
5190 if ((re_opcode_t
) p1
[mcnt
-3] != jump_past_alt
)
5192 /* Get to the beginning of the n-th alternative. */
5198 /* Deal with the last alternative: go back and get number
5199 of the `jump_past_alt' just before it. `mcnt' contains
5200 the length of the alternative. */
5201 EXTRACT_NUMBER (mcnt
, p1
- 2);
5203 if (!alt_match_null_string_p (p1
, p1
+ mcnt
, reg_info
))
5206 p1
+= mcnt
; /* Get past the n-th alternative. */
5212 assert (p1
[1] == **p
);
5218 if (!common_op_match_null_string_p (&p1
, end
, reg_info
))
5221 } /* while p1 < end */
5224 } /* group_match_null_string_p */
5227 /* Similar to group_match_null_string_p, but doesn't deal with alternatives:
5228 It expects P to be the first byte of a single alternative and END one
5229 byte past the last. The alternative can contain groups. */
5232 alt_match_null_string_p (p
, end
, reg_info
)
5233 unsigned char *p
, *end
;
5234 register_info_type
*reg_info
;
5237 unsigned char *p1
= p
;
5241 /* Skip over opcodes that can match nothing, and break when we get
5242 to one that can't. */
5244 switch ((re_opcode_t
) *p1
)
5247 case on_failure_jump
:
5249 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
5254 if (!common_op_match_null_string_p (&p1
, end
, reg_info
))
5257 } /* while p1 < end */
5260 } /* alt_match_null_string_p */
5263 /* Deals with the ops common to group_match_null_string_p and
5264 alt_match_null_string_p.
5266 Sets P to one after the op and its arguments, if any. */
5269 common_op_match_null_string_p (p
, end
, reg_info
)
5270 unsigned char **p
, *end
;
5271 register_info_type
*reg_info
;
5276 unsigned char *p1
= *p
;
5278 switch ((re_opcode_t
) *p1
++)
5298 assert (reg_no
> 0 && reg_no
<= MAX_REGNUM
);
5299 ret
= group_match_null_string_p (&p1
, end
, reg_info
);
5301 /* Have to set this here in case we're checking a group which
5302 contains a group and a back reference to it. */
5304 if (REG_MATCH_NULL_STRING_P (reg_info
[reg_no
]) == MATCH_NULL_UNSET_VALUE
)
5305 REG_MATCH_NULL_STRING_P (reg_info
[reg_no
]) = ret
;
5311 /* If this is an optimized succeed_n for zero times, make the jump. */
5313 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
5321 /* Get to the number of times to succeed. */
5323 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
5328 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
5336 if (!REG_MATCH_NULL_STRING_P (reg_info
[*p1
]))
5344 /* All other opcodes mean we cannot match the empty string. */
5350 } /* common_op_match_null_string_p */
5353 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
5354 bytes; nonzero otherwise. */
5357 bcmp_translate (s1
, s2
, len
, translate
)
5358 const char *s1
, *s2
;
5360 RE_TRANSLATE_TYPE translate
;
5362 register const unsigned char *p1
= (const unsigned char *) s1
;
5363 register const unsigned char *p2
= (const unsigned char *) s2
;
5366 if (translate
[*p1
++] != translate
[*p2
++]) return 1;
5372 /* Entry points for GNU code. */
5374 /* re_compile_pattern is the GNU regular expression compiler: it
5375 compiles PATTERN (of length SIZE) and puts the result in BUFP.
5376 Returns 0 if the pattern was valid, otherwise an error string.
5378 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
5379 are set in BUFP on entry.
5381 We call regex_compile to do the actual compilation. */
5384 re_compile_pattern (pattern
, length
, bufp
)
5385 const char *pattern
;
5387 struct re_pattern_buffer
*bufp
;
5391 /* GNU code is written to assume at least RE_NREGS registers will be set
5392 (and at least one extra will be -1). */
5393 bufp
->regs_allocated
= REGS_UNALLOCATED
;
5395 /* And GNU code determines whether or not to get register information
5396 by passing null for the REGS argument to re_match, etc., not by
5400 /* Match anchors at newline. */
5401 bufp
->newline_anchor
= 1;
5403 ret
= regex_compile (pattern
, length
, re_syntax_options
, bufp
);
5407 return gettext (re_error_msgid
[(int) ret
]);
5410 /* Entry points compatible with 4.2 BSD regex library. We don't define
5411 them unless specifically requested. */
5413 #if defined (_REGEX_RE_COMP) || defined (_LIBC)
5415 /* BSD has one and only one pattern buffer. */
5416 static struct re_pattern_buffer re_comp_buf
;
5420 /* Make these definitions weak in libc, so POSIX programs can redefine
5421 these names if they don't use our functions, and still use
5422 regcomp/regexec below without link errors. */
5432 if (!re_comp_buf
.buffer
)
5433 return gettext ("No previous regular expression");
5437 if (!re_comp_buf
.buffer
)
5439 re_comp_buf
.buffer
= (unsigned char *) malloc (200);
5440 if (re_comp_buf
.buffer
== NULL
)
5441 return gettext (re_error_msgid
[(int) REG_ESPACE
]);
5442 re_comp_buf
.allocated
= 200;
5444 re_comp_buf
.fastmap
= (char *) malloc (1 << BYTEWIDTH
);
5445 if (re_comp_buf
.fastmap
== NULL
)
5446 return gettext (re_error_msgid
[(int) REG_ESPACE
]);
5449 /* Since `re_exec' always passes NULL for the `regs' argument, we
5450 don't need to initialize the pattern buffer fields which affect it. */
5452 /* Match anchors at newlines. */
5453 re_comp_buf
.newline_anchor
= 1;
5455 ret
= regex_compile (s
, strlen (s
), re_syntax_options
, &re_comp_buf
);
5460 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
5461 return (char *) gettext (re_error_msgid
[(int) ret
]);
5472 const int len
= strlen (s
);
5474 0 <= re_search (&re_comp_buf
, s
, len
, 0, len
, (struct re_registers
*) 0);
5477 #endif /* _REGEX_RE_COMP */
5479 /* POSIX.2 functions. Don't define these for Emacs. */
5483 /* regcomp takes a regular expression as a string and compiles it.
5485 PREG is a regex_t *. We do not expect any fields to be initialized,
5486 since POSIX says we shouldn't. Thus, we set
5488 `buffer' to the compiled pattern;
5489 `used' to the length of the compiled pattern;
5490 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
5491 REG_EXTENDED bit in CFLAGS is set; otherwise, to
5492 RE_SYNTAX_POSIX_BASIC;
5493 `newline_anchor' to REG_NEWLINE being set in CFLAGS;
5494 `fastmap' and `fastmap_accurate' to zero;
5495 `re_nsub' to the number of subexpressions in PATTERN.
5497 PATTERN is the address of the pattern string.
5499 CFLAGS is a series of bits which affect compilation.
5501 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
5502 use POSIX basic syntax.
5504 If REG_NEWLINE is set, then . and [^...] don't match newline.
5505 Also, regexec will try a match beginning after every newline.
5507 If REG_ICASE is set, then we considers upper- and lowercase
5508 versions of letters to be equivalent when matching.
5510 If REG_NOSUB is set, then when PREG is passed to regexec, that
5511 routine will report only success or failure, and nothing about the
5514 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
5515 the return codes and their meanings.) */
5518 regcomp (preg
, pattern
, cflags
)
5520 const char *pattern
;
5525 = (cflags
& REG_EXTENDED
) ?
5526 RE_SYNTAX_POSIX_EXTENDED
: RE_SYNTAX_POSIX_BASIC
;
5528 /* regex_compile will allocate the space for the compiled pattern. */
5530 preg
->allocated
= 0;
5533 /* Don't bother to use a fastmap when searching. This simplifies the
5534 REG_NEWLINE case: if we used a fastmap, we'd have to put all the
5535 characters after newlines into the fastmap. This way, we just try
5539 if (cflags
& REG_ICASE
)
5544 = (RE_TRANSLATE_TYPE
) malloc (CHAR_SET_SIZE
5545 * sizeof (*(RE_TRANSLATE_TYPE
)0));
5546 if (preg
->translate
== NULL
)
5547 return (int) REG_ESPACE
;
5549 /* Map uppercase characters to corresponding lowercase ones. */
5550 for (i
= 0; i
< CHAR_SET_SIZE
; i
++)
5551 preg
->translate
[i
] = ISUPPER (i
) ? tolower (i
) : i
;
5554 preg
->translate
= NULL
;
5556 /* If REG_NEWLINE is set, newlines are treated differently. */
5557 if (cflags
& REG_NEWLINE
)
5558 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
5559 syntax
&= ~RE_DOT_NEWLINE
;
5560 syntax
|= RE_HAT_LISTS_NOT_NEWLINE
;
5561 /* It also changes the matching behavior. */
5562 preg
->newline_anchor
= 1;
5565 preg
->newline_anchor
= 0;
5567 preg
->no_sub
= !!(cflags
& REG_NOSUB
);
5569 /* POSIX says a null character in the pattern terminates it, so we
5570 can use strlen here in compiling the pattern. */
5571 ret
= regex_compile (pattern
, strlen (pattern
), syntax
, preg
);
5573 /* POSIX doesn't distinguish between an unmatched open-group and an
5574 unmatched close-group: both are REG_EPAREN. */
5575 if (ret
== REG_ERPAREN
) ret
= REG_EPAREN
;
5581 /* regexec searches for a given pattern, specified by PREG, in the
5584 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
5585 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
5586 least NMATCH elements, and we set them to the offsets of the
5587 corresponding matched substrings.
5589 EFLAGS specifies `execution flags' which affect matching: if
5590 REG_NOTBOL is set, then ^ does not match at the beginning of the
5591 string; if REG_NOTEOL is set, then $ does not match at the end.
5593 We return 0 if we find a match and REG_NOMATCH if not. */
5596 regexec (preg
, string
, nmatch
, pmatch
, eflags
)
5597 const regex_t
*preg
;
5600 regmatch_t pmatch
[];
5604 struct re_registers regs
;
5605 regex_t private_preg
;
5606 int len
= strlen (string
);
5607 boolean want_reg_info
= !preg
->no_sub
&& nmatch
> 0;
5609 private_preg
= *preg
;
5611 private_preg
.not_bol
= !!(eflags
& REG_NOTBOL
);
5612 private_preg
.not_eol
= !!(eflags
& REG_NOTEOL
);
5614 /* The user has told us exactly how many registers to return
5615 information about, via `nmatch'. We have to pass that on to the
5616 matching routines. */
5617 private_preg
.regs_allocated
= REGS_FIXED
;
5621 regs
.num_regs
= nmatch
;
5622 regs
.start
= TALLOC (nmatch
, regoff_t
);
5623 regs
.end
= TALLOC (nmatch
, regoff_t
);
5624 if (regs
.start
== NULL
|| regs
.end
== NULL
)
5625 return (int) REG_NOMATCH
;
5628 /* Perform the searching operation. */
5629 ret
= re_search (&private_preg
, string
, len
,
5630 /* start: */ 0, /* range: */ len
,
5631 want_reg_info
? ®s
: (struct re_registers
*) 0);
5633 /* Copy the register information to the POSIX structure. */
5640 for (r
= 0; r
< nmatch
; r
++)
5642 pmatch
[r
].rm_so
= regs
.start
[r
];
5643 pmatch
[r
].rm_eo
= regs
.end
[r
];
5647 /* If we needed the temporary register info, free the space now. */
5652 /* We want zero return to mean success, unlike `re_search'. */
5653 return ret
>= 0 ? (int) REG_NOERROR
: (int) REG_NOMATCH
;
5657 /* Returns a message corresponding to an error code, ERRCODE, returned
5658 from either regcomp or regexec. We don't use PREG here. */
5661 regerror (errcode
, preg
, errbuf
, errbuf_size
)
5663 const regex_t
*preg
;
5671 || errcode
>= (int) (sizeof (re_error_msgid
)
5672 / sizeof (re_error_msgid
[0])))
5673 /* Only error codes returned by the rest of the code should be passed
5674 to this routine. If we are given anything else, or if other regex
5675 code generates an invalid error code, then the program has a bug.
5676 Dump core so we can fix it. */
5679 msg
= gettext (re_error_msgid
[errcode
]);
5681 msg_size
= strlen (msg
) + 1; /* Includes the null. */
5683 if (errbuf_size
!= 0)
5685 if (msg_size
> errbuf_size
)
5687 strncpy (errbuf
, msg
, errbuf_size
- 1);
5688 errbuf
[errbuf_size
- 1] = 0;
5691 strcpy (errbuf
, msg
);
5698 /* Free dynamically allocated space used by PREG. */
5704 if (preg
->buffer
!= NULL
)
5705 free (preg
->buffer
);
5706 preg
->buffer
= NULL
;
5708 preg
->allocated
= 0;
5711 if (preg
->fastmap
!= NULL
)
5712 free (preg
->fastmap
);
5713 preg
->fastmap
= NULL
;
5714 preg
->fastmap_accurate
= 0;
5716 if (preg
->translate
!= NULL
)
5717 free (preg
->translate
);
5718 preg
->translate
= NULL
;
5721 #endif /* not emacs */