Remove suppression-related options.
[coreutils.git] / lib / sha1.c
blob2bed14dbb8e4b125c31ba70b2c434b8ec6feef6a
1 /* sha1.c - Functions to compute SHA1 message digest of files or
2 memory blocks according to the NIST specification FIPS-180-1.
4 Copyright (C) 2000, 2001, 2003, 2004 Free Software Foundation, Inc.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 2, or (at your option) any
9 later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software Foundation,
18 Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20 /* Written by Scott G. Miller
21 Credits:
22 Robert Klep <robert@ilse.nl> -- Expansion function fix
25 #ifdef HAVE_CONFIG_H
26 # include <config.h>
27 #endif
29 #include "sha1.h"
31 #include <stddef.h>
32 #include <string.h>
34 #if USE_UNLOCKED_IO
35 # include "unlocked-io.h"
36 #endif
39 Not-swap is a macro that does an endian swap on architectures that are
40 big-endian, as SHA1 needs some data in a little-endian format
43 #ifdef WORDS_BIGENDIAN
44 # define NOTSWAP(n) (n)
45 # define SWAP(n) \
46 (((n) << 24) | (((n) & 0xff00) << 8) | (((n) >> 8) & 0xff00) | ((n) >> 24))
47 #else
48 # define NOTSWAP(n) \
49 (((n) << 24) | (((n) & 0xff00) << 8) | (((n) >> 8) & 0xff00) | ((n) >> 24))
50 # define SWAP(n) (n)
51 #endif
53 #define BLOCKSIZE 4096
54 /* Ensure that BLOCKSIZE is a multiple of 64. */
55 #if BLOCKSIZE % 64 != 0
56 /* FIXME-someday (soon?): use #error instead of this kludge. */
57 "invalid BLOCKSIZE"
58 #endif
60 /* This array contains the bytes used to pad the buffer to the next
61 64-byte boundary. (RFC 1321, 3.1: Step 1) */
62 static const unsigned char fillbuf[64] = { 0x80, 0 /* , 0, 0, ... */ };
66 Takes a pointer to a 160 bit block of data (five 32 bit ints) and
67 intializes it to the start constants of the SHA1 algorithm. This
68 must be called before using hash in the call to sha1_hash.
70 void
71 sha1_init_ctx (struct sha1_ctx *ctx)
73 ctx->A = 0x67452301;
74 ctx->B = 0xefcdab89;
75 ctx->C = 0x98badcfe;
76 ctx->D = 0x10325476;
77 ctx->E = 0xc3d2e1f0;
79 ctx->total[0] = ctx->total[1] = 0;
80 ctx->buflen = 0;
83 /* Put result from CTX in first 20 bytes following RESBUF. The result
84 must be in little endian byte order.
86 IMPORTANT: On some systems it is required that RESBUF is correctly
87 aligned for a 32 bits value. */
88 void *
89 sha1_read_ctx (const struct sha1_ctx *ctx, void *resbuf)
91 ((md5_uint32 *) resbuf)[0] = NOTSWAP (ctx->A);
92 ((md5_uint32 *) resbuf)[1] = NOTSWAP (ctx->B);
93 ((md5_uint32 *) resbuf)[2] = NOTSWAP (ctx->C);
94 ((md5_uint32 *) resbuf)[3] = NOTSWAP (ctx->D);
95 ((md5_uint32 *) resbuf)[4] = NOTSWAP (ctx->E);
97 return resbuf;
100 /* Process the remaining bytes in the internal buffer and the usual
101 prolog according to the standard and write the result to RESBUF.
103 IMPORTANT: On some systems it is required that RESBUF is correctly
104 aligned for a 32 bits value. */
105 void *
106 sha1_finish_ctx (struct sha1_ctx *ctx, void *resbuf)
108 /* Take yet unprocessed bytes into account. */
109 md5_uint32 bytes = ctx->buflen;
110 size_t pad;
112 /* Now count remaining bytes. */
113 ctx->total[0] += bytes;
114 if (ctx->total[0] < bytes)
115 ++ctx->total[1];
117 pad = bytes >= 56 ? 64 + 56 - bytes : 56 - bytes;
118 memcpy (&ctx->buffer[bytes], fillbuf, pad);
120 /* Put the 64-bit file length in *bits* at the end of the buffer. */
121 *(md5_uint32 *) &ctx->buffer[bytes + pad + 4] = NOTSWAP (ctx->total[0] << 3);
122 *(md5_uint32 *) &ctx->buffer[bytes + pad] = NOTSWAP ((ctx->total[1] << 3) |
123 (ctx->total[0] >> 29));
125 /* Process last bytes. */
126 sha1_process_block (ctx->buffer, bytes + pad + 8, ctx);
128 return sha1_read_ctx (ctx, resbuf);
131 /* Compute SHA1 message digest for bytes read from STREAM. The
132 resulting message digest number will be written into the 16 bytes
133 beginning at RESBLOCK. */
135 sha1_stream (FILE *stream, void *resblock)
137 struct sha1_ctx ctx;
138 char buffer[BLOCKSIZE + 72];
139 size_t sum;
141 /* Initialize the computation context. */
142 sha1_init_ctx (&ctx);
144 /* Iterate over full file contents. */
145 while (1)
147 /* We read the file in blocks of BLOCKSIZE bytes. One call of the
148 computation function processes the whole buffer so that with the
149 next round of the loop another block can be read. */
150 size_t n;
151 sum = 0;
153 /* Read block. Take care for partial reads. */
154 while (1)
156 n = fread (buffer + sum, 1, BLOCKSIZE - sum, stream);
158 sum += n;
160 if (sum == BLOCKSIZE)
161 break;
163 if (n == 0)
165 /* Check for the error flag IFF N == 0, so that we don't
166 exit the loop after a partial read due to e.g., EAGAIN
167 or EWOULDBLOCK. */
168 if (ferror (stream))
169 return 1;
170 goto process_partial_block;
173 /* We've read at least one byte, so ignore errors. But always
174 check for EOF, since feof may be true even though N > 0.
175 Otherwise, we could end up calling fread after EOF. */
176 if (feof (stream))
177 goto process_partial_block;
180 /* Process buffer with BLOCKSIZE bytes. Note that
181 BLOCKSIZE % 64 == 0
183 sha1_process_block (buffer, BLOCKSIZE, &ctx);
186 process_partial_block:;
188 /* Process any remaining bytes. */
189 if (sum > 0)
190 sha1_process_bytes (buffer, sum, &ctx);
192 /* Construct result in desired memory. */
193 sha1_finish_ctx (&ctx, resblock);
194 return 0;
197 /* Compute MD5 message digest for LEN bytes beginning at BUFFER. The
198 result is always in little endian byte order, so that a byte-wise
199 output yields to the wanted ASCII representation of the message
200 digest. */
201 void *
202 sha1_buffer (const char *buffer, size_t len, void *resblock)
204 struct sha1_ctx ctx;
206 /* Initialize the computation context. */
207 sha1_init_ctx (&ctx);
209 /* Process whole buffer but last len % 64 bytes. */
210 sha1_process_bytes (buffer, len, &ctx);
212 /* Put result in desired memory area. */
213 return sha1_finish_ctx (&ctx, resblock);
216 void
217 sha1_process_bytes (const void *buffer, size_t len, struct sha1_ctx *ctx)
219 /* When we already have some bits in our internal buffer concatenate
220 both inputs first. */
221 if (ctx->buflen != 0)
223 size_t left_over = ctx->buflen;
224 size_t add = 128 - left_over > len ? len : 128 - left_over;
226 memcpy (&ctx->buffer[left_over], buffer, add);
227 ctx->buflen += add;
229 if (ctx->buflen > 64)
231 sha1_process_block (ctx->buffer, ctx->buflen & ~63, ctx);
233 ctx->buflen &= 63;
234 /* The regions in the following copy operation cannot overlap. */
235 memcpy (ctx->buffer, &ctx->buffer[(left_over + add) & ~63],
236 ctx->buflen);
239 buffer = (const char *) buffer + add;
240 len -= add;
243 /* Process available complete blocks. */
244 if (len >= 64)
246 #if !_STRING_ARCH_unaligned
247 # define alignof(type) offsetof (struct { char c; type x; }, x)
248 # define UNALIGNED_P(p) (((size_t) p) % alignof (md5_uint32) != 0)
249 if (UNALIGNED_P (buffer))
250 while (len > 64)
252 sha1_process_block (memcpy (ctx->buffer, buffer, 64), 64, ctx);
253 buffer = (const char *) buffer + 64;
254 len -= 64;
256 else
257 #endif
259 sha1_process_block (buffer, len & ~63, ctx);
260 buffer = (const char *) buffer + (len & ~63);
261 len &= 63;
265 /* Move remaining bytes in internal buffer. */
266 if (len > 0)
268 size_t left_over = ctx->buflen;
270 memcpy (&ctx->buffer[left_over], buffer, len);
271 left_over += len;
272 if (left_over >= 64)
274 sha1_process_block (ctx->buffer, 64, ctx);
275 left_over -= 64;
276 memcpy (ctx->buffer, &ctx->buffer[64], left_over);
278 ctx->buflen = left_over;
282 /* --- Code below is the primary difference between md5.c and sha1.c --- */
284 /* SHA1 round constants */
285 #define K1 0x5a827999L
286 #define K2 0x6ed9eba1L
287 #define K3 0x8f1bbcdcL
288 #define K4 0xca62c1d6L
290 /* Round functions. Note that F2 is the same as F4. */
291 #define F1(B,C,D) ( D ^ ( B & ( C ^ D ) ) )
292 #define F2(B,C,D) (B ^ C ^ D)
293 #define F3(B,C,D) ( ( B & C ) | ( D & ( B | C ) ) )
294 #define F4(B,C,D) (B ^ C ^ D)
296 /* Process LEN bytes of BUFFER, accumulating context into CTX.
297 It is assumed that LEN % 64 == 0.
298 Most of this code comes from GnuPG's cipher/sha1.c. */
300 void
301 sha1_process_block (const void *buffer, size_t len, struct sha1_ctx *ctx)
303 const md5_uint32 *words = buffer;
304 size_t nwords = len / sizeof (md5_uint32);
305 const md5_uint32 *endp = words + nwords;
306 md5_uint32 x[16];
307 md5_uint32 a = ctx->A;
308 md5_uint32 b = ctx->B;
309 md5_uint32 c = ctx->C;
310 md5_uint32 d = ctx->D;
311 md5_uint32 e = ctx->E;
313 /* First increment the byte count. RFC 1321 specifies the possible
314 length of the file up to 2^64 bits. Here we only compute the
315 number of bytes. Do a double word increment. */
316 ctx->total[0] += len;
317 if (ctx->total[0] < len)
318 ++ctx->total[1];
320 #define M(I) ( tm = x[I&0x0f] ^ x[(I-14)&0x0f] \
321 ^ x[(I-8)&0x0f] ^ x[(I-3)&0x0f] \
322 , (x[I&0x0f] = rol(tm, 1)) )
324 #define R(A,B,C,D,E,F,K,M) do { E += rol( A, 5 ) \
325 + F( B, C, D ) \
326 + K \
327 + M; \
328 B = rol( B, 30 ); \
329 } while(0)
331 while (words < endp)
333 md5_uint32 tm;
334 int t;
335 /* FIXME: see sha1.c for a better implementation. */
336 for (t = 0; t < 16; t++)
338 x[t] = NOTSWAP (*words);
339 words++;
342 R( a, b, c, d, e, F1, K1, x[ 0] );
343 R( e, a, b, c, d, F1, K1, x[ 1] );
344 R( d, e, a, b, c, F1, K1, x[ 2] );
345 R( c, d, e, a, b, F1, K1, x[ 3] );
346 R( b, c, d, e, a, F1, K1, x[ 4] );
347 R( a, b, c, d, e, F1, K1, x[ 5] );
348 R( e, a, b, c, d, F1, K1, x[ 6] );
349 R( d, e, a, b, c, F1, K1, x[ 7] );
350 R( c, d, e, a, b, F1, K1, x[ 8] );
351 R( b, c, d, e, a, F1, K1, x[ 9] );
352 R( a, b, c, d, e, F1, K1, x[10] );
353 R( e, a, b, c, d, F1, K1, x[11] );
354 R( d, e, a, b, c, F1, K1, x[12] );
355 R( c, d, e, a, b, F1, K1, x[13] );
356 R( b, c, d, e, a, F1, K1, x[14] );
357 R( a, b, c, d, e, F1, K1, x[15] );
358 R( e, a, b, c, d, F1, K1, M(16) );
359 R( d, e, a, b, c, F1, K1, M(17) );
360 R( c, d, e, a, b, F1, K1, M(18) );
361 R( b, c, d, e, a, F1, K1, M(19) );
362 R( a, b, c, d, e, F2, K2, M(20) );
363 R( e, a, b, c, d, F2, K2, M(21) );
364 R( d, e, a, b, c, F2, K2, M(22) );
365 R( c, d, e, a, b, F2, K2, M(23) );
366 R( b, c, d, e, a, F2, K2, M(24) );
367 R( a, b, c, d, e, F2, K2, M(25) );
368 R( e, a, b, c, d, F2, K2, M(26) );
369 R( d, e, a, b, c, F2, K2, M(27) );
370 R( c, d, e, a, b, F2, K2, M(28) );
371 R( b, c, d, e, a, F2, K2, M(29) );
372 R( a, b, c, d, e, F2, K2, M(30) );
373 R( e, a, b, c, d, F2, K2, M(31) );
374 R( d, e, a, b, c, F2, K2, M(32) );
375 R( c, d, e, a, b, F2, K2, M(33) );
376 R( b, c, d, e, a, F2, K2, M(34) );
377 R( a, b, c, d, e, F2, K2, M(35) );
378 R( e, a, b, c, d, F2, K2, M(36) );
379 R( d, e, a, b, c, F2, K2, M(37) );
380 R( c, d, e, a, b, F2, K2, M(38) );
381 R( b, c, d, e, a, F2, K2, M(39) );
382 R( a, b, c, d, e, F3, K3, M(40) );
383 R( e, a, b, c, d, F3, K3, M(41) );
384 R( d, e, a, b, c, F3, K3, M(42) );
385 R( c, d, e, a, b, F3, K3, M(43) );
386 R( b, c, d, e, a, F3, K3, M(44) );
387 R( a, b, c, d, e, F3, K3, M(45) );
388 R( e, a, b, c, d, F3, K3, M(46) );
389 R( d, e, a, b, c, F3, K3, M(47) );
390 R( c, d, e, a, b, F3, K3, M(48) );
391 R( b, c, d, e, a, F3, K3, M(49) );
392 R( a, b, c, d, e, F3, K3, M(50) );
393 R( e, a, b, c, d, F3, K3, M(51) );
394 R( d, e, a, b, c, F3, K3, M(52) );
395 R( c, d, e, a, b, F3, K3, M(53) );
396 R( b, c, d, e, a, F3, K3, M(54) );
397 R( a, b, c, d, e, F3, K3, M(55) );
398 R( e, a, b, c, d, F3, K3, M(56) );
399 R( d, e, a, b, c, F3, K3, M(57) );
400 R( c, d, e, a, b, F3, K3, M(58) );
401 R( b, c, d, e, a, F3, K3, M(59) );
402 R( a, b, c, d, e, F4, K4, M(60) );
403 R( e, a, b, c, d, F4, K4, M(61) );
404 R( d, e, a, b, c, F4, K4, M(62) );
405 R( c, d, e, a, b, F4, K4, M(63) );
406 R( b, c, d, e, a, F4, K4, M(64) );
407 R( a, b, c, d, e, F4, K4, M(65) );
408 R( e, a, b, c, d, F4, K4, M(66) );
409 R( d, e, a, b, c, F4, K4, M(67) );
410 R( c, d, e, a, b, F4, K4, M(68) );
411 R( b, c, d, e, a, F4, K4, M(69) );
412 R( a, b, c, d, e, F4, K4, M(70) );
413 R( e, a, b, c, d, F4, K4, M(71) );
414 R( d, e, a, b, c, F4, K4, M(72) );
415 R( c, d, e, a, b, F4, K4, M(73) );
416 R( b, c, d, e, a, F4, K4, M(74) );
417 R( a, b, c, d, e, F4, K4, M(75) );
418 R( e, a, b, c, d, F4, K4, M(76) );
419 R( d, e, a, b, c, F4, K4, M(77) );
420 R( c, d, e, a, b, F4, K4, M(78) );
421 R( b, c, d, e, a, F4, K4, M(79) );
423 a = ctx->A += a;
424 b = ctx->B += b;
425 c = ctx->C += c;
426 d = ctx->D += d;
427 e = ctx->E += e;