1 /* Extended regular expression matching and search library,
3 (Implements POSIX draft P1003.2/D11.2, except for some of the
4 internationalization features.)
5 Copyright (C) 1993-1999, 2000, 2001 Free Software Foundation, Inc.
6 This file is part of the GNU C Library.
8 The GNU C Library is free software; you can redistribute it and/or
9 modify it under the terms of the GNU Lesser General Public
10 License as published by the Free Software Foundation; either
11 version 2.1 of the License, or (at your option) any later version.
13 The GNU C Library is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 Lesser General Public License for more details.
18 You should have received a copy of the GNU Lesser General Public
19 License along with the GNU C Library; if not, write to the Free
20 Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
23 /* AIX requires this to be the first thing in the file. */
24 #if defined _AIX && !defined REGEX_MALLOC
36 # if defined __GNUC__ || (defined __STDC__ && __STDC__)
37 # define PARAMS(args) args
39 # define PARAMS(args) ()
41 #endif /* Not PARAMS. */
43 #ifndef INSIDE_RECURSION
45 # if defined STDC_HEADERS && !defined emacs
48 /* We need this for `regex.h', and perhaps for the Emacs include files. */
49 # include <sys/types.h>
52 # define WIDE_CHAR_SUPPORT (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC)
54 /* For platform which support the ISO C amendement 1 functionality we
55 support user defined character classes. */
56 # if defined _LIBC || WIDE_CHAR_SUPPORT
57 /* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>. */
63 /* We have to keep the namespace clean. */
64 # define regfree(preg) __regfree (preg)
65 # define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
66 # define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
67 # define regerror(errcode, preg, errbuf, errbuf_size) \
68 __regerror(errcode, preg, errbuf, errbuf_size)
69 # define re_set_registers(bu, re, nu, st, en) \
70 __re_set_registers (bu, re, nu, st, en)
71 # define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
72 __re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
73 # define re_match(bufp, string, size, pos, regs) \
74 __re_match (bufp, string, size, pos, regs)
75 # define re_search(bufp, string, size, startpos, range, regs) \
76 __re_search (bufp, string, size, startpos, range, regs)
77 # define re_compile_pattern(pattern, length, bufp) \
78 __re_compile_pattern (pattern, length, bufp)
79 # define re_set_syntax(syntax) __re_set_syntax (syntax)
80 # define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
81 __re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
82 # define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
84 # define btowc __btowc
85 # define iswctype __iswctype
86 # define mbrtowc __mbrtowc
87 # define wcslen __wcslen
88 # define wcscoll __wcscoll
89 # define wcrtomb __wcrtomb
91 /* We are also using some library internals. */
92 # include <locale/localeinfo.h>
93 # include <locale/elem-hash.h>
94 # include <langinfo.h>
95 # include <locale/coll-lookup.h>
98 /* This is for other GNU distributions with internationalized messages. */
99 # if (HAVE_LIBINTL_H && ENABLE_NLS) || defined _LIBC
100 # include <libintl.h>
103 # define gettext(msgid) __dcgettext ("libc", msgid, LC_MESSAGES)
106 # define gettext(msgid) (msgid)
109 # ifndef gettext_noop
110 /* This define is so xgettext can find the internationalizable
112 # define gettext_noop(String) String
115 /* Support for bounded pointers. */
116 # if !defined _LIBC && !defined __BOUNDED_POINTERS__
117 # define __bounded /* nothing */
118 # define __unbounded /* nothing */
119 # define __ptrvalue /* nothing */
122 /* The `emacs' switch turns on certain matching commands
123 that make sense only in Emacs. */
130 # else /* not emacs */
132 /* If we are not linking with Emacs proper,
133 we can't use the relocating allocator
134 even if config.h says that we can. */
137 # if defined STDC_HEADERS || defined _LIBC
144 /* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
145 If nothing else has been done, use the method below. */
146 # ifdef INHIBIT_STRING_HEADER
147 # if !(defined HAVE_BZERO && defined HAVE_BCOPY)
148 # if !defined bzero && !defined bcopy
149 # undef INHIBIT_STRING_HEADER
154 /* This is the normal way of making sure we have a bcopy and a bzero.
155 This is used in most programs--a few other programs avoid this
156 by defining INHIBIT_STRING_HEADER. */
157 # ifndef INHIBIT_STRING_HEADER
158 # if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
162 # define bzero(s, n) (memset (s, '\0', n), (s))
164 # define bzero(s, n) __bzero (s, n)
168 # include <strings.h>
170 # define memcmp(s1, s2, n) bcmp (s1, s2, n)
173 # define memcpy(d, s, n) (bcopy (s, d, n), (d))
178 /* Define the syntax stuff for \<, \>, etc. */
180 /* This must be nonzero for the wordchar and notwordchar pattern
181 commands in re_match_2. */
186 # ifdef SWITCH_ENUM_BUG
187 # define SWITCH_ENUM_CAST(x) ((int)(x))
189 # define SWITCH_ENUM_CAST(x) (x)
192 # endif /* not emacs */
194 # if defined _LIBC || HAVE_LIMITS_H
199 # define MB_LEN_MAX 1
202 /* Get the interface, including the syntax bits. */
205 /* isalpha etc. are used for the character classes. */
208 /* Jim Meyering writes:
210 "... Some ctype macros are valid only for character codes that
211 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
212 using /bin/cc or gcc but without giving an ansi option). So, all
213 ctype uses should be through macros like ISPRINT... If
214 STDC_HEADERS is defined, then autoconf has verified that the ctype
215 macros don't need to be guarded with references to isascii. ...
216 Defining isascii to 1 should let any compiler worth its salt
217 eliminate the && through constant folding."
218 Solaris defines some of these symbols so we must undefine them first. */
220 # if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
221 # define IN_CTYPE_DOMAIN(c) 1
223 # define IN_CTYPE_DOMAIN(c) isascii(c)
227 # define ISBLANK(c) (IN_CTYPE_DOMAIN (c) && isblank (c))
229 # define ISBLANK(c) ((c) == ' ' || (c) == '\t')
232 # define ISGRAPH(c) (IN_CTYPE_DOMAIN (c) && isgraph (c))
234 # define ISGRAPH(c) (IN_CTYPE_DOMAIN (c) && isprint (c) && !isspace (c))
238 # define ISPRINT(c) (IN_CTYPE_DOMAIN (c) && isprint (c))
239 # define ISDIGIT(c) (IN_CTYPE_DOMAIN (c) && isdigit (c))
240 # define ISALNUM(c) (IN_CTYPE_DOMAIN (c) && isalnum (c))
241 # define ISALPHA(c) (IN_CTYPE_DOMAIN (c) && isalpha (c))
242 # define ISCNTRL(c) (IN_CTYPE_DOMAIN (c) && iscntrl (c))
243 # define ISLOWER(c) (IN_CTYPE_DOMAIN (c) && islower (c))
244 # define ISPUNCT(c) (IN_CTYPE_DOMAIN (c) && ispunct (c))
245 # define ISSPACE(c) (IN_CTYPE_DOMAIN (c) && isspace (c))
246 # define ISUPPER(c) (IN_CTYPE_DOMAIN (c) && isupper (c))
247 # define ISXDIGIT(c) (IN_CTYPE_DOMAIN (c) && isxdigit (c))
250 # define TOLOWER(c) _tolower(c)
252 # define TOLOWER(c) tolower(c)
256 # define NULL (void *)0
259 /* We remove any previous definition of `SIGN_EXTEND_CHAR',
260 since ours (we hope) works properly with all combinations of
261 machines, compilers, `char' and `unsigned char' argument types.
262 (Per Bothner suggested the basic approach.) */
263 # undef SIGN_EXTEND_CHAR
265 # define SIGN_EXTEND_CHAR(c) ((signed char) (c))
266 # else /* not __STDC__ */
267 /* As in Harbison and Steele. */
268 # define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
272 /* How many characters in the character set. */
273 # define CHAR_SET_SIZE 256
277 extern char *re_syntax_table
;
279 # else /* not SYNTAX_TABLE */
281 static char re_syntax_table
[CHAR_SET_SIZE
];
283 static void init_syntax_once
PARAMS ((void));
293 bzero (re_syntax_table
, sizeof re_syntax_table
);
295 for (c
= 0; c
< CHAR_SET_SIZE
; ++c
)
297 re_syntax_table
[c
] = Sword
;
299 re_syntax_table
['_'] = Sword
;
304 # endif /* not SYNTAX_TABLE */
306 # define SYNTAX(c) re_syntax_table[(unsigned char) (c)]
310 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
311 use `alloca' instead of `malloc'. This is because using malloc in
312 re_search* or re_match* could cause memory leaks when C-g is used in
313 Emacs; also, malloc is slower and causes storage fragmentation. On
314 the other hand, malloc is more portable, and easier to debug.
316 Because we sometimes use alloca, some routines have to be macros,
317 not functions -- `alloca'-allocated space disappears at the end of the
318 function it is called in. */
322 # define REGEX_ALLOCATE malloc
323 # define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
324 # define REGEX_FREE free
326 # else /* not REGEX_MALLOC */
328 /* Emacs already defines alloca, sometimes. */
331 /* Make alloca work the best possible way. */
333 # define alloca __builtin_alloca
334 # else /* not __GNUC__ */
337 # endif /* HAVE_ALLOCA_H */
338 # endif /* not __GNUC__ */
340 # endif /* not alloca */
342 # define REGEX_ALLOCATE alloca
344 /* Assumes a `char *destination' variable. */
345 # define REGEX_REALLOCATE(source, osize, nsize) \
346 (destination = (char *) alloca (nsize), \
347 memcpy (destination, source, osize))
349 /* No need to do anything to free, after alloca. */
350 # define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
352 # endif /* not REGEX_MALLOC */
354 /* Define how to allocate the failure stack. */
356 # if defined REL_ALLOC && defined REGEX_MALLOC
358 # define REGEX_ALLOCATE_STACK(size) \
359 r_alloc (&failure_stack_ptr, (size))
360 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
361 r_re_alloc (&failure_stack_ptr, (nsize))
362 # define REGEX_FREE_STACK(ptr) \
363 r_alloc_free (&failure_stack_ptr)
365 # else /* not using relocating allocator */
369 # define REGEX_ALLOCATE_STACK malloc
370 # define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
371 # define REGEX_FREE_STACK free
373 # else /* not REGEX_MALLOC */
375 # define REGEX_ALLOCATE_STACK alloca
377 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
378 REGEX_REALLOCATE (source, osize, nsize)
379 /* No need to explicitly free anything. */
380 # define REGEX_FREE_STACK(arg)
382 # endif /* not REGEX_MALLOC */
383 # endif /* not using relocating allocator */
386 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
387 `string1' or just past its end. This works if PTR is NULL, which is
389 # define FIRST_STRING_P(ptr) \
390 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
392 /* (Re)Allocate N items of type T using malloc, or fail. */
393 # define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
394 # define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
395 # define RETALLOC_IF(addr, n, t) \
396 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
397 # define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
399 # define BYTEWIDTH 8 /* In bits. */
401 # define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
405 # define MAX(a, b) ((a) > (b) ? (a) : (b))
406 # define MIN(a, b) ((a) < (b) ? (a) : (b))
408 typedef char boolean
;
412 static reg_errcode_t byte_regex_compile
_RE_ARGS ((const char *pattern
, size_t size
,
414 struct re_pattern_buffer
*bufp
));
416 static int byte_re_match_2_internal
PARAMS ((struct re_pattern_buffer
*bufp
,
417 const char *string1
, int size1
,
418 const char *string2
, int size2
,
420 struct re_registers
*regs
,
422 static int byte_re_search_2
PARAMS ((struct re_pattern_buffer
*bufp
,
423 const char *string1
, int size1
,
424 const char *string2
, int size2
,
425 int startpos
, int range
,
426 struct re_registers
*regs
, int stop
));
427 static int byte_re_compile_fastmap
PARAMS ((struct re_pattern_buffer
*bufp
));
430 static reg_errcode_t wcs_regex_compile
_RE_ARGS ((const char *pattern
, size_t size
,
432 struct re_pattern_buffer
*bufp
));
435 static int wcs_re_match_2_internal
PARAMS ((struct re_pattern_buffer
*bufp
,
436 const char *cstring1
, int csize1
,
437 const char *cstring2
, int csize2
,
439 struct re_registers
*regs
,
441 wchar_t *string1
, int size1
,
442 wchar_t *string2
, int size2
,
443 int *mbs_offset1
, int *mbs_offset2
));
444 static int wcs_re_search_2
PARAMS ((struct re_pattern_buffer
*bufp
,
445 const char *string1
, int size1
,
446 const char *string2
, int size2
,
447 int startpos
, int range
,
448 struct re_registers
*regs
, int stop
));
449 static int wcs_re_compile_fastmap
PARAMS ((struct re_pattern_buffer
*bufp
));
452 /* These are the command codes that appear in compiled regular
453 expressions. Some opcodes are followed by argument bytes. A
454 command code can specify any interpretation whatsoever for its
455 arguments. Zero bytes may appear in the compiled regular expression. */
461 /* Succeed right away--no more backtracking. */
464 /* Followed by one byte giving n, then by n literal bytes. */
468 /* Same as exactn, but contains binary data. */
472 /* Matches any (more or less) character. */
475 /* Matches any one char belonging to specified set. First
476 following byte is number of bitmap bytes. Then come bytes
477 for a bitmap saying which chars are in. Bits in each byte
478 are ordered low-bit-first. A character is in the set if its
479 bit is 1. A character too large to have a bit in the map is
480 automatically not in the set. */
481 /* ifdef MBS_SUPPORT, following element is length of character
482 classes, length of collating symbols, length of equivalence
483 classes, length of character ranges, and length of characters.
484 Next, character class element, collating symbols elements,
485 equivalence class elements, range elements, and character
487 See regex_compile function. */
490 /* Same parameters as charset, but match any character that is
491 not one of those specified. */
494 /* Start remembering the text that is matched, for storing in a
495 register. Followed by one byte with the register number, in
496 the range 0 to one less than the pattern buffer's re_nsub
497 field. Then followed by one byte with the number of groups
498 inner to this one. (This last has to be part of the
499 start_memory only because we need it in the on_failure_jump
503 /* Stop remembering the text that is matched and store it in a
504 memory register. Followed by one byte with the register
505 number, in the range 0 to one less than `re_nsub' in the
506 pattern buffer, and one byte with the number of inner groups,
507 just like `start_memory'. (We need the number of inner
508 groups here because we don't have any easy way of finding the
509 corresponding start_memory when we're at a stop_memory.) */
512 /* Match a duplicate of something remembered. Followed by one
513 byte containing the register number. */
516 /* Fail unless at beginning of line. */
519 /* Fail unless at end of line. */
522 /* Succeeds if at beginning of buffer (if emacs) or at beginning
523 of string to be matched (if not). */
526 /* Analogously, for end of buffer/string. */
529 /* Followed by two byte relative address to which to jump. */
532 /* Same as jump, but marks the end of an alternative. */
535 /* Followed by two-byte relative address of place to resume at
536 in case of failure. */
537 /* ifdef MBS_SUPPORT, the size of address is 1. */
540 /* Like on_failure_jump, but pushes a placeholder instead of the
541 current string position when executed. */
542 on_failure_keep_string_jump
,
544 /* Throw away latest failure point and then jump to following
545 two-byte relative address. */
546 /* ifdef MBS_SUPPORT, the size of address is 1. */
549 /* Change to pop_failure_jump if know won't have to backtrack to
550 match; otherwise change to jump. This is used to jump
551 back to the beginning of a repeat. If what follows this jump
552 clearly won't match what the repeat does, such that we can be
553 sure that there is no use backtracking out of repetitions
554 already matched, then we change it to a pop_failure_jump.
555 Followed by two-byte address. */
556 /* ifdef MBS_SUPPORT, the size of address is 1. */
559 /* Jump to following two-byte address, and push a dummy failure
560 point. This failure point will be thrown away if an attempt
561 is made to use it for a failure. A `+' construct makes this
562 before the first repeat. Also used as an intermediary kind
563 of jump when compiling an alternative. */
564 /* ifdef MBS_SUPPORT, the size of address is 1. */
567 /* Push a dummy failure point and continue. Used at the end of
571 /* Followed by two-byte relative address and two-byte number n.
572 After matching N times, jump to the address upon failure. */
573 /* ifdef MBS_SUPPORT, the size of address is 1. */
576 /* Followed by two-byte relative address, and two-byte number n.
577 Jump to the address N times, then fail. */
578 /* ifdef MBS_SUPPORT, the size of address is 1. */
581 /* Set the following two-byte relative address to the
582 subsequent two-byte number. The address *includes* the two
584 /* ifdef MBS_SUPPORT, the size of address is 1. */
587 wordchar
, /* Matches any word-constituent character. */
588 notwordchar
, /* Matches any char that is not a word-constituent. */
590 wordbeg
, /* Succeeds if at word beginning. */
591 wordend
, /* Succeeds if at word end. */
593 wordbound
, /* Succeeds if at a word boundary. */
594 notwordbound
/* Succeeds if not at a word boundary. */
597 ,before_dot
, /* Succeeds if before point. */
598 at_dot
, /* Succeeds if at point. */
599 after_dot
, /* Succeeds if after point. */
601 /* Matches any character whose syntax is specified. Followed by
602 a byte which contains a syntax code, e.g., Sword. */
605 /* Matches any character whose syntax is not that specified. */
609 #endif /* not INSIDE_RECURSION */
614 # define UCHAR_T unsigned char
615 # define COMPILED_BUFFER_VAR bufp->buffer
616 # define OFFSET_ADDRESS_SIZE 2
617 # define PREFIX(name) byte_##name
618 # define ARG_PREFIX(name) name
619 # define PUT_CHAR(c) putchar (c)
622 # define CHAR_T wchar_t
623 # define UCHAR_T wchar_t
624 # define COMPILED_BUFFER_VAR wc_buffer
625 # define OFFSET_ADDRESS_SIZE 1 /* the size which STORE_NUMBER macro use */
626 # define CHAR_CLASS_SIZE ((__alignof__(wctype_t)+sizeof(wctype_t))/sizeof(CHAR_T)+1)
627 # define PREFIX(name) wcs_##name
628 # define ARG_PREFIX(name) c##name
629 /* Should we use wide stream?? */
630 # define PUT_CHAR(c) printf ("%C", c);
636 # define INSIDE_RECURSION
638 # undef INSIDE_RECURSION
641 # define INSIDE_RECURSION
643 # undef INSIDE_RECURSION
646 #include "unlocked-io.h"
648 #ifdef INSIDE_RECURSION
649 /* Common operations on the compiled pattern. */
651 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */
652 /* ifdef MBS_SUPPORT, we store NUMBER in 1 element. */
655 # define STORE_NUMBER(destination, number) \
657 *(destination) = (UCHAR_T)(number); \
660 # define STORE_NUMBER(destination, number) \
662 (destination)[0] = (number) & 0377; \
663 (destination)[1] = (number) >> 8; \
667 /* Same as STORE_NUMBER, except increment DESTINATION to
668 the byte after where the number is stored. Therefore, DESTINATION
669 must be an lvalue. */
670 /* ifdef MBS_SUPPORT, we store NUMBER in 1 element. */
672 # define STORE_NUMBER_AND_INCR(destination, number) \
674 STORE_NUMBER (destination, number); \
675 (destination) += OFFSET_ADDRESS_SIZE; \
678 /* Put into DESTINATION a number stored in two contiguous bytes starting
680 /* ifdef MBS_SUPPORT, we store NUMBER in 1 element. */
683 # define EXTRACT_NUMBER(destination, source) \
685 (destination) = *(source); \
688 # define EXTRACT_NUMBER(destination, source) \
690 (destination) = *(source) & 0377; \
691 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
696 static void PREFIX(extract_number
) _RE_ARGS ((int *dest
, UCHAR_T
*source
));
698 PREFIX(extract_number
) (dest
, source
)
705 int temp
= SIGN_EXTEND_CHAR (*(source
+ 1));
706 *dest
= *source
& 0377;
711 # ifndef EXTRACT_MACROS /* To debug the macros. */
712 # undef EXTRACT_NUMBER
713 # define EXTRACT_NUMBER(dest, src) PREFIX(extract_number) (&dest, src)
714 # endif /* not EXTRACT_MACROS */
718 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
719 SOURCE must be an lvalue. */
721 # define EXTRACT_NUMBER_AND_INCR(destination, source) \
723 EXTRACT_NUMBER (destination, source); \
724 (source) += OFFSET_ADDRESS_SIZE; \
728 static void PREFIX(extract_number_and_incr
) _RE_ARGS ((int *destination
,
731 PREFIX(extract_number_and_incr
) (destination
, source
)
735 PREFIX(extract_number
) (destination
, *source
);
736 *source
+= OFFSET_ADDRESS_SIZE
;
739 # ifndef EXTRACT_MACROS
740 # undef EXTRACT_NUMBER_AND_INCR
741 # define EXTRACT_NUMBER_AND_INCR(dest, src) \
742 PREFIX(extract_number_and_incr) (&dest, &src)
743 # endif /* not EXTRACT_MACROS */
749 /* If DEBUG is defined, Regex prints many voluminous messages about what
750 it is doing (if the variable `debug' is nonzero). If linked with the
751 main program in `iregex.c', you can enter patterns and strings
752 interactively. And if linked with the main program in `main.c' and
753 the other test files, you can run the already-written tests. */
757 # ifndef DEFINED_ONCE
759 /* We use standard I/O for debugging. */
762 /* It is useful to test things that ``must'' be true when debugging. */
767 # define DEBUG_STATEMENT(e) e
768 # define DEBUG_PRINT1(x) if (debug) printf (x)
769 # define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
770 # define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
771 # define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
772 # endif /* not DEFINED_ONCE */
774 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
775 if (debug) PREFIX(print_partial_compiled_pattern) (s, e)
776 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
777 if (debug) PREFIX(print_double_string) (w, s1, sz1, s2, sz2)
780 /* Print the fastmap in human-readable form. */
782 # ifndef DEFINED_ONCE
784 print_fastmap (fastmap
)
787 unsigned was_a_range
= 0;
790 while (i
< (1 << BYTEWIDTH
))
796 while (i
< (1 << BYTEWIDTH
) && fastmap
[i
])
810 # endif /* not DEFINED_ONCE */
813 /* Print a compiled pattern string in human-readable form, starting at
814 the START pointer into it and ending just before the pointer END. */
817 PREFIX(print_partial_compiled_pattern
) (start
, end
)
832 /* Loop over pattern commands. */
836 printf ("%td:\t", p
- start
);
838 printf ("%ld:\t", (long int) (p
- start
));
841 switch ((re_opcode_t
) *p
++)
849 printf ("/exactn/%d", mcnt
);
861 printf ("/exactn_bin/%d", mcnt
);
864 printf("/%lx", (long int) *p
++);
868 # endif /* MBS_SUPPORT */
872 printf ("/start_memory/%d/%ld", mcnt
, (long int) *p
++);
877 printf ("/stop_memory/%d/%ld", mcnt
, (long int) *p
++);
881 printf ("/duplicate/%ld", (long int) *p
++);
894 printf ("/charset [%s",
895 (re_opcode_t
) *(workp
- 1) == charset_not
? "^" : "");
897 length
= *workp
++; /* the length of char_classes */
898 for (i
=0 ; i
<length
; i
++)
899 printf("[:%lx:]", (long int) *p
++);
900 length
= *workp
++; /* the length of collating_symbol */
901 for (i
=0 ; i
<length
;)
905 PUT_CHAR((i
++,*p
++));
909 length
= *workp
++; /* the length of equivalence_class */
910 for (i
=0 ; i
<length
;)
914 PUT_CHAR((i
++,*p
++));
918 length
= *workp
++; /* the length of char_range */
919 for (i
=0 ; i
<length
; i
++)
921 wchar_t range_start
= *p
++;
922 wchar_t range_end
= *p
++;
923 printf("%C-%C", range_start
, range_end
);
925 length
= *workp
++; /* the length of char */
926 for (i
=0 ; i
<length
; i
++)
930 register int c
, last
= -100;
931 register int in_range
= 0;
933 printf ("/charset [%s",
934 (re_opcode_t
) *(p
- 1) == charset_not
? "^" : "");
936 assert (p
+ *p
< pend
);
938 for (c
= 0; c
< 256; c
++)
940 && (p
[1 + (c
/8)] & (1 << (c
% 8))))
942 /* Are we starting a range? */
943 if (last
+ 1 == c
&& ! in_range
)
948 /* Have we broken a range? */
949 else if (last
+ 1 != c
&& in_range
)
979 case on_failure_jump
:
980 PREFIX(extract_number_and_incr
) (&mcnt
, &p
);
982 printf ("/on_failure_jump to %td", p
+ mcnt
- start
);
984 printf ("/on_failure_jump to %ld", (long int) (p
+ mcnt
- start
));
988 case on_failure_keep_string_jump
:
989 PREFIX(extract_number_and_incr
) (&mcnt
, &p
);
991 printf ("/on_failure_keep_string_jump to %td", p
+ mcnt
- start
);
993 printf ("/on_failure_keep_string_jump to %ld",
994 (long int) (p
+ mcnt
- start
));
998 case dummy_failure_jump
:
999 PREFIX(extract_number_and_incr
) (&mcnt
, &p
);
1001 printf ("/dummy_failure_jump to %td", p
+ mcnt
- start
);
1003 printf ("/dummy_failure_jump to %ld", (long int) (p
+ mcnt
- start
));
1007 case push_dummy_failure
:
1008 printf ("/push_dummy_failure");
1011 case maybe_pop_jump
:
1012 PREFIX(extract_number_and_incr
) (&mcnt
, &p
);
1014 printf ("/maybe_pop_jump to %td", p
+ mcnt
- start
);
1016 printf ("/maybe_pop_jump to %ld", (long int) (p
+ mcnt
- start
));
1020 case pop_failure_jump
:
1021 PREFIX(extract_number_and_incr
) (&mcnt
, &p
);
1023 printf ("/pop_failure_jump to %td", p
+ mcnt
- start
);
1025 printf ("/pop_failure_jump to %ld", (long int) (p
+ mcnt
- start
));
1030 PREFIX(extract_number_and_incr
) (&mcnt
, &p
);
1032 printf ("/jump_past_alt to %td", p
+ mcnt
- start
);
1034 printf ("/jump_past_alt to %ld", (long int) (p
+ mcnt
- start
));
1039 PREFIX(extract_number_and_incr
) (&mcnt
, &p
);
1041 printf ("/jump to %td", p
+ mcnt
- start
);
1043 printf ("/jump to %ld", (long int) (p
+ mcnt
- start
));
1048 PREFIX(extract_number_and_incr
) (&mcnt
, &p
);
1050 PREFIX(extract_number_and_incr
) (&mcnt2
, &p
);
1052 printf ("/succeed_n to %td, %d times", p1
- start
, mcnt2
);
1054 printf ("/succeed_n to %ld, %d times",
1055 (long int) (p1
- start
), mcnt2
);
1060 PREFIX(extract_number_and_incr
) (&mcnt
, &p
);
1062 PREFIX(extract_number_and_incr
) (&mcnt2
, &p
);
1063 printf ("/jump_n to %d, %d times", p1
- start
, mcnt2
);
1067 PREFIX(extract_number_and_incr
) (&mcnt
, &p
);
1069 PREFIX(extract_number_and_incr
) (&mcnt2
, &p
);
1071 printf ("/set_number_at location %td to %d", p1
- start
, mcnt2
);
1073 printf ("/set_number_at location %ld to %d",
1074 (long int) (p1
- start
), mcnt2
);
1079 printf ("/wordbound");
1083 printf ("/notwordbound");
1087 printf ("/wordbeg");
1091 printf ("/wordend");
1096 printf ("/before_dot");
1104 printf ("/after_dot");
1108 printf ("/syntaxspec");
1110 printf ("/%d", mcnt
);
1114 printf ("/notsyntaxspec");
1116 printf ("/%d", mcnt
);
1121 printf ("/wordchar");
1125 printf ("/notwordchar");
1137 printf ("?%ld", (long int) *(p
-1));
1144 printf ("%td:\tend of pattern.\n", p
- start
);
1146 printf ("%ld:\tend of pattern.\n", (long int) (p
- start
));
1152 PREFIX(print_compiled_pattern
) (bufp
)
1153 struct re_pattern_buffer
*bufp
;
1155 UCHAR_T
*buffer
= (UCHAR_T
*) bufp
->buffer
;
1157 PREFIX(print_partial_compiled_pattern
) (buffer
, buffer
1158 + bufp
->used
/ sizeof(UCHAR_T
));
1159 printf ("%ld bytes used/%ld bytes allocated.\n",
1160 bufp
->used
, bufp
->allocated
);
1162 if (bufp
->fastmap_accurate
&& bufp
->fastmap
)
1164 printf ("fastmap: ");
1165 print_fastmap (bufp
->fastmap
);
1169 printf ("re_nsub: %Zd\t", bufp
->re_nsub
);
1171 printf ("re_nsub: %ld\t", (long int) bufp
->re_nsub
);
1173 printf ("regs_alloc: %d\t", bufp
->regs_allocated
);
1174 printf ("can_be_null: %d\t", bufp
->can_be_null
);
1175 printf ("newline_anchor: %d\n", bufp
->newline_anchor
);
1176 printf ("no_sub: %d\t", bufp
->no_sub
);
1177 printf ("not_bol: %d\t", bufp
->not_bol
);
1178 printf ("not_eol: %d\t", bufp
->not_eol
);
1179 printf ("syntax: %lx\n", bufp
->syntax
);
1180 /* Perhaps we should print the translate table? */
1185 PREFIX(print_double_string
) (where
, string1
, size1
, string2
, size2
)
1186 const CHAR_T
*where
;
1187 const CHAR_T
*string1
;
1188 const CHAR_T
*string2
;
1200 if (FIRST_STRING_P (where
))
1202 for (this_char
= where
- string1
; this_char
< size1
; this_char
++)
1203 PUT_CHAR (string1
[this_char
]);
1209 for (this_char
= where
- string2
; this_char
< size2
; this_char
++)
1211 PUT_CHAR (string2
[this_char
]);
1214 fputs ("...", stdout
);
1221 # ifndef DEFINED_ONCE
1230 # else /* not DEBUG */
1232 # ifndef DEFINED_ONCE
1236 # define DEBUG_STATEMENT(e)
1237 # define DEBUG_PRINT1(x)
1238 # define DEBUG_PRINT2(x1, x2)
1239 # define DEBUG_PRINT3(x1, x2, x3)
1240 # define DEBUG_PRINT4(x1, x2, x3, x4)
1241 # endif /* not DEFINED_ONCE */
1242 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
1243 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
1245 # endif /* not DEBUG */
1250 /* This convert a multibyte string to a wide character string.
1251 And write their correspondances to offset_buffer(see below)
1252 and write whether each wchar_t is binary data to is_binary.
1253 This assume invalid multibyte sequences as binary data.
1254 We assume offset_buffer and is_binary is already allocated
1257 static size_t convert_mbs_to_wcs (CHAR_T
*dest
, const unsigned char* src
,
1258 size_t len
, int *offset_buffer
,
1261 convert_mbs_to_wcs (dest
, src
, len
, offset_buffer
, is_binary
)
1263 const unsigned char* src
;
1264 size_t len
; /* the length of multibyte string. */
1266 /* It hold correspondances between src(char string) and
1267 dest(wchar_t string) for optimization.
1269 dest = {'X', 'Y', 'Z'}
1270 (each "xxx", "y" and "zz" represent one multibyte character
1271 corresponding to 'X', 'Y' and 'Z'.)
1272 offset_buffer = {0, 0+3("xxx"), 0+3+1("y"), 0+3+1+2("zz")}
1278 wchar_t *pdest
= dest
;
1279 const unsigned char *psrc
= src
;
1280 size_t wc_count
= 0;
1284 size_t mb_remain
= len
;
1285 size_t mb_count
= 0;
1287 /* Initialize the conversion state. */
1288 memset (&mbs
, 0, sizeof (mbstate_t));
1290 offset_buffer
[0] = 0;
1291 for( ; mb_remain
> 0 ; ++wc_count
, ++pdest
, mb_remain
-= consumed
,
1294 consumed
= mbrtowc (pdest
, psrc
, mb_remain
, &mbs
);
1297 /* failed to convert. maybe src contains binary data.
1298 So we consume 1 byte manualy. */
1302 is_binary
[wc_count
] = TRUE
;
1305 is_binary
[wc_count
] = FALSE
;
1306 /* In sjis encoding, we use yen sign as escape character in
1307 place of reverse solidus. So we convert 0x5c(yen sign in
1308 sjis) to not 0xa5(yen sign in UCS2) but 0x5c(reverse
1309 solidus in UCS2). */
1310 if (consumed
== 1 && (int) *psrc
== 0x5c && (int) *pdest
== 0xa5)
1311 *pdest
= (wchar_t) *psrc
;
1313 offset_buffer
[wc_count
+ 1] = mb_count
+= consumed
;
1316 /* Fill remain of the buffer with sentinel. */
1317 for (i
= wc_count
+ 1 ; i
<= len
; i
++)
1318 offset_buffer
[i
] = mb_count
+ 1;
1325 #else /* not INSIDE_RECURSION */
1327 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
1328 also be assigned to arbitrarily: each pattern buffer stores its own
1329 syntax, so it can be changed between regex compilations. */
1330 /* This has no initializer because initialized variables in Emacs
1331 become read-only after dumping. */
1332 reg_syntax_t re_syntax_options
;
1335 /* Specify the precise syntax of regexps for compilation. This provides
1336 for compatibility for various utilities which historically have
1337 different, incompatible syntaxes.
1339 The argument SYNTAX is a bit mask comprised of the various bits
1340 defined in regex.h. We return the old syntax. */
1343 re_set_syntax (syntax
)
1344 reg_syntax_t syntax
;
1346 reg_syntax_t ret
= re_syntax_options
;
1348 re_syntax_options
= syntax
;
1350 if (syntax
& RE_DEBUG
)
1352 else if (debug
) /* was on but now is not */
1358 weak_alias (__re_set_syntax
, re_set_syntax
)
1361 /* This table gives an error message for each of the error codes listed
1362 in regex.h. Obviously the order here has to be same as there.
1363 POSIX doesn't require that we do anything for REG_NOERROR,
1364 but why not be nice? */
1366 static const char re_error_msgid
[] =
1368 # define REG_NOERROR_IDX 0
1369 gettext_noop ("Success") /* REG_NOERROR */
1371 # define REG_NOMATCH_IDX (REG_NOERROR_IDX + sizeof "Success")
1372 gettext_noop ("No match") /* REG_NOMATCH */
1374 # define REG_BADPAT_IDX (REG_NOMATCH_IDX + sizeof "No match")
1375 gettext_noop ("Invalid regular expression") /* REG_BADPAT */
1377 # define REG_ECOLLATE_IDX (REG_BADPAT_IDX + sizeof "Invalid regular expression")
1378 gettext_noop ("Invalid collation character") /* REG_ECOLLATE */
1380 # define REG_ECTYPE_IDX (REG_ECOLLATE_IDX + sizeof "Invalid collation character")
1381 gettext_noop ("Invalid character class name") /* REG_ECTYPE */
1383 # define REG_EESCAPE_IDX (REG_ECTYPE_IDX + sizeof "Invalid character class name")
1384 gettext_noop ("Trailing backslash") /* REG_EESCAPE */
1386 # define REG_ESUBREG_IDX (REG_EESCAPE_IDX + sizeof "Trailing backslash")
1387 gettext_noop ("Invalid back reference") /* REG_ESUBREG */
1389 # define REG_EBRACK_IDX (REG_ESUBREG_IDX + sizeof "Invalid back reference")
1390 gettext_noop ("Unmatched [ or [^") /* REG_EBRACK */
1392 # define REG_EPAREN_IDX (REG_EBRACK_IDX + sizeof "Unmatched [ or [^")
1393 gettext_noop ("Unmatched ( or \\(") /* REG_EPAREN */
1395 # define REG_EBRACE_IDX (REG_EPAREN_IDX + sizeof "Unmatched ( or \\(")
1396 gettext_noop ("Unmatched \\{") /* REG_EBRACE */
1398 # define REG_BADBR_IDX (REG_EBRACE_IDX + sizeof "Unmatched \\{")
1399 gettext_noop ("Invalid content of \\{\\}") /* REG_BADBR */
1401 # define REG_ERANGE_IDX (REG_BADBR_IDX + sizeof "Invalid content of \\{\\}")
1402 gettext_noop ("Invalid range end") /* REG_ERANGE */
1404 # define REG_ESPACE_IDX (REG_ERANGE_IDX + sizeof "Invalid range end")
1405 gettext_noop ("Memory exhausted") /* REG_ESPACE */
1407 # define REG_BADRPT_IDX (REG_ESPACE_IDX + sizeof "Memory exhausted")
1408 gettext_noop ("Invalid preceding regular expression") /* REG_BADRPT */
1410 # define REG_EEND_IDX (REG_BADRPT_IDX + sizeof "Invalid preceding regular expression")
1411 gettext_noop ("Premature end of regular expression") /* REG_EEND */
1413 # define REG_ESIZE_IDX (REG_EEND_IDX + sizeof "Premature end of regular expression")
1414 gettext_noop ("Regular expression too big") /* REG_ESIZE */
1416 # define REG_ERPAREN_IDX (REG_ESIZE_IDX + sizeof "Regular expression too big")
1417 gettext_noop ("Unmatched ) or \\)") /* REG_ERPAREN */
1420 static const size_t re_error_msgid_idx
[] =
1441 #endif /* INSIDE_RECURSION */
1443 #ifndef DEFINED_ONCE
1444 /* Avoiding alloca during matching, to placate r_alloc. */
1446 /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1447 searching and matching functions should not call alloca. On some
1448 systems, alloca is implemented in terms of malloc, and if we're
1449 using the relocating allocator routines, then malloc could cause a
1450 relocation, which might (if the strings being searched are in the
1451 ralloc heap) shift the data out from underneath the regexp
1454 Here's another reason to avoid allocation: Emacs
1455 processes input from X in a signal handler; processing X input may
1456 call malloc; if input arrives while a matching routine is calling
1457 malloc, then we're scrod. But Emacs can't just block input while
1458 calling matching routines; then we don't notice interrupts when
1459 they come in. So, Emacs blocks input around all regexp calls
1460 except the matching calls, which it leaves unprotected, in the
1461 faith that they will not malloc. */
1463 /* Normally, this is fine. */
1464 # define MATCH_MAY_ALLOCATE
1466 /* When using GNU C, we are not REALLY using the C alloca, no matter
1467 what config.h may say. So don't take precautions for it. */
1472 /* The match routines may not allocate if (1) they would do it with malloc
1473 and (2) it's not safe for them to use malloc.
1474 Note that if REL_ALLOC is defined, matching would not use malloc for the
1475 failure stack, but we would still use it for the register vectors;
1476 so REL_ALLOC should not affect this. */
1477 # if (defined C_ALLOCA || defined REGEX_MALLOC) && defined emacs
1478 # undef MATCH_MAY_ALLOCATE
1480 #endif /* not DEFINED_ONCE */
1482 #ifdef INSIDE_RECURSION
1483 /* Failure stack declarations and macros; both re_compile_fastmap and
1484 re_match_2 use a failure stack. These have to be macros because of
1485 REGEX_ALLOCATE_STACK. */
1488 /* Number of failure points for which to initially allocate space
1489 when matching. If this number is exceeded, we allocate more
1490 space, so it is not a hard limit. */
1491 # ifndef INIT_FAILURE_ALLOC
1492 # define INIT_FAILURE_ALLOC 5
1495 /* Roughly the maximum number of failure points on the stack. Would be
1496 exactly that if always used MAX_FAILURE_ITEMS items each time we failed.
1497 This is a variable only so users of regex can assign to it; we never
1498 change it ourselves. */
1500 # ifdef INT_IS_16BIT
1502 # ifndef DEFINED_ONCE
1503 # if defined MATCH_MAY_ALLOCATE
1504 /* 4400 was enough to cause a crash on Alpha OSF/1,
1505 whose default stack limit is 2mb. */
1506 long int re_max_failures
= 4000;
1508 long int re_max_failures
= 2000;
1512 union PREFIX(fail_stack_elt
)
1518 typedef union PREFIX(fail_stack_elt
) PREFIX(fail_stack_elt_t
);
1522 PREFIX(fail_stack_elt_t
) *stack
;
1523 unsigned long int size
;
1524 unsigned long int avail
; /* Offset of next open position. */
1525 } PREFIX(fail_stack_type
);
1527 # else /* not INT_IS_16BIT */
1529 # ifndef DEFINED_ONCE
1530 # if defined MATCH_MAY_ALLOCATE
1531 /* 4400 was enough to cause a crash on Alpha OSF/1,
1532 whose default stack limit is 2mb. */
1533 int re_max_failures
= 4000;
1535 int re_max_failures
= 2000;
1539 union PREFIX(fail_stack_elt
)
1545 typedef union PREFIX(fail_stack_elt
) PREFIX(fail_stack_elt_t
);
1549 PREFIX(fail_stack_elt_t
) *stack
;
1551 unsigned avail
; /* Offset of next open position. */
1552 } PREFIX(fail_stack_type
);
1554 # endif /* INT_IS_16BIT */
1556 # ifndef DEFINED_ONCE
1557 # define FAIL_STACK_EMPTY() (fail_stack.avail == 0)
1558 # define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
1559 # define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1563 /* Define macros to initialize and free the failure stack.
1564 Do `return -2' if the alloc fails. */
1566 # ifdef MATCH_MAY_ALLOCATE
1567 # define INIT_FAIL_STACK() \
1569 fail_stack.stack = (PREFIX(fail_stack_elt_t) *) \
1570 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * sizeof (PREFIX(fail_stack_elt_t))); \
1572 if (fail_stack.stack == NULL) \
1575 fail_stack.size = INIT_FAILURE_ALLOC; \
1576 fail_stack.avail = 0; \
1579 # define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
1581 # define INIT_FAIL_STACK() \
1583 fail_stack.avail = 0; \
1586 # define RESET_FAIL_STACK()
1590 /* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
1592 Return 1 if succeeds, and 0 if either ran out of memory
1593 allocating space for it or it was already too large.
1595 REGEX_REALLOCATE_STACK requires `destination' be declared. */
1597 # define DOUBLE_FAIL_STACK(fail_stack) \
1598 ((fail_stack).size > (unsigned) (re_max_failures * MAX_FAILURE_ITEMS) \
1600 : ((fail_stack).stack = (PREFIX(fail_stack_elt_t) *) \
1601 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1602 (fail_stack).size * sizeof (PREFIX(fail_stack_elt_t)), \
1603 ((fail_stack).size << 1) * sizeof (PREFIX(fail_stack_elt_t))),\
1605 (fail_stack).stack == NULL \
1607 : ((fail_stack).size <<= 1, \
1611 /* Push pointer POINTER on FAIL_STACK.
1612 Return 1 if was able to do so and 0 if ran out of memory allocating
1614 # define PUSH_PATTERN_OP(POINTER, FAIL_STACK) \
1615 ((FAIL_STACK_FULL () \
1616 && !DOUBLE_FAIL_STACK (FAIL_STACK)) \
1618 : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER, \
1621 /* Push a pointer value onto the failure stack.
1622 Assumes the variable `fail_stack'. Probably should only
1623 be called from within `PUSH_FAILURE_POINT'. */
1624 # define PUSH_FAILURE_POINTER(item) \
1625 fail_stack.stack[fail_stack.avail++].pointer = (UCHAR_T *) (item)
1627 /* This pushes an integer-valued item onto the failure stack.
1628 Assumes the variable `fail_stack'. Probably should only
1629 be called from within `PUSH_FAILURE_POINT'. */
1630 # define PUSH_FAILURE_INT(item) \
1631 fail_stack.stack[fail_stack.avail++].integer = (item)
1633 /* Push a fail_stack_elt_t value onto the failure stack.
1634 Assumes the variable `fail_stack'. Probably should only
1635 be called from within `PUSH_FAILURE_POINT'. */
1636 # define PUSH_FAILURE_ELT(item) \
1637 fail_stack.stack[fail_stack.avail++] = (item)
1639 /* These three POP... operations complement the three PUSH... operations.
1640 All assume that `fail_stack' is nonempty. */
1641 # define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1642 # define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1643 # define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1645 /* Used to omit pushing failure point id's when we're not debugging. */
1647 # define DEBUG_PUSH PUSH_FAILURE_INT
1648 # define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_INT ()
1650 # define DEBUG_PUSH(item)
1651 # define DEBUG_POP(item_addr)
1655 /* Push the information about the state we will need
1656 if we ever fail back to it.
1658 Requires variables fail_stack, regstart, regend, reg_info, and
1659 num_regs_pushed be declared. DOUBLE_FAIL_STACK requires `destination'
1662 Does `return FAILURE_CODE' if runs out of memory. */
1664 # define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \
1666 char *destination; \
1667 /* Must be int, so when we don't save any registers, the arithmetic \
1668 of 0 + -1 isn't done as unsigned. */ \
1669 /* Can't be int, since there is not a shred of a guarantee that int \
1670 is wide enough to hold a value of something to which pointer can \
1672 active_reg_t this_reg; \
1674 DEBUG_STATEMENT (failure_id++); \
1675 DEBUG_STATEMENT (nfailure_points_pushed++); \
1676 DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \
1677 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\
1678 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1680 DEBUG_PRINT2 (" slots needed: %ld\n", NUM_FAILURE_ITEMS); \
1681 DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \
1683 /* Ensure we have enough space allocated for what we will push. */ \
1684 while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \
1686 if (!DOUBLE_FAIL_STACK (fail_stack)) \
1687 return failure_code; \
1689 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \
1690 (fail_stack).size); \
1691 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1694 /* Push the info, starting with the registers. */ \
1695 DEBUG_PRINT1 ("\n"); \
1698 for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
1701 DEBUG_PRINT2 (" Pushing reg: %lu\n", this_reg); \
1702 DEBUG_STATEMENT (num_regs_pushed++); \
1704 DEBUG_PRINT2 (" start: %p\n", regstart[this_reg]); \
1705 PUSH_FAILURE_POINTER (regstart[this_reg]); \
1707 DEBUG_PRINT2 (" end: %p\n", regend[this_reg]); \
1708 PUSH_FAILURE_POINTER (regend[this_reg]); \
1710 DEBUG_PRINT2 (" info: %p\n ", \
1711 reg_info[this_reg].word.pointer); \
1712 DEBUG_PRINT2 (" match_null=%d", \
1713 REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \
1714 DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \
1715 DEBUG_PRINT2 (" matched_something=%d", \
1716 MATCHED_SOMETHING (reg_info[this_reg])); \
1717 DEBUG_PRINT2 (" ever_matched=%d", \
1718 EVER_MATCHED_SOMETHING (reg_info[this_reg])); \
1719 DEBUG_PRINT1 ("\n"); \
1720 PUSH_FAILURE_ELT (reg_info[this_reg].word); \
1723 DEBUG_PRINT2 (" Pushing low active reg: %ld\n", lowest_active_reg);\
1724 PUSH_FAILURE_INT (lowest_active_reg); \
1726 DEBUG_PRINT2 (" Pushing high active reg: %ld\n", highest_active_reg);\
1727 PUSH_FAILURE_INT (highest_active_reg); \
1729 DEBUG_PRINT2 (" Pushing pattern %p:\n", pattern_place); \
1730 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \
1731 PUSH_FAILURE_POINTER (pattern_place); \
1733 DEBUG_PRINT2 (" Pushing string %p: `", string_place); \
1734 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \
1736 DEBUG_PRINT1 ("'\n"); \
1737 PUSH_FAILURE_POINTER (string_place); \
1739 DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \
1740 DEBUG_PUSH (failure_id); \
1743 # ifndef DEFINED_ONCE
1744 /* This is the number of items that are pushed and popped on the stack
1745 for each register. */
1746 # define NUM_REG_ITEMS 3
1748 /* Individual items aside from the registers. */
1750 # define NUM_NONREG_ITEMS 5 /* Includes failure point id. */
1752 # define NUM_NONREG_ITEMS 4
1755 /* We push at most this many items on the stack. */
1756 /* We used to use (num_regs - 1), which is the number of registers
1757 this regexp will save; but that was changed to 5
1758 to avoid stack overflow for a regexp with lots of parens. */
1759 # define MAX_FAILURE_ITEMS (5 * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
1761 /* We actually push this many items. */
1762 # define NUM_FAILURE_ITEMS \
1764 ? 0 : highest_active_reg - lowest_active_reg + 1) \
1768 /* How many items can still be added to the stack without overflowing it. */
1769 # define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1770 # endif /* not DEFINED_ONCE */
1773 /* Pops what PUSH_FAIL_STACK pushes.
1775 We restore into the parameters, all of which should be lvalues:
1776 STR -- the saved data position.
1777 PAT -- the saved pattern position.
1778 LOW_REG, HIGH_REG -- the highest and lowest active registers.
1779 REGSTART, REGEND -- arrays of string positions.
1780 REG_INFO -- array of information about each subexpression.
1782 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1783 `pend', `string1', `size1', `string2', and `size2'. */
1784 # define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
1786 DEBUG_STATEMENT (unsigned failure_id;) \
1787 active_reg_t this_reg; \
1788 const UCHAR_T *string_temp; \
1790 assert (!FAIL_STACK_EMPTY ()); \
1792 /* Remove failure points and point to how many regs pushed. */ \
1793 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1794 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
1795 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
1797 assert (fail_stack.avail >= NUM_NONREG_ITEMS); \
1799 DEBUG_POP (&failure_id); \
1800 DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \
1802 /* If the saved string location is NULL, it came from an \
1803 on_failure_keep_string_jump opcode, and we want to throw away the \
1804 saved NULL, thus retaining our current position in the string. */ \
1805 string_temp = POP_FAILURE_POINTER (); \
1806 if (string_temp != NULL) \
1807 str = (const CHAR_T *) string_temp; \
1809 DEBUG_PRINT2 (" Popping string %p: `", str); \
1810 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1811 DEBUG_PRINT1 ("'\n"); \
1813 pat = (UCHAR_T *) POP_FAILURE_POINTER (); \
1814 DEBUG_PRINT2 (" Popping pattern %p:\n", pat); \
1815 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1817 /* Restore register info. */ \
1818 high_reg = (active_reg_t) POP_FAILURE_INT (); \
1819 DEBUG_PRINT2 (" Popping high active reg: %ld\n", high_reg); \
1821 low_reg = (active_reg_t) POP_FAILURE_INT (); \
1822 DEBUG_PRINT2 (" Popping low active reg: %ld\n", low_reg); \
1825 for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \
1827 DEBUG_PRINT2 (" Popping reg: %ld\n", this_reg); \
1829 reg_info[this_reg].word = POP_FAILURE_ELT (); \
1830 DEBUG_PRINT2 (" info: %p\n", \
1831 reg_info[this_reg].word.pointer); \
1833 regend[this_reg] = (const CHAR_T *) POP_FAILURE_POINTER (); \
1834 DEBUG_PRINT2 (" end: %p\n", regend[this_reg]); \
1836 regstart[this_reg] = (const CHAR_T *) POP_FAILURE_POINTER (); \
1837 DEBUG_PRINT2 (" start: %p\n", regstart[this_reg]); \
1841 for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) \
1843 reg_info[this_reg].word.integer = 0; \
1844 regend[this_reg] = 0; \
1845 regstart[this_reg] = 0; \
1847 highest_active_reg = high_reg; \
1850 set_regs_matched_done = 0; \
1851 DEBUG_STATEMENT (nfailure_points_popped++); \
1852 } /* POP_FAILURE_POINT */
1854 /* Structure for per-register (a.k.a. per-group) information.
1855 Other register information, such as the
1856 starting and ending positions (which are addresses), and the list of
1857 inner groups (which is a bits list) are maintained in separate
1860 We are making a (strictly speaking) nonportable assumption here: that
1861 the compiler will pack our bit fields into something that fits into
1862 the type of `word', i.e., is something that fits into one item on the
1866 /* Declarations and macros for re_match_2. */
1870 PREFIX(fail_stack_elt_t
) word
;
1873 /* This field is one if this group can match the empty string,
1874 zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */
1875 # define MATCH_NULL_UNSET_VALUE 3
1876 unsigned match_null_string_p
: 2;
1877 unsigned is_active
: 1;
1878 unsigned matched_something
: 1;
1879 unsigned ever_matched_something
: 1;
1881 } PREFIX(register_info_type
);
1883 # ifndef DEFINED_ONCE
1884 # define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p)
1885 # define IS_ACTIVE(R) ((R).bits.is_active)
1886 # define MATCHED_SOMETHING(R) ((R).bits.matched_something)
1887 # define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something)
1890 /* Call this when have matched a real character; it sets `matched' flags
1891 for the subexpressions which we are currently inside. Also records
1892 that those subexprs have matched. */
1893 # define SET_REGS_MATCHED() \
1896 if (!set_regs_matched_done) \
1899 set_regs_matched_done = 1; \
1900 for (r = lowest_active_reg; r <= highest_active_reg; r++) \
1902 MATCHED_SOMETHING (reg_info[r]) \
1903 = EVER_MATCHED_SOMETHING (reg_info[r]) \
1909 # endif /* not DEFINED_ONCE */
1911 /* Registers are set to a sentinel when they haven't yet matched. */
1912 static CHAR_T
PREFIX(reg_unset_dummy
);
1913 # define REG_UNSET_VALUE (&PREFIX(reg_unset_dummy))
1914 # define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
1916 /* Subroutine declarations and macros for regex_compile. */
1917 static void PREFIX(store_op1
) _RE_ARGS ((re_opcode_t op
, UCHAR_T
*loc
, int arg
));
1918 static void PREFIX(store_op2
) _RE_ARGS ((re_opcode_t op
, UCHAR_T
*loc
,
1919 int arg1
, int arg2
));
1920 static void PREFIX(insert_op1
) _RE_ARGS ((re_opcode_t op
, UCHAR_T
*loc
,
1921 int arg
, UCHAR_T
*end
));
1922 static void PREFIX(insert_op2
) _RE_ARGS ((re_opcode_t op
, UCHAR_T
*loc
,
1923 int arg1
, int arg2
, UCHAR_T
*end
));
1924 static boolean
PREFIX(at_begline_loc_p
) _RE_ARGS ((const CHAR_T
*pattern
,
1926 reg_syntax_t syntax
));
1927 static boolean
PREFIX(at_endline_loc_p
) _RE_ARGS ((const CHAR_T
*p
,
1929 reg_syntax_t syntax
));
1931 static reg_errcode_t wcs_compile_range
_RE_ARGS ((CHAR_T range_start
,
1932 const CHAR_T
**p_ptr
,
1935 reg_syntax_t syntax
,
1938 static void insert_space
_RE_ARGS ((int num
, CHAR_T
*loc
, CHAR_T
*end
));
1940 static reg_errcode_t byte_compile_range
_RE_ARGS ((unsigned int range_start
,
1944 reg_syntax_t syntax
,
1948 /* Fetch the next character in the uncompiled pattern---translating it
1949 if necessary. Also cast from a signed character in the constant
1950 string passed to us by the user to an unsigned char that we can use
1951 as an array index (in, e.g., `translate'). */
1952 /* ifdef MBS_SUPPORT, we translate only if character <= 0xff,
1953 because it is impossible to allocate 4GB array for some encodings
1954 which have 4 byte character_set like UCS4. */
1957 # define PATFETCH(c) \
1958 do {if (p == pend) return REG_EEND; \
1959 c = (UCHAR_T) *p++; \
1960 if (translate && (c <= 0xff)) c = (UCHAR_T) translate[c]; \
1963 # define PATFETCH(c) \
1964 do {if (p == pend) return REG_EEND; \
1965 c = (unsigned char) *p++; \
1966 if (translate) c = (unsigned char) translate[c]; \
1971 /* Fetch the next character in the uncompiled pattern, with no
1973 # define PATFETCH_RAW(c) \
1974 do {if (p == pend) return REG_EEND; \
1975 c = (UCHAR_T) *p++; \
1978 /* Go backwards one character in the pattern. */
1979 # define PATUNFETCH p--
1982 /* If `translate' is non-null, return translate[D], else just D. We
1983 cast the subscript to translate because some data is declared as
1984 `char *', to avoid warnings when a string constant is passed. But
1985 when we use a character as a subscript we must make it unsigned. */
1986 /* ifdef MBS_SUPPORT, we translate only if character <= 0xff,
1987 because it is impossible to allocate 4GB array for some encodings
1988 which have 4 byte character_set like UCS4. */
1992 # define TRANSLATE(d) \
1993 ((translate && ((UCHAR_T) (d)) <= 0xff) \
1994 ? (char) translate[(unsigned char) (d)] : (d))
1996 # define TRANSLATE(d) \
1997 (translate ? (char) translate[(unsigned char) (d)] : (d))
2002 /* Macros for outputting the compiled pattern into `buffer'. */
2004 /* If the buffer isn't allocated when it comes in, use this. */
2005 # define INIT_BUF_SIZE (32 * sizeof(UCHAR_T))
2007 /* Make sure we have at least N more bytes of space in buffer. */
2009 # define GET_BUFFER_SPACE(n) \
2010 while (((unsigned long)b - (unsigned long)COMPILED_BUFFER_VAR \
2011 + (n)*sizeof(CHAR_T)) > bufp->allocated) \
2014 # define GET_BUFFER_SPACE(n) \
2015 while ((unsigned long) (b - bufp->buffer + (n)) > bufp->allocated) \
2019 /* Make sure we have one more byte of buffer space and then add C to it. */
2020 # define BUF_PUSH(c) \
2022 GET_BUFFER_SPACE (1); \
2023 *b++ = (UCHAR_T) (c); \
2027 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */
2028 # define BUF_PUSH_2(c1, c2) \
2030 GET_BUFFER_SPACE (2); \
2031 *b++ = (UCHAR_T) (c1); \
2032 *b++ = (UCHAR_T) (c2); \
2036 /* As with BUF_PUSH_2, except for three bytes. */
2037 # define BUF_PUSH_3(c1, c2, c3) \
2039 GET_BUFFER_SPACE (3); \
2040 *b++ = (UCHAR_T) (c1); \
2041 *b++ = (UCHAR_T) (c2); \
2042 *b++ = (UCHAR_T) (c3); \
2045 /* Store a jump with opcode OP at LOC to location TO. We store a
2046 relative address offset by the three bytes the jump itself occupies. */
2047 # define STORE_JUMP(op, loc, to) \
2048 PREFIX(store_op1) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)))
2050 /* Likewise, for a two-argument jump. */
2051 # define STORE_JUMP2(op, loc, to, arg) \
2052 PREFIX(store_op2) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)), arg)
2054 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
2055 # define INSERT_JUMP(op, loc, to) \
2056 PREFIX(insert_op1) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)), b)
2058 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
2059 # define INSERT_JUMP2(op, loc, to, arg) \
2060 PREFIX(insert_op2) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)),\
2063 /* This is not an arbitrary limit: the arguments which represent offsets
2064 into the pattern are two bytes long. So if 2^16 bytes turns out to
2065 be too small, many things would have to change. */
2066 /* Any other compiler which, like MSC, has allocation limit below 2^16
2067 bytes will have to use approach similar to what was done below for
2068 MSC and drop MAX_BUF_SIZE a bit. Otherwise you may end up
2069 reallocating to 0 bytes. Such thing is not going to work too well.
2070 You have been warned!! */
2071 # ifndef DEFINED_ONCE
2072 # if defined _MSC_VER && !defined WIN32
2073 /* Microsoft C 16-bit versions limit malloc to approx 65512 bytes.
2074 The REALLOC define eliminates a flurry of conversion warnings,
2075 but is not required. */
2076 # define MAX_BUF_SIZE 65500L
2077 # define REALLOC(p,s) realloc ((p), (size_t) (s))
2079 # define MAX_BUF_SIZE (1L << 16)
2080 # define REALLOC(p,s) realloc ((p), (s))
2083 /* Extend the buffer by twice its current size via realloc and
2084 reset the pointers that pointed into the old block to point to the
2085 correct places in the new one. If extending the buffer results in it
2086 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
2087 # if __BOUNDED_POINTERS__
2088 # define SET_HIGH_BOUND(P) (__ptrhigh (P) = __ptrlow (P) + bufp->allocated)
2089 # define MOVE_BUFFER_POINTER(P) \
2090 (__ptrlow (P) += incr, SET_HIGH_BOUND (P), __ptrvalue (P) += incr)
2091 # define ELSE_EXTEND_BUFFER_HIGH_BOUND \
2094 SET_HIGH_BOUND (b); \
2095 SET_HIGH_BOUND (begalt); \
2096 if (fixup_alt_jump) \
2097 SET_HIGH_BOUND (fixup_alt_jump); \
2099 SET_HIGH_BOUND (laststart); \
2100 if (pending_exact) \
2101 SET_HIGH_BOUND (pending_exact); \
2104 # define MOVE_BUFFER_POINTER(P) (P) += incr
2105 # define ELSE_EXTEND_BUFFER_HIGH_BOUND
2107 # endif /* not DEFINED_ONCE */
2110 # define EXTEND_BUFFER() \
2112 UCHAR_T *old_buffer = COMPILED_BUFFER_VAR; \
2114 if (bufp->allocated + sizeof(UCHAR_T) > MAX_BUF_SIZE) \
2116 bufp->allocated <<= 1; \
2117 if (bufp->allocated > MAX_BUF_SIZE) \
2118 bufp->allocated = MAX_BUF_SIZE; \
2119 /* How many characters the new buffer can have? */ \
2120 wchar_count = bufp->allocated / sizeof(UCHAR_T); \
2121 if (wchar_count == 0) wchar_count = 1; \
2122 /* Truncate the buffer to CHAR_T align. */ \
2123 bufp->allocated = wchar_count * sizeof(UCHAR_T); \
2124 RETALLOC (COMPILED_BUFFER_VAR, wchar_count, UCHAR_T); \
2125 bufp->buffer = (char*)COMPILED_BUFFER_VAR; \
2126 if (COMPILED_BUFFER_VAR == NULL) \
2127 return REG_ESPACE; \
2128 /* If the buffer moved, move all the pointers into it. */ \
2129 if (old_buffer != COMPILED_BUFFER_VAR) \
2131 int incr = COMPILED_BUFFER_VAR - old_buffer; \
2132 MOVE_BUFFER_POINTER (b); \
2133 MOVE_BUFFER_POINTER (begalt); \
2134 if (fixup_alt_jump) \
2135 MOVE_BUFFER_POINTER (fixup_alt_jump); \
2137 MOVE_BUFFER_POINTER (laststart); \
2138 if (pending_exact) \
2139 MOVE_BUFFER_POINTER (pending_exact); \
2141 ELSE_EXTEND_BUFFER_HIGH_BOUND \
2144 # define EXTEND_BUFFER() \
2146 UCHAR_T *old_buffer = COMPILED_BUFFER_VAR; \
2147 if (bufp->allocated == MAX_BUF_SIZE) \
2149 bufp->allocated <<= 1; \
2150 if (bufp->allocated > MAX_BUF_SIZE) \
2151 bufp->allocated = MAX_BUF_SIZE; \
2152 bufp->buffer = (UCHAR_T *) REALLOC (COMPILED_BUFFER_VAR, \
2154 if (COMPILED_BUFFER_VAR == NULL) \
2155 return REG_ESPACE; \
2156 /* If the buffer moved, move all the pointers into it. */ \
2157 if (old_buffer != COMPILED_BUFFER_VAR) \
2159 int incr = COMPILED_BUFFER_VAR - old_buffer; \
2160 MOVE_BUFFER_POINTER (b); \
2161 MOVE_BUFFER_POINTER (begalt); \
2162 if (fixup_alt_jump) \
2163 MOVE_BUFFER_POINTER (fixup_alt_jump); \
2165 MOVE_BUFFER_POINTER (laststart); \
2166 if (pending_exact) \
2167 MOVE_BUFFER_POINTER (pending_exact); \
2169 ELSE_EXTEND_BUFFER_HIGH_BOUND \
2173 # ifndef DEFINED_ONCE
2174 /* Since we have one byte reserved for the register number argument to
2175 {start,stop}_memory, the maximum number of groups we can report
2176 things about is what fits in that byte. */
2177 # define MAX_REGNUM 255
2179 /* But patterns can have more than `MAX_REGNUM' registers. We just
2180 ignore the excess. */
2181 typedef unsigned regnum_t
;
2184 /* Macros for the compile stack. */
2186 /* Since offsets can go either forwards or backwards, this type needs to
2187 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
2188 /* int may be not enough when sizeof(int) == 2. */
2189 typedef long pattern_offset_t
;
2193 pattern_offset_t begalt_offset
;
2194 pattern_offset_t fixup_alt_jump
;
2195 pattern_offset_t inner_group_offset
;
2196 pattern_offset_t laststart_offset
;
2198 } compile_stack_elt_t
;
2203 compile_stack_elt_t
*stack
;
2205 unsigned avail
; /* Offset of next open position. */
2206 } compile_stack_type
;
2209 # define INIT_COMPILE_STACK_SIZE 32
2211 # define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
2212 # define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
2214 /* The next available element. */
2215 # define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
2217 # endif /* not DEFINED_ONCE */
2219 /* Set the bit for character C in a list. */
2220 # ifndef DEFINED_ONCE
2221 # define SET_LIST_BIT(c) \
2222 (b[((unsigned char) (c)) / BYTEWIDTH] \
2223 |= 1 << (((unsigned char) c) % BYTEWIDTH))
2224 # endif /* DEFINED_ONCE */
2226 /* Get the next unsigned number in the uncompiled pattern. */
2227 # define GET_UNSIGNED_NUMBER(num) \
2232 if (c < '0' || c > '9') \
2234 if (num <= RE_DUP_MAX) \
2238 num = num * 10 + c - '0'; \
2243 # ifndef DEFINED_ONCE
2244 # if defined _LIBC || WIDE_CHAR_SUPPORT
2245 /* The GNU C library provides support for user-defined character classes
2246 and the functions from ISO C amendement 1. */
2247 # ifdef CHARCLASS_NAME_MAX
2248 # define CHAR_CLASS_MAX_LENGTH CHARCLASS_NAME_MAX
2250 /* This shouldn't happen but some implementation might still have this
2251 problem. Use a reasonable default value. */
2252 # define CHAR_CLASS_MAX_LENGTH 256
2256 # define IS_CHAR_CLASS(string) __wctype (string)
2258 # define IS_CHAR_CLASS(string) wctype (string)
2261 # define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */
2263 # define IS_CHAR_CLASS(string) \
2264 (STREQ (string, "alpha") || STREQ (string, "upper") \
2265 || STREQ (string, "lower") || STREQ (string, "digit") \
2266 || STREQ (string, "alnum") || STREQ (string, "xdigit") \
2267 || STREQ (string, "space") || STREQ (string, "print") \
2268 || STREQ (string, "punct") || STREQ (string, "graph") \
2269 || STREQ (string, "cntrl") || STREQ (string, "blank"))
2271 # endif /* DEFINED_ONCE */
2273 # ifndef MATCH_MAY_ALLOCATE
2275 /* If we cannot allocate large objects within re_match_2_internal,
2276 we make the fail stack and register vectors global.
2277 The fail stack, we grow to the maximum size when a regexp
2279 The register vectors, we adjust in size each time we
2280 compile a regexp, according to the number of registers it needs. */
2282 static PREFIX(fail_stack_type
) fail_stack
;
2284 /* Size with which the following vectors are currently allocated.
2285 That is so we can make them bigger as needed,
2286 but never make them smaller. */
2287 # ifdef DEFINED_ONCE
2288 static int regs_allocated_size
;
2290 static const char ** regstart
, ** regend
;
2291 static const char ** old_regstart
, ** old_regend
;
2292 static const char **best_regstart
, **best_regend
;
2293 static const char **reg_dummy
;
2294 # endif /* DEFINED_ONCE */
2296 static PREFIX(register_info_type
) *PREFIX(reg_info
);
2297 static PREFIX(register_info_type
) *PREFIX(reg_info_dummy
);
2299 /* Make the register vectors big enough for NUM_REGS registers,
2300 but don't make them smaller. */
2303 PREFIX(regex_grow_registers
) (num_regs
)
2306 if (num_regs
> regs_allocated_size
)
2308 RETALLOC_IF (regstart
, num_regs
, const char *);
2309 RETALLOC_IF (regend
, num_regs
, const char *);
2310 RETALLOC_IF (old_regstart
, num_regs
, const char *);
2311 RETALLOC_IF (old_regend
, num_regs
, const char *);
2312 RETALLOC_IF (best_regstart
, num_regs
, const char *);
2313 RETALLOC_IF (best_regend
, num_regs
, const char *);
2314 RETALLOC_IF (PREFIX(reg_info
), num_regs
, PREFIX(register_info_type
));
2315 RETALLOC_IF (reg_dummy
, num_regs
, const char *);
2316 RETALLOC_IF (PREFIX(reg_info_dummy
), num_regs
, PREFIX(register_info_type
));
2318 regs_allocated_size
= num_regs
;
2322 # endif /* not MATCH_MAY_ALLOCATE */
2324 # ifndef DEFINED_ONCE
2325 static boolean group_in_compile_stack
_RE_ARGS ((compile_stack_type
2328 # endif /* not DEFINED_ONCE */
2330 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
2331 Returns one of error codes defined in `regex.h', or zero for success.
2333 Assumes the `allocated' (and perhaps `buffer') and `translate'
2334 fields are set in BUFP on entry.
2336 If it succeeds, results are put in BUFP (if it returns an error, the
2337 contents of BUFP are undefined):
2338 `buffer' is the compiled pattern;
2339 `syntax' is set to SYNTAX;
2340 `used' is set to the length of the compiled pattern;
2341 `fastmap_accurate' is zero;
2342 `re_nsub' is the number of subexpressions in PATTERN;
2343 `not_bol' and `not_eol' are zero;
2345 The `fastmap' and `newline_anchor' fields are neither
2346 examined nor set. */
2348 /* Return, freeing storage we allocated. */
2350 # define FREE_STACK_RETURN(value) \
2351 return (free(pattern), free(mbs_offset), free(is_binary), free (compile_stack.stack), value)
2353 # define FREE_STACK_RETURN(value) \
2354 return (free (compile_stack.stack), value)
2357 static reg_errcode_t
2358 PREFIX(regex_compile
) (ARG_PREFIX(pattern
), ARG_PREFIX(size
), syntax
, bufp
)
2359 const char *ARG_PREFIX(pattern
);
2360 size_t ARG_PREFIX(size
);
2361 reg_syntax_t syntax
;
2362 struct re_pattern_buffer
*bufp
;
2364 /* We fetch characters from PATTERN here. Even though PATTERN is
2365 `char *' (i.e., signed), we declare these variables as unsigned, so
2366 they can be reliably used as array indices. */
2367 register UCHAR_T c
, c1
;
2370 /* A temporary space to keep wchar_t pattern and compiled pattern. */
2371 CHAR_T
*pattern
, *COMPILED_BUFFER_VAR
;
2373 /* offset buffer for optimization. See convert_mbs_to_wc. */
2374 int *mbs_offset
= NULL
;
2375 /* It hold whether each wchar_t is binary data or not. */
2376 char *is_binary
= NULL
;
2377 /* A flag whether exactn is handling binary data or not. */
2378 char is_exactn_bin
= FALSE
;
2381 /* A random temporary spot in PATTERN. */
2384 /* Points to the end of the buffer, where we should append. */
2385 register UCHAR_T
*b
;
2387 /* Keeps track of unclosed groups. */
2388 compile_stack_type compile_stack
;
2390 /* Points to the current (ending) position in the pattern. */
2395 const CHAR_T
*p
= pattern
;
2396 const CHAR_T
*pend
= pattern
+ size
;
2399 /* How to translate the characters in the pattern. */
2400 RE_TRANSLATE_TYPE translate
= bufp
->translate
;
2402 /* Address of the count-byte of the most recently inserted `exactn'
2403 command. This makes it possible to tell if a new exact-match
2404 character can be added to that command or if the character requires
2405 a new `exactn' command. */
2406 UCHAR_T
*pending_exact
= 0;
2408 /* Address of start of the most recently finished expression.
2409 This tells, e.g., postfix * where to find the start of its
2410 operand. Reset at the beginning of groups and alternatives. */
2411 UCHAR_T
*laststart
= 0;
2413 /* Address of beginning of regexp, or inside of last group. */
2416 /* Address of the place where a forward jump should go to the end of
2417 the containing expression. Each alternative of an `or' -- except the
2418 last -- ends with a forward jump of this sort. */
2419 UCHAR_T
*fixup_alt_jump
= 0;
2421 /* Counts open-groups as they are encountered. Remembered for the
2422 matching close-group on the compile stack, so the same register
2423 number is put in the stop_memory as the start_memory. */
2424 regnum_t regnum
= 0;
2427 /* Initialize the wchar_t PATTERN and offset_buffer. */
2428 p
= pend
= pattern
= TALLOC(csize
+ 1, CHAR_T
);
2429 mbs_offset
= TALLOC(csize
+ 1, int);
2430 is_binary
= TALLOC(csize
+ 1, char);
2431 if (pattern
== NULL
|| mbs_offset
== NULL
|| is_binary
== NULL
)
2438 pattern
[csize
] = L
'\0'; /* sentinel */
2439 size
= convert_mbs_to_wcs(pattern
, cpattern
, csize
, mbs_offset
, is_binary
);
2451 DEBUG_PRINT1 ("\nCompiling pattern: ");
2454 unsigned debug_count
;
2456 for (debug_count
= 0; debug_count
< size
; debug_count
++)
2457 PUT_CHAR (pattern
[debug_count
]);
2462 /* Initialize the compile stack. */
2463 compile_stack
.stack
= TALLOC (INIT_COMPILE_STACK_SIZE
, compile_stack_elt_t
);
2464 if (compile_stack
.stack
== NULL
)
2474 compile_stack
.size
= INIT_COMPILE_STACK_SIZE
;
2475 compile_stack
.avail
= 0;
2477 /* Initialize the pattern buffer. */
2478 bufp
->syntax
= syntax
;
2479 bufp
->fastmap_accurate
= 0;
2480 bufp
->not_bol
= bufp
->not_eol
= 0;
2482 /* Set `used' to zero, so that if we return an error, the pattern
2483 printer (for debugging) will think there's no pattern. We reset it
2487 /* Always count groups, whether or not bufp->no_sub is set. */
2490 #if !defined emacs && !defined SYNTAX_TABLE
2491 /* Initialize the syntax table. */
2492 init_syntax_once ();
2495 if (bufp
->allocated
== 0)
2498 { /* If zero allocated, but buffer is non-null, try to realloc
2499 enough space. This loses if buffer's address is bogus, but
2500 that is the user's responsibility. */
2502 /* Free bufp->buffer and allocate an array for wchar_t pattern
2505 COMPILED_BUFFER_VAR
= TALLOC (INIT_BUF_SIZE
/sizeof(UCHAR_T
),
2508 RETALLOC (COMPILED_BUFFER_VAR
, INIT_BUF_SIZE
, UCHAR_T
);
2512 { /* Caller did not allocate a buffer. Do it for them. */
2513 COMPILED_BUFFER_VAR
= TALLOC (INIT_BUF_SIZE
/ sizeof(UCHAR_T
),
2517 if (!COMPILED_BUFFER_VAR
) FREE_STACK_RETURN (REG_ESPACE
);
2519 bufp
->buffer
= (char*)COMPILED_BUFFER_VAR
;
2521 bufp
->allocated
= INIT_BUF_SIZE
;
2525 COMPILED_BUFFER_VAR
= (UCHAR_T
*) bufp
->buffer
;
2528 begalt
= b
= COMPILED_BUFFER_VAR
;
2530 /* Loop through the uncompiled pattern until we're at the end. */
2539 if ( /* If at start of pattern, it's an operator. */
2541 /* If context independent, it's an operator. */
2542 || syntax
& RE_CONTEXT_INDEP_ANCHORS
2543 /* Otherwise, depends on what's come before. */
2544 || PREFIX(at_begline_loc_p
) (pattern
, p
, syntax
))
2554 if ( /* If at end of pattern, it's an operator. */
2556 /* If context independent, it's an operator. */
2557 || syntax
& RE_CONTEXT_INDEP_ANCHORS
2558 /* Otherwise, depends on what's next. */
2559 || PREFIX(at_endline_loc_p
) (p
, pend
, syntax
))
2569 if ((syntax
& RE_BK_PLUS_QM
)
2570 || (syntax
& RE_LIMITED_OPS
))
2574 /* If there is no previous pattern... */
2577 if (syntax
& RE_CONTEXT_INVALID_OPS
)
2578 FREE_STACK_RETURN (REG_BADRPT
);
2579 else if (!(syntax
& RE_CONTEXT_INDEP_OPS
))
2584 /* Are we optimizing this jump? */
2585 boolean keep_string_p
= false;
2587 /* 1 means zero (many) matches is allowed. */
2588 char zero_times_ok
= 0, many_times_ok
= 0;
2590 /* If there is a sequence of repetition chars, collapse it
2591 down to just one (the right one). We can't combine
2592 interval operators with these because of, e.g., `a{2}*',
2593 which should only match an even number of `a's. */
2597 zero_times_ok
|= c
!= '+';
2598 many_times_ok
|= c
!= '?';
2606 || (!(syntax
& RE_BK_PLUS_QM
) && (c
== '+' || c
== '?')))
2609 else if (syntax
& RE_BK_PLUS_QM
&& c
== '\\')
2611 if (p
== pend
) FREE_STACK_RETURN (REG_EESCAPE
);
2614 if (!(c1
== '+' || c1
== '?'))
2629 /* If we get here, we found another repeat character. */
2632 /* Star, etc. applied to an empty pattern is equivalent
2633 to an empty pattern. */
2637 /* Now we know whether or not zero matches is allowed
2638 and also whether or not two or more matches is allowed. */
2640 { /* More than one repetition is allowed, so put in at the
2641 end a backward relative jump from `b' to before the next
2642 jump we're going to put in below (which jumps from
2643 laststart to after this jump).
2645 But if we are at the `*' in the exact sequence `.*\n',
2646 insert an unconditional jump backwards to the .,
2647 instead of the beginning of the loop. This way we only
2648 push a failure point once, instead of every time
2649 through the loop. */
2650 assert (p
- 1 > pattern
);
2652 /* Allocate the space for the jump. */
2653 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE
);
2655 /* We know we are not at the first character of the pattern,
2656 because laststart was nonzero. And we've already
2657 incremented `p', by the way, to be the character after
2658 the `*'. Do we have to do something analogous here
2659 for null bytes, because of RE_DOT_NOT_NULL? */
2660 if (TRANSLATE (*(p
- 2)) == TRANSLATE ('.')
2662 && p
< pend
&& TRANSLATE (*p
) == TRANSLATE ('\n')
2663 && !(syntax
& RE_DOT_NEWLINE
))
2664 { /* We have .*\n. */
2665 STORE_JUMP (jump
, b
, laststart
);
2666 keep_string_p
= true;
2669 /* Anything else. */
2670 STORE_JUMP (maybe_pop_jump
, b
, laststart
-
2671 (1 + OFFSET_ADDRESS_SIZE
));
2673 /* We've added more stuff to the buffer. */
2674 b
+= 1 + OFFSET_ADDRESS_SIZE
;
2677 /* On failure, jump from laststart to b + 3, which will be the
2678 end of the buffer after this jump is inserted. */
2679 /* ifdef WCHAR, 'b + 1 + OFFSET_ADDRESS_SIZE' instead of
2681 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE
);
2682 INSERT_JUMP (keep_string_p
? on_failure_keep_string_jump
2684 laststart
, b
+ 1 + OFFSET_ADDRESS_SIZE
);
2686 b
+= 1 + OFFSET_ADDRESS_SIZE
;
2690 /* At least one repetition is required, so insert a
2691 `dummy_failure_jump' before the initial
2692 `on_failure_jump' instruction of the loop. This
2693 effects a skip over that instruction the first time
2694 we hit that loop. */
2695 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE
);
2696 INSERT_JUMP (dummy_failure_jump
, laststart
, laststart
+
2697 2 + 2 * OFFSET_ADDRESS_SIZE
);
2698 b
+= 1 + OFFSET_ADDRESS_SIZE
;
2712 boolean had_char_class
= false;
2714 CHAR_T range_start
= 0xffffffff;
2716 unsigned int range_start
= 0xffffffff;
2718 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2721 /* We assume a charset(_not) structure as a wchar_t array.
2722 charset[0] = (re_opcode_t) charset(_not)
2723 charset[1] = l (= length of char_classes)
2724 charset[2] = m (= length of collating_symbols)
2725 charset[3] = n (= length of equivalence_classes)
2726 charset[4] = o (= length of char_ranges)
2727 charset[5] = p (= length of chars)
2729 charset[6] = char_class (wctype_t)
2730 charset[6+CHAR_CLASS_SIZE] = char_class (wctype_t)
2732 charset[l+5] = char_class (wctype_t)
2734 charset[l+6] = collating_symbol (wchar_t)
2736 charset[l+m+5] = collating_symbol (wchar_t)
2737 ifdef _LIBC we use the index if
2738 _NL_COLLATE_SYMB_EXTRAMB instead of
2741 charset[l+m+6] = equivalence_classes (wchar_t)
2743 charset[l+m+n+5] = equivalence_classes (wchar_t)
2744 ifdef _LIBC we use the index in
2745 _NL_COLLATE_WEIGHT instead of
2748 charset[l+m+n+6] = range_start
2749 charset[l+m+n+7] = range_end
2751 charset[l+m+n+2o+4] = range_start
2752 charset[l+m+n+2o+5] = range_end
2753 ifdef _LIBC we use the value looked up
2754 in _NL_COLLATE_COLLSEQ instead of
2757 charset[l+m+n+2o+6] = char
2759 charset[l+m+n+2o+p+5] = char
2763 /* We need at least 6 spaces: the opcode, the length of
2764 char_classes, the length of collating_symbols, the length of
2765 equivalence_classes, the length of char_ranges, the length of
2767 GET_BUFFER_SPACE (6);
2769 /* Save b as laststart. And We use laststart as the pointer
2770 to the first element of the charset here.
2771 In other words, laststart[i] indicates charset[i]. */
2774 /* We test `*p == '^' twice, instead of using an if
2775 statement, so we only need one BUF_PUSH. */
2776 BUF_PUSH (*p
== '^' ? charset_not
: charset
);
2780 /* Push the length of char_classes, the length of
2781 collating_symbols, the length of equivalence_classes, the
2782 length of char_ranges and the length of chars. */
2783 BUF_PUSH_3 (0, 0, 0);
2786 /* Remember the first position in the bracket expression. */
2789 /* charset_not matches newline according to a syntax bit. */
2790 if ((re_opcode_t
) b
[-6] == charset_not
2791 && (syntax
& RE_HAT_LISTS_NOT_NEWLINE
))
2794 laststart
[5]++; /* Update the length of characters */
2797 /* Read in characters and ranges, setting map bits. */
2800 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2804 /* \ might escape characters inside [...] and [^...]. */
2805 if ((syntax
& RE_BACKSLASH_ESCAPE_IN_LISTS
) && c
== '\\')
2807 if (p
== pend
) FREE_STACK_RETURN (REG_EESCAPE
);
2811 laststart
[5]++; /* Update the length of chars */
2816 /* Could be the end of the bracket expression. If it's
2817 not (i.e., when the bracket expression is `[]' so
2818 far), the ']' character bit gets set way below. */
2819 if (c
== ']' && p
!= p1
+ 1)
2822 /* Look ahead to see if it's a range when the last thing
2823 was a character class. */
2824 if (had_char_class
&& c
== '-' && *p
!= ']')
2825 FREE_STACK_RETURN (REG_ERANGE
);
2827 /* Look ahead to see if it's a range when the last thing
2828 was a character: if this is a hyphen not at the
2829 beginning or the end of a list, then it's the range
2832 && !(p
- 2 >= pattern
&& p
[-2] == '[')
2833 && !(p
- 3 >= pattern
&& p
[-3] == '[' && p
[-2] == '^')
2837 /* Allocate the space for range_start and range_end. */
2838 GET_BUFFER_SPACE (2);
2839 /* Update the pointer to indicate end of buffer. */
2841 ret
= wcs_compile_range (range_start
, &p
, pend
, translate
,
2842 syntax
, b
, laststart
);
2843 if (ret
!= REG_NOERROR
) FREE_STACK_RETURN (ret
);
2844 range_start
= 0xffffffff;
2846 else if (p
[0] == '-' && p
[1] != ']')
2847 { /* This handles ranges made up of characters only. */
2850 /* Move past the `-'. */
2852 /* Allocate the space for range_start and range_end. */
2853 GET_BUFFER_SPACE (2);
2854 /* Update the pointer to indicate end of buffer. */
2856 ret
= wcs_compile_range (c
, &p
, pend
, translate
, syntax
, b
,
2858 if (ret
!= REG_NOERROR
) FREE_STACK_RETURN (ret
);
2859 range_start
= 0xffffffff;
2862 /* See if we're at the beginning of a possible character
2864 else if (syntax
& RE_CHAR_CLASSES
&& c
== '[' && *p
== ':')
2865 { /* Leave room for the null. */
2866 char str
[CHAR_CLASS_MAX_LENGTH
+ 1];
2871 /* If pattern is `[[:'. */
2872 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2877 if ((c
== ':' && *p
== ']') || p
== pend
)
2879 if (c1
< CHAR_CLASS_MAX_LENGTH
)
2882 /* This is in any case an invalid class name. */
2887 /* If isn't a word bracketed by `[:' and `:]':
2888 undo the ending character, the letters, and leave
2889 the leading `:' and `[' (but store them as character). */
2890 if (c
== ':' && *p
== ']')
2895 /* Query the character class as wctype_t. */
2896 wt
= IS_CHAR_CLASS (str
);
2898 FREE_STACK_RETURN (REG_ECTYPE
);
2900 /* Throw away the ] at the end of the character
2904 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2906 /* Allocate the space for character class. */
2907 GET_BUFFER_SPACE(CHAR_CLASS_SIZE
);
2908 /* Update the pointer to indicate end of buffer. */
2909 b
+= CHAR_CLASS_SIZE
;
2910 /* Move data which follow character classes
2911 not to violate the data. */
2912 insert_space(CHAR_CLASS_SIZE
,
2913 laststart
+ 6 + laststart
[1],
2915 alignedp
= ((uintptr_t)(laststart
+ 6 + laststart
[1])
2916 + __alignof__(wctype_t) - 1)
2917 & ~(uintptr_t)(__alignof__(wctype_t) - 1);
2918 /* Store the character class. */
2919 *((wctype_t*)alignedp
) = wt
;
2920 /* Update length of char_classes */
2921 laststart
[1] += CHAR_CLASS_SIZE
;
2923 had_char_class
= true;
2932 laststart
[5] += 2; /* Update the length of characters */
2934 had_char_class
= false;
2937 else if (syntax
& RE_CHAR_CLASSES
&& c
== '[' && (*p
== '='
2940 CHAR_T str
[128]; /* Should be large enough. */
2941 CHAR_T delim
= *p
; /* '=' or '.' */
2944 _NL_CURRENT_WORD (LC_COLLATE
, _NL_COLLATE_NRULES
);
2949 /* If pattern is `[[=' or '[[.'. */
2950 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2955 if ((c
== delim
&& *p
== ']') || p
== pend
)
2957 if (c1
< sizeof (str
) - 1)
2960 /* This is in any case an invalid class name. */
2965 if (c
== delim
&& *p
== ']' && str
[0] != '\0')
2967 unsigned int i
, offset
;
2968 /* If we have no collation data we use the default
2969 collation in which each character is in a class
2970 by itself. It also means that ASCII is the
2971 character set and therefore we cannot have character
2972 with more than one byte in the multibyte
2975 /* If not defined _LIBC, we push the name and
2976 `\0' for the sake of matching performance. */
2977 int datasize
= c1
+ 1;
2985 FREE_STACK_RETURN (REG_ECOLLATE
);
2990 const int32_t *table
;
2991 const int32_t *weights
;
2992 const int32_t *extra
;
2993 const int32_t *indirect
;
2996 /* This #include defines a local function! */
2997 # include <locale/weightwc.h>
3001 /* We push the index for equivalence class. */
3004 table
= (const int32_t *)
3005 _NL_CURRENT (LC_COLLATE
,
3006 _NL_COLLATE_TABLEWC
);
3007 weights
= (const int32_t *)
3008 _NL_CURRENT (LC_COLLATE
,
3009 _NL_COLLATE_WEIGHTWC
);
3010 extra
= (const int32_t *)
3011 _NL_CURRENT (LC_COLLATE
,
3012 _NL_COLLATE_EXTRAWC
);
3013 indirect
= (const int32_t *)
3014 _NL_CURRENT (LC_COLLATE
,
3015 _NL_COLLATE_INDIRECTWC
);
3017 idx
= findidx ((const wint_t**)&cp
);
3018 if (idx
== 0 || cp
< (wint_t*) str
+ c1
)
3019 /* This is no valid character. */
3020 FREE_STACK_RETURN (REG_ECOLLATE
);
3022 str
[0] = (wchar_t)idx
;
3024 else /* delim == '.' */
3026 /* We push collation sequence value
3027 for collating symbol. */
3029 const int32_t *symb_table
;
3030 const unsigned char *extra
;
3037 /* We have to convert the name to a single-byte
3038 string. This is possible since the names
3039 consist of ASCII characters and the internal
3040 representation is UCS4. */
3041 for (i
= 0; i
< c1
; ++i
)
3042 char_str
[i
] = str
[i
];
3045 _NL_CURRENT_WORD (LC_COLLATE
,
3046 _NL_COLLATE_SYMB_HASH_SIZEMB
);
3047 symb_table
= (const int32_t *)
3048 _NL_CURRENT (LC_COLLATE
,
3049 _NL_COLLATE_SYMB_TABLEMB
);
3050 extra
= (const unsigned char *)
3051 _NL_CURRENT (LC_COLLATE
,
3052 _NL_COLLATE_SYMB_EXTRAMB
);
3054 /* Locate the character in the hashing table. */
3055 hash
= elem_hash (char_str
, c1
);
3058 elem
= hash
% table_size
;
3059 second
= hash
% (table_size
- 2);
3060 while (symb_table
[2 * elem
] != 0)
3062 /* First compare the hashing value. */
3063 if (symb_table
[2 * elem
] == hash
3064 && c1
== extra
[symb_table
[2 * elem
+ 1]]
3065 && memcmp (char_str
,
3066 &extra
[symb_table
[2 * elem
+ 1]
3069 /* Yep, this is the entry. */
3070 idx
= symb_table
[2 * elem
+ 1];
3071 idx
+= 1 + extra
[idx
];
3079 if (symb_table
[2 * elem
] != 0)
3081 /* Compute the index of the byte sequence
3083 idx
+= 1 + extra
[idx
];
3084 /* Adjust for the alignment. */
3085 idx
= (idx
+ 3) & ~3;
3087 str
[0] = (wchar_t) idx
+ 4;
3089 else if (symb_table
[2 * elem
] == 0 && c1
== 1)
3091 /* No valid character. Match it as a
3092 single byte character. */
3093 had_char_class
= false;
3095 /* Update the length of characters */
3097 range_start
= str
[0];
3099 /* Throw away the ] at the end of the
3100 collating symbol. */
3102 /* exit from the switch block. */
3106 FREE_STACK_RETURN (REG_ECOLLATE
);
3111 /* Throw away the ] at the end of the equivalence
3112 class (or collating symbol). */
3115 /* Allocate the space for the equivalence class
3116 (or collating symbol) (and '\0' if needed). */
3117 GET_BUFFER_SPACE(datasize
);
3118 /* Update the pointer to indicate end of buffer. */
3122 { /* equivalence class */
3123 /* Calculate the offset of char_ranges,
3124 which is next to equivalence_classes. */
3125 offset
= laststart
[1] + laststart
[2]
3128 insert_space(datasize
, laststart
+ offset
, b
- 1);
3130 /* Write the equivalence_class and \0. */
3131 for (i
= 0 ; i
< datasize
; i
++)
3132 laststart
[offset
+ i
] = str
[i
];
3134 /* Update the length of equivalence_classes. */
3135 laststart
[3] += datasize
;
3136 had_char_class
= true;
3138 else /* delim == '.' */
3139 { /* collating symbol */
3140 /* Calculate the offset of the equivalence_classes,
3141 which is next to collating_symbols. */
3142 offset
= laststart
[1] + laststart
[2] + 6;
3143 /* Insert space and write the collationg_symbol
3145 insert_space(datasize
, laststart
+ offset
, b
-1);
3146 for (i
= 0 ; i
< datasize
; i
++)
3147 laststart
[offset
+ i
] = str
[i
];
3149 /* In re_match_2_internal if range_start < -1, we
3150 assume -range_start is the offset of the
3151 collating symbol which is specified as
3152 the character of the range start. So we assign
3153 -(laststart[1] + laststart[2] + 6) to
3155 range_start
= -(laststart
[1] + laststart
[2] + 6);
3156 /* Update the length of collating_symbol. */
3157 laststart
[2] += datasize
;
3158 had_char_class
= false;
3168 laststart
[5] += 2; /* Update the length of characters */
3169 range_start
= delim
;
3170 had_char_class
= false;
3175 had_char_class
= false;
3177 laststart
[5]++; /* Update the length of characters */
3183 /* Ensure that we have enough space to push a charset: the
3184 opcode, the length count, and the bitset; 34 bytes in all. */
3185 GET_BUFFER_SPACE (34);
3189 /* We test `*p == '^' twice, instead of using an if
3190 statement, so we only need one BUF_PUSH. */
3191 BUF_PUSH (*p
== '^' ? charset_not
: charset
);
3195 /* Remember the first position in the bracket expression. */
3198 /* Push the number of bytes in the bitmap. */
3199 BUF_PUSH ((1 << BYTEWIDTH
) / BYTEWIDTH
);
3201 /* Clear the whole map. */
3202 bzero (b
, (1 << BYTEWIDTH
) / BYTEWIDTH
);
3204 /* charset_not matches newline according to a syntax bit. */
3205 if ((re_opcode_t
) b
[-2] == charset_not
3206 && (syntax
& RE_HAT_LISTS_NOT_NEWLINE
))
3207 SET_LIST_BIT ('\n');
3209 /* Read in characters and ranges, setting map bits. */
3212 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
3216 /* \ might escape characters inside [...] and [^...]. */
3217 if ((syntax
& RE_BACKSLASH_ESCAPE_IN_LISTS
) && c
== '\\')
3219 if (p
== pend
) FREE_STACK_RETURN (REG_EESCAPE
);
3227 /* Could be the end of the bracket expression. If it's
3228 not (i.e., when the bracket expression is `[]' so
3229 far), the ']' character bit gets set way below. */
3230 if (c
== ']' && p
!= p1
+ 1)
3233 /* Look ahead to see if it's a range when the last thing
3234 was a character class. */
3235 if (had_char_class
&& c
== '-' && *p
!= ']')
3236 FREE_STACK_RETURN (REG_ERANGE
);
3238 /* Look ahead to see if it's a range when the last thing
3239 was a character: if this is a hyphen not at the
3240 beginning or the end of a list, then it's the range
3243 && !(p
- 2 >= pattern
&& p
[-2] == '[')
3244 && !(p
- 3 >= pattern
&& p
[-3] == '[' && p
[-2] == '^')
3248 = byte_compile_range (range_start
, &p
, pend
, translate
,
3250 if (ret
!= REG_NOERROR
) FREE_STACK_RETURN (ret
);
3251 range_start
= 0xffffffff;
3254 else if (p
[0] == '-' && p
[1] != ']')
3255 { /* This handles ranges made up of characters only. */
3258 /* Move past the `-'. */
3261 ret
= byte_compile_range (c
, &p
, pend
, translate
, syntax
, b
);
3262 if (ret
!= REG_NOERROR
) FREE_STACK_RETURN (ret
);
3263 range_start
= 0xffffffff;
3266 /* See if we're at the beginning of a possible character
3269 else if (syntax
& RE_CHAR_CLASSES
&& c
== '[' && *p
== ':')
3270 { /* Leave room for the null. */
3271 char str
[CHAR_CLASS_MAX_LENGTH
+ 1];
3276 /* If pattern is `[[:'. */
3277 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
3282 if ((c
== ':' && *p
== ']') || p
== pend
)
3284 if (c1
< CHAR_CLASS_MAX_LENGTH
)
3287 /* This is in any case an invalid class name. */
3292 /* If isn't a word bracketed by `[:' and `:]':
3293 undo the ending character, the letters, and leave
3294 the leading `:' and `[' (but set bits for them). */
3295 if (c
== ':' && *p
== ']')
3297 # if defined _LIBC || WIDE_CHAR_SUPPORT
3298 boolean is_lower
= STREQ (str
, "lower");
3299 boolean is_upper
= STREQ (str
, "upper");
3303 wt
= IS_CHAR_CLASS (str
);
3305 FREE_STACK_RETURN (REG_ECTYPE
);
3307 /* Throw away the ] at the end of the character
3311 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
3313 for (ch
= 0; ch
< 1 << BYTEWIDTH
; ++ch
)
3315 if (iswctype (btowc (ch
), wt
))
3318 if (translate
&& (is_upper
|| is_lower
)
3319 && (ISUPPER (ch
) || ISLOWER (ch
)))
3323 had_char_class
= true;
3326 boolean is_alnum
= STREQ (str
, "alnum");
3327 boolean is_alpha
= STREQ (str
, "alpha");
3328 boolean is_blank
= STREQ (str
, "blank");
3329 boolean is_cntrl
= STREQ (str
, "cntrl");
3330 boolean is_digit
= STREQ (str
, "digit");
3331 boolean is_graph
= STREQ (str
, "graph");
3332 boolean is_lower
= STREQ (str
, "lower");
3333 boolean is_print
= STREQ (str
, "print");
3334 boolean is_punct
= STREQ (str
, "punct");
3335 boolean is_space
= STREQ (str
, "space");
3336 boolean is_upper
= STREQ (str
, "upper");
3337 boolean is_xdigit
= STREQ (str
, "xdigit");
3339 if (!IS_CHAR_CLASS (str
))
3340 FREE_STACK_RETURN (REG_ECTYPE
);
3342 /* Throw away the ] at the end of the character
3346 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
3348 for (ch
= 0; ch
< 1 << BYTEWIDTH
; ch
++)
3350 /* This was split into 3 if's to
3351 avoid an arbitrary limit in some compiler. */
3352 if ( (is_alnum
&& ISALNUM (ch
))
3353 || (is_alpha
&& ISALPHA (ch
))
3354 || (is_blank
&& ISBLANK (ch
))
3355 || (is_cntrl
&& ISCNTRL (ch
)))
3357 if ( (is_digit
&& ISDIGIT (ch
))
3358 || (is_graph
&& ISGRAPH (ch
))
3359 || (is_lower
&& ISLOWER (ch
))
3360 || (is_print
&& ISPRINT (ch
)))
3362 if ( (is_punct
&& ISPUNCT (ch
))
3363 || (is_space
&& ISSPACE (ch
))
3364 || (is_upper
&& ISUPPER (ch
))
3365 || (is_xdigit
&& ISXDIGIT (ch
)))
3367 if ( translate
&& (is_upper
|| is_lower
)
3368 && (ISUPPER (ch
) || ISLOWER (ch
)))
3371 had_char_class
= true;
3372 # endif /* libc || wctype.h */
3382 had_char_class
= false;
3385 else if (syntax
& RE_CHAR_CLASSES
&& c
== '[' && *p
== '=')
3387 unsigned char str
[MB_LEN_MAX
+ 1];
3390 _NL_CURRENT_WORD (LC_COLLATE
, _NL_COLLATE_NRULES
);
3396 /* If pattern is `[[='. */
3397 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
3402 if ((c
== '=' && *p
== ']') || p
== pend
)
3404 if (c1
< MB_LEN_MAX
)
3407 /* This is in any case an invalid class name. */
3412 if (c
== '=' && *p
== ']' && str
[0] != '\0')
3414 /* If we have no collation data we use the default
3415 collation in which each character is in a class
3416 by itself. It also means that ASCII is the
3417 character set and therefore we cannot have character
3418 with more than one byte in the multibyte
3425 FREE_STACK_RETURN (REG_ECOLLATE
);
3427 /* Throw away the ] at the end of the equivalence
3431 /* Set the bit for the character. */
3432 SET_LIST_BIT (str
[0]);
3437 /* Try to match the byte sequence in `str' against
3438 those known to the collate implementation.
3439 First find out whether the bytes in `str' are
3440 actually from exactly one character. */
3441 const int32_t *table
;
3442 const unsigned char *weights
;
3443 const unsigned char *extra
;
3444 const int32_t *indirect
;
3446 const unsigned char *cp
= str
;
3449 /* This #include defines a local function! */
3450 # include <locale/weight.h>
3452 table
= (const int32_t *)
3453 _NL_CURRENT (LC_COLLATE
, _NL_COLLATE_TABLEMB
);
3454 weights
= (const unsigned char *)
3455 _NL_CURRENT (LC_COLLATE
, _NL_COLLATE_WEIGHTMB
);
3456 extra
= (const unsigned char *)
3457 _NL_CURRENT (LC_COLLATE
, _NL_COLLATE_EXTRAMB
);
3458 indirect
= (const int32_t *)
3459 _NL_CURRENT (LC_COLLATE
, _NL_COLLATE_INDIRECTMB
);
3461 idx
= findidx (&cp
);
3462 if (idx
== 0 || cp
< str
+ c1
)
3463 /* This is no valid character. */
3464 FREE_STACK_RETURN (REG_ECOLLATE
);
3466 /* Throw away the ] at the end of the equivalence
3470 /* Now we have to go throught the whole table
3471 and find all characters which have the same
3474 XXX Note that this is not entirely correct.
3475 we would have to match multibyte sequences
3476 but this is not possible with the current
3478 for (ch
= 1; ch
< 256; ++ch
)
3479 /* XXX This test would have to be changed if we
3480 would allow matching multibyte sequences. */
3483 int32_t idx2
= table
[ch
];
3484 size_t len
= weights
[idx2
];
3486 /* Test whether the lenghts match. */
3487 if (weights
[idx
] == len
)
3489 /* They do. New compare the bytes of
3494 && (weights
[idx
+ 1 + cnt
]
3495 == weights
[idx2
+ 1 + cnt
]))
3499 /* They match. Mark the character as
3506 had_char_class
= true;
3516 had_char_class
= false;
3519 else if (syntax
& RE_CHAR_CLASSES
&& c
== '[' && *p
== '.')
3521 unsigned char str
[128]; /* Should be large enough. */
3524 _NL_CURRENT_WORD (LC_COLLATE
, _NL_COLLATE_NRULES
);
3530 /* If pattern is `[[.'. */
3531 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
3536 if ((c
== '.' && *p
== ']') || p
== pend
)
3538 if (c1
< sizeof (str
))
3541 /* This is in any case an invalid class name. */
3546 if (c
== '.' && *p
== ']' && str
[0] != '\0')
3548 /* If we have no collation data we use the default
3549 collation in which each character is the name
3550 for its own class which contains only the one
3551 character. It also means that ASCII is the
3552 character set and therefore we cannot have character
3553 with more than one byte in the multibyte
3560 FREE_STACK_RETURN (REG_ECOLLATE
);
3562 /* Throw away the ] at the end of the equivalence
3566 /* Set the bit for the character. */
3567 SET_LIST_BIT (str
[0]);
3568 range_start
= ((const unsigned char *) str
)[0];
3573 /* Try to match the byte sequence in `str' against
3574 those known to the collate implementation.
3575 First find out whether the bytes in `str' are
3576 actually from exactly one character. */
3578 const int32_t *symb_table
;
3579 const unsigned char *extra
;
3586 _NL_CURRENT_WORD (LC_COLLATE
,
3587 _NL_COLLATE_SYMB_HASH_SIZEMB
);
3588 symb_table
= (const int32_t *)
3589 _NL_CURRENT (LC_COLLATE
,
3590 _NL_COLLATE_SYMB_TABLEMB
);
3591 extra
= (const unsigned char *)
3592 _NL_CURRENT (LC_COLLATE
,
3593 _NL_COLLATE_SYMB_EXTRAMB
);
3595 /* Locate the character in the hashing table. */
3596 hash
= elem_hash (str
, c1
);
3599 elem
= hash
% table_size
;
3600 second
= hash
% (table_size
- 2);
3601 while (symb_table
[2 * elem
] != 0)
3603 /* First compare the hashing value. */
3604 if (symb_table
[2 * elem
] == hash
3605 && c1
== extra
[symb_table
[2 * elem
+ 1]]
3607 &extra
[symb_table
[2 * elem
+ 1]
3611 /* Yep, this is the entry. */
3612 idx
= symb_table
[2 * elem
+ 1];
3613 idx
+= 1 + extra
[idx
];
3621 if (symb_table
[2 * elem
] == 0)
3622 /* This is no valid character. */
3623 FREE_STACK_RETURN (REG_ECOLLATE
);
3625 /* Throw away the ] at the end of the equivalence
3629 /* Now add the multibyte character(s) we found
3632 XXX Note that this is not entirely correct.
3633 we would have to match multibyte sequences
3634 but this is not possible with the current
3635 implementation. Also, we have to match
3636 collating symbols, which expand to more than
3637 one file, as a whole and not allow the
3638 individual bytes. */
3641 range_start
= extra
[idx
];
3644 SET_LIST_BIT (extra
[idx
]);
3649 had_char_class
= false;
3659 had_char_class
= false;
3664 had_char_class
= false;
3670 /* Discard any (non)matching list bytes that are all 0 at the
3671 end of the map. Decrease the map-length byte too. */
3672 while ((int) b
[-1] > 0 && b
[b
[-1] - 1] == 0)
3681 if (syntax
& RE_NO_BK_PARENS
)
3688 if (syntax
& RE_NO_BK_PARENS
)
3695 if (syntax
& RE_NEWLINE_ALT
)
3702 if (syntax
& RE_NO_BK_VBAR
)
3709 if (syntax
& RE_INTERVALS
&& syntax
& RE_NO_BK_BRACES
)
3710 goto handle_interval
;
3716 if (p
== pend
) FREE_STACK_RETURN (REG_EESCAPE
);
3718 /* Do not translate the character after the \, so that we can
3719 distinguish, e.g., \B from \b, even if we normally would
3720 translate, e.g., B to b. */
3726 if (syntax
& RE_NO_BK_PARENS
)
3727 goto normal_backslash
;
3733 if (COMPILE_STACK_FULL
)
3735 RETALLOC (compile_stack
.stack
, compile_stack
.size
<< 1,
3736 compile_stack_elt_t
);
3737 if (compile_stack
.stack
== NULL
) return REG_ESPACE
;
3739 compile_stack
.size
<<= 1;
3742 /* These are the values to restore when we hit end of this
3743 group. They are all relative offsets, so that if the
3744 whole pattern moves because of realloc, they will still
3746 COMPILE_STACK_TOP
.begalt_offset
= begalt
- COMPILED_BUFFER_VAR
;
3747 COMPILE_STACK_TOP
.fixup_alt_jump
3748 = fixup_alt_jump
? fixup_alt_jump
- COMPILED_BUFFER_VAR
+ 1 : 0;
3749 COMPILE_STACK_TOP
.laststart_offset
= b
- COMPILED_BUFFER_VAR
;
3750 COMPILE_STACK_TOP
.regnum
= regnum
;
3752 /* We will eventually replace the 0 with the number of
3753 groups inner to this one. But do not push a
3754 start_memory for groups beyond the last one we can
3755 represent in the compiled pattern. */
3756 if (regnum
<= MAX_REGNUM
)
3758 COMPILE_STACK_TOP
.inner_group_offset
= b
3759 - COMPILED_BUFFER_VAR
+ 2;
3760 BUF_PUSH_3 (start_memory
, regnum
, 0);
3763 compile_stack
.avail
++;
3768 /* If we've reached MAX_REGNUM groups, then this open
3769 won't actually generate any code, so we'll have to
3770 clear pending_exact explicitly. */
3776 if (syntax
& RE_NO_BK_PARENS
) goto normal_backslash
;
3778 if (COMPILE_STACK_EMPTY
)
3780 if (syntax
& RE_UNMATCHED_RIGHT_PAREN_ORD
)
3781 goto normal_backslash
;
3783 FREE_STACK_RETURN (REG_ERPAREN
);
3788 { /* Push a dummy failure point at the end of the
3789 alternative for a possible future
3790 `pop_failure_jump' to pop. See comments at
3791 `push_dummy_failure' in `re_match_2'. */
3792 BUF_PUSH (push_dummy_failure
);
3794 /* We allocated space for this jump when we assigned
3795 to `fixup_alt_jump', in the `handle_alt' case below. */
3796 STORE_JUMP (jump_past_alt
, fixup_alt_jump
, b
- 1);
3799 /* See similar code for backslashed left paren above. */
3800 if (COMPILE_STACK_EMPTY
)
3802 if (syntax
& RE_UNMATCHED_RIGHT_PAREN_ORD
)
3805 FREE_STACK_RETURN (REG_ERPAREN
);
3808 /* Since we just checked for an empty stack above, this
3809 ``can't happen''. */
3810 assert (compile_stack
.avail
!= 0);
3812 /* We don't just want to restore into `regnum', because
3813 later groups should continue to be numbered higher,
3814 as in `(ab)c(de)' -- the second group is #2. */
3815 regnum_t this_group_regnum
;
3817 compile_stack
.avail
--;
3818 begalt
= COMPILED_BUFFER_VAR
+ COMPILE_STACK_TOP
.begalt_offset
;
3820 = COMPILE_STACK_TOP
.fixup_alt_jump
3821 ? COMPILED_BUFFER_VAR
+ COMPILE_STACK_TOP
.fixup_alt_jump
- 1
3823 laststart
= COMPILED_BUFFER_VAR
+ COMPILE_STACK_TOP
.laststart_offset
;
3824 this_group_regnum
= COMPILE_STACK_TOP
.regnum
;
3825 /* If we've reached MAX_REGNUM groups, then this open
3826 won't actually generate any code, so we'll have to
3827 clear pending_exact explicitly. */
3830 /* We're at the end of the group, so now we know how many
3831 groups were inside this one. */
3832 if (this_group_regnum
<= MAX_REGNUM
)
3834 UCHAR_T
*inner_group_loc
3835 = COMPILED_BUFFER_VAR
+ COMPILE_STACK_TOP
.inner_group_offset
;
3837 *inner_group_loc
= regnum
- this_group_regnum
;
3838 BUF_PUSH_3 (stop_memory
, this_group_regnum
,
3839 regnum
- this_group_regnum
);
3845 case '|': /* `\|'. */
3846 if (syntax
& RE_LIMITED_OPS
|| syntax
& RE_NO_BK_VBAR
)
3847 goto normal_backslash
;
3849 if (syntax
& RE_LIMITED_OPS
)
3852 /* Insert before the previous alternative a jump which
3853 jumps to this alternative if the former fails. */
3854 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE
);
3855 INSERT_JUMP (on_failure_jump
, begalt
,
3856 b
+ 2 + 2 * OFFSET_ADDRESS_SIZE
);
3858 b
+= 1 + OFFSET_ADDRESS_SIZE
;
3860 /* The alternative before this one has a jump after it
3861 which gets executed if it gets matched. Adjust that
3862 jump so it will jump to this alternative's analogous
3863 jump (put in below, which in turn will jump to the next
3864 (if any) alternative's such jump, etc.). The last such
3865 jump jumps to the correct final destination. A picture:
3871 If we are at `b', then fixup_alt_jump right now points to a
3872 three-byte space after `a'. We'll put in the jump, set
3873 fixup_alt_jump to right after `b', and leave behind three
3874 bytes which we'll fill in when we get to after `c'. */
3877 STORE_JUMP (jump_past_alt
, fixup_alt_jump
, b
);
3879 /* Mark and leave space for a jump after this alternative,
3880 to be filled in later either by next alternative or
3881 when know we're at the end of a series of alternatives. */
3883 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE
);
3884 b
+= 1 + OFFSET_ADDRESS_SIZE
;
3892 /* If \{ is a literal. */
3893 if (!(syntax
& RE_INTERVALS
)
3894 /* If we're at `\{' and it's not the open-interval
3896 || (syntax
& RE_NO_BK_BRACES
))
3897 goto normal_backslash
;
3901 /* If got here, then the syntax allows intervals. */
3903 /* At least (most) this many matches must be made. */
3904 int lower_bound
= -1, upper_bound
= -1;
3906 /* Place in the uncompiled pattern (i.e., just after
3907 the '{') to go back to if the interval is invalid. */
3908 const CHAR_T
*beg_interval
= p
;
3911 goto invalid_interval
;
3913 GET_UNSIGNED_NUMBER (lower_bound
);
3917 GET_UNSIGNED_NUMBER (upper_bound
);
3918 if (upper_bound
< 0)
3919 upper_bound
= RE_DUP_MAX
;
3922 /* Interval such as `{1}' => match exactly once. */
3923 upper_bound
= lower_bound
;
3925 if (! (0 <= lower_bound
&& lower_bound
<= upper_bound
))
3926 goto invalid_interval
;
3928 if (!(syntax
& RE_NO_BK_BRACES
))
3930 if (c
!= '\\' || p
== pend
)
3931 goto invalid_interval
;
3936 goto invalid_interval
;
3938 /* If it's invalid to have no preceding re. */
3941 if (syntax
& RE_CONTEXT_INVALID_OPS
3942 && !(syntax
& RE_INVALID_INTERVAL_ORD
))
3943 FREE_STACK_RETURN (REG_BADRPT
);
3944 else if (syntax
& RE_CONTEXT_INDEP_OPS
)
3947 goto unfetch_interval
;
3950 /* We just parsed a valid interval. */
3952 if (RE_DUP_MAX
< upper_bound
)
3953 FREE_STACK_RETURN (REG_BADBR
);
3955 /* If the upper bound is zero, don't want to succeed at
3956 all; jump from `laststart' to `b + 3', which will be
3957 the end of the buffer after we insert the jump. */
3958 /* ifdef WCHAR, 'b + 1 + OFFSET_ADDRESS_SIZE'
3959 instead of 'b + 3'. */
3960 if (upper_bound
== 0)
3962 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE
);
3963 INSERT_JUMP (jump
, laststart
, b
+ 1
3964 + OFFSET_ADDRESS_SIZE
);
3965 b
+= 1 + OFFSET_ADDRESS_SIZE
;
3968 /* Otherwise, we have a nontrivial interval. When
3969 we're all done, the pattern will look like:
3970 set_number_at <jump count> <upper bound>
3971 set_number_at <succeed_n count> <lower bound>
3972 succeed_n <after jump addr> <succeed_n count>
3974 jump_n <succeed_n addr> <jump count>
3975 (The upper bound and `jump_n' are omitted if
3976 `upper_bound' is 1, though.) */
3978 { /* If the upper bound is > 1, we need to insert
3979 more at the end of the loop. */
3980 unsigned nbytes
= 2 + 4 * OFFSET_ADDRESS_SIZE
+
3981 (upper_bound
> 1) * (2 + 4 * OFFSET_ADDRESS_SIZE
);
3983 GET_BUFFER_SPACE (nbytes
);
3985 /* Initialize lower bound of the `succeed_n', even
3986 though it will be set during matching by its
3987 attendant `set_number_at' (inserted next),
3988 because `re_compile_fastmap' needs to know.
3989 Jump to the `jump_n' we might insert below. */
3990 INSERT_JUMP2 (succeed_n
, laststart
,
3991 b
+ 1 + 2 * OFFSET_ADDRESS_SIZE
3992 + (upper_bound
> 1) * (1 + 2 * OFFSET_ADDRESS_SIZE
)
3994 b
+= 1 + 2 * OFFSET_ADDRESS_SIZE
;
3996 /* Code to initialize the lower bound. Insert
3997 before the `succeed_n'. The `5' is the last two
3998 bytes of this `set_number_at', plus 3 bytes of
3999 the following `succeed_n'. */
4000 /* ifdef WCHAR, The '1+2*OFFSET_ADDRESS_SIZE'
4001 is the 'set_number_at', plus '1+OFFSET_ADDRESS_SIZE'
4002 of the following `succeed_n'. */
4003 PREFIX(insert_op2
) (set_number_at
, laststart
, 1
4004 + 2 * OFFSET_ADDRESS_SIZE
, lower_bound
, b
);
4005 b
+= 1 + 2 * OFFSET_ADDRESS_SIZE
;
4007 if (upper_bound
> 1)
4008 { /* More than one repetition is allowed, so
4009 append a backward jump to the `succeed_n'
4010 that starts this interval.
4012 When we've reached this during matching,
4013 we'll have matched the interval once, so
4014 jump back only `upper_bound - 1' times. */
4015 STORE_JUMP2 (jump_n
, b
, laststart
4016 + 2 * OFFSET_ADDRESS_SIZE
+ 1,
4018 b
+= 1 + 2 * OFFSET_ADDRESS_SIZE
;
4020 /* The location we want to set is the second
4021 parameter of the `jump_n'; that is `b-2' as
4022 an absolute address. `laststart' will be
4023 the `set_number_at' we're about to insert;
4024 `laststart+3' the number to set, the source
4025 for the relative address. But we are
4026 inserting into the middle of the pattern --
4027 so everything is getting moved up by 5.
4028 Conclusion: (b - 2) - (laststart + 3) + 5,
4029 i.e., b - laststart.
4031 We insert this at the beginning of the loop
4032 so that if we fail during matching, we'll
4033 reinitialize the bounds. */
4034 PREFIX(insert_op2
) (set_number_at
, laststart
,
4036 upper_bound
- 1, b
);
4037 b
+= 1 + 2 * OFFSET_ADDRESS_SIZE
;
4044 if (!(syntax
& RE_INVALID_INTERVAL_ORD
))
4045 FREE_STACK_RETURN (p
== pend
? REG_EBRACE
: REG_BADBR
);
4047 /* Match the characters as literals. */
4050 if (syntax
& RE_NO_BK_BRACES
)
4053 goto normal_backslash
;
4057 /* There is no way to specify the before_dot and after_dot
4058 operators. rms says this is ok. --karl */
4066 BUF_PUSH_2 (syntaxspec
, syntax_spec_code
[c
]);
4072 BUF_PUSH_2 (notsyntaxspec
, syntax_spec_code
[c
]);
4078 if (syntax
& RE_NO_GNU_OPS
)
4081 BUF_PUSH (wordchar
);
4086 if (syntax
& RE_NO_GNU_OPS
)
4089 BUF_PUSH (notwordchar
);
4094 if (syntax
& RE_NO_GNU_OPS
)
4100 if (syntax
& RE_NO_GNU_OPS
)
4106 if (syntax
& RE_NO_GNU_OPS
)
4108 BUF_PUSH (wordbound
);
4112 if (syntax
& RE_NO_GNU_OPS
)
4114 BUF_PUSH (notwordbound
);
4118 if (syntax
& RE_NO_GNU_OPS
)
4124 if (syntax
& RE_NO_GNU_OPS
)
4129 case '1': case '2': case '3': case '4': case '5':
4130 case '6': case '7': case '8': case '9':
4131 if (syntax
& RE_NO_BK_REFS
)
4137 FREE_STACK_RETURN (REG_ESUBREG
);
4139 /* Can't back reference to a subexpression if inside of it. */
4140 if (group_in_compile_stack (compile_stack
, (regnum_t
) c1
))
4144 BUF_PUSH_2 (duplicate
, c1
);
4150 if (syntax
& RE_BK_PLUS_QM
)
4153 goto normal_backslash
;
4157 /* You might think it would be useful for \ to mean
4158 not to translate; but if we don't translate it
4159 it will never match anything. */
4167 /* Expects the character in `c'. */
4169 /* If no exactn currently being built. */
4172 /* If last exactn handle binary(or character) and
4173 new exactn handle character(or binary). */
4174 || is_exactn_bin
!= is_binary
[p
- 1 - pattern
]
4177 /* If last exactn not at current position. */
4178 || pending_exact
+ *pending_exact
+ 1 != b
4180 /* We have only one byte following the exactn for the count. */
4181 || *pending_exact
== (1 << BYTEWIDTH
) - 1
4183 /* If followed by a repetition operator. */
4184 || *p
== '*' || *p
== '^'
4185 || ((syntax
& RE_BK_PLUS_QM
)
4186 ? *p
== '\\' && (p
[1] == '+' || p
[1] == '?')
4187 : (*p
== '+' || *p
== '?'))
4188 || ((syntax
& RE_INTERVALS
)
4189 && ((syntax
& RE_NO_BK_BRACES
)
4191 : (p
[0] == '\\' && p
[1] == '{'))))
4193 /* Start building a new exactn. */
4198 /* Is this exactn binary data or character? */
4199 is_exactn_bin
= is_binary
[p
- 1 - pattern
];
4201 BUF_PUSH_2 (exactn_bin
, 0);
4203 BUF_PUSH_2 (exactn
, 0);
4205 BUF_PUSH_2 (exactn
, 0);
4207 pending_exact
= b
- 1;
4214 } /* while p != pend */
4217 /* Through the pattern now. */
4220 STORE_JUMP (jump_past_alt
, fixup_alt_jump
, b
);
4222 if (!COMPILE_STACK_EMPTY
)
4223 FREE_STACK_RETURN (REG_EPAREN
);
4225 /* If we don't want backtracking, force success
4226 the first time we reach the end of the compiled pattern. */
4227 if (syntax
& RE_NO_POSIX_BACKTRACKING
)
4235 free (compile_stack
.stack
);
4237 /* We have succeeded; set the length of the buffer. */
4239 bufp
->used
= (uintptr_t) b
- (uintptr_t) COMPILED_BUFFER_VAR
;
4241 bufp
->used
= b
- bufp
->buffer
;
4247 DEBUG_PRINT1 ("\nCompiled pattern: \n");
4248 PREFIX(print_compiled_pattern
) (bufp
);
4252 #ifndef MATCH_MAY_ALLOCATE
4253 /* Initialize the failure stack to the largest possible stack. This
4254 isn't necessary unless we're trying to avoid calling alloca in
4255 the search and match routines. */
4257 int num_regs
= bufp
->re_nsub
+ 1;
4259 /* Since DOUBLE_FAIL_STACK refuses to double only if the current size
4260 is strictly greater than re_max_failures, the largest possible stack
4261 is 2 * re_max_failures failure points. */
4262 if (fail_stack
.size
< (2 * re_max_failures
* MAX_FAILURE_ITEMS
))
4264 fail_stack
.size
= (2 * re_max_failures
* MAX_FAILURE_ITEMS
);
4267 if (! fail_stack
.stack
)
4269 = (PREFIX(fail_stack_elt_t
) *) xmalloc (fail_stack
.size
4270 * sizeof (PREFIX(fail_stack_elt_t
)));
4273 = (PREFIX(fail_stack_elt_t
) *) xrealloc (fail_stack
.stack
,
4275 * sizeof (PREFIX(fail_stack_elt_t
))));
4276 # else /* not emacs */
4277 if (! fail_stack
.stack
)
4279 = (PREFIX(fail_stack_elt_t
) *) malloc (fail_stack
.size
4280 * sizeof (PREFIX(fail_stack_elt_t
)));
4283 = (PREFIX(fail_stack_elt_t
) *) realloc (fail_stack
.stack
,
4285 * sizeof (PREFIX(fail_stack_elt_t
))));
4286 # endif /* not emacs */
4289 PREFIX(regex_grow_registers
) (num_regs
);
4291 #endif /* not MATCH_MAY_ALLOCATE */
4294 } /* regex_compile */
4296 /* Subroutines for `regex_compile'. */
4298 /* Store OP at LOC followed by two-byte integer parameter ARG. */
4299 /* ifdef WCHAR, integer parameter is 1 wchar_t. */
4302 PREFIX(store_op1
) (op
, loc
, arg
)
4307 *loc
= (UCHAR_T
) op
;
4308 STORE_NUMBER (loc
+ 1, arg
);
4312 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
4313 /* ifdef WCHAR, integer parameter is 1 wchar_t. */
4316 PREFIX(store_op2
) (op
, loc
, arg1
, arg2
)
4321 *loc
= (UCHAR_T
) op
;
4322 STORE_NUMBER (loc
+ 1, arg1
);
4323 STORE_NUMBER (loc
+ 1 + OFFSET_ADDRESS_SIZE
, arg2
);
4327 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
4328 for OP followed by two-byte integer parameter ARG. */
4329 /* ifdef WCHAR, integer parameter is 1 wchar_t. */
4332 PREFIX(insert_op1
) (op
, loc
, arg
, end
)
4338 register UCHAR_T
*pfrom
= end
;
4339 register UCHAR_T
*pto
= end
+ 1 + OFFSET_ADDRESS_SIZE
;
4341 while (pfrom
!= loc
)
4344 PREFIX(store_op1
) (op
, loc
, arg
);
4348 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
4349 /* ifdef WCHAR, integer parameter is 1 wchar_t. */
4352 PREFIX(insert_op2
) (op
, loc
, arg1
, arg2
, end
)
4358 register UCHAR_T
*pfrom
= end
;
4359 register UCHAR_T
*pto
= end
+ 1 + 2 * OFFSET_ADDRESS_SIZE
;
4361 while (pfrom
!= loc
)
4364 PREFIX(store_op2
) (op
, loc
, arg1
, arg2
);
4368 /* P points to just after a ^ in PATTERN. Return true if that ^ comes
4369 after an alternative or a begin-subexpression. We assume there is at
4370 least one character before the ^. */
4373 PREFIX(at_begline_loc_p
) (pattern
, p
, syntax
)
4374 const CHAR_T
*pattern
, *p
;
4375 reg_syntax_t syntax
;
4377 const CHAR_T
*prev
= p
- 2;
4378 boolean prev_prev_backslash
= prev
> pattern
&& prev
[-1] == '\\';
4381 /* After a subexpression? */
4382 (*prev
== '(' && (syntax
& RE_NO_BK_PARENS
|| prev_prev_backslash
))
4383 /* After an alternative? */
4384 || (*prev
== '|' && (syntax
& RE_NO_BK_VBAR
|| prev_prev_backslash
));
4388 /* The dual of at_begline_loc_p. This one is for $. We assume there is
4389 at least one character after the $, i.e., `P < PEND'. */
4392 PREFIX(at_endline_loc_p
) (p
, pend
, syntax
)
4393 const CHAR_T
*p
, *pend
;
4394 reg_syntax_t syntax
;
4396 const CHAR_T
*next
= p
;
4397 boolean next_backslash
= *next
== '\\';
4398 const CHAR_T
*next_next
= p
+ 1 < pend
? p
+ 1 : 0;
4401 /* Before a subexpression? */
4402 (syntax
& RE_NO_BK_PARENS
? *next
== ')'
4403 : next_backslash
&& next_next
&& *next_next
== ')')
4404 /* Before an alternative? */
4405 || (syntax
& RE_NO_BK_VBAR
? *next
== '|'
4406 : next_backslash
&& next_next
&& *next_next
== '|');
4409 #else /* not INSIDE_RECURSION */
4411 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
4412 false if it's not. */
4415 group_in_compile_stack (compile_stack
, regnum
)
4416 compile_stack_type compile_stack
;
4421 for (this_element
= compile_stack
.avail
- 1;
4424 if (compile_stack
.stack
[this_element
].regnum
== regnum
)
4429 #endif /* not INSIDE_RECURSION */
4431 #ifdef INSIDE_RECURSION
4434 /* This insert space, which size is "num", into the pattern at "loc".
4435 "end" must point the end of the allocated buffer. */
4437 insert_space (num
, loc
, end
)
4442 register CHAR_T
*pto
= end
;
4443 register CHAR_T
*pfrom
= end
- num
;
4445 while (pfrom
>= loc
)
4451 static reg_errcode_t
4452 wcs_compile_range (range_start_char
, p_ptr
, pend
, translate
, syntax
, b
,
4454 CHAR_T range_start_char
;
4455 const CHAR_T
**p_ptr
, *pend
;
4456 CHAR_T
*char_set
, *b
;
4457 RE_TRANSLATE_TYPE translate
;
4458 reg_syntax_t syntax
;
4460 const CHAR_T
*p
= *p_ptr
;
4461 CHAR_T range_start
, range_end
;
4465 uint32_t start_val
, end_val
;
4471 nrules
= _NL_CURRENT_WORD (LC_COLLATE
, _NL_COLLATE_NRULES
);
4474 const char *collseq
= (const char *) _NL_CURRENT(LC_COLLATE
,
4475 _NL_COLLATE_COLLSEQWC
);
4476 const unsigned char *extra
= (const unsigned char *)
4477 _NL_CURRENT (LC_COLLATE
, _NL_COLLATE_SYMB_EXTRAMB
);
4479 if (range_start_char
< -1)
4481 /* range_start is a collating symbol. */
4483 /* Retreive the index and get collation sequence value. */
4484 wextra
= (int32_t*)(extra
+ char_set
[-range_start_char
]);
4485 start_val
= wextra
[1 + *wextra
];
4488 start_val
= collseq_table_lookup(collseq
, TRANSLATE(range_start_char
));
4490 end_val
= collseq_table_lookup (collseq
, TRANSLATE (p
[0]));
4492 /* Report an error if the range is empty and the syntax prohibits
4494 ret
= ((syntax
& RE_NO_EMPTY_RANGES
)
4495 && (start_val
> end_val
))? REG_ERANGE
: REG_NOERROR
;
4497 /* Insert space to the end of the char_ranges. */
4498 insert_space(2, b
- char_set
[5] - 2, b
- 1);
4499 *(b
- char_set
[5] - 2) = (wchar_t)start_val
;
4500 *(b
- char_set
[5] - 1) = (wchar_t)end_val
;
4501 char_set
[4]++; /* ranges_index */
4506 range_start
= (range_start_char
>= 0)? TRANSLATE (range_start_char
):
4508 range_end
= TRANSLATE (p
[0]);
4509 /* Report an error if the range is empty and the syntax prohibits
4511 ret
= ((syntax
& RE_NO_EMPTY_RANGES
)
4512 && (range_start
> range_end
))? REG_ERANGE
: REG_NOERROR
;
4514 /* Insert space to the end of the char_ranges. */
4515 insert_space(2, b
- char_set
[5] - 2, b
- 1);
4516 *(b
- char_set
[5] - 2) = range_start
;
4517 *(b
- char_set
[5] - 1) = range_end
;
4518 char_set
[4]++; /* ranges_index */
4520 /* Have to increment the pointer into the pattern string, so the
4521 caller isn't still at the ending character. */
4527 /* Read the ending character of a range (in a bracket expression) from the
4528 uncompiled pattern *P_PTR (which ends at PEND). We assume the
4529 starting character is in `P[-2]'. (`P[-1]' is the character `-'.)
4530 Then we set the translation of all bits between the starting and
4531 ending characters (inclusive) in the compiled pattern B.
4533 Return an error code.
4535 We use these short variable names so we can use the same macros as
4536 `regex_compile' itself. */
4538 static reg_errcode_t
4539 byte_compile_range (range_start_char
, p_ptr
, pend
, translate
, syntax
, b
)
4540 unsigned int range_start_char
;
4541 const char **p_ptr
, *pend
;
4542 RE_TRANSLATE_TYPE translate
;
4543 reg_syntax_t syntax
;
4547 const char *p
= *p_ptr
;
4550 const unsigned char *collseq
;
4551 unsigned int start_colseq
;
4552 unsigned int end_colseq
;
4560 /* Have to increment the pointer into the pattern string, so the
4561 caller isn't still at the ending character. */
4564 /* Report an error if the range is empty and the syntax prohibits this. */
4565 ret
= syntax
& RE_NO_EMPTY_RANGES
? REG_ERANGE
: REG_NOERROR
;
4568 collseq
= (const unsigned char *) _NL_CURRENT (LC_COLLATE
,
4569 _NL_COLLATE_COLLSEQMB
);
4571 start_colseq
= collseq
[(unsigned char) TRANSLATE (range_start_char
)];
4572 end_colseq
= collseq
[(unsigned char) TRANSLATE (p
[0])];
4573 for (this_char
= 0; this_char
<= (unsigned char) -1; ++this_char
)
4575 unsigned int this_colseq
= collseq
[(unsigned char) TRANSLATE (this_char
)];
4577 if (start_colseq
<= this_colseq
&& this_colseq
<= end_colseq
)
4579 SET_LIST_BIT (TRANSLATE (this_char
));
4584 /* Here we see why `this_char' has to be larger than an `unsigned
4585 char' -- we would otherwise go into an infinite loop, since all
4586 characters <= 0xff. */
4587 range_start_char
= TRANSLATE (range_start_char
);
4588 /* TRANSLATE(p[0]) is casted to char (not unsigned char) in TRANSLATE,
4589 and some compilers cast it to int implicitly, so following for_loop
4590 may fall to (almost) infinite loop.
4591 e.g. If translate[p[0]] = 0xff, end_char may equals to 0xffffffff.
4592 To avoid this, we cast p[0] to unsigned int and truncate it. */
4593 end_char
= ((unsigned)TRANSLATE(p
[0]) & ((1 << BYTEWIDTH
) - 1));
4595 for (this_char
= range_start_char
; this_char
<= end_char
; ++this_char
)
4597 SET_LIST_BIT (TRANSLATE (this_char
));
4606 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
4607 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
4608 characters can start a string that matches the pattern. This fastmap
4609 is used by re_search to skip quickly over impossible starting points.
4611 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
4612 area as BUFP->fastmap.
4614 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
4617 Returns 0 if we succeed, -2 if an internal error. */
4620 /* local function for re_compile_fastmap.
4621 truncate wchar_t character to char. */
4622 static unsigned char truncate_wchar (CHAR_T c
);
4624 static unsigned char
4628 unsigned char buf
[MB_CUR_MAX
];
4631 memset (&state
, '\0', sizeof (state
));
4632 retval
= wcrtomb (buf
, c
, &state
);
4633 return retval
> 0 ? buf
[0] : (unsigned char) c
;
4638 PREFIX(re_compile_fastmap
) (bufp
)
4639 struct re_pattern_buffer
*bufp
;
4642 #ifdef MATCH_MAY_ALLOCATE
4643 PREFIX(fail_stack_type
) fail_stack
;
4645 #ifndef REGEX_MALLOC
4649 register char *fastmap
= bufp
->fastmap
;
4652 /* We need to cast pattern to (wchar_t*), because we casted this compiled
4653 pattern to (char*) in regex_compile. */
4654 UCHAR_T
*pattern
= (UCHAR_T
*)bufp
->buffer
;
4655 register UCHAR_T
*pend
= (UCHAR_T
*) (bufp
->buffer
+ bufp
->used
);
4657 UCHAR_T
*pattern
= bufp
->buffer
;
4658 register UCHAR_T
*pend
= pattern
+ bufp
->used
;
4660 UCHAR_T
*p
= pattern
;
4663 /* This holds the pointer to the failure stack, when
4664 it is allocated relocatably. */
4665 fail_stack_elt_t
*failure_stack_ptr
;
4668 /* Assume that each path through the pattern can be null until
4669 proven otherwise. We set this false at the bottom of switch
4670 statement, to which we get only if a particular path doesn't
4671 match the empty string. */
4672 boolean path_can_be_null
= true;
4674 /* We aren't doing a `succeed_n' to begin with. */
4675 boolean succeed_n_p
= false;
4677 assert (fastmap
!= NULL
&& p
!= NULL
);
4680 bzero (fastmap
, 1 << BYTEWIDTH
); /* Assume nothing's valid. */
4681 bufp
->fastmap_accurate
= 1; /* It will be when we're done. */
4682 bufp
->can_be_null
= 0;
4686 if (p
== pend
|| *p
== succeed
)
4688 /* We have reached the (effective) end of pattern. */
4689 if (!FAIL_STACK_EMPTY ())
4691 bufp
->can_be_null
|= path_can_be_null
;
4693 /* Reset for next path. */
4694 path_can_be_null
= true;
4696 p
= fail_stack
.stack
[--fail_stack
.avail
].pointer
;
4704 /* We should never be about to go beyond the end of the pattern. */
4707 switch (SWITCH_ENUM_CAST ((re_opcode_t
) *p
++))
4710 /* I guess the idea here is to simply not bother with a fastmap
4711 if a backreference is used, since it's too hard to figure out
4712 the fastmap for the corresponding group. Setting
4713 `can_be_null' stops `re_search_2' from using the fastmap, so
4714 that is all we do. */
4716 bufp
->can_be_null
= 1;
4720 /* Following are the cases which match a character. These end
4725 fastmap
[truncate_wchar(p
[1])] = 1;
4739 /* It is hard to distinguish fastmap from (multi byte) characters
4740 which depends on current locale. */
4745 bufp
->can_be_null
= 1;
4749 for (j
= *p
++ * BYTEWIDTH
- 1; j
>= 0; j
--)
4750 if (p
[j
/ BYTEWIDTH
] & (1 << (j
% BYTEWIDTH
)))
4756 /* Chars beyond end of map must be allowed. */
4757 for (j
= *p
* BYTEWIDTH
; j
< (1 << BYTEWIDTH
); j
++)
4760 for (j
= *p
++ * BYTEWIDTH
- 1; j
>= 0; j
--)
4761 if (!(p
[j
/ BYTEWIDTH
] & (1 << (j
% BYTEWIDTH
))))
4767 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
4768 if (SYNTAX (j
) == Sword
)
4774 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
4775 if (SYNTAX (j
) != Sword
)
4782 int fastmap_newline
= fastmap
['\n'];
4784 /* `.' matches anything ... */
4785 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
4788 /* ... except perhaps newline. */
4789 if (!(bufp
->syntax
& RE_DOT_NEWLINE
))
4790 fastmap
['\n'] = fastmap_newline
;
4792 /* Return if we have already set `can_be_null'; if we have,
4793 then the fastmap is irrelevant. Something's wrong here. */
4794 else if (bufp
->can_be_null
)
4797 /* Otherwise, have to check alternative paths. */
4804 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
4805 if (SYNTAX (j
) == (enum syntaxcode
) k
)
4812 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
4813 if (SYNTAX (j
) != (enum syntaxcode
) k
)
4818 /* All cases after this match the empty string. These end with
4838 case push_dummy_failure
:
4843 case pop_failure_jump
:
4844 case maybe_pop_jump
:
4847 case dummy_failure_jump
:
4848 EXTRACT_NUMBER_AND_INCR (j
, p
);
4853 /* Jump backward implies we just went through the body of a
4854 loop and matched nothing. Opcode jumped to should be
4855 `on_failure_jump' or `succeed_n'. Just treat it like an
4856 ordinary jump. For a * loop, it has pushed its failure
4857 point already; if so, discard that as redundant. */
4858 if ((re_opcode_t
) *p
!= on_failure_jump
4859 && (re_opcode_t
) *p
!= succeed_n
)
4863 EXTRACT_NUMBER_AND_INCR (j
, p
);
4866 /* If what's on the stack is where we are now, pop it. */
4867 if (!FAIL_STACK_EMPTY ()
4868 && fail_stack
.stack
[fail_stack
.avail
- 1].pointer
== p
)
4874 case on_failure_jump
:
4875 case on_failure_keep_string_jump
:
4876 handle_on_failure_jump
:
4877 EXTRACT_NUMBER_AND_INCR (j
, p
);
4879 /* For some patterns, e.g., `(a?)?', `p+j' here points to the
4880 end of the pattern. We don't want to push such a point,
4881 since when we restore it above, entering the switch will
4882 increment `p' past the end of the pattern. We don't need
4883 to push such a point since we obviously won't find any more
4884 fastmap entries beyond `pend'. Such a pattern can match
4885 the null string, though. */
4888 if (!PUSH_PATTERN_OP (p
+ j
, fail_stack
))
4890 RESET_FAIL_STACK ();
4895 bufp
->can_be_null
= 1;
4899 EXTRACT_NUMBER_AND_INCR (k
, p
); /* Skip the n. */
4900 succeed_n_p
= false;
4907 /* Get to the number of times to succeed. */
4908 p
+= OFFSET_ADDRESS_SIZE
;
4910 /* Increment p past the n for when k != 0. */
4911 EXTRACT_NUMBER_AND_INCR (k
, p
);
4914 p
-= 2 * OFFSET_ADDRESS_SIZE
;
4915 succeed_n_p
= true; /* Spaghetti code alert. */
4916 goto handle_on_failure_jump
;
4922 p
+= 2 * OFFSET_ADDRESS_SIZE
;
4933 abort (); /* We have listed all the cases. */
4936 /* Getting here means we have found the possible starting
4937 characters for one path of the pattern -- and that the empty
4938 string does not match. We need not follow this path further.
4939 Instead, look at the next alternative (remembered on the
4940 stack), or quit if no more. The test at the top of the loop
4941 does these things. */
4942 path_can_be_null
= false;
4946 /* Set `can_be_null' for the last path (also the first path, if the
4947 pattern is empty). */
4948 bufp
->can_be_null
|= path_can_be_null
;
4951 RESET_FAIL_STACK ();
4955 #else /* not INSIDE_RECURSION */
4958 re_compile_fastmap (bufp
)
4959 struct re_pattern_buffer
*bufp
;
4962 if (MB_CUR_MAX
!= 1)
4963 return wcs_re_compile_fastmap(bufp
);
4966 return byte_re_compile_fastmap(bufp
);
4967 } /* re_compile_fastmap */
4969 weak_alias (__re_compile_fastmap
, re_compile_fastmap
)
4973 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
4974 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
4975 this memory for recording register information. STARTS and ENDS
4976 must be allocated using the malloc library routine, and must each
4977 be at least NUM_REGS * sizeof (regoff_t) bytes long.
4979 If NUM_REGS == 0, then subsequent matches should allocate their own
4982 Unless this function is called, the first search or match using
4983 PATTERN_BUFFER will allocate its own register data, without
4984 freeing the old data. */
4987 re_set_registers (bufp
, regs
, num_regs
, starts
, ends
)
4988 struct re_pattern_buffer
*bufp
;
4989 struct re_registers
*regs
;
4991 regoff_t
*starts
, *ends
;
4995 bufp
->regs_allocated
= REGS_REALLOCATE
;
4996 regs
->num_regs
= num_regs
;
4997 regs
->start
= starts
;
5002 bufp
->regs_allocated
= REGS_UNALLOCATED
;
5004 regs
->start
= regs
->end
= (regoff_t
*) 0;
5008 weak_alias (__re_set_registers
, re_set_registers
)
5011 /* Searching routines. */
5013 /* Like re_search_2, below, but only one string is specified, and
5014 doesn't let you say where to stop matching. */
5017 re_search (bufp
, string
, size
, startpos
, range
, regs
)
5018 struct re_pattern_buffer
*bufp
;
5020 int size
, startpos
, range
;
5021 struct re_registers
*regs
;
5023 return re_search_2 (bufp
, NULL
, 0, string
, size
, startpos
, range
,
5027 weak_alias (__re_search
, re_search
)
5031 /* Using the compiled pattern in BUFP->buffer, first tries to match the
5032 virtual concatenation of STRING1 and STRING2, starting first at index
5033 STARTPOS, then at STARTPOS + 1, and so on.
5035 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
5037 RANGE is how far to scan while trying to match. RANGE = 0 means try
5038 only at STARTPOS; in general, the last start tried is STARTPOS +
5041 In REGS, return the indices of the virtual concatenation of STRING1
5042 and STRING2 that matched the entire BUFP->buffer and its contained
5045 Do not consider matching one past the index STOP in the virtual
5046 concatenation of STRING1 and STRING2.
5048 We return either the position in the strings at which the match was
5049 found, -1 if no match, or -2 if error (such as failure
5053 re_search_2 (bufp
, string1
, size1
, string2
, size2
, startpos
, range
, regs
, stop
)
5054 struct re_pattern_buffer
*bufp
;
5055 const char *string1
, *string2
;
5059 struct re_registers
*regs
;
5063 if (MB_CUR_MAX
!= 1)
5064 return wcs_re_search_2 (bufp
, string1
, size1
, string2
, size2
, startpos
,
5068 return byte_re_search_2 (bufp
, string1
, size1
, string2
, size2
, startpos
,
5072 weak_alias (__re_search_2
, re_search_2
)
5075 #endif /* not INSIDE_RECURSION */
5077 #ifdef INSIDE_RECURSION
5079 #ifdef MATCH_MAY_ALLOCATE
5080 # define FREE_VAR(var) if (var) REGEX_FREE (var); var = NULL
5082 # define FREE_VAR(var) if (var) free (var); var = NULL
5086 # define MAX_ALLOCA_SIZE 2000
5088 # define FREE_WCS_BUFFERS() \
5090 if (size1 > MAX_ALLOCA_SIZE) \
5092 free (wcs_string1); \
5093 free (mbs_offset1); \
5097 FREE_VAR (wcs_string1); \
5098 FREE_VAR (mbs_offset1); \
5100 if (size2 > MAX_ALLOCA_SIZE) \
5102 free (wcs_string2); \
5103 free (mbs_offset2); \
5107 FREE_VAR (wcs_string2); \
5108 FREE_VAR (mbs_offset2); \
5116 PREFIX(re_search_2
) (bufp
, string1
, size1
, string2
, size2
, startpos
, range
,
5118 struct re_pattern_buffer
*bufp
;
5119 const char *string1
, *string2
;
5123 struct re_registers
*regs
;
5127 register char *fastmap
= bufp
->fastmap
;
5128 register RE_TRANSLATE_TYPE translate
= bufp
->translate
;
5129 int total_size
= size1
+ size2
;
5130 int endpos
= startpos
+ range
;
5132 /* We need wchar_t* buffers correspond to cstring1, cstring2. */
5133 wchar_t *wcs_string1
= NULL
, *wcs_string2
= NULL
;
5134 /* We need the size of wchar_t buffers correspond to csize1, csize2. */
5135 int wcs_size1
= 0, wcs_size2
= 0;
5136 /* offset buffer for optimizatoin. See convert_mbs_to_wc. */
5137 int *mbs_offset1
= NULL
, *mbs_offset2
= NULL
;
5138 /* They hold whether each wchar_t is binary data or not. */
5139 char *is_binary
= NULL
;
5142 /* Check for out-of-range STARTPOS. */
5143 if (startpos
< 0 || startpos
> total_size
)
5146 /* Fix up RANGE if it might eventually take us outside
5147 the virtual concatenation of STRING1 and STRING2.
5148 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
5150 range
= 0 - startpos
;
5151 else if (endpos
> total_size
)
5152 range
= total_size
- startpos
;
5154 /* If the search isn't to be a backwards one, don't waste time in a
5155 search for a pattern that must be anchored. */
5156 if (bufp
->used
> 0 && range
> 0
5157 && ((re_opcode_t
) bufp
->buffer
[0] == begbuf
5158 /* `begline' is like `begbuf' if it cannot match at newlines. */
5159 || ((re_opcode_t
) bufp
->buffer
[0] == begline
5160 && !bufp
->newline_anchor
)))
5169 /* In a forward search for something that starts with \=.
5170 don't keep searching past point. */
5171 if (bufp
->used
> 0 && (re_opcode_t
) bufp
->buffer
[0] == at_dot
&& range
> 0)
5173 range
= PT
- startpos
;
5179 /* Update the fastmap now if not correct already. */
5180 if (fastmap
&& !bufp
->fastmap_accurate
)
5181 if (re_compile_fastmap (bufp
) == -2)
5185 /* Allocate wchar_t array for wcs_string1 and wcs_string2 and
5186 fill them with converted string. */
5189 if (size1
> MAX_ALLOCA_SIZE
)
5191 wcs_string1
= TALLOC (size1
+ 1, CHAR_T
);
5192 mbs_offset1
= TALLOC (size1
+ 1, int);
5193 is_binary
= TALLOC (size1
+ 1, char);
5197 wcs_string1
= REGEX_TALLOC (size1
+ 1, CHAR_T
);
5198 mbs_offset1
= REGEX_TALLOC (size1
+ 1, int);
5199 is_binary
= REGEX_TALLOC (size1
+ 1, char);
5201 if (!wcs_string1
|| !mbs_offset1
|| !is_binary
)
5203 if (size1
> MAX_ALLOCA_SIZE
)
5211 FREE_VAR (wcs_string1
);
5212 FREE_VAR (mbs_offset1
);
5213 FREE_VAR (is_binary
);
5217 wcs_size1
= convert_mbs_to_wcs(wcs_string1
, string1
, size1
,
5218 mbs_offset1
, is_binary
);
5219 wcs_string1
[wcs_size1
] = L
'\0'; /* for a sentinel */
5220 if (size1
> MAX_ALLOCA_SIZE
)
5223 FREE_VAR (is_binary
);
5227 if (size2
> MAX_ALLOCA_SIZE
)
5229 wcs_string2
= TALLOC (size2
+ 1, CHAR_T
);
5230 mbs_offset2
= TALLOC (size2
+ 1, int);
5231 is_binary
= TALLOC (size2
+ 1, char);
5235 wcs_string2
= REGEX_TALLOC (size2
+ 1, CHAR_T
);
5236 mbs_offset2
= REGEX_TALLOC (size2
+ 1, int);
5237 is_binary
= REGEX_TALLOC (size2
+ 1, char);
5239 if (!wcs_string2
|| !mbs_offset2
|| !is_binary
)
5241 FREE_WCS_BUFFERS ();
5242 if (size2
> MAX_ALLOCA_SIZE
)
5245 FREE_VAR (is_binary
);
5248 wcs_size2
= convert_mbs_to_wcs(wcs_string2
, string2
, size2
,
5249 mbs_offset2
, is_binary
);
5250 wcs_string2
[wcs_size2
] = L
'\0'; /* for a sentinel */
5251 if (size2
> MAX_ALLOCA_SIZE
)
5254 FREE_VAR (is_binary
);
5259 /* Loop through the string, looking for a place to start matching. */
5262 /* If a fastmap is supplied, skip quickly over characters that
5263 cannot be the start of a match. If the pattern can match the
5264 null string, however, we don't need to skip characters; we want
5265 the first null string. */
5266 if (fastmap
&& startpos
< total_size
&& !bufp
->can_be_null
)
5268 if (range
> 0) /* Searching forwards. */
5270 register const char *d
;
5271 register int lim
= 0;
5274 if (startpos
< size1
&& startpos
+ range
>= size1
)
5275 lim
= range
- (size1
- startpos
);
5277 d
= (startpos
>= size1
? string2
- size1
: string1
) + startpos
;
5279 /* Written out as an if-else to avoid testing `translate'
5283 && !fastmap
[(unsigned char)
5284 translate
[(unsigned char) *d
++]])
5287 while (range
> lim
&& !fastmap
[(unsigned char) *d
++])
5290 startpos
+= irange
- range
;
5292 else /* Searching backwards. */
5294 register CHAR_T c
= (size1
== 0 || startpos
>= size1
5295 ? string2
[startpos
- size1
]
5296 : string1
[startpos
]);
5298 if (!fastmap
[(unsigned char) TRANSLATE (c
)])
5303 /* If can't match the null string, and that's all we have left, fail. */
5304 if (range
>= 0 && startpos
== total_size
&& fastmap
5305 && !bufp
->can_be_null
)
5308 FREE_WCS_BUFFERS ();
5314 val
= wcs_re_match_2_internal (bufp
, string1
, size1
, string2
,
5315 size2
, startpos
, regs
, stop
,
5316 wcs_string1
, wcs_size1
,
5317 wcs_string2
, wcs_size2
,
5318 mbs_offset1
, mbs_offset2
);
5320 val
= byte_re_match_2_internal (bufp
, string1
, size1
, string2
,
5321 size2
, startpos
, regs
, stop
);
5324 #ifndef REGEX_MALLOC
5333 FREE_WCS_BUFFERS ();
5341 FREE_WCS_BUFFERS ();
5361 FREE_WCS_BUFFERS ();
5367 /* This converts PTR, a pointer into one of the search wchar_t strings
5368 `string1' and `string2' into an multibyte string offset from the
5369 beginning of that string. We use mbs_offset to optimize.
5370 See convert_mbs_to_wcs. */
5371 # define POINTER_TO_OFFSET(ptr) \
5372 (FIRST_STRING_P (ptr) \
5373 ? ((regoff_t)(mbs_offset1 != NULL? mbs_offset1[(ptr)-string1] : 0)) \
5374 : ((regoff_t)((mbs_offset2 != NULL? mbs_offset2[(ptr)-string2] : 0) \
5377 /* This converts PTR, a pointer into one of the search strings `string1'
5378 and `string2' into an offset from the beginning of that string. */
5379 # define POINTER_TO_OFFSET(ptr) \
5380 (FIRST_STRING_P (ptr) \
5381 ? ((regoff_t) ((ptr) - string1)) \
5382 : ((regoff_t) ((ptr) - string2 + size1)))
5385 /* Macros for dealing with the split strings in re_match_2. */
5387 #define MATCHING_IN_FIRST_STRING (dend == end_match_1)
5389 /* Call before fetching a character with *d. This switches over to
5390 string2 if necessary. */
5391 #define PREFETCH() \
5394 /* End of string2 => fail. */ \
5395 if (dend == end_match_2) \
5397 /* End of string1 => advance to string2. */ \
5399 dend = end_match_2; \
5402 /* Test if at very beginning or at very end of the virtual concatenation
5403 of `string1' and `string2'. If only one string, it's `string2'. */
5404 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
5405 #define AT_STRINGS_END(d) ((d) == end2)
5408 /* Test if D points to a character which is word-constituent. We have
5409 two special cases to check for: if past the end of string1, look at
5410 the first character in string2; and if before the beginning of
5411 string2, look at the last character in string1. */
5413 /* Use internationalized API instead of SYNTAX. */
5414 # define WORDCHAR_P(d) \
5415 (iswalnum ((wint_t)((d) == end1 ? *string2 \
5416 : (d) == string2 - 1 ? *(end1 - 1) : *(d))) != 0 \
5417 || ((d) == end1 ? *string2 \
5418 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) == L'_')
5420 # define WORDCHAR_P(d) \
5421 (SYNTAX ((d) == end1 ? *string2 \
5422 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
5426 /* Disabled due to a compiler bug -- see comment at case wordbound */
5428 /* Test if the character before D and the one at D differ with respect
5429 to being word-constituent. */
5430 #define AT_WORD_BOUNDARY(d) \
5431 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
5432 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
5435 /* Free everything we malloc. */
5436 #ifdef MATCH_MAY_ALLOCATE
5438 # define FREE_VARIABLES() \
5440 REGEX_FREE_STACK (fail_stack.stack); \
5441 FREE_VAR (regstart); \
5442 FREE_VAR (regend); \
5443 FREE_VAR (old_regstart); \
5444 FREE_VAR (old_regend); \
5445 FREE_VAR (best_regstart); \
5446 FREE_VAR (best_regend); \
5447 FREE_VAR (reg_info); \
5448 FREE_VAR (reg_dummy); \
5449 FREE_VAR (reg_info_dummy); \
5450 if (!cant_free_wcs_buf) \
5452 FREE_VAR (string1); \
5453 FREE_VAR (string2); \
5454 FREE_VAR (mbs_offset1); \
5455 FREE_VAR (mbs_offset2); \
5459 # define FREE_VARIABLES() \
5461 REGEX_FREE_STACK (fail_stack.stack); \
5462 FREE_VAR (regstart); \
5463 FREE_VAR (regend); \
5464 FREE_VAR (old_regstart); \
5465 FREE_VAR (old_regend); \
5466 FREE_VAR (best_regstart); \
5467 FREE_VAR (best_regend); \
5468 FREE_VAR (reg_info); \
5469 FREE_VAR (reg_dummy); \
5470 FREE_VAR (reg_info_dummy); \
5475 # define FREE_VARIABLES() \
5477 if (!cant_free_wcs_buf) \
5479 FREE_VAR (string1); \
5480 FREE_VAR (string2); \
5481 FREE_VAR (mbs_offset1); \
5482 FREE_VAR (mbs_offset2); \
5486 # define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
5488 #endif /* not MATCH_MAY_ALLOCATE */
5490 /* These values must meet several constraints. They must not be valid
5491 register values; since we have a limit of 255 registers (because
5492 we use only one byte in the pattern for the register number), we can
5493 use numbers larger than 255. They must differ by 1, because of
5494 NUM_FAILURE_ITEMS above. And the value for the lowest register must
5495 be larger than the value for the highest register, so we do not try
5496 to actually save any registers when none are active. */
5497 #define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
5498 #define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
5500 #else /* not INSIDE_RECURSION */
5501 /* Matching routines. */
5503 #ifndef emacs /* Emacs never uses this. */
5504 /* re_match is like re_match_2 except it takes only a single string. */
5507 re_match (bufp
, string
, size
, pos
, regs
)
5508 struct re_pattern_buffer
*bufp
;
5511 struct re_registers
*regs
;
5515 if (MB_CUR_MAX
!= 1)
5516 result
= wcs_re_match_2_internal (bufp
, NULL
, 0, string
, size
,
5518 NULL
, 0, NULL
, 0, NULL
, NULL
);
5521 result
= byte_re_match_2_internal (bufp
, NULL
, 0, string
, size
,
5523 # ifndef REGEX_MALLOC
5531 weak_alias (__re_match
, re_match
)
5533 #endif /* not emacs */
5535 #endif /* not INSIDE_RECURSION */
5537 #ifdef INSIDE_RECURSION
5538 static boolean
PREFIX(group_match_null_string_p
) _RE_ARGS ((UCHAR_T
**p
,
5540 PREFIX(register_info_type
) *reg_info
));
5541 static boolean
PREFIX(alt_match_null_string_p
) _RE_ARGS ((UCHAR_T
*p
,
5543 PREFIX(register_info_type
) *reg_info
));
5544 static boolean
PREFIX(common_op_match_null_string_p
) _RE_ARGS ((UCHAR_T
**p
,
5546 PREFIX(register_info_type
) *reg_info
));
5547 static int PREFIX(bcmp_translate
) _RE_ARGS ((const CHAR_T
*s1
, const CHAR_T
*s2
,
5548 int len
, char *translate
));
5549 #else /* not INSIDE_RECURSION */
5551 /* re_match_2 matches the compiled pattern in BUFP against the
5552 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
5553 and SIZE2, respectively). We start matching at POS, and stop
5556 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
5557 store offsets for the substring each group matched in REGS. See the
5558 documentation for exactly how many groups we fill.
5560 We return -1 if no match, -2 if an internal error (such as the
5561 failure stack overflowing). Otherwise, we return the length of the
5562 matched substring. */
5565 re_match_2 (bufp
, string1
, size1
, string2
, size2
, pos
, regs
, stop
)
5566 struct re_pattern_buffer
*bufp
;
5567 const char *string1
, *string2
;
5570 struct re_registers
*regs
;
5575 if (MB_CUR_MAX
!= 1)
5576 result
= wcs_re_match_2_internal (bufp
, string1
, size1
, string2
, size2
,
5578 NULL
, 0, NULL
, 0, NULL
, NULL
);
5581 result
= byte_re_match_2_internal (bufp
, string1
, size1
, string2
, size2
,
5584 #ifndef REGEX_MALLOC
5592 weak_alias (__re_match_2
, re_match_2
)
5595 #endif /* not INSIDE_RECURSION */
5597 #ifdef INSIDE_RECURSION
5600 static int count_mbs_length
PARAMS ((int *, int));
5602 /* This check the substring (from 0, to length) of the multibyte string,
5603 to which offset_buffer correspond. And count how many wchar_t_characters
5604 the substring occupy. We use offset_buffer to optimization.
5605 See convert_mbs_to_wcs. */
5608 count_mbs_length(offset_buffer
, length
)
5614 /* Check whether the size is valid. */
5618 if (offset_buffer
== NULL
)
5621 /* If there are no multibyte character, offset_buffer[i] == i.
5622 Optmize for this case. */
5623 if (offset_buffer
[length
] == length
)
5626 /* Set up upper with length. (because for all i, offset_buffer[i] >= i) */
5632 int middle
= (lower
+ upper
) / 2;
5633 if (middle
== lower
|| middle
== upper
)
5635 if (offset_buffer
[middle
] > length
)
5637 else if (offset_buffer
[middle
] < length
)
5647 /* This is a separate function so that we can force an alloca cleanup
5651 wcs_re_match_2_internal (bufp
, cstring1
, csize1
, cstring2
, csize2
, pos
,
5652 regs
, stop
, string1
, size1
, string2
, size2
,
5653 mbs_offset1
, mbs_offset2
)
5654 struct re_pattern_buffer
*bufp
;
5655 const char *cstring1
, *cstring2
;
5658 struct re_registers
*regs
;
5660 /* string1 == string2 == NULL means string1/2, size1/2 and
5661 mbs_offset1/2 need seting up in this function. */
5662 /* We need wchar_t* buffers correspond to cstring1, cstring2. */
5663 wchar_t *string1
, *string2
;
5664 /* We need the size of wchar_t buffers correspond to csize1, csize2. */
5666 /* offset buffer for optimizatoin. See convert_mbs_to_wc. */
5667 int *mbs_offset1
, *mbs_offset2
;
5670 byte_re_match_2_internal (bufp
, string1
, size1
,string2
, size2
, pos
,
5672 struct re_pattern_buffer
*bufp
;
5673 const char *string1
, *string2
;
5676 struct re_registers
*regs
;
5680 /* General temporaries. */
5684 /* They hold whether each wchar_t is binary data or not. */
5685 char *is_binary
= NULL
;
5686 /* If true, we can't free string1/2, mbs_offset1/2. */
5687 int cant_free_wcs_buf
= 1;
5690 /* Just past the end of the corresponding string. */
5691 const CHAR_T
*end1
, *end2
;
5693 /* Pointers into string1 and string2, just past the last characters in
5694 each to consider matching. */
5695 const CHAR_T
*end_match_1
, *end_match_2
;
5697 /* Where we are in the data, and the end of the current string. */
5698 const CHAR_T
*d
, *dend
;
5700 /* Where we are in the pattern, and the end of the pattern. */
5702 UCHAR_T
*pattern
, *p
;
5703 register UCHAR_T
*pend
;
5705 UCHAR_T
*p
= bufp
->buffer
;
5706 register UCHAR_T
*pend
= p
+ bufp
->used
;
5709 /* Mark the opcode just after a start_memory, so we can test for an
5710 empty subpattern when we get to the stop_memory. */
5711 UCHAR_T
*just_past_start_mem
= 0;
5713 /* We use this to map every character in the string. */
5714 RE_TRANSLATE_TYPE translate
= bufp
->translate
;
5716 /* Failure point stack. Each place that can handle a failure further
5717 down the line pushes a failure point on this stack. It consists of
5718 restart, regend, and reg_info for all registers corresponding to
5719 the subexpressions we're currently inside, plus the number of such
5720 registers, and, finally, two char *'s. The first char * is where
5721 to resume scanning the pattern; the second one is where to resume
5722 scanning the strings. If the latter is zero, the failure point is
5723 a ``dummy''; if a failure happens and the failure point is a dummy,
5724 it gets discarded and the next next one is tried. */
5725 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
5726 PREFIX(fail_stack_type
) fail_stack
;
5729 static unsigned failure_id
;
5730 unsigned nfailure_points_pushed
= 0, nfailure_points_popped
= 0;
5734 /* This holds the pointer to the failure stack, when
5735 it is allocated relocatably. */
5736 fail_stack_elt_t
*failure_stack_ptr
;
5739 /* We fill all the registers internally, independent of what we
5740 return, for use in backreferences. The number here includes
5741 an element for register zero. */
5742 size_t num_regs
= bufp
->re_nsub
+ 1;
5744 /* The currently active registers. */
5745 active_reg_t lowest_active_reg
= NO_LOWEST_ACTIVE_REG
;
5746 active_reg_t highest_active_reg
= NO_HIGHEST_ACTIVE_REG
;
5748 /* Information on the contents of registers. These are pointers into
5749 the input strings; they record just what was matched (on this
5750 attempt) by a subexpression part of the pattern, that is, the
5751 regnum-th regstart pointer points to where in the pattern we began
5752 matching and the regnum-th regend points to right after where we
5753 stopped matching the regnum-th subexpression. (The zeroth register
5754 keeps track of what the whole pattern matches.) */
5755 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5756 const CHAR_T
**regstart
, **regend
;
5759 /* If a group that's operated upon by a repetition operator fails to
5760 match anything, then the register for its start will need to be
5761 restored because it will have been set to wherever in the string we
5762 are when we last see its open-group operator. Similarly for a
5764 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5765 const CHAR_T
**old_regstart
, **old_regend
;
5768 /* The is_active field of reg_info helps us keep track of which (possibly
5769 nested) subexpressions we are currently in. The matched_something
5770 field of reg_info[reg_num] helps us tell whether or not we have
5771 matched any of the pattern so far this time through the reg_num-th
5772 subexpression. These two fields get reset each time through any
5773 loop their register is in. */
5774 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
5775 PREFIX(register_info_type
) *reg_info
;
5778 /* The following record the register info as found in the above
5779 variables when we find a match better than any we've seen before.
5780 This happens as we backtrack through the failure points, which in
5781 turn happens only if we have not yet matched the entire string. */
5782 unsigned best_regs_set
= false;
5783 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5784 const CHAR_T
**best_regstart
, **best_regend
;
5787 /* Logically, this is `best_regend[0]'. But we don't want to have to
5788 allocate space for that if we're not allocating space for anything
5789 else (see below). Also, we never need info about register 0 for
5790 any of the other register vectors, and it seems rather a kludge to
5791 treat `best_regend' differently than the rest. So we keep track of
5792 the end of the best match so far in a separate variable. We
5793 initialize this to NULL so that when we backtrack the first time
5794 and need to test it, it's not garbage. */
5795 const CHAR_T
*match_end
= NULL
;
5797 /* This helps SET_REGS_MATCHED avoid doing redundant work. */
5798 int set_regs_matched_done
= 0;
5800 /* Used when we pop values we don't care about. */
5801 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5802 const CHAR_T
**reg_dummy
;
5803 PREFIX(register_info_type
) *reg_info_dummy
;
5807 /* Counts the total number of registers pushed. */
5808 unsigned num_regs_pushed
= 0;
5811 /* Definitions for state transitions. More efficiently for gcc. */
5813 # if defined HAVE_SUBTRACT_LOCAL_LABELS && defined SHARED
5818 const void *__unbounded ptr; \
5819 offset = (p == pend \
5820 ? 0 : jmptable[SWITCH_ENUM_CAST ((re_opcode_t) *p++)]); \
5821 ptr = &&end_of_pattern + offset; \
5826 &&label_##x - &&end_of_pattern
5827 # define JUMP_TABLE_TYPE const int
5832 const void *__unbounded ptr; \
5833 ptr = (p == pend ? &&end_of_pattern \
5834 : jmptable[SWITCH_ENUM_CAST ((re_opcode_t) *p++)]); \
5840 # define JUMP_TABLE_TYPE const void *const
5842 # define CASE(x) label_##x
5843 static JUMP_TABLE_TYPE jmptable
[] =
5862 REF (jump_past_alt
),
5863 REF (on_failure_jump
),
5864 REF (on_failure_keep_string_jump
),
5865 REF (pop_failure_jump
),
5866 REF (maybe_pop_jump
),
5867 REF (dummy_failure_jump
),
5868 REF (push_dummy_failure
),
5871 REF (set_number_at
),
5893 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
5897 #ifdef MATCH_MAY_ALLOCATE
5898 /* Do not bother to initialize all the register variables if there are
5899 no groups in the pattern, as it takes a fair amount of time. If
5900 there are groups, we include space for register 0 (the whole
5901 pattern), even though we never use it, since it simplifies the
5902 array indexing. We should fix this. */
5905 regstart
= REGEX_TALLOC (num_regs
, const CHAR_T
*);
5906 regend
= REGEX_TALLOC (num_regs
, const CHAR_T
*);
5907 old_regstart
= REGEX_TALLOC (num_regs
, const CHAR_T
*);
5908 old_regend
= REGEX_TALLOC (num_regs
, const CHAR_T
*);
5909 best_regstart
= REGEX_TALLOC (num_regs
, const CHAR_T
*);
5910 best_regend
= REGEX_TALLOC (num_regs
, const CHAR_T
*);
5911 reg_info
= REGEX_TALLOC (num_regs
, PREFIX(register_info_type
));
5912 reg_dummy
= REGEX_TALLOC (num_regs
, const CHAR_T
*);
5913 reg_info_dummy
= REGEX_TALLOC (num_regs
, PREFIX(register_info_type
));
5915 if (!(regstart
&& regend
&& old_regstart
&& old_regend
&& reg_info
5916 && best_regstart
&& best_regend
&& reg_dummy
&& reg_info_dummy
))
5924 /* We must initialize all our variables to NULL, so that
5925 `FREE_VARIABLES' doesn't try to free them. */
5926 regstart
= regend
= old_regstart
= old_regend
= best_regstart
5927 = best_regend
= reg_dummy
= NULL
;
5928 reg_info
= reg_info_dummy
= (PREFIX(register_info_type
) *) NULL
;
5930 #endif /* MATCH_MAY_ALLOCATE */
5932 /* The starting position is bogus. */
5934 if (pos
< 0 || pos
> csize1
+ csize2
)
5936 if (pos
< 0 || pos
> size1
+ size2
)
5944 /* Allocate wchar_t array for string1 and string2 and
5945 fill them with converted string. */
5946 if (string1
== NULL
&& string2
== NULL
)
5948 /* We need seting up buffers here. */
5950 /* We must free wcs buffers in this function. */
5951 cant_free_wcs_buf
= 0;
5955 string1
= REGEX_TALLOC (csize1
+ 1, CHAR_T
);
5956 mbs_offset1
= REGEX_TALLOC (csize1
+ 1, int);
5957 is_binary
= REGEX_TALLOC (csize1
+ 1, char);
5958 if (!string1
|| !mbs_offset1
|| !is_binary
)
5961 FREE_VAR (mbs_offset1
);
5962 FREE_VAR (is_binary
);
5968 string2
= REGEX_TALLOC (csize2
+ 1, CHAR_T
);
5969 mbs_offset2
= REGEX_TALLOC (csize2
+ 1, int);
5970 is_binary
= REGEX_TALLOC (csize2
+ 1, char);
5971 if (!string2
|| !mbs_offset2
|| !is_binary
)
5974 FREE_VAR (mbs_offset1
);
5976 FREE_VAR (mbs_offset2
);
5977 FREE_VAR (is_binary
);
5980 size2
= convert_mbs_to_wcs(string2
, cstring2
, csize2
,
5981 mbs_offset2
, is_binary
);
5982 string2
[size2
] = L
'\0'; /* for a sentinel */
5983 FREE_VAR (is_binary
);
5987 /* We need to cast pattern to (wchar_t*), because we casted this compiled
5988 pattern to (char*) in regex_compile. */
5989 p
= pattern
= (CHAR_T
*)bufp
->buffer
;
5990 pend
= (CHAR_T
*)(bufp
->buffer
+ bufp
->used
);
5994 /* Initialize subexpression text positions to -1 to mark ones that no
5995 start_memory/stop_memory has been seen for. Also initialize the
5996 register information struct. */
5997 for (mcnt
= 1; (unsigned) mcnt
< num_regs
; mcnt
++)
5999 regstart
[mcnt
] = regend
[mcnt
]
6000 = old_regstart
[mcnt
] = old_regend
[mcnt
] = REG_UNSET_VALUE
;
6002 REG_MATCH_NULL_STRING_P (reg_info
[mcnt
]) = MATCH_NULL_UNSET_VALUE
;
6003 IS_ACTIVE (reg_info
[mcnt
]) = 0;
6004 MATCHED_SOMETHING (reg_info
[mcnt
]) = 0;
6005 EVER_MATCHED_SOMETHING (reg_info
[mcnt
]) = 0;
6008 /* We move `string1' into `string2' if the latter's empty -- but not if
6009 `string1' is null. */
6010 if (size2
== 0 && string1
!= NULL
)
6017 mbs_offset2
= mbs_offset1
;
6023 end1
= string1
+ size1
;
6024 end2
= string2
+ size2
;
6026 /* Compute where to stop matching, within the two strings. */
6030 mcnt
= count_mbs_length(mbs_offset1
, stop
);
6031 end_match_1
= string1
+ mcnt
;
6032 end_match_2
= string2
;
6036 if (stop
> csize1
+ csize2
)
6037 stop
= csize1
+ csize2
;
6039 mcnt
= count_mbs_length(mbs_offset2
, stop
-csize1
);
6040 end_match_2
= string2
+ mcnt
;
6043 { /* count_mbs_length return error. */
6050 end_match_1
= string1
+ stop
;
6051 end_match_2
= string2
;
6056 end_match_2
= string2
+ stop
- size1
;
6060 /* `p' scans through the pattern as `d' scans through the data.
6061 `dend' is the end of the input string that `d' points within. `d'
6062 is advanced into the following input string whenever necessary, but
6063 this happens before fetching; therefore, at the beginning of the
6064 loop, `d' can be pointing at the end of a string, but it cannot
6067 if (size1
> 0 && pos
<= csize1
)
6069 mcnt
= count_mbs_length(mbs_offset1
, pos
);
6075 mcnt
= count_mbs_length(mbs_offset2
, pos
-csize1
);
6081 { /* count_mbs_length return error. */
6086 if (size1
> 0 && pos
<= size1
)
6093 d
= string2
+ pos
- size1
;
6098 DEBUG_PRINT1 ("The compiled pattern is:\n");
6099 DEBUG_PRINT_COMPILED_PATTERN (bufp
, p
, pend
);
6100 DEBUG_PRINT1 ("The string to match is: `");
6101 DEBUG_PRINT_DOUBLE_STRING (d
, string1
, size1
, string2
, size2
);
6102 DEBUG_PRINT1 ("'\n");
6104 /* This loops over pattern commands. It exits by returning from the
6105 function if the match is complete, or it drops through if the match
6106 fails at this starting point in the input data. */
6110 DEBUG_PRINT2 ("\n%p: ", p
);
6112 DEBUG_PRINT2 ("\n0x%x: ", p
);
6124 /* End of pattern means we might have succeeded. */
6125 DEBUG_PRINT1 ("end of pattern ... ");
6127 /* If we haven't matched the entire string, and we want the
6128 longest match, try backtracking. */
6129 if (d
!= end_match_2
)
6131 /* 1 if this match ends in the same string (string1 or string2)
6132 as the best previous match. */
6133 boolean same_str_p
= (FIRST_STRING_P (match_end
)
6134 == MATCHING_IN_FIRST_STRING
);
6135 /* 1 if this match is the best seen so far. */
6136 boolean best_match_p
;
6138 /* AIX compiler got confused when this was combined
6139 with the previous declaration. */
6141 best_match_p
= d
> match_end
;
6143 best_match_p
= !MATCHING_IN_FIRST_STRING
;
6145 DEBUG_PRINT1 ("backtracking.\n");
6147 if (!FAIL_STACK_EMPTY ())
6148 { /* More failure points to try. */
6150 /* If exceeds best match so far, save it. */
6151 if (!best_regs_set
|| best_match_p
)
6153 best_regs_set
= true;
6156 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
6158 for (mcnt
= 1; (unsigned) mcnt
< num_regs
; mcnt
++)
6160 best_regstart
[mcnt
] = regstart
[mcnt
];
6161 best_regend
[mcnt
] = regend
[mcnt
];
6167 /* If no failure points, don't restore garbage. And if
6168 last match is real best match, don't restore second
6170 else if (best_regs_set
&& !best_match_p
)
6173 /* Restore best match. It may happen that `dend ==
6174 end_match_1' while the restored d is in string2.
6175 For example, the pattern `x.*y.*z' against the
6176 strings `x-' and `y-z-', if the two strings are
6177 not consecutive in memory. */
6178 DEBUG_PRINT1 ("Restoring best registers.\n");
6181 dend
= ((d
>= string1
&& d
<= end1
)
6182 ? end_match_1
: end_match_2
);
6184 for (mcnt
= 1; (unsigned) mcnt
< num_regs
; mcnt
++)
6186 regstart
[mcnt
] = best_regstart
[mcnt
];
6187 regend
[mcnt
] = best_regend
[mcnt
];
6190 } /* d != end_match_2 */
6193 DEBUG_PRINT1 ("Accepting match.\n");
6194 /* If caller wants register contents data back, do it. */
6195 if (regs
&& !bufp
->no_sub
)
6197 /* Have the register data arrays been allocated? */
6198 if (bufp
->regs_allocated
== REGS_UNALLOCATED
)
6199 { /* No. So allocate them with malloc. We need one
6200 extra element beyond `num_regs' for the `-1' marker
6202 regs
->num_regs
= MAX (RE_NREGS
, num_regs
+ 1);
6203 regs
->start
= TALLOC (regs
->num_regs
, regoff_t
);
6204 regs
->end
= TALLOC (regs
->num_regs
, regoff_t
);
6205 if (regs
->start
== NULL
|| regs
->end
== NULL
)
6210 bufp
->regs_allocated
= REGS_REALLOCATE
;
6212 else if (bufp
->regs_allocated
== REGS_REALLOCATE
)
6213 { /* Yes. If we need more elements than were already
6214 allocated, reallocate them. If we need fewer, just
6216 if (regs
->num_regs
< num_regs
+ 1)
6218 regs
->num_regs
= num_regs
+ 1;
6219 RETALLOC (regs
->start
, regs
->num_regs
, regoff_t
);
6220 RETALLOC (regs
->end
, regs
->num_regs
, regoff_t
);
6221 if (regs
->start
== NULL
|| regs
->end
== NULL
)
6230 /* These braces fend off a "empty body in an else-statement"
6231 warning under GCC when assert expands to nothing. */
6232 assert (bufp
->regs_allocated
== REGS_FIXED
);
6235 /* Convert the pointer data in `regstart' and `regend' to
6236 indices. Register zero has to be set differently,
6237 since we haven't kept track of any info for it. */
6238 if (regs
->num_regs
> 0)
6240 regs
->start
[0] = pos
;
6242 if (MATCHING_IN_FIRST_STRING
)
6243 regs
->end
[0] = (mbs_offset1
!= NULL
?
6244 mbs_offset1
[d
-string1
] : 0);
6246 regs
->end
[0] = csize1
+ (mbs_offset2
!= NULL
6247 ? mbs_offset2
[d
-string2
] : 0);
6249 regs
->end
[0] = (MATCHING_IN_FIRST_STRING
6250 ? ((regoff_t
) (d
- string1
))
6251 : ((regoff_t
) (d
- string2
+ size1
)));
6255 /* Go through the first `min (num_regs, regs->num_regs)'
6256 registers, since that is all we initialized. */
6257 for (mcnt
= 1; (unsigned) mcnt
< MIN (num_regs
, regs
->num_regs
);
6260 if (REG_UNSET (regstart
[mcnt
]) || REG_UNSET (regend
[mcnt
]))
6261 regs
->start
[mcnt
] = regs
->end
[mcnt
] = -1;
6265 = (regoff_t
) POINTER_TO_OFFSET (regstart
[mcnt
]);
6267 = (regoff_t
) POINTER_TO_OFFSET (regend
[mcnt
]);
6271 /* If the regs structure we return has more elements than
6272 were in the pattern, set the extra elements to -1. If
6273 we (re)allocated the registers, this is the case,
6274 because we always allocate enough to have at least one
6276 for (mcnt
= num_regs
; (unsigned) mcnt
< regs
->num_regs
; mcnt
++)
6277 regs
->start
[mcnt
] = regs
->end
[mcnt
] = -1;
6278 } /* regs && !bufp->no_sub */
6280 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
6281 nfailure_points_pushed
, nfailure_points_popped
,
6282 nfailure_points_pushed
- nfailure_points_popped
);
6283 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed
);
6286 if (MATCHING_IN_FIRST_STRING
)
6287 mcnt
= mbs_offset1
!= NULL
? mbs_offset1
[d
-string1
] : 0;
6289 mcnt
= (mbs_offset2
!= NULL
? mbs_offset2
[d
-string2
] : 0) +
6293 mcnt
= d
- pos
- (MATCHING_IN_FIRST_STRING
6294 ? string1
: string2
- size1
);
6297 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt
);
6304 /* Otherwise match next pattern command. */
6305 switch (SWITCH_ENUM_CAST ((re_opcode_t
) *p
++))
6308 /* Ignore these. Used to ignore the n of succeed_n's which
6309 currently have n == 0. */
6311 DEBUG_PRINT1 ("EXECUTING no_op.\n");
6315 DEBUG_PRINT1 ("EXECUTING succeed.\n");
6318 /* Match the next n pattern characters exactly. The following
6319 byte in the pattern defines n, and the n bytes after that
6320 are the characters to match. */
6326 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt
);
6328 /* This is written out as an if-else so we don't waste time
6329 testing `translate' inside the loop. */
6338 if ((UCHAR_T
) translate
[(unsigned char) *d
++]
6344 if (*d
++ != (CHAR_T
) *p
++)
6348 if ((UCHAR_T
) translate
[(unsigned char) *d
++]
6360 if (*d
++ != (CHAR_T
) *p
++) goto fail
;
6364 SET_REGS_MATCHED ();
6368 /* Match any character except possibly a newline or a null. */
6370 DEBUG_PRINT1 ("EXECUTING anychar.\n");
6374 if ((!(bufp
->syntax
& RE_DOT_NEWLINE
) && TRANSLATE (*d
) == '\n')
6375 || (bufp
->syntax
& RE_DOT_NOT_NULL
&& TRANSLATE (*d
) == '\000'))
6378 SET_REGS_MATCHED ();
6379 DEBUG_PRINT2 (" Matched `%ld'.\n", (long int) *d
);
6389 unsigned int i
, char_class_length
, coll_symbol_length
,
6390 equiv_class_length
, ranges_length
, chars_length
, length
;
6391 CHAR_T
*workp
, *workp2
, *charset_top
;
6392 #define WORK_BUFFER_SIZE 128
6393 CHAR_T str_buf
[WORK_BUFFER_SIZE
];
6398 boolean
not = (re_opcode_t
) *(p
- 1) == charset_not
;
6400 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
6402 c
= TRANSLATE (*d
); /* The character to match. */
6405 nrules
= _NL_CURRENT_WORD (LC_COLLATE
, _NL_COLLATE_NRULES
);
6407 charset_top
= p
- 1;
6408 char_class_length
= *p
++;
6409 coll_symbol_length
= *p
++;
6410 equiv_class_length
= *p
++;
6411 ranges_length
= *p
++;
6412 chars_length
= *p
++;
6413 /* p points charset[6], so the address of the next instruction
6414 (charset[l+m+n+2o+k+p']) equals p[l+m+n+2*o+p'],
6415 where l=length of char_classes, m=length of collating_symbol,
6416 n=equivalence_class, o=length of char_range,
6417 p'=length of character. */
6419 /* Update p to indicate the next instruction. */
6420 p
+= char_class_length
+ coll_symbol_length
+ equiv_class_length
+
6421 2*ranges_length
+ chars_length
;
6423 /* match with char_class? */
6424 for (i
= 0; i
< char_class_length
; i
+= CHAR_CLASS_SIZE
)
6427 uintptr_t alignedp
= ((uintptr_t)workp
6428 + __alignof__(wctype_t) - 1)
6429 & ~(uintptr_t)(__alignof__(wctype_t) - 1);
6430 wctype
= *((wctype_t*)alignedp
);
6431 workp
+= CHAR_CLASS_SIZE
;
6432 if (iswctype((wint_t)c
, wctype
))
6433 goto char_set_matched
;
6436 /* match with collating_symbol? */
6440 const unsigned char *extra
= (const unsigned char *)
6441 _NL_CURRENT (LC_COLLATE
, _NL_COLLATE_SYMB_EXTRAMB
);
6443 for (workp2
= workp
+ coll_symbol_length
; workp
< workp2
;
6447 wextra
= (int32_t*)(extra
+ *workp
++);
6448 for (i
= 0; i
< *wextra
; ++i
)
6449 if (TRANSLATE(d
[i
]) != wextra
[1 + i
])
6454 /* Update d, however d will be incremented at
6455 char_set_matched:, we decrement d here. */
6457 goto char_set_matched
;
6461 else /* (nrules == 0) */
6463 /* If we can't look up collation data, we use wcscoll
6466 for (workp2
= workp
+ coll_symbol_length
; workp
< workp2
;)
6468 const CHAR_T
*backup_d
= d
, *backup_dend
= dend
;
6469 length
= wcslen (workp
);
6471 /* If wcscoll(the collating symbol, whole string) > 0,
6472 any substring of the string never match with the
6473 collating symbol. */
6474 if (wcscoll (workp
, d
) > 0)
6476 workp
+= length
+ 1;
6480 /* First, we compare the collating symbol with
6481 the first character of the string.
6482 If it don't match, we add the next character to
6483 the compare buffer in turn. */
6484 for (i
= 0 ; i
< WORK_BUFFER_SIZE
-1 ; i
++, d
++)
6489 if (dend
== end_match_2
)
6495 /* add next character to the compare buffer. */
6496 str_buf
[i
] = TRANSLATE(*d
);
6497 str_buf
[i
+1] = '\0';
6499 match
= wcscoll (workp
, str_buf
);
6501 goto char_set_matched
;
6504 /* (str_buf > workp) indicate (str_buf + X > workp),
6505 because for all X (str_buf + X > str_buf).
6506 So we don't need continue this loop. */
6509 /* Otherwise(str_buf < workp),
6510 (str_buf+next_character) may equals (workp).
6511 So we continue this loop. */
6516 workp
+= length
+ 1;
6519 /* match with equivalence_class? */
6523 const CHAR_T
*backup_d
= d
, *backup_dend
= dend
;
6524 /* Try to match the equivalence class against
6525 those known to the collate implementation. */
6526 const int32_t *table
;
6527 const int32_t *weights
;
6528 const int32_t *extra
;
6529 const int32_t *indirect
;
6534 /* This #include defines a local function! */
6535 # include <locale/weightwc.h>
6537 table
= (const int32_t *)
6538 _NL_CURRENT (LC_COLLATE
, _NL_COLLATE_TABLEWC
);
6539 weights
= (const wint_t *)
6540 _NL_CURRENT (LC_COLLATE
, _NL_COLLATE_WEIGHTWC
);
6541 extra
= (const wint_t *)
6542 _NL_CURRENT (LC_COLLATE
, _NL_COLLATE_EXTRAWC
);
6543 indirect
= (const int32_t *)
6544 _NL_CURRENT (LC_COLLATE
, _NL_COLLATE_INDIRECTWC
);
6546 /* Write 1 collating element to str_buf, and
6550 for (i
= 0 ; idx2
== 0 && i
< WORK_BUFFER_SIZE
- 1; i
++)
6552 cp
= (wint_t*)str_buf
;
6555 if (dend
== end_match_2
)
6560 str_buf
[i
] = TRANSLATE(*(d
+i
));
6561 str_buf
[i
+1] = '\0'; /* sentinel */
6562 idx2
= findidx ((const wint_t**)&cp
);
6565 /* Update d, however d will be incremented at
6566 char_set_matched:, we decrement d here. */
6567 d
= backup_d
+ ((wchar_t*)cp
- (wchar_t*)str_buf
- 1);
6570 if (dend
== end_match_2
)
6579 len
= weights
[idx2
];
6581 for (workp2
= workp
+ equiv_class_length
; workp
< workp2
;
6584 idx
= (int32_t)*workp
;
6585 /* We already checked idx != 0 in regex_compile. */
6587 if (idx2
!= 0 && len
== weights
[idx
])
6590 while (cnt
< len
&& (weights
[idx
+ 1 + cnt
]
6591 == weights
[idx2
+ 1 + cnt
]))
6595 goto char_set_matched
;
6602 else /* (nrules == 0) */
6604 /* If we can't look up collation data, we use wcscoll
6607 for (workp2
= workp
+ equiv_class_length
; workp
< workp2
;)
6609 const CHAR_T
*backup_d
= d
, *backup_dend
= dend
;
6610 length
= wcslen (workp
);
6612 /* If wcscoll(the collating symbol, whole string) > 0,
6613 any substring of the string never match with the
6614 collating symbol. */
6615 if (wcscoll (workp
, d
) > 0)
6617 workp
+= length
+ 1;
6621 /* First, we compare the equivalence class with
6622 the first character of the string.
6623 If it don't match, we add the next character to
6624 the compare buffer in turn. */
6625 for (i
= 0 ; i
< WORK_BUFFER_SIZE
- 1 ; i
++, d
++)
6630 if (dend
== end_match_2
)
6636 /* add next character to the compare buffer. */
6637 str_buf
[i
] = TRANSLATE(*d
);
6638 str_buf
[i
+1] = '\0';
6640 match
= wcscoll (workp
, str_buf
);
6643 goto char_set_matched
;
6646 /* (str_buf > workp) indicate (str_buf + X > workp),
6647 because for all X (str_buf + X > str_buf).
6648 So we don't need continue this loop. */
6651 /* Otherwise(str_buf < workp),
6652 (str_buf+next_character) may equals (workp).
6653 So we continue this loop. */
6658 workp
+= length
+ 1;
6662 /* match with char_range? */
6666 uint32_t collseqval
;
6667 const char *collseq
= (const char *)
6668 _NL_CURRENT(LC_COLLATE
, _NL_COLLATE_COLLSEQWC
);
6670 collseqval
= collseq_table_lookup (collseq
, c
);
6672 for (; workp
< p
- chars_length
;)
6674 uint32_t start_val
, end_val
;
6676 /* We already compute the collation sequence value
6677 of the characters (or collating symbols). */
6678 start_val
= (uint32_t) *workp
++; /* range_start */
6679 end_val
= (uint32_t) *workp
++; /* range_end */
6681 if (start_val
<= collseqval
&& collseqval
<= end_val
)
6682 goto char_set_matched
;
6688 /* We set range_start_char at str_buf[0], range_end_char
6689 at str_buf[4], and compared char at str_buf[2]. */
6694 for (; workp
< p
- chars_length
;)
6696 wchar_t *range_start_char
, *range_end_char
;
6698 /* match if (range_start_char <= c <= range_end_char). */
6700 /* If range_start(or end) < 0, we assume -range_start(end)
6701 is the offset of the collating symbol which is specified
6702 as the character of the range start(end). */
6706 range_start_char
= charset_top
- (*workp
++);
6709 str_buf
[0] = *workp
++;
6710 range_start_char
= str_buf
;
6715 range_end_char
= charset_top
- (*workp
++);
6718 str_buf
[4] = *workp
++;
6719 range_end_char
= str_buf
+ 4;
6722 if (wcscoll (range_start_char
, str_buf
+2) <= 0
6723 && wcscoll (str_buf
+2, range_end_char
) <= 0)
6724 goto char_set_matched
;
6728 /* match with char? */
6729 for (; workp
< p
; workp
++)
6731 goto char_set_matched
;
6738 /* Cast to `unsigned' instead of `unsigned char' in case the
6739 bit list is a full 32 bytes long. */
6740 if (c
< (unsigned) (*p
* BYTEWIDTH
)
6741 && p
[1 + c
/ BYTEWIDTH
] & (1 << (c
% BYTEWIDTH
)))
6746 if (!not) goto fail
;
6747 #undef WORK_BUFFER_SIZE
6749 SET_REGS_MATCHED ();
6755 /* The beginning of a group is represented by start_memory.
6756 The arguments are the register number in the next byte, and the
6757 number of groups inner to this one in the next. The text
6758 matched within the group is recorded (in the internal
6759 registers data structure) under the register number. */
6760 CASE (start_memory
):
6761 DEBUG_PRINT3 ("EXECUTING start_memory %ld (%ld):\n",
6762 (long int) *p
, (long int) p
[1]);
6764 /* Find out if this group can match the empty string. */
6765 p1
= p
; /* To send to group_match_null_string_p. */
6767 if (REG_MATCH_NULL_STRING_P (reg_info
[*p
]) == MATCH_NULL_UNSET_VALUE
)
6768 REG_MATCH_NULL_STRING_P (reg_info
[*p
])
6769 = PREFIX(group_match_null_string_p
) (&p1
, pend
, reg_info
);
6771 /* Save the position in the string where we were the last time
6772 we were at this open-group operator in case the group is
6773 operated upon by a repetition operator, e.g., with `(a*)*b'
6774 against `ab'; then we want to ignore where we are now in
6775 the string in case this attempt to match fails. */
6776 old_regstart
[*p
] = REG_MATCH_NULL_STRING_P (reg_info
[*p
])
6777 ? REG_UNSET (regstart
[*p
]) ? d
: regstart
[*p
]
6779 DEBUG_PRINT2 (" old_regstart: %d\n",
6780 POINTER_TO_OFFSET (old_regstart
[*p
]));
6783 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart
[*p
]));
6785 IS_ACTIVE (reg_info
[*p
]) = 1;
6786 MATCHED_SOMETHING (reg_info
[*p
]) = 0;
6788 /* Clear this whenever we change the register activity status. */
6789 set_regs_matched_done
= 0;
6791 /* This is the new highest active register. */
6792 highest_active_reg
= *p
;
6794 /* If nothing was active before, this is the new lowest active
6796 if (lowest_active_reg
== NO_LOWEST_ACTIVE_REG
)
6797 lowest_active_reg
= *p
;
6799 /* Move past the register number and inner group count. */
6801 just_past_start_mem
= p
;
6806 /* The stop_memory opcode represents the end of a group. Its
6807 arguments are the same as start_memory's: the register
6808 number, and the number of inner groups. */
6810 DEBUG_PRINT3 ("EXECUTING stop_memory %ld (%ld):\n",
6811 (long int) *p
, (long int) p
[1]);
6813 /* We need to save the string position the last time we were at
6814 this close-group operator in case the group is operated
6815 upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
6816 against `aba'; then we want to ignore where we are now in
6817 the string in case this attempt to match fails. */
6818 old_regend
[*p
] = REG_MATCH_NULL_STRING_P (reg_info
[*p
])
6819 ? REG_UNSET (regend
[*p
]) ? d
: regend
[*p
]
6821 DEBUG_PRINT2 (" old_regend: %d\n",
6822 POINTER_TO_OFFSET (old_regend
[*p
]));
6825 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend
[*p
]));
6827 /* This register isn't active anymore. */
6828 IS_ACTIVE (reg_info
[*p
]) = 0;
6830 /* Clear this whenever we change the register activity status. */
6831 set_regs_matched_done
= 0;
6833 /* If this was the only register active, nothing is active
6835 if (lowest_active_reg
== highest_active_reg
)
6837 lowest_active_reg
= NO_LOWEST_ACTIVE_REG
;
6838 highest_active_reg
= NO_HIGHEST_ACTIVE_REG
;
6841 { /* We must scan for the new highest active register, since
6842 it isn't necessarily one less than now: consider
6843 (a(b)c(d(e)f)g). When group 3 ends, after the f), the
6844 new highest active register is 1. */
6846 while (r
> 0 && !IS_ACTIVE (reg_info
[r
]))
6849 /* If we end up at register zero, that means that we saved
6850 the registers as the result of an `on_failure_jump', not
6851 a `start_memory', and we jumped to past the innermost
6852 `stop_memory'. For example, in ((.)*) we save
6853 registers 1 and 2 as a result of the *, but when we pop
6854 back to the second ), we are at the stop_memory 1.
6855 Thus, nothing is active. */
6858 lowest_active_reg
= NO_LOWEST_ACTIVE_REG
;
6859 highest_active_reg
= NO_HIGHEST_ACTIVE_REG
;
6862 highest_active_reg
= r
;
6865 /* If just failed to match something this time around with a
6866 group that's operated on by a repetition operator, try to
6867 force exit from the ``loop'', and restore the register
6868 information for this group that we had before trying this
6870 if ((!MATCHED_SOMETHING (reg_info
[*p
])
6871 || just_past_start_mem
== p
- 1)
6874 boolean is_a_jump_n
= false;
6878 switch ((re_opcode_t
) *p1
++)
6882 case pop_failure_jump
:
6883 case maybe_pop_jump
:
6885 case dummy_failure_jump
:
6886 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
6888 p1
+= OFFSET_ADDRESS_SIZE
;
6896 /* If the next operation is a jump backwards in the pattern
6897 to an on_failure_jump right before the start_memory
6898 corresponding to this stop_memory, exit from the loop
6899 by forcing a failure after pushing on the stack the
6900 on_failure_jump's jump in the pattern, and d. */
6901 if (mcnt
< 0 && (re_opcode_t
) *p1
== on_failure_jump
6902 && (re_opcode_t
) p1
[1+OFFSET_ADDRESS_SIZE
] == start_memory
6903 && p1
[2+OFFSET_ADDRESS_SIZE
] == *p
)
6905 /* If this group ever matched anything, then restore
6906 what its registers were before trying this last
6907 failed match, e.g., with `(a*)*b' against `ab' for
6908 regstart[1], and, e.g., with `((a*)*(b*)*)*'
6909 against `aba' for regend[3].
6911 Also restore the registers for inner groups for,
6912 e.g., `((a*)(b*))*' against `aba' (register 3 would
6913 otherwise get trashed). */
6915 if (EVER_MATCHED_SOMETHING (reg_info
[*p
]))
6919 EVER_MATCHED_SOMETHING (reg_info
[*p
]) = 0;
6921 /* Restore this and inner groups' (if any) registers. */
6922 for (r
= *p
; r
< (unsigned) *p
+ (unsigned) *(p
+ 1);
6925 regstart
[r
] = old_regstart
[r
];
6927 /* xx why this test? */
6928 if (old_regend
[r
] >= regstart
[r
])
6929 regend
[r
] = old_regend
[r
];
6933 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
6934 PUSH_FAILURE_POINT (p1
+ mcnt
, d
, -2);
6940 /* Move past the register number and the inner group count. */
6945 /* \<digit> has been turned into a `duplicate' command which is
6946 followed by the numeric value of <digit> as the register number. */
6949 register const CHAR_T
*d2
, *dend2
;
6950 int regno
= *p
++; /* Get which register to match against. */
6951 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno
);
6953 /* Can't back reference a group which we've never matched. */
6954 if (REG_UNSET (regstart
[regno
]) || REG_UNSET (regend
[regno
]))
6957 /* Where in input to try to start matching. */
6958 d2
= regstart
[regno
];
6960 /* Where to stop matching; if both the place to start and
6961 the place to stop matching are in the same string, then
6962 set to the place to stop, otherwise, for now have to use
6963 the end of the first string. */
6965 dend2
= ((FIRST_STRING_P (regstart
[regno
])
6966 == FIRST_STRING_P (regend
[regno
]))
6967 ? regend
[regno
] : end_match_1
);
6970 /* If necessary, advance to next segment in register
6974 if (dend2
== end_match_2
) break;
6975 if (dend2
== regend
[regno
]) break;
6977 /* End of string1 => advance to string2. */
6979 dend2
= regend
[regno
];
6981 /* At end of register contents => success */
6982 if (d2
== dend2
) break;
6984 /* If necessary, advance to next segment in data. */
6987 /* How many characters left in this segment to match. */
6990 /* Want how many consecutive characters we can match in
6991 one shot, so, if necessary, adjust the count. */
6992 if (mcnt
> dend2
- d2
)
6995 /* Compare that many; failure if mismatch, else move
6998 ? PREFIX(bcmp_translate
) (d
, d2
, mcnt
, translate
)
6999 : memcmp (d
, d2
, mcnt
*sizeof(UCHAR_T
)))
7001 d
+= mcnt
, d2
+= mcnt
;
7003 /* Do this because we've match some characters. */
7004 SET_REGS_MATCHED ();
7010 /* begline matches the empty string at the beginning of the string
7011 (unless `not_bol' is set in `bufp'), and, if
7012 `newline_anchor' is set, after newlines. */
7014 DEBUG_PRINT1 ("EXECUTING begline.\n");
7016 if (AT_STRINGS_BEG (d
))
7023 else if (d
[-1] == '\n' && bufp
->newline_anchor
)
7027 /* In all other cases, we fail. */
7031 /* endline is the dual of begline. */
7033 DEBUG_PRINT1 ("EXECUTING endline.\n");
7035 if (AT_STRINGS_END (d
))
7043 /* We have to ``prefetch'' the next character. */
7044 else if ((d
== end1
? *string2
: *d
) == '\n'
7045 && bufp
->newline_anchor
)
7052 /* Match at the very beginning of the data. */
7054 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
7055 if (AT_STRINGS_BEG (d
))
7062 /* Match at the very end of the data. */
7064 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
7065 if (AT_STRINGS_END (d
))
7072 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
7073 pushes NULL as the value for the string on the stack. Then
7074 `pop_failure_point' will keep the current value for the
7075 string, instead of restoring it. To see why, consider
7076 matching `foo\nbar' against `.*\n'. The .* matches the foo;
7077 then the . fails against the \n. But the next thing we want
7078 to do is match the \n against the \n; if we restored the
7079 string value, we would be back at the foo.
7081 Because this is used only in specific cases, we don't need to
7082 check all the things that `on_failure_jump' does, to make
7083 sure the right things get saved on the stack. Hence we don't
7084 share its code. The only reason to push anything on the
7085 stack at all is that otherwise we would have to change
7086 `anychar's code to do something besides goto fail in this
7087 case; that seems worse than this. */
7088 CASE (on_failure_keep_string_jump
):
7089 DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
7091 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
7093 DEBUG_PRINT3 (" %d (to %p):\n", mcnt
, p
+ mcnt
);
7095 DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt
, p
+ mcnt
);
7098 PUSH_FAILURE_POINT (p
+ mcnt
, NULL
, -2);
7102 /* Uses of on_failure_jump:
7104 Each alternative starts with an on_failure_jump that points
7105 to the beginning of the next alternative. Each alternative
7106 except the last ends with a jump that in effect jumps past
7107 the rest of the alternatives. (They really jump to the
7108 ending jump of the following alternative, because tensioning
7109 these jumps is a hassle.)
7111 Repeats start with an on_failure_jump that points past both
7112 the repetition text and either the following jump or
7113 pop_failure_jump back to this on_failure_jump. */
7114 CASE (on_failure_jump
):
7116 DEBUG_PRINT1 ("EXECUTING on_failure_jump");
7118 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
7120 DEBUG_PRINT3 (" %d (to %p)", mcnt
, p
+ mcnt
);
7122 DEBUG_PRINT3 (" %d (to 0x%x)", mcnt
, p
+ mcnt
);
7125 /* If this on_failure_jump comes right before a group (i.e.,
7126 the original * applied to a group), save the information
7127 for that group and all inner ones, so that if we fail back
7128 to this point, the group's information will be correct.
7129 For example, in \(a*\)*\1, we need the preceding group,
7130 and in \(zz\(a*\)b*\)\2, we need the inner group. */
7132 /* We can't use `p' to check ahead because we push
7133 a failure point to `p + mcnt' after we do this. */
7136 /* We need to skip no_op's before we look for the
7137 start_memory in case this on_failure_jump is happening as
7138 the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
7140 while (p1
< pend
&& (re_opcode_t
) *p1
== no_op
)
7143 if (p1
< pend
&& (re_opcode_t
) *p1
== start_memory
)
7145 /* We have a new highest active register now. This will
7146 get reset at the start_memory we are about to get to,
7147 but we will have saved all the registers relevant to
7148 this repetition op, as described above. */
7149 highest_active_reg
= *(p1
+ 1) + *(p1
+ 2);
7150 if (lowest_active_reg
== NO_LOWEST_ACTIVE_REG
)
7151 lowest_active_reg
= *(p1
+ 1);
7154 DEBUG_PRINT1 (":\n");
7155 PUSH_FAILURE_POINT (p
+ mcnt
, d
, -2);
7159 /* A smart repeat ends with `maybe_pop_jump'.
7160 We change it to either `pop_failure_jump' or `jump'. */
7161 CASE (maybe_pop_jump
):
7162 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
7163 DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt
);
7165 register UCHAR_T
*p2
= p
;
7167 /* Compare the beginning of the repeat with what in the
7168 pattern follows its end. If we can establish that there
7169 is nothing that they would both match, i.e., that we
7170 would have to backtrack because of (as in, e.g., `a*a')
7171 then we can change to pop_failure_jump, because we'll
7172 never have to backtrack.
7174 This is not true in the case of alternatives: in
7175 `(a|ab)*' we do need to backtrack to the `ab' alternative
7176 (e.g., if the string was `ab'). But instead of trying to
7177 detect that here, the alternative has put on a dummy
7178 failure point which is what we will end up popping. */
7180 /* Skip over open/close-group commands.
7181 If what follows this loop is a ...+ construct,
7182 look at what begins its body, since we will have to
7183 match at least one of that. */
7187 && ((re_opcode_t
) *p2
== stop_memory
7188 || (re_opcode_t
) *p2
== start_memory
))
7190 else if (p2
+ 2 + 2 * OFFSET_ADDRESS_SIZE
< pend
7191 && (re_opcode_t
) *p2
== dummy_failure_jump
)
7192 p2
+= 2 + 2 * OFFSET_ADDRESS_SIZE
;
7198 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
7199 to the `maybe_finalize_jump' of this case. Examine what
7202 /* If we're at the end of the pattern, we can change. */
7205 /* Consider what happens when matching ":\(.*\)"
7206 against ":/". I don't really understand this code
7208 p
[-(1+OFFSET_ADDRESS_SIZE
)] = (UCHAR_T
)
7211 (" End of pattern: change to `pop_failure_jump'.\n");
7214 else if ((re_opcode_t
) *p2
== exactn
7216 || (re_opcode_t
) *p2
== exactn_bin
7218 || (bufp
->newline_anchor
&& (re_opcode_t
) *p2
== endline
))
7221 = *p2
== (UCHAR_T
) endline
? '\n' : p2
[2];
7223 if (((re_opcode_t
) p1
[1+OFFSET_ADDRESS_SIZE
] == exactn
7225 || (re_opcode_t
) p1
[1+OFFSET_ADDRESS_SIZE
] == exactn_bin
7227 ) && p1
[3+OFFSET_ADDRESS_SIZE
] != c
)
7229 p
[-(1+OFFSET_ADDRESS_SIZE
)] = (UCHAR_T
)
7232 DEBUG_PRINT3 (" %C != %C => pop_failure_jump.\n",
7234 (wint_t) p1
[3+OFFSET_ADDRESS_SIZE
]);
7236 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
7238 (char) p1
[3+OFFSET_ADDRESS_SIZE
]);
7243 else if ((re_opcode_t
) p1
[3] == charset
7244 || (re_opcode_t
) p1
[3] == charset_not
)
7246 int not = (re_opcode_t
) p1
[3] == charset_not
;
7248 if (c
< (unsigned) (p1
[4] * BYTEWIDTH
)
7249 && p1
[5 + c
/ BYTEWIDTH
] & (1 << (c
% BYTEWIDTH
)))
7252 /* `not' is equal to 1 if c would match, which means
7253 that we can't change to pop_failure_jump. */
7256 p
[-3] = (unsigned char) pop_failure_jump
;
7257 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
7260 #endif /* not WCHAR */
7263 else if ((re_opcode_t
) *p2
== charset
)
7265 /* We win if the first character of the loop is not part
7267 if ((re_opcode_t
) p1
[3] == exactn
7268 && ! ((int) p2
[1] * BYTEWIDTH
> (int) p1
[5]
7269 && (p2
[2 + p1
[5] / BYTEWIDTH
]
7270 & (1 << (p1
[5] % BYTEWIDTH
)))))
7272 p
[-3] = (unsigned char) pop_failure_jump
;
7273 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
7276 else if ((re_opcode_t
) p1
[3] == charset_not
)
7279 /* We win if the charset_not inside the loop
7280 lists every character listed in the charset after. */
7281 for (idx
= 0; idx
< (int) p2
[1]; idx
++)
7282 if (! (p2
[2 + idx
] == 0
7283 || (idx
< (int) p1
[4]
7284 && ((p2
[2 + idx
] & ~ p1
[5 + idx
]) == 0))))
7289 p
[-3] = (unsigned char) pop_failure_jump
;
7290 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
7293 else if ((re_opcode_t
) p1
[3] == charset
)
7296 /* We win if the charset inside the loop
7297 has no overlap with the one after the loop. */
7299 idx
< (int) p2
[1] && idx
< (int) p1
[4];
7301 if ((p2
[2 + idx
] & p1
[5 + idx
]) != 0)
7304 if (idx
== p2
[1] || idx
== p1
[4])
7306 p
[-3] = (unsigned char) pop_failure_jump
;
7307 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
7311 #endif /* not WCHAR */
7313 p
-= OFFSET_ADDRESS_SIZE
; /* Point at relative address again. */
7314 if ((re_opcode_t
) p
[-1] != pop_failure_jump
)
7316 p
[-1] = (UCHAR_T
) jump
;
7317 DEBUG_PRINT1 (" Match => jump.\n");
7318 goto unconditional_jump
;
7320 /* Note fall through. */
7323 /* The end of a simple repeat has a pop_failure_jump back to
7324 its matching on_failure_jump, where the latter will push a
7325 failure point. The pop_failure_jump takes off failure
7326 points put on by this pop_failure_jump's matching
7327 on_failure_jump; we got through the pattern to here from the
7328 matching on_failure_jump, so didn't fail. */
7329 CASE (pop_failure_jump
):
7331 /* We need to pass separate storage for the lowest and
7332 highest registers, even though we don't care about the
7333 actual values. Otherwise, we will restore only one
7334 register from the stack, since lowest will == highest in
7335 `pop_failure_point'. */
7336 active_reg_t dummy_low_reg
, dummy_high_reg
;
7337 UCHAR_T
*pdummy
= NULL
;
7338 const CHAR_T
*sdummy
= NULL
;
7340 DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
7341 POP_FAILURE_POINT (sdummy
, pdummy
,
7342 dummy_low_reg
, dummy_high_reg
,
7343 reg_dummy
, reg_dummy
, reg_info_dummy
);
7345 /* Note fall through. */
7349 DEBUG_PRINT2 ("\n%p: ", p
);
7351 DEBUG_PRINT2 ("\n0x%x: ", p
);
7353 /* Note fall through. */
7355 /* Unconditionally jump (without popping any failure points). */
7357 EXTRACT_NUMBER_AND_INCR (mcnt
, p
); /* Get the amount to jump. */
7358 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt
);
7359 p
+= mcnt
; /* Do the jump. */
7361 DEBUG_PRINT2 ("(to %p).\n", p
);
7363 DEBUG_PRINT2 ("(to 0x%x).\n", p
);
7368 /* We need this opcode so we can detect where alternatives end
7369 in `group_match_null_string_p' et al. */
7370 CASE (jump_past_alt
):
7371 DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
7372 goto unconditional_jump
;
7375 /* Normally, the on_failure_jump pushes a failure point, which
7376 then gets popped at pop_failure_jump. We will end up at
7377 pop_failure_jump, also, and with a pattern of, say, `a+', we
7378 are skipping over the on_failure_jump, so we have to push
7379 something meaningless for pop_failure_jump to pop. */
7380 CASE (dummy_failure_jump
):
7381 DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
7382 /* It doesn't matter what we push for the string here. What
7383 the code at `fail' tests is the value for the pattern. */
7384 PUSH_FAILURE_POINT (NULL
, NULL
, -2);
7385 goto unconditional_jump
;
7388 /* At the end of an alternative, we need to push a dummy failure
7389 point in case we are followed by a `pop_failure_jump', because
7390 we don't want the failure point for the alternative to be
7391 popped. For example, matching `(a|ab)*' against `aab'
7392 requires that we match the `ab' alternative. */
7393 CASE (push_dummy_failure
):
7394 DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
7395 /* See comments just above at `dummy_failure_jump' about the
7397 PUSH_FAILURE_POINT (NULL
, NULL
, -2);
7400 /* Have to succeed matching what follows at least n times.
7401 After that, handle like `on_failure_jump'. */
7403 EXTRACT_NUMBER (mcnt
, p
+ OFFSET_ADDRESS_SIZE
);
7404 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt
);
7407 /* Originally, this is how many times we HAVE to succeed. */
7411 p
+= OFFSET_ADDRESS_SIZE
;
7412 STORE_NUMBER_AND_INCR (p
, mcnt
);
7414 DEBUG_PRINT3 (" Setting %p to %d.\n", p
- OFFSET_ADDRESS_SIZE
7417 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p
- OFFSET_ADDRESS_SIZE
7424 DEBUG_PRINT2 (" Setting two bytes from %p to no_op.\n",
7425 p
+ OFFSET_ADDRESS_SIZE
);
7427 DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n",
7428 p
+ OFFSET_ADDRESS_SIZE
);
7432 p
[1] = (UCHAR_T
) no_op
;
7434 p
[2] = (UCHAR_T
) no_op
;
7435 p
[3] = (UCHAR_T
) no_op
;
7442 EXTRACT_NUMBER (mcnt
, p
+ OFFSET_ADDRESS_SIZE
);
7443 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt
);
7445 /* Originally, this is how many times we CAN jump. */
7449 STORE_NUMBER (p
+ OFFSET_ADDRESS_SIZE
, mcnt
);
7452 DEBUG_PRINT3 (" Setting %p to %d.\n", p
+ OFFSET_ADDRESS_SIZE
,
7455 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p
+ OFFSET_ADDRESS_SIZE
,
7458 goto unconditional_jump
;
7460 /* If don't have to jump any more, skip over the rest of command. */
7462 p
+= 2 * OFFSET_ADDRESS_SIZE
;
7465 CASE (set_number_at
):
7467 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
7469 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
7471 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
7473 DEBUG_PRINT3 (" Setting %p to %d.\n", p1
, mcnt
);
7475 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1
, mcnt
);
7477 STORE_NUMBER (p1
, mcnt
);
7482 /* The DEC Alpha C compiler 3.x generates incorrect code for the
7483 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
7484 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
7485 macro and introducing temporary variables works around the bug. */
7488 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
7489 if (AT_WORD_BOUNDARY (d
))
7495 CASE (notwordbound
):
7496 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
7497 if (AT_WORD_BOUNDARY (d
))
7503 boolean prevchar
, thischar
;
7505 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
7506 if (AT_STRINGS_BEG (d
) || AT_STRINGS_END (d
))
7511 prevchar
= WORDCHAR_P (d
- 1);
7512 thischar
= WORDCHAR_P (d
);
7513 if (prevchar
!= thischar
)
7520 CASE (notwordbound
):
7522 boolean prevchar
, thischar
;
7524 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
7525 if (AT_STRINGS_BEG (d
) || AT_STRINGS_END (d
))
7528 prevchar
= WORDCHAR_P (d
- 1);
7529 thischar
= WORDCHAR_P (d
);
7530 if (prevchar
!= thischar
)
7537 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
7538 if (!AT_STRINGS_END (d
) && WORDCHAR_P (d
)
7539 && (AT_STRINGS_BEG (d
) || !WORDCHAR_P (d
- 1)))
7546 DEBUG_PRINT1 ("EXECUTING wordend.\n");
7547 if (!AT_STRINGS_BEG (d
) && WORDCHAR_P (d
- 1)
7548 && (AT_STRINGS_END (d
) || !WORDCHAR_P (d
)))
7556 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
7557 if (PTR_CHAR_POS ((unsigned char *) d
) >= point
)
7562 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
7563 if (PTR_CHAR_POS ((unsigned char *) d
) != point
)
7568 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
7569 if (PTR_CHAR_POS ((unsigned char *) d
) <= point
)
7574 DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt
);
7579 DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
7583 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
7585 if (SYNTAX (d
[-1]) != (enum syntaxcode
) mcnt
)
7587 SET_REGS_MATCHED ();
7590 CASE (notsyntaxspec
):
7591 DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt
);
7593 goto matchnotsyntax
;
7596 DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
7600 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
7602 if (SYNTAX (d
[-1]) == (enum syntaxcode
) mcnt
)
7604 SET_REGS_MATCHED ();
7607 #else /* not emacs */
7609 DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
7611 if (!WORDCHAR_P (d
))
7613 SET_REGS_MATCHED ();
7618 DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
7622 SET_REGS_MATCHED ();
7625 #endif /* not emacs */
7631 continue; /* Successfully executed one pattern command; keep going. */
7635 /* We goto here if a matching operation fails. */
7637 if (!FAIL_STACK_EMPTY ())
7638 { /* A restart point is known. Restore to that state. */
7639 DEBUG_PRINT1 ("\nFAIL:\n");
7640 POP_FAILURE_POINT (d
, p
,
7641 lowest_active_reg
, highest_active_reg
,
7642 regstart
, regend
, reg_info
);
7644 /* If this failure point is a dummy, try the next one. */
7648 /* If we failed to the end of the pattern, don't examine *p. */
7652 boolean is_a_jump_n
= false;
7654 /* If failed to a backwards jump that's part of a repetition
7655 loop, need to pop this failure point and use the next one. */
7656 switch ((re_opcode_t
) *p
)
7660 case maybe_pop_jump
:
7661 case pop_failure_jump
:
7664 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
7667 if ((is_a_jump_n
&& (re_opcode_t
) *p1
== succeed_n
)
7669 && (re_opcode_t
) *p1
== on_failure_jump
))
7677 if (d
>= string1
&& d
<= end1
)
7681 break; /* Matching at this starting point really fails. */
7685 goto restore_best_regs
;
7689 return -1; /* Failure to match. */
7692 /* Subroutine definitions for re_match_2. */
7695 /* We are passed P pointing to a register number after a start_memory.
7697 Return true if the pattern up to the corresponding stop_memory can
7698 match the empty string, and false otherwise.
7700 If we find the matching stop_memory, sets P to point to one past its number.
7701 Otherwise, sets P to an undefined byte less than or equal to END.
7703 We don't handle duplicates properly (yet). */
7706 PREFIX(group_match_null_string_p
) (p
, end
, reg_info
)
7708 PREFIX(register_info_type
) *reg_info
;
7711 /* Point to after the args to the start_memory. */
7712 UCHAR_T
*p1
= *p
+ 2;
7716 /* Skip over opcodes that can match nothing, and return true or
7717 false, as appropriate, when we get to one that can't, or to the
7718 matching stop_memory. */
7720 switch ((re_opcode_t
) *p1
)
7722 /* Could be either a loop or a series of alternatives. */
7723 case on_failure_jump
:
7725 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
7727 /* If the next operation is not a jump backwards in the
7732 /* Go through the on_failure_jumps of the alternatives,
7733 seeing if any of the alternatives cannot match nothing.
7734 The last alternative starts with only a jump,
7735 whereas the rest start with on_failure_jump and end
7736 with a jump, e.g., here is the pattern for `a|b|c':
7738 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
7739 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
7742 So, we have to first go through the first (n-1)
7743 alternatives and then deal with the last one separately. */
7746 /* Deal with the first (n-1) alternatives, which start
7747 with an on_failure_jump (see above) that jumps to right
7748 past a jump_past_alt. */
7750 while ((re_opcode_t
) p1
[mcnt
-(1+OFFSET_ADDRESS_SIZE
)] ==
7753 /* `mcnt' holds how many bytes long the alternative
7754 is, including the ending `jump_past_alt' and
7757 if (!PREFIX(alt_match_null_string_p
) (p1
, p1
+ mcnt
-
7758 (1 + OFFSET_ADDRESS_SIZE
),
7762 /* Move to right after this alternative, including the
7766 /* Break if it's the beginning of an n-th alternative
7767 that doesn't begin with an on_failure_jump. */
7768 if ((re_opcode_t
) *p1
!= on_failure_jump
)
7771 /* Still have to check that it's not an n-th
7772 alternative that starts with an on_failure_jump. */
7774 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
7775 if ((re_opcode_t
) p1
[mcnt
-(1+OFFSET_ADDRESS_SIZE
)] !=
7778 /* Get to the beginning of the n-th alternative. */
7779 p1
-= 1 + OFFSET_ADDRESS_SIZE
;
7784 /* Deal with the last alternative: go back and get number
7785 of the `jump_past_alt' just before it. `mcnt' contains
7786 the length of the alternative. */
7787 EXTRACT_NUMBER (mcnt
, p1
- OFFSET_ADDRESS_SIZE
);
7789 if (!PREFIX(alt_match_null_string_p
) (p1
, p1
+ mcnt
, reg_info
))
7792 p1
+= mcnt
; /* Get past the n-th alternative. */
7798 assert (p1
[1] == **p
);
7804 if (!PREFIX(common_op_match_null_string_p
) (&p1
, end
, reg_info
))
7807 } /* while p1 < end */
7810 } /* group_match_null_string_p */
7813 /* Similar to group_match_null_string_p, but doesn't deal with alternatives:
7814 It expects P to be the first byte of a single alternative and END one
7815 byte past the last. The alternative can contain groups. */
7818 PREFIX(alt_match_null_string_p
) (p
, end
, reg_info
)
7820 PREFIX(register_info_type
) *reg_info
;
7827 /* Skip over opcodes that can match nothing, and break when we get
7828 to one that can't. */
7830 switch ((re_opcode_t
) *p1
)
7833 case on_failure_jump
:
7835 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
7840 if (!PREFIX(common_op_match_null_string_p
) (&p1
, end
, reg_info
))
7843 } /* while p1 < end */
7846 } /* alt_match_null_string_p */
7849 /* Deals with the ops common to group_match_null_string_p and
7850 alt_match_null_string_p.
7852 Sets P to one after the op and its arguments, if any. */
7855 PREFIX(common_op_match_null_string_p
) (p
, end
, reg_info
)
7857 PREFIX(register_info_type
) *reg_info
;
7864 switch ((re_opcode_t
) *p1
++)
7884 assert (reg_no
> 0 && reg_no
<= MAX_REGNUM
);
7885 ret
= PREFIX(group_match_null_string_p
) (&p1
, end
, reg_info
);
7887 /* Have to set this here in case we're checking a group which
7888 contains a group and a back reference to it. */
7890 if (REG_MATCH_NULL_STRING_P (reg_info
[reg_no
]) == MATCH_NULL_UNSET_VALUE
)
7891 REG_MATCH_NULL_STRING_P (reg_info
[reg_no
]) = ret
;
7897 /* If this is an optimized succeed_n for zero times, make the jump. */
7899 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
7907 /* Get to the number of times to succeed. */
7908 p1
+= OFFSET_ADDRESS_SIZE
;
7909 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
7913 p1
-= 2 * OFFSET_ADDRESS_SIZE
;
7914 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
7922 if (!REG_MATCH_NULL_STRING_P (reg_info
[*p1
]))
7927 p1
+= 2 * OFFSET_ADDRESS_SIZE
;
7930 /* All other opcodes mean we cannot match the empty string. */
7936 } /* common_op_match_null_string_p */
7939 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
7940 bytes; nonzero otherwise. */
7943 PREFIX(bcmp_translate
) (s1
, s2
, len
, translate
)
7944 const CHAR_T
*s1
, *s2
;
7946 RE_TRANSLATE_TYPE translate
;
7948 register const UCHAR_T
*p1
= (const UCHAR_T
*) s1
;
7949 register const UCHAR_T
*p2
= (const UCHAR_T
*) s2
;
7953 if (((*p1
<=0xff)?translate
[*p1
++]:*p1
++)
7954 != ((*p2
<=0xff)?translate
[*p2
++]:*p2
++))
7957 if (translate
[*p1
++] != translate
[*p2
++]) return 1;
7965 #else /* not INSIDE_RECURSION */
7967 /* Entry points for GNU code. */
7969 /* re_compile_pattern is the GNU regular expression compiler: it
7970 compiles PATTERN (of length SIZE) and puts the result in BUFP.
7971 Returns 0 if the pattern was valid, otherwise an error string.
7973 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
7974 are set in BUFP on entry.
7976 We call regex_compile to do the actual compilation. */
7979 re_compile_pattern (pattern
, length
, bufp
)
7980 const char *pattern
;
7982 struct re_pattern_buffer
*bufp
;
7986 /* GNU code is written to assume at least RE_NREGS registers will be set
7987 (and at least one extra will be -1). */
7988 bufp
->regs_allocated
= REGS_UNALLOCATED
;
7990 /* And GNU code determines whether or not to get register information
7991 by passing null for the REGS argument to re_match, etc., not by
7995 /* Match anchors at newline. */
7996 bufp
->newline_anchor
= 1;
7999 if (MB_CUR_MAX
!= 1)
8000 ret
= wcs_regex_compile (pattern
, length
, re_syntax_options
, bufp
);
8003 ret
= byte_regex_compile (pattern
, length
, re_syntax_options
, bufp
);
8007 return gettext (re_error_msgid
+ re_error_msgid_idx
[(int) ret
]);
8010 weak_alias (__re_compile_pattern
, re_compile_pattern
)
8013 /* Entry points compatible with 4.2 BSD regex library. We don't define
8014 them unless specifically requested. */
8016 #if defined _REGEX_RE_COMP || defined _LIBC
8018 /* BSD has one and only one pattern buffer. */
8019 static struct re_pattern_buffer re_comp_buf
;
8023 /* Make these definitions weak in libc, so POSIX programs can redefine
8024 these names if they don't use our functions, and still use
8025 regcomp/regexec below without link errors. */
8035 if (!re_comp_buf
.buffer
)
8036 return gettext ("No previous regular expression");
8040 if (!re_comp_buf
.buffer
)
8042 re_comp_buf
.buffer
= (unsigned char *) malloc (200);
8043 if (re_comp_buf
.buffer
== NULL
)
8044 return (char *) gettext (re_error_msgid
8045 + re_error_msgid_idx
[(int) REG_ESPACE
]);
8046 re_comp_buf
.allocated
= 200;
8048 re_comp_buf
.fastmap
= (char *) malloc (1 << BYTEWIDTH
);
8049 if (re_comp_buf
.fastmap
== NULL
)
8050 return (char *) gettext (re_error_msgid
8051 + re_error_msgid_idx
[(int) REG_ESPACE
]);
8054 /* Since `re_exec' always passes NULL for the `regs' argument, we
8055 don't need to initialize the pattern buffer fields which affect it. */
8057 /* Match anchors at newlines. */
8058 re_comp_buf
.newline_anchor
= 1;
8061 if (MB_CUR_MAX
!= 1)
8062 ret
= wcs_regex_compile (s
, strlen (s
), re_syntax_options
, &re_comp_buf
);
8065 ret
= byte_regex_compile (s
, strlen (s
), re_syntax_options
, &re_comp_buf
);
8070 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
8071 return (char *) gettext (re_error_msgid
+ re_error_msgid_idx
[(int) ret
]);
8082 const int len
= strlen (s
);
8084 0 <= re_search (&re_comp_buf
, s
, len
, 0, len
, (struct re_registers
*) 0);
8087 #endif /* _REGEX_RE_COMP */
8089 /* POSIX.2 functions. Don't define these for Emacs. */
8093 /* regcomp takes a regular expression as a string and compiles it.
8095 PREG is a regex_t *. We do not expect any fields to be initialized,
8096 since POSIX says we shouldn't. Thus, we set
8098 `buffer' to the compiled pattern;
8099 `used' to the length of the compiled pattern;
8100 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
8101 REG_EXTENDED bit in CFLAGS is set; otherwise, to
8102 RE_SYNTAX_POSIX_BASIC;
8103 `newline_anchor' to REG_NEWLINE being set in CFLAGS;
8104 `fastmap' to an allocated space for the fastmap;
8105 `fastmap_accurate' to zero;
8106 `re_nsub' to the number of subexpressions in PATTERN.
8108 PATTERN is the address of the pattern string.
8110 CFLAGS is a series of bits which affect compilation.
8112 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
8113 use POSIX basic syntax.
8115 If REG_NEWLINE is set, then . and [^...] don't match newline.
8116 Also, regexec will try a match beginning after every newline.
8118 If REG_ICASE is set, then we considers upper- and lowercase
8119 versions of letters to be equivalent when matching.
8121 If REG_NOSUB is set, then when PREG is passed to regexec, that
8122 routine will report only success or failure, and nothing about the
8125 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
8126 the return codes and their meanings.) */
8129 regcomp (preg
, pattern
, cflags
)
8131 const char *pattern
;
8136 = (cflags
& REG_EXTENDED
) ?
8137 RE_SYNTAX_POSIX_EXTENDED
: RE_SYNTAX_POSIX_BASIC
;
8139 /* regex_compile will allocate the space for the compiled pattern. */
8141 preg
->allocated
= 0;
8144 /* Try to allocate space for the fastmap. */
8145 preg
->fastmap
= (char *) malloc (1 << BYTEWIDTH
);
8147 if (cflags
& REG_ICASE
)
8152 = (RE_TRANSLATE_TYPE
) malloc (CHAR_SET_SIZE
8153 * sizeof (*(RE_TRANSLATE_TYPE
)0));
8154 if (preg
->translate
== NULL
)
8155 return (int) REG_ESPACE
;
8157 /* Map uppercase characters to corresponding lowercase ones. */
8158 for (i
= 0; i
< CHAR_SET_SIZE
; i
++)
8159 preg
->translate
[i
] = ISUPPER (i
) ? TOLOWER (i
) : i
;
8162 preg
->translate
= NULL
;
8164 /* If REG_NEWLINE is set, newlines are treated differently. */
8165 if (cflags
& REG_NEWLINE
)
8166 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
8167 syntax
&= ~RE_DOT_NEWLINE
;
8168 syntax
|= RE_HAT_LISTS_NOT_NEWLINE
;
8169 /* It also changes the matching behavior. */
8170 preg
->newline_anchor
= 1;
8173 preg
->newline_anchor
= 0;
8175 preg
->no_sub
= !!(cflags
& REG_NOSUB
);
8177 /* POSIX says a null character in the pattern terminates it, so we
8178 can use strlen here in compiling the pattern. */
8180 if (MB_CUR_MAX
!= 1)
8181 ret
= wcs_regex_compile (pattern
, strlen (pattern
), syntax
, preg
);
8184 ret
= byte_regex_compile (pattern
, strlen (pattern
), syntax
, preg
);
8186 /* POSIX doesn't distinguish between an unmatched open-group and an
8187 unmatched close-group: both are REG_EPAREN. */
8188 if (ret
== REG_ERPAREN
) ret
= REG_EPAREN
;
8190 if (ret
== REG_NOERROR
&& preg
->fastmap
)
8192 /* Compute the fastmap now, since regexec cannot modify the pattern
8194 if (re_compile_fastmap (preg
) == -2)
8196 /* Some error occurred while computing the fastmap, just forget
8198 free (preg
->fastmap
);
8199 preg
->fastmap
= NULL
;
8206 weak_alias (__regcomp
, regcomp
)
8210 /* regexec searches for a given pattern, specified by PREG, in the
8213 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
8214 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
8215 least NMATCH elements, and we set them to the offsets of the
8216 corresponding matched substrings.
8218 EFLAGS specifies `execution flags' which affect matching: if
8219 REG_NOTBOL is set, then ^ does not match at the beginning of the
8220 string; if REG_NOTEOL is set, then $ does not match at the end.
8222 We return 0 if we find a match and REG_NOMATCH if not. */
8225 regexec (preg
, string
, nmatch
, pmatch
, eflags
)
8226 const regex_t
*preg
;
8229 regmatch_t pmatch
[];
8233 struct re_registers regs
;
8234 regex_t private_preg
;
8235 int len
= strlen (string
);
8236 boolean want_reg_info
= !preg
->no_sub
&& nmatch
> 0;
8238 private_preg
= *preg
;
8240 private_preg
.not_bol
= !!(eflags
& REG_NOTBOL
);
8241 private_preg
.not_eol
= !!(eflags
& REG_NOTEOL
);
8243 /* The user has told us exactly how many registers to return
8244 information about, via `nmatch'. We have to pass that on to the
8245 matching routines. */
8246 private_preg
.regs_allocated
= REGS_FIXED
;
8250 regs
.num_regs
= nmatch
;
8251 regs
.start
= TALLOC (nmatch
* 2, regoff_t
);
8252 if (regs
.start
== NULL
)
8253 return (int) REG_NOMATCH
;
8254 regs
.end
= regs
.start
+ nmatch
;
8257 /* Perform the searching operation. */
8258 ret
= re_search (&private_preg
, string
, len
,
8259 /* start: */ 0, /* range: */ len
,
8260 want_reg_info
? ®s
: (struct re_registers
*) 0);
8262 /* Copy the register information to the POSIX structure. */
8269 for (r
= 0; r
< nmatch
; r
++)
8271 pmatch
[r
].rm_so
= regs
.start
[r
];
8272 pmatch
[r
].rm_eo
= regs
.end
[r
];
8276 /* If we needed the temporary register info, free the space now. */
8280 /* We want zero return to mean success, unlike `re_search'. */
8281 return ret
>= 0 ? (int) REG_NOERROR
: (int) REG_NOMATCH
;
8284 weak_alias (__regexec
, regexec
)
8288 /* Returns a message corresponding to an error code, ERRCODE, returned
8289 from either regcomp or regexec. We don't use PREG here. */
8292 regerror (errcode
, preg
, errbuf
, errbuf_size
)
8294 const regex_t
*preg
;
8302 || errcode
>= (int) (sizeof (re_error_msgid_idx
)
8303 / sizeof (re_error_msgid_idx
[0])))
8304 /* Only error codes returned by the rest of the code should be passed
8305 to this routine. If we are given anything else, or if other regex
8306 code generates an invalid error code, then the program has a bug.
8307 Dump core so we can fix it. */
8310 msg
= gettext (re_error_msgid
+ re_error_msgid_idx
[errcode
]);
8312 msg_size
= strlen (msg
) + 1; /* Includes the null. */
8314 if (errbuf_size
!= 0)
8316 if (msg_size
> errbuf_size
)
8318 #if defined HAVE_MEMPCPY || defined _LIBC
8319 *((char *) __mempcpy (errbuf
, msg
, errbuf_size
- 1)) = '\0';
8321 memcpy (errbuf
, msg
, errbuf_size
- 1);
8322 errbuf
[errbuf_size
- 1] = 0;
8326 memcpy (errbuf
, msg
, msg_size
);
8332 weak_alias (__regerror
, regerror
)
8336 /* Free dynamically allocated space used by PREG. */
8342 if (preg
->buffer
!= NULL
)
8343 free (preg
->buffer
);
8344 preg
->buffer
= NULL
;
8346 preg
->allocated
= 0;
8349 if (preg
->fastmap
!= NULL
)
8350 free (preg
->fastmap
);
8351 preg
->fastmap
= NULL
;
8352 preg
->fastmap_accurate
= 0;
8354 if (preg
->translate
!= NULL
)
8355 free (preg
->translate
);
8356 preg
->translate
= NULL
;
8359 weak_alias (__regfree
, regfree
)
8362 #endif /* not emacs */
8364 #endif /* not INSIDE_RECURSION */
8368 #undef STORE_NUMBER_AND_INCR
8369 #undef EXTRACT_NUMBER
8370 #undef EXTRACT_NUMBER_AND_INCR
8372 #undef DEBUG_PRINT_COMPILED_PATTERN
8373 #undef DEBUG_PRINT_DOUBLE_STRING
8375 #undef INIT_FAIL_STACK
8376 #undef RESET_FAIL_STACK
8377 #undef DOUBLE_FAIL_STACK
8378 #undef PUSH_PATTERN_OP
8379 #undef PUSH_FAILURE_POINTER
8380 #undef PUSH_FAILURE_INT
8381 #undef PUSH_FAILURE_ELT
8382 #undef POP_FAILURE_POINTER
8383 #undef POP_FAILURE_INT
8384 #undef POP_FAILURE_ELT
8387 #undef PUSH_FAILURE_POINT
8388 #undef POP_FAILURE_POINT
8390 #undef REG_UNSET_VALUE
8398 #undef INIT_BUF_SIZE
8399 #undef GET_BUFFER_SPACE
8407 #undef EXTEND_BUFFER
8408 #undef GET_UNSIGNED_NUMBER
8409 #undef FREE_STACK_RETURN
8411 # undef POINTER_TO_OFFSET
8412 # undef MATCHING_IN_FRST_STRING
8414 # undef AT_STRINGS_BEG
8415 # undef AT_STRINGS_END
8418 # undef FREE_VARIABLES
8419 # undef NO_HIGHEST_ACTIVE_REG
8420 # undef NO_LOWEST_ACTIVE_REG
8424 # undef COMPILED_BUFFER_VAR
8425 # undef OFFSET_ADDRESS_SIZE
8426 # undef CHAR_CLASS_SIZE
8433 # define DEFINED_ONCE