1 /* Extended regular expression matching and search library,
3 (Implements POSIX draft P10003.2/D11.2, except for
4 internationalization features.)
6 Copyright (C) 1993 Free Software Foundation, Inc.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
22 /* AIX requires this to be the first thing in the file. */
23 #if defined (_AIX) && !defined (REGEX_MALLOC)
30 #if defined (CONFIG_BROKETS)
31 /* We use <config.h> instead of "config.h" so that a compilation
32 using -I. -I$srcdir will use ./config.h rather than $srcdir/config.h
33 (which it would do because it found this file in $srcdir). */
40 /* We need this for `regex.h', and perhaps for the Emacs include files. */
41 #include <sys/types.h>
47 /* The `emacs' switch turns on certain matching commands
48 that make sense only in Emacs. */
55 /* Emacs uses `NULL' as a predicate. */
68 /* We used to test for `BSTRING' here, but only GCC and Emacs define
69 `BSTRING', as far as I know, and neither of them use this code. */
70 #if HAVE_STRING_H || STDC_HEADERS
73 #define bcmp(s1, s2, n) memcmp ((s1), (s2), (n))
76 #define bcopy(s, d, n) memcpy ((d), (s), (n))
79 #define bzero(s, n) memset ((s), 0, (n))
85 /* Define the syntax stuff for \<, \>, etc. */
87 /* This must be nonzero for the wordchar and notwordchar pattern
88 commands in re_match_2. */
95 extern char *re_syntax_table
;
97 #else /* not SYNTAX_TABLE */
99 /* How many characters in the character set. */
100 #define CHAR_SET_SIZE 256
102 static char re_syntax_table
[CHAR_SET_SIZE
];
113 bzero (re_syntax_table
, sizeof re_syntax_table
);
115 for (c
= 'a'; c
<= 'z'; c
++)
116 re_syntax_table
[c
] = Sword
;
118 for (c
= 'A'; c
<= 'Z'; c
++)
119 re_syntax_table
[c
] = Sword
;
121 for (c
= '0'; c
<= '9'; c
++)
122 re_syntax_table
[c
] = Sword
;
124 re_syntax_table
['_'] = Sword
;
129 #endif /* not SYNTAX_TABLE */
131 #define SYNTAX(c) re_syntax_table[c]
133 #endif /* not emacs */
135 /* Get the interface, including the syntax bits. */
138 /* isalpha etc. are used for the character classes. */
141 /* Jim Meyering writes:
143 "... Some ctype macros are valid only for character codes that
144 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
145 using /bin/cc or gcc but without giving an ansi option). So, all
146 ctype uses should be through macros like ISPRINT... If
147 STDC_HEADERS is defined, then autoconf has verified that the ctype
148 macros don't need to be guarded with references to isascii. ...
149 Defining isascii to 1 should let any compiler worth its salt
150 eliminate the && through constant folding." */
151 #if ! defined (isascii) || defined (STDC_HEADERS)
157 #define ISBLANK(c) (isascii (c) && isblank (c))
159 #define ISBLANK(c) ((c) == ' ' || (c) == '\t')
162 #define ISGRAPH(c) (isascii (c) && isgraph (c))
164 #define ISGRAPH(c) (isascii (c) && isprint (c) && !isspace (c))
167 #define ISPRINT(c) (isascii (c) && isprint (c))
168 #define ISDIGIT(c) (isascii (c) && isdigit (c))
169 #define ISALNUM(c) (isascii (c) && isalnum (c))
170 #define ISALPHA(c) (isascii (c) && isalpha (c))
171 #define ISCNTRL(c) (isascii (c) && iscntrl (c))
172 #define ISLOWER(c) (isascii (c) && islower (c))
173 #define ISPUNCT(c) (isascii (c) && ispunct (c))
174 #define ISSPACE(c) (isascii (c) && isspace (c))
175 #define ISUPPER(c) (isascii (c) && isupper (c))
176 #define ISXDIGIT(c) (isascii (c) && isxdigit (c))
182 /* We remove any previous definition of `SIGN_EXTEND_CHAR',
183 since ours (we hope) works properly with all combinations of
184 machines, compilers, `char' and `unsigned char' argument types.
185 (Per Bothner suggested the basic approach.) */
186 #undef SIGN_EXTEND_CHAR
188 #define SIGN_EXTEND_CHAR(c) ((signed char) (c))
189 #else /* not __STDC__ */
190 /* As in Harbison and Steele. */
191 #define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
194 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
195 use `alloca' instead of `malloc'. This is because using malloc in
196 re_search* or re_match* could cause memory leaks when C-g is used in
197 Emacs; also, malloc is slower and causes storage fragmentation. On
198 the other hand, malloc is more portable, and easier to debug.
200 Because we sometimes use alloca, some routines have to be macros,
201 not functions -- `alloca'-allocated space disappears at the end of the
202 function it is called in. */
206 #define REGEX_ALLOCATE malloc
207 #define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
209 #else /* not REGEX_MALLOC */
211 /* Emacs already defines alloca, sometimes. */
214 /* Make alloca work the best possible way. */
216 #define alloca __builtin_alloca
217 #else /* not __GNUC__ */
220 #else /* not __GNUC__ or HAVE_ALLOCA_H */
221 #ifndef _AIX /* Already did AIX, up at the top. */
223 #endif /* not _AIX */
224 #endif /* not HAVE_ALLOCA_H */
225 #endif /* not __GNUC__ */
227 #endif /* not alloca */
229 #define REGEX_ALLOCATE alloca
231 /* Assumes a `char *destination' variable. */
232 #define REGEX_REALLOCATE(source, osize, nsize) \
233 (destination = (char *) alloca (nsize), \
234 bcopy (source, destination, osize), \
237 #endif /* not REGEX_MALLOC */
240 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
241 `string1' or just past its end. This works if PTR is NULL, which is
243 #define FIRST_STRING_P(ptr) \
244 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
246 /* (Re)Allocate N items of type T using malloc, or fail. */
247 #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
248 #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
249 #define RETALLOC_IF(addr, n, t) \
250 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
251 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
253 #define BYTEWIDTH 8 /* In bits. */
255 #define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
257 #define MAX(a, b) ((a) > (b) ? (a) : (b))
258 #define MIN(a, b) ((a) < (b) ? (a) : (b))
260 typedef char boolean
;
264 /* These are the command codes that appear in compiled regular
265 expressions. Some opcodes are followed by argument bytes. A
266 command code can specify any interpretation whatsoever for its
267 arguments. Zero bytes may appear in the compiled regular expression.
269 The value of `exactn' is needed in search.c (search_buffer) in Emacs.
270 So regex.h defines a symbol `RE_EXACTN_VALUE' to be 1; the value of
271 `exactn' we use here must also be 1. */
277 /* Followed by one byte giving n, then by n literal bytes. */
280 /* Matches any (more or less) character. */
283 /* Matches any one char belonging to specified set. First
284 following byte is number of bitmap bytes. Then come bytes
285 for a bitmap saying which chars are in. Bits in each byte
286 are ordered low-bit-first. A character is in the set if its
287 bit is 1. A character too large to have a bit in the map is
288 automatically not in the set. */
291 /* Same parameters as charset, but match any character that is
292 not one of those specified. */
295 /* Start remembering the text that is matched, for storing in a
296 register. Followed by one byte with the register number, in
297 the range 0 to one less than the pattern buffer's re_nsub
298 field. Then followed by one byte with the number of groups
299 inner to this one. (This last has to be part of the
300 start_memory only because we need it in the on_failure_jump
304 /* Stop remembering the text that is matched and store it in a
305 memory register. Followed by one byte with the register
306 number, in the range 0 to one less than `re_nsub' in the
307 pattern buffer, and one byte with the number of inner groups,
308 just like `start_memory'. (We need the number of inner
309 groups here because we don't have any easy way of finding the
310 corresponding start_memory when we're at a stop_memory.) */
313 /* Match a duplicate of something remembered. Followed by one
314 byte containing the register number. */
317 /* Fail unless at beginning of line. */
320 /* Fail unless at end of line. */
323 /* Succeeds if at beginning of buffer (if emacs) or at beginning
324 of string to be matched (if not). */
327 /* Analogously, for end of buffer/string. */
330 /* Followed by two byte relative address to which to jump. */
333 /* Same as jump, but marks the end of an alternative. */
336 /* Followed by two-byte relative address of place to resume at
337 in case of failure. */
340 /* Like on_failure_jump, but pushes a placeholder instead of the
341 current string position when executed. */
342 on_failure_keep_string_jump
,
344 /* Throw away latest failure point and then jump to following
345 two-byte relative address. */
348 /* Change to pop_failure_jump if know won't have to backtrack to
349 match; otherwise change to jump. This is used to jump
350 back to the beginning of a repeat. If what follows this jump
351 clearly won't match what the repeat does, such that we can be
352 sure that there is no use backtracking out of repetitions
353 already matched, then we change it to a pop_failure_jump.
354 Followed by two-byte address. */
357 /* Jump to following two-byte address, and push a dummy failure
358 point. This failure point will be thrown away if an attempt
359 is made to use it for a failure. A `+' construct makes this
360 before the first repeat. Also used as an intermediary kind
361 of jump when compiling an alternative. */
364 /* Push a dummy failure point and continue. Used at the end of
368 /* Followed by two-byte relative address and two-byte number n.
369 After matching N times, jump to the address upon failure. */
372 /* Followed by two-byte relative address, and two-byte number n.
373 Jump to the address N times, then fail. */
376 /* Set the following two-byte relative address to the
377 subsequent two-byte number. The address *includes* the two
381 wordchar
, /* Matches any word-constituent character. */
382 notwordchar
, /* Matches any char that is not a word-constituent. */
384 wordbeg
, /* Succeeds if at word beginning. */
385 wordend
, /* Succeeds if at word end. */
387 wordbound
, /* Succeeds if at a word boundary. */
388 notwordbound
/* Succeeds if not at a word boundary. */
391 ,before_dot
, /* Succeeds if before point. */
392 at_dot
, /* Succeeds if at point. */
393 after_dot
, /* Succeeds if after point. */
395 /* Matches any character whose syntax is specified. Followed by
396 a byte which contains a syntax code, e.g., Sword. */
399 /* Matches any character whose syntax is not that specified. */
404 /* Common operations on the compiled pattern. */
406 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */
408 #define STORE_NUMBER(destination, number) \
410 (destination)[0] = (number) & 0377; \
411 (destination)[1] = (number) >> 8; \
414 /* Same as STORE_NUMBER, except increment DESTINATION to
415 the byte after where the number is stored. Therefore, DESTINATION
416 must be an lvalue. */
418 #define STORE_NUMBER_AND_INCR(destination, number) \
420 STORE_NUMBER (destination, number); \
421 (destination) += 2; \
424 /* Put into DESTINATION a number stored in two contiguous bytes starting
427 #define EXTRACT_NUMBER(destination, source) \
429 (destination) = *(source) & 0377; \
430 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
435 extract_number (dest
, source
)
437 unsigned char *source
;
439 int temp
= SIGN_EXTEND_CHAR (*(source
+ 1));
440 *dest
= *source
& 0377;
444 #ifndef EXTRACT_MACROS /* To debug the macros. */
445 #undef EXTRACT_NUMBER
446 #define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
447 #endif /* not EXTRACT_MACROS */
451 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
452 SOURCE must be an lvalue. */
454 #define EXTRACT_NUMBER_AND_INCR(destination, source) \
456 EXTRACT_NUMBER (destination, source); \
462 extract_number_and_incr (destination
, source
)
464 unsigned char **source
;
466 extract_number (destination
, *source
);
470 #ifndef EXTRACT_MACROS
471 #undef EXTRACT_NUMBER_AND_INCR
472 #define EXTRACT_NUMBER_AND_INCR(dest, src) \
473 extract_number_and_incr (&dest, &src)
474 #endif /* not EXTRACT_MACROS */
478 /* If DEBUG is defined, Regex prints many voluminous messages about what
479 it is doing (if the variable `debug' is nonzero). If linked with the
480 main program in `iregex.c', you can enter patterns and strings
481 interactively. And if linked with the main program in `main.c' and
482 the other test files, you can run the already-written tests. */
486 /* We use standard I/O for debugging. */
489 /* It is useful to test things that ``must'' be true when debugging. */
492 static int debug
= 0;
494 #define DEBUG_STATEMENT(e) e
495 #define DEBUG_PRINT1(x) if (debug) printf (x)
496 #define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
497 #define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
498 #define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
499 #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
500 if (debug) print_partial_compiled_pattern (s, e)
501 #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
502 if (debug) print_double_string (w, s1, sz1, s2, sz2)
505 extern void printchar ();
507 /* Print the fastmap in human-readable form. */
510 print_fastmap (fastmap
)
513 unsigned was_a_range
= 0;
516 while (i
< (1 << BYTEWIDTH
))
522 while (i
< (1 << BYTEWIDTH
) && fastmap
[i
])
538 /* Print a compiled pattern string in human-readable form, starting at
539 the START pointer into it and ending just before the pointer END. */
542 print_partial_compiled_pattern (start
, end
)
543 unsigned char *start
;
547 unsigned char *p
= start
;
548 unsigned char *pend
= end
;
556 /* Loop over pattern commands. */
559 printf ("%d:\t", p
- start
);
561 switch ((re_opcode_t
) *p
++)
569 printf ("/exactn/%d", mcnt
);
580 printf ("/start_memory/%d/%d", mcnt
, *p
++);
585 printf ("/stop_memory/%d/%d", mcnt
, *p
++);
589 printf ("/duplicate/%d", *p
++);
599 register int c
, last
= -100;
600 register int in_range
= 0;
602 printf ("/charset [%s",
603 (re_opcode_t
) *(p
- 1) == charset_not
? "^" : "");
605 assert (p
+ *p
< pend
);
607 for (c
= 0; c
< 256; c
++)
609 && (p
[1 + (c
/8)] & (1 << (c
% 8))))
611 /* Are we starting a range? */
612 if (last
+ 1 == c
&& ! in_range
)
617 /* Have we broken a range? */
618 else if (last
+ 1 != c
&& in_range
)
647 case on_failure_jump
:
648 extract_number_and_incr (&mcnt
, &p
);
649 printf ("/on_failure_jump to %d", p
+ mcnt
- start
);
652 case on_failure_keep_string_jump
:
653 extract_number_and_incr (&mcnt
, &p
);
654 printf ("/on_failure_keep_string_jump to %d", p
+ mcnt
- start
);
657 case dummy_failure_jump
:
658 extract_number_and_incr (&mcnt
, &p
);
659 printf ("/dummy_failure_jump to %d", p
+ mcnt
- start
);
662 case push_dummy_failure
:
663 printf ("/push_dummy_failure");
667 extract_number_and_incr (&mcnt
, &p
);
668 printf ("/maybe_pop_jump to %d", p
+ mcnt
- start
);
671 case pop_failure_jump
:
672 extract_number_and_incr (&mcnt
, &p
);
673 printf ("/pop_failure_jump to %d", p
+ mcnt
- start
);
677 extract_number_and_incr (&mcnt
, &p
);
678 printf ("/jump_past_alt to %d", p
+ mcnt
- start
);
682 extract_number_and_incr (&mcnt
, &p
);
683 printf ("/jump to %d", p
+ mcnt
- start
);
687 extract_number_and_incr (&mcnt
, &p
);
688 extract_number_and_incr (&mcnt2
, &p
);
689 printf ("/succeed_n to %d, %d times", p
+ mcnt
- start
, mcnt2
);
693 extract_number_and_incr (&mcnt
, &p
);
694 extract_number_and_incr (&mcnt2
, &p
);
695 printf ("/jump_n to %d, %d times", p
+ mcnt
- start
, mcnt2
);
699 extract_number_and_incr (&mcnt
, &p
);
700 extract_number_and_incr (&mcnt2
, &p
);
701 printf ("/set_number_at location %d to %d", p
+ mcnt
- start
, mcnt2
);
705 printf ("/wordbound");
709 printf ("/notwordbound");
721 printf ("/before_dot");
729 printf ("/after_dot");
733 printf ("/syntaxspec");
735 printf ("/%d", mcnt
);
739 printf ("/notsyntaxspec");
741 printf ("/%d", mcnt
);
746 printf ("/wordchar");
750 printf ("/notwordchar");
762 printf ("?%d", *(p
-1));
768 printf ("%d:\tend of pattern.\n", p
- start
);
773 print_compiled_pattern (bufp
)
774 struct re_pattern_buffer
*bufp
;
776 unsigned char *buffer
= bufp
->buffer
;
778 print_partial_compiled_pattern (buffer
, buffer
+ bufp
->used
);
779 printf ("%d bytes used/%d bytes allocated.\n", bufp
->used
, bufp
->allocated
);
781 if (bufp
->fastmap_accurate
&& bufp
->fastmap
)
783 printf ("fastmap: ");
784 print_fastmap (bufp
->fastmap
);
787 printf ("re_nsub: %d\t", bufp
->re_nsub
);
788 printf ("regs_alloc: %d\t", bufp
->regs_allocated
);
789 printf ("can_be_null: %d\t", bufp
->can_be_null
);
790 printf ("newline_anchor: %d\n", bufp
->newline_anchor
);
791 printf ("no_sub: %d\t", bufp
->no_sub
);
792 printf ("not_bol: %d\t", bufp
->not_bol
);
793 printf ("not_eol: %d\t", bufp
->not_eol
);
794 printf ("syntax: %d\n", bufp
->syntax
);
795 /* Perhaps we should print the translate table? */
800 print_double_string (where
, string1
, size1
, string2
, size2
)
813 if (FIRST_STRING_P (where
))
815 for (this_char
= where
- string1
; this_char
< size1
; this_char
++)
816 printchar (string1
[this_char
]);
821 for (this_char
= where
- string2
; this_char
< size2
; this_char
++)
822 printchar (string2
[this_char
]);
826 #else /* not DEBUG */
831 #define DEBUG_STATEMENT(e)
832 #define DEBUG_PRINT1(x)
833 #define DEBUG_PRINT2(x1, x2)
834 #define DEBUG_PRINT3(x1, x2, x3)
835 #define DEBUG_PRINT4(x1, x2, x3, x4)
836 #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
837 #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
839 #endif /* not DEBUG */
841 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
842 also be assigned to arbitrarily: each pattern buffer stores its own
843 syntax, so it can be changed between regex compilations. */
844 reg_syntax_t re_syntax_options
= RE_SYNTAX_EMACS
;
847 /* Specify the precise syntax of regexps for compilation. This provides
848 for compatibility for various utilities which historically have
849 different, incompatible syntaxes.
851 The argument SYNTAX is a bit mask comprised of the various bits
852 defined in regex.h. We return the old syntax. */
855 re_set_syntax (syntax
)
858 reg_syntax_t ret
= re_syntax_options
;
860 re_syntax_options
= syntax
;
864 /* This table gives an error message for each of the error codes listed
865 in regex.h. Obviously the order here has to be same as there. */
867 static const char *re_error_msg
[] =
868 { NULL
, /* REG_NOERROR */
869 "No match", /* REG_NOMATCH */
870 "Invalid regular expression", /* REG_BADPAT */
871 "Invalid collation character", /* REG_ECOLLATE */
872 "Invalid character class name", /* REG_ECTYPE */
873 "Trailing backslash", /* REG_EESCAPE */
874 "Invalid back reference", /* REG_ESUBREG */
875 "Unmatched [ or [^", /* REG_EBRACK */
876 "Unmatched ( or \\(", /* REG_EPAREN */
877 "Unmatched \\{", /* REG_EBRACE */
878 "Invalid content of \\{\\}", /* REG_BADBR */
879 "Invalid range end", /* REG_ERANGE */
880 "Memory exhausted", /* REG_ESPACE */
881 "Invalid preceding regular expression", /* REG_BADRPT */
882 "Premature end of regular expression", /* REG_EEND */
883 "Regular expression too big", /* REG_ESIZE */
884 "Unmatched ) or \\)", /* REG_ERPAREN */
887 /* Avoiding alloca during matching, to placate r_alloc. */
889 /* Define MATCH_MAY_ALLOCATE if we need to make sure that the
890 searching and matching functions should not call alloca. On some
891 systems, alloca is implemented in terms of malloc, and if we're
892 using the relocating allocator routines, then malloc could cause a
893 relocation, which might (if the strings being searched are in the
894 ralloc heap) shift the data out from underneath the regexp
897 Here's another reason to avoid allocation: Emacs insists on
898 processing input from X in a signal handler; processing X input may
899 call malloc; if input arrives while a matching routine is calling
900 malloc, then we're scrod. But Emacs can't just block input while
901 calling matching routines; then we don't notice interrupts when
902 they come in. So, Emacs blocks input around all regexp calls
903 except the matching calls, which it leaves unprotected, in the
904 faith that they will not malloc. */
906 /* Normally, this is fine. */
907 #define MATCH_MAY_ALLOCATE
909 /* But under some circumstances, it's not. */
910 #if defined (emacs) || (defined (REL_ALLOC) && defined (C_ALLOCA))
911 #undef MATCH_MAY_ALLOCATE
915 /* Failure stack declarations and macros; both re_compile_fastmap and
916 re_match_2 use a failure stack. These have to be macros because of
920 /* Number of failure points for which to initially allocate space
921 when matching. If this number is exceeded, we allocate more
922 space, so it is not a hard limit. */
923 #ifndef INIT_FAILURE_ALLOC
924 #define INIT_FAILURE_ALLOC 5
927 /* Roughly the maximum number of failure points on the stack. Would be
928 exactly that if always used MAX_FAILURE_SPACE each time we failed.
929 This is a variable only so users of regex can assign to it; we never
930 change it ourselves. */
931 int re_max_failures
= 2000;
933 typedef const unsigned char *fail_stack_elt_t
;
937 fail_stack_elt_t
*stack
;
939 unsigned avail
; /* Offset of next open position. */
942 #define FAIL_STACK_EMPTY() (fail_stack.avail == 0)
943 #define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
944 #define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
945 #define FAIL_STACK_TOP() (fail_stack.stack[fail_stack.avail])
948 /* Initialize `fail_stack'. Do `return -2' if the alloc fails. */
950 #ifdef MATCH_MAY_ALLOCATE
951 #define INIT_FAIL_STACK() \
953 fail_stack.stack = (fail_stack_elt_t *) \
954 REGEX_ALLOCATE (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t)); \
956 if (fail_stack.stack == NULL) \
959 fail_stack.size = INIT_FAILURE_ALLOC; \
960 fail_stack.avail = 0; \
963 #define INIT_FAIL_STACK() \
965 fail_stack.avail = 0; \
970 /* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
972 Return 1 if succeeds, and 0 if either ran out of memory
973 allocating space for it or it was already too large.
975 REGEX_REALLOCATE requires `destination' be declared. */
977 #define DOUBLE_FAIL_STACK(fail_stack) \
978 ((fail_stack).size > re_max_failures * MAX_FAILURE_ITEMS \
980 : ((fail_stack).stack = (fail_stack_elt_t *) \
981 REGEX_REALLOCATE ((fail_stack).stack, \
982 (fail_stack).size * sizeof (fail_stack_elt_t), \
983 ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)), \
985 (fail_stack).stack == NULL \
987 : ((fail_stack).size <<= 1, \
991 /* Push PATTERN_OP on FAIL_STACK.
993 Return 1 if was able to do so and 0 if ran out of memory allocating
995 #define PUSH_PATTERN_OP(pattern_op, fail_stack) \
996 ((FAIL_STACK_FULL () \
997 && !DOUBLE_FAIL_STACK (fail_stack)) \
999 : ((fail_stack).stack[(fail_stack).avail++] = pattern_op, \
1002 /* This pushes an item onto the failure stack. Must be a four-byte
1003 value. Assumes the variable `fail_stack'. Probably should only
1004 be called from within `PUSH_FAILURE_POINT'. */
1005 #define PUSH_FAILURE_ITEM(item) \
1006 fail_stack.stack[fail_stack.avail++] = (fail_stack_elt_t) item
1008 /* The complement operation. Assumes `fail_stack' is nonempty. */
1009 #define POP_FAILURE_ITEM() fail_stack.stack[--fail_stack.avail]
1011 /* Used to omit pushing failure point id's when we're not debugging. */
1013 #define DEBUG_PUSH PUSH_FAILURE_ITEM
1014 #define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_ITEM ()
1016 #define DEBUG_PUSH(item)
1017 #define DEBUG_POP(item_addr)
1021 /* Push the information about the state we will need
1022 if we ever fail back to it.
1024 Requires variables fail_stack, regstart, regend, reg_info, and
1025 num_regs be declared. DOUBLE_FAIL_STACK requires `destination' be
1028 Does `return FAILURE_CODE' if runs out of memory. */
1030 #define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \
1032 char *destination; \
1033 /* Must be int, so when we don't save any registers, the arithmetic \
1034 of 0 + -1 isn't done as unsigned. */ \
1037 DEBUG_STATEMENT (failure_id++); \
1038 DEBUG_STATEMENT (nfailure_points_pushed++); \
1039 DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \
1040 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\
1041 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1043 DEBUG_PRINT2 (" slots needed: %d\n", NUM_FAILURE_ITEMS); \
1044 DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \
1046 /* Ensure we have enough space allocated for what we will push. */ \
1047 while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \
1049 if (!DOUBLE_FAIL_STACK (fail_stack)) \
1050 return failure_code; \
1052 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \
1053 (fail_stack).size); \
1054 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1057 /* Push the info, starting with the registers. */ \
1058 DEBUG_PRINT1 ("\n"); \
1060 for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
1063 DEBUG_PRINT2 (" Pushing reg: %d\n", this_reg); \
1064 DEBUG_STATEMENT (num_regs_pushed++); \
1066 DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
1067 PUSH_FAILURE_ITEM (regstart[this_reg]); \
1069 DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
1070 PUSH_FAILURE_ITEM (regend[this_reg]); \
1072 DEBUG_PRINT2 (" info: 0x%x\n ", reg_info[this_reg]); \
1073 DEBUG_PRINT2 (" match_null=%d", \
1074 REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \
1075 DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \
1076 DEBUG_PRINT2 (" matched_something=%d", \
1077 MATCHED_SOMETHING (reg_info[this_reg])); \
1078 DEBUG_PRINT2 (" ever_matched=%d", \
1079 EVER_MATCHED_SOMETHING (reg_info[this_reg])); \
1080 DEBUG_PRINT1 ("\n"); \
1081 PUSH_FAILURE_ITEM (reg_info[this_reg].word); \
1084 DEBUG_PRINT2 (" Pushing low active reg: %d\n", lowest_active_reg);\
1085 PUSH_FAILURE_ITEM (lowest_active_reg); \
1087 DEBUG_PRINT2 (" Pushing high active reg: %d\n", highest_active_reg);\
1088 PUSH_FAILURE_ITEM (highest_active_reg); \
1090 DEBUG_PRINT2 (" Pushing pattern 0x%x: ", pattern_place); \
1091 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \
1092 PUSH_FAILURE_ITEM (pattern_place); \
1094 DEBUG_PRINT2 (" Pushing string 0x%x: `", string_place); \
1095 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \
1097 DEBUG_PRINT1 ("'\n"); \
1098 PUSH_FAILURE_ITEM (string_place); \
1100 DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \
1101 DEBUG_PUSH (failure_id); \
1104 /* This is the number of items that are pushed and popped on the stack
1105 for each register. */
1106 #define NUM_REG_ITEMS 3
1108 /* Individual items aside from the registers. */
1110 #define NUM_NONREG_ITEMS 5 /* Includes failure point id. */
1112 #define NUM_NONREG_ITEMS 4
1115 /* We push at most this many items on the stack. */
1116 #define MAX_FAILURE_ITEMS ((num_regs - 1) * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
1118 /* We actually push this many items. */
1119 #define NUM_FAILURE_ITEMS \
1120 ((highest_active_reg - lowest_active_reg + 1) * NUM_REG_ITEMS \
1123 /* How many items can still be added to the stack without overflowing it. */
1124 #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1127 /* Pops what PUSH_FAIL_STACK pushes.
1129 We restore into the parameters, all of which should be lvalues:
1130 STR -- the saved data position.
1131 PAT -- the saved pattern position.
1132 LOW_REG, HIGH_REG -- the highest and lowest active registers.
1133 REGSTART, REGEND -- arrays of string positions.
1134 REG_INFO -- array of information about each subexpression.
1136 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1137 `pend', `string1', `size1', `string2', and `size2'. */
1139 #define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
1141 DEBUG_STATEMENT (fail_stack_elt_t failure_id;) \
1143 const unsigned char *string_temp; \
1145 assert (!FAIL_STACK_EMPTY ()); \
1147 /* Remove failure points and point to how many regs pushed. */ \
1148 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1149 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
1150 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
1152 assert (fail_stack.avail >= NUM_NONREG_ITEMS); \
1154 DEBUG_POP (&failure_id); \
1155 DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \
1157 /* If the saved string location is NULL, it came from an \
1158 on_failure_keep_string_jump opcode, and we want to throw away the \
1159 saved NULL, thus retaining our current position in the string. */ \
1160 string_temp = POP_FAILURE_ITEM (); \
1161 if (string_temp != NULL) \
1162 str = (const char *) string_temp; \
1164 DEBUG_PRINT2 (" Popping string 0x%x: `", str); \
1165 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1166 DEBUG_PRINT1 ("'\n"); \
1168 pat = (unsigned char *) POP_FAILURE_ITEM (); \
1169 DEBUG_PRINT2 (" Popping pattern 0x%x: ", pat); \
1170 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1172 /* Restore register info. */ \
1173 high_reg = (unsigned) POP_FAILURE_ITEM (); \
1174 DEBUG_PRINT2 (" Popping high active reg: %d\n", high_reg); \
1176 low_reg = (unsigned) POP_FAILURE_ITEM (); \
1177 DEBUG_PRINT2 (" Popping low active reg: %d\n", low_reg); \
1179 for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \
1181 DEBUG_PRINT2 (" Popping reg: %d\n", this_reg); \
1183 reg_info[this_reg].word = POP_FAILURE_ITEM (); \
1184 DEBUG_PRINT2 (" info: 0x%x\n", reg_info[this_reg]); \
1186 regend[this_reg] = (const char *) POP_FAILURE_ITEM (); \
1187 DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
1189 regstart[this_reg] = (const char *) POP_FAILURE_ITEM (); \
1190 DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
1193 DEBUG_STATEMENT (nfailure_points_popped++); \
1194 } /* POP_FAILURE_POINT */
1198 /* Structure for per-register (a.k.a. per-group) information.
1199 This must not be longer than one word, because we push this value
1200 onto the failure stack. Other register information, such as the
1201 starting and ending positions (which are addresses), and the list of
1202 inner groups (which is a bits list) are maintained in separate
1205 We are making a (strictly speaking) nonportable assumption here: that
1206 the compiler will pack our bit fields into something that fits into
1207 the type of `word', i.e., is something that fits into one item on the
1211 fail_stack_elt_t word
;
1214 /* This field is one if this group can match the empty string,
1215 zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */
1216 #define MATCH_NULL_UNSET_VALUE 3
1217 unsigned match_null_string_p
: 2;
1218 unsigned is_active
: 1;
1219 unsigned matched_something
: 1;
1220 unsigned ever_matched_something
: 1;
1222 } register_info_type
;
1224 #define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p)
1225 #define IS_ACTIVE(R) ((R).bits.is_active)
1226 #define MATCHED_SOMETHING(R) ((R).bits.matched_something)
1227 #define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something)
1230 /* Call this when have matched a real character; it sets `matched' flags
1231 for the subexpressions which we are currently inside. Also records
1232 that those subexprs have matched. */
1233 #define SET_REGS_MATCHED() \
1237 for (r = lowest_active_reg; r <= highest_active_reg; r++) \
1239 MATCHED_SOMETHING (reg_info[r]) \
1240 = EVER_MATCHED_SOMETHING (reg_info[r]) \
1247 /* Registers are set to a sentinel when they haven't yet matched. */
1248 #define REG_UNSET_VALUE ((char *) -1)
1249 #define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
1253 /* How do we implement a missing MATCH_MAY_ALLOCATE?
1254 We make the fail stack a global thing, and then grow it to
1255 re_max_failures when we compile. */
1256 #ifndef MATCH_MAY_ALLOCATE
1257 static fail_stack_type fail_stack
;
1259 static const char ** regstart
, ** regend
;
1260 static const char ** old_regstart
, ** old_regend
;
1261 static const char **best_regstart
, **best_regend
;
1262 static register_info_type
*reg_info
;
1263 static const char **reg_dummy
;
1264 static register_info_type
*reg_info_dummy
;
1268 /* Subroutine declarations and macros for regex_compile. */
1270 static void store_op1 (), store_op2 ();
1271 static void insert_op1 (), insert_op2 ();
1272 static boolean
at_begline_loc_p (), at_endline_loc_p ();
1273 static boolean
group_in_compile_stack ();
1274 static reg_errcode_t
compile_range ();
1276 /* Fetch the next character in the uncompiled pattern---translating it
1277 if necessary. Also cast from a signed character in the constant
1278 string passed to us by the user to an unsigned char that we can use
1279 as an array index (in, e.g., `translate'). */
1280 #define PATFETCH(c) \
1281 do {if (p == pend) return REG_EEND; \
1282 c = (unsigned char) *p++; \
1283 if (translate) c = translate[c]; \
1286 /* Fetch the next character in the uncompiled pattern, with no
1288 #define PATFETCH_RAW(c) \
1289 do {if (p == pend) return REG_EEND; \
1290 c = (unsigned char) *p++; \
1293 /* Go backwards one character in the pattern. */
1294 #define PATUNFETCH p--
1297 /* If `translate' is non-null, return translate[D], else just D. We
1298 cast the subscript to translate because some data is declared as
1299 `char *', to avoid warnings when a string constant is passed. But
1300 when we use a character as a subscript we must make it unsigned. */
1301 #define TRANSLATE(d) (translate ? translate[(unsigned char) (d)] : (d))
1304 /* Macros for outputting the compiled pattern into `buffer'. */
1306 /* If the buffer isn't allocated when it comes in, use this. */
1307 #define INIT_BUF_SIZE 32
1309 /* Make sure we have at least N more bytes of space in buffer. */
1310 #define GET_BUFFER_SPACE(n) \
1311 while (b - bufp->buffer + (n) > bufp->allocated) \
1314 /* Make sure we have one more byte of buffer space and then add C to it. */
1315 #define BUF_PUSH(c) \
1317 GET_BUFFER_SPACE (1); \
1318 *b++ = (unsigned char) (c); \
1322 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1323 #define BUF_PUSH_2(c1, c2) \
1325 GET_BUFFER_SPACE (2); \
1326 *b++ = (unsigned char) (c1); \
1327 *b++ = (unsigned char) (c2); \
1331 /* As with BUF_PUSH_2, except for three bytes. */
1332 #define BUF_PUSH_3(c1, c2, c3) \
1334 GET_BUFFER_SPACE (3); \
1335 *b++ = (unsigned char) (c1); \
1336 *b++ = (unsigned char) (c2); \
1337 *b++ = (unsigned char) (c3); \
1341 /* Store a jump with opcode OP at LOC to location TO. We store a
1342 relative address offset by the three bytes the jump itself occupies. */
1343 #define STORE_JUMP(op, loc, to) \
1344 store_op1 (op, loc, (to) - (loc) - 3)
1346 /* Likewise, for a two-argument jump. */
1347 #define STORE_JUMP2(op, loc, to, arg) \
1348 store_op2 (op, loc, (to) - (loc) - 3, arg)
1350 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
1351 #define INSERT_JUMP(op, loc, to) \
1352 insert_op1 (op, loc, (to) - (loc) - 3, b)
1354 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1355 #define INSERT_JUMP2(op, loc, to, arg) \
1356 insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
1359 /* This is not an arbitrary limit: the arguments which represent offsets
1360 into the pattern are two bytes long. So if 2^16 bytes turns out to
1361 be too small, many things would have to change. */
1362 #define MAX_BUF_SIZE (1L << 16)
1365 /* Extend the buffer by twice its current size via realloc and
1366 reset the pointers that pointed into the old block to point to the
1367 correct places in the new one. If extending the buffer results in it
1368 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1369 #define EXTEND_BUFFER() \
1371 unsigned char *old_buffer = bufp->buffer; \
1372 if (bufp->allocated == MAX_BUF_SIZE) \
1374 bufp->allocated <<= 1; \
1375 if (bufp->allocated > MAX_BUF_SIZE) \
1376 bufp->allocated = MAX_BUF_SIZE; \
1377 bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated);\
1378 if (bufp->buffer == NULL) \
1379 return REG_ESPACE; \
1380 /* If the buffer moved, move all the pointers into it. */ \
1381 if (old_buffer != bufp->buffer) \
1383 b = (b - old_buffer) + bufp->buffer; \
1384 begalt = (begalt - old_buffer) + bufp->buffer; \
1385 if (fixup_alt_jump) \
1386 fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\
1388 laststart = (laststart - old_buffer) + bufp->buffer; \
1389 if (pending_exact) \
1390 pending_exact = (pending_exact - old_buffer) + bufp->buffer; \
1395 /* Since we have one byte reserved for the register number argument to
1396 {start,stop}_memory, the maximum number of groups we can report
1397 things about is what fits in that byte. */
1398 #define MAX_REGNUM 255
1400 /* But patterns can have more than `MAX_REGNUM' registers. We just
1401 ignore the excess. */
1402 typedef unsigned regnum_t
;
1405 /* Macros for the compile stack. */
1407 /* Since offsets can go either forwards or backwards, this type needs to
1408 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1409 typedef int pattern_offset_t
;
1413 pattern_offset_t begalt_offset
;
1414 pattern_offset_t fixup_alt_jump
;
1415 pattern_offset_t inner_group_offset
;
1416 pattern_offset_t laststart_offset
;
1418 } compile_stack_elt_t
;
1423 compile_stack_elt_t
*stack
;
1425 unsigned avail
; /* Offset of next open position. */
1426 } compile_stack_type
;
1429 #define INIT_COMPILE_STACK_SIZE 32
1431 #define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1432 #define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1434 /* The next available element. */
1435 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1438 /* Set the bit for character C in a list. */
1439 #define SET_LIST_BIT(c) \
1440 (b[((unsigned char) (c)) / BYTEWIDTH] \
1441 |= 1 << (((unsigned char) c) % BYTEWIDTH))
1444 /* Get the next unsigned number in the uncompiled pattern. */
1445 #define GET_UNSIGNED_NUMBER(num) \
1449 while (ISDIGIT (c)) \
1453 num = num * 10 + c - '0'; \
1461 #define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */
1463 #define IS_CHAR_CLASS(string) \
1464 (STREQ (string, "alpha") || STREQ (string, "upper") \
1465 || STREQ (string, "lower") || STREQ (string, "digit") \
1466 || STREQ (string, "alnum") || STREQ (string, "xdigit") \
1467 || STREQ (string, "space") || STREQ (string, "print") \
1468 || STREQ (string, "punct") || STREQ (string, "graph") \
1469 || STREQ (string, "cntrl") || STREQ (string, "blank"))
1471 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
1472 Returns one of error codes defined in `regex.h', or zero for success.
1474 Assumes the `allocated' (and perhaps `buffer') and `translate'
1475 fields are set in BUFP on entry.
1477 If it succeeds, results are put in BUFP (if it returns an error, the
1478 contents of BUFP are undefined):
1479 `buffer' is the compiled pattern;
1480 `syntax' is set to SYNTAX;
1481 `used' is set to the length of the compiled pattern;
1482 `fastmap_accurate' is zero;
1483 `re_nsub' is the number of subexpressions in PATTERN;
1484 `not_bol' and `not_eol' are zero;
1486 The `fastmap' and `newline_anchor' fields are neither
1487 examined nor set. */
1489 static reg_errcode_t
1490 regex_compile (pattern
, size
, syntax
, bufp
)
1491 const char *pattern
;
1493 reg_syntax_t syntax
;
1494 struct re_pattern_buffer
*bufp
;
1496 /* We fetch characters from PATTERN here. Even though PATTERN is
1497 `char *' (i.e., signed), we declare these variables as unsigned, so
1498 they can be reliably used as array indices. */
1499 register unsigned char c
, c1
;
1501 /* A random tempory spot in PATTERN. */
1504 /* Points to the end of the buffer, where we should append. */
1505 register unsigned char *b
;
1507 /* Keeps track of unclosed groups. */
1508 compile_stack_type compile_stack
;
1510 /* Points to the current (ending) position in the pattern. */
1511 const char *p
= pattern
;
1512 const char *pend
= pattern
+ size
;
1514 /* How to translate the characters in the pattern. */
1515 char *translate
= bufp
->translate
;
1517 /* Address of the count-byte of the most recently inserted `exactn'
1518 command. This makes it possible to tell if a new exact-match
1519 character can be added to that command or if the character requires
1520 a new `exactn' command. */
1521 unsigned char *pending_exact
= 0;
1523 /* Address of start of the most recently finished expression.
1524 This tells, e.g., postfix * where to find the start of its
1525 operand. Reset at the beginning of groups and alternatives. */
1526 unsigned char *laststart
= 0;
1528 /* Address of beginning of regexp, or inside of last group. */
1529 unsigned char *begalt
;
1531 /* Place in the uncompiled pattern (i.e., the {) to
1532 which to go back if the interval is invalid. */
1533 const char *beg_interval
;
1535 /* Address of the place where a forward jump should go to the end of
1536 the containing expression. Each alternative of an `or' -- except the
1537 last -- ends with a forward jump of this sort. */
1538 unsigned char *fixup_alt_jump
= 0;
1540 /* Counts open-groups as they are encountered. Remembered for the
1541 matching close-group on the compile stack, so the same register
1542 number is put in the stop_memory as the start_memory. */
1543 regnum_t regnum
= 0;
1546 DEBUG_PRINT1 ("\nCompiling pattern: ");
1549 unsigned debug_count
;
1551 for (debug_count
= 0; debug_count
< size
; debug_count
++)
1552 printchar (pattern
[debug_count
]);
1557 /* Initialize the compile stack. */
1558 compile_stack
.stack
= TALLOC (INIT_COMPILE_STACK_SIZE
, compile_stack_elt_t
);
1559 if (compile_stack
.stack
== NULL
)
1562 compile_stack
.size
= INIT_COMPILE_STACK_SIZE
;
1563 compile_stack
.avail
= 0;
1565 /* Initialize the pattern buffer. */
1566 bufp
->syntax
= syntax
;
1567 bufp
->fastmap_accurate
= 0;
1568 bufp
->not_bol
= bufp
->not_eol
= 0;
1570 /* Set `used' to zero, so that if we return an error, the pattern
1571 printer (for debugging) will think there's no pattern. We reset it
1575 /* Always count groups, whether or not bufp->no_sub is set. */
1578 #if !defined (emacs) && !defined (SYNTAX_TABLE)
1579 /* Initialize the syntax table. */
1580 init_syntax_once ();
1583 if (bufp
->allocated
== 0)
1586 { /* If zero allocated, but buffer is non-null, try to realloc
1587 enough space. This loses if buffer's address is bogus, but
1588 that is the user's responsibility. */
1589 RETALLOC (bufp
->buffer
, INIT_BUF_SIZE
, unsigned char);
1592 { /* Caller did not allocate a buffer. Do it for them. */
1593 bufp
->buffer
= TALLOC (INIT_BUF_SIZE
, unsigned char);
1595 if (!bufp
->buffer
) return REG_ESPACE
;
1597 bufp
->allocated
= INIT_BUF_SIZE
;
1600 begalt
= b
= bufp
->buffer
;
1602 /* Loop through the uncompiled pattern until we're at the end. */
1611 if ( /* If at start of pattern, it's an operator. */
1613 /* If context independent, it's an operator. */
1614 || syntax
& RE_CONTEXT_INDEP_ANCHORS
1615 /* Otherwise, depends on what's come before. */
1616 || at_begline_loc_p (pattern
, p
, syntax
))
1626 if ( /* If at end of pattern, it's an operator. */
1628 /* If context independent, it's an operator. */
1629 || syntax
& RE_CONTEXT_INDEP_ANCHORS
1630 /* Otherwise, depends on what's next. */
1631 || at_endline_loc_p (p
, pend
, syntax
))
1641 if ((syntax
& RE_BK_PLUS_QM
)
1642 || (syntax
& RE_LIMITED_OPS
))
1646 /* If there is no previous pattern... */
1649 if (syntax
& RE_CONTEXT_INVALID_OPS
)
1651 else if (!(syntax
& RE_CONTEXT_INDEP_OPS
))
1656 /* Are we optimizing this jump? */
1657 boolean keep_string_p
= false;
1659 /* 1 means zero (many) matches is allowed. */
1660 char zero_times_ok
= 0, many_times_ok
= 0;
1662 /* If there is a sequence of repetition chars, collapse it
1663 down to just one (the right one). We can't combine
1664 interval operators with these because of, e.g., `a{2}*',
1665 which should only match an even number of `a's. */
1669 zero_times_ok
|= c
!= '+';
1670 many_times_ok
|= c
!= '?';
1678 || (!(syntax
& RE_BK_PLUS_QM
) && (c
== '+' || c
== '?')))
1681 else if (syntax
& RE_BK_PLUS_QM
&& c
== '\\')
1683 if (p
== pend
) return REG_EESCAPE
;
1686 if (!(c1
== '+' || c1
== '?'))
1701 /* If we get here, we found another repeat character. */
1704 /* Star, etc. applied to an empty pattern is equivalent
1705 to an empty pattern. */
1709 /* Now we know whether or not zero matches is allowed
1710 and also whether or not two or more matches is allowed. */
1712 { /* More than one repetition is allowed, so put in at the
1713 end a backward relative jump from `b' to before the next
1714 jump we're going to put in below (which jumps from
1715 laststart to after this jump).
1717 But if we are at the `*' in the exact sequence `.*\n',
1718 insert an unconditional jump backwards to the .,
1719 instead of the beginning of the loop. This way we only
1720 push a failure point once, instead of every time
1721 through the loop. */
1722 assert (p
- 1 > pattern
);
1724 /* Allocate the space for the jump. */
1725 GET_BUFFER_SPACE (3);
1727 /* We know we are not at the first character of the pattern,
1728 because laststart was nonzero. And we've already
1729 incremented `p', by the way, to be the character after
1730 the `*'. Do we have to do something analogous here
1731 for null bytes, because of RE_DOT_NOT_NULL? */
1732 if (TRANSLATE (*(p
- 2)) == TRANSLATE ('.')
1734 && p
< pend
&& TRANSLATE (*p
) == TRANSLATE ('\n')
1735 && !(syntax
& RE_DOT_NEWLINE
))
1736 { /* We have .*\n. */
1737 STORE_JUMP (jump
, b
, laststart
);
1738 keep_string_p
= true;
1741 /* Anything else. */
1742 STORE_JUMP (maybe_pop_jump
, b
, laststart
- 3);
1744 /* We've added more stuff to the buffer. */
1748 /* On failure, jump from laststart to b + 3, which will be the
1749 end of the buffer after this jump is inserted. */
1750 GET_BUFFER_SPACE (3);
1751 INSERT_JUMP (keep_string_p
? on_failure_keep_string_jump
1759 /* At least one repetition is required, so insert a
1760 `dummy_failure_jump' before the initial
1761 `on_failure_jump' instruction of the loop. This
1762 effects a skip over that instruction the first time
1763 we hit that loop. */
1764 GET_BUFFER_SPACE (3);
1765 INSERT_JUMP (dummy_failure_jump
, laststart
, laststart
+ 6);
1780 boolean had_char_class
= false;
1782 if (p
== pend
) return REG_EBRACK
;
1784 /* Ensure that we have enough space to push a charset: the
1785 opcode, the length count, and the bitset; 34 bytes in all. */
1786 GET_BUFFER_SPACE (34);
1790 /* We test `*p == '^' twice, instead of using an if
1791 statement, so we only need one BUF_PUSH. */
1792 BUF_PUSH (*p
== '^' ? charset_not
: charset
);
1796 /* Remember the first position in the bracket expression. */
1799 /* Push the number of bytes in the bitmap. */
1800 BUF_PUSH ((1 << BYTEWIDTH
) / BYTEWIDTH
);
1802 /* Clear the whole map. */
1803 bzero (b
, (1 << BYTEWIDTH
) / BYTEWIDTH
);
1805 /* charset_not matches newline according to a syntax bit. */
1806 if ((re_opcode_t
) b
[-2] == charset_not
1807 && (syntax
& RE_HAT_LISTS_NOT_NEWLINE
))
1808 SET_LIST_BIT ('\n');
1810 /* Read in characters and ranges, setting map bits. */
1813 if (p
== pend
) return REG_EBRACK
;
1817 /* \ might escape characters inside [...] and [^...]. */
1818 if ((syntax
& RE_BACKSLASH_ESCAPE_IN_LISTS
) && c
== '\\')
1820 if (p
== pend
) return REG_EESCAPE
;
1827 /* Could be the end of the bracket expression. If it's
1828 not (i.e., when the bracket expression is `[]' so
1829 far), the ']' character bit gets set way below. */
1830 if (c
== ']' && p
!= p1
+ 1)
1833 /* Look ahead to see if it's a range when the last thing
1834 was a character class. */
1835 if (had_char_class
&& c
== '-' && *p
!= ']')
1838 /* Look ahead to see if it's a range when the last thing
1839 was a character: if this is a hyphen not at the
1840 beginning or the end of a list, then it's the range
1843 && !(p
- 2 >= pattern
&& p
[-2] == '[')
1844 && !(p
- 3 >= pattern
&& p
[-3] == '[' && p
[-2] == '^')
1848 = compile_range (&p
, pend
, translate
, syntax
, b
);
1849 if (ret
!= REG_NOERROR
) return ret
;
1852 else if (p
[0] == '-' && p
[1] != ']')
1853 { /* This handles ranges made up of characters only. */
1856 /* Move past the `-'. */
1859 ret
= compile_range (&p
, pend
, translate
, syntax
, b
);
1860 if (ret
!= REG_NOERROR
) return ret
;
1863 /* See if we're at the beginning of a possible character
1866 else if (syntax
& RE_CHAR_CLASSES
&& c
== '[' && *p
== ':')
1867 { /* Leave room for the null. */
1868 char str
[CHAR_CLASS_MAX_LENGTH
+ 1];
1873 /* If pattern is `[[:'. */
1874 if (p
== pend
) return REG_EBRACK
;
1879 if (c
== ':' || c
== ']' || p
== pend
1880 || c1
== CHAR_CLASS_MAX_LENGTH
)
1886 /* If isn't a word bracketed by `[:' and:`]':
1887 undo the ending character, the letters, and leave
1888 the leading `:' and `[' (but set bits for them). */
1889 if (c
== ':' && *p
== ']')
1892 boolean is_alnum
= STREQ (str
, "alnum");
1893 boolean is_alpha
= STREQ (str
, "alpha");
1894 boolean is_blank
= STREQ (str
, "blank");
1895 boolean is_cntrl
= STREQ (str
, "cntrl");
1896 boolean is_digit
= STREQ (str
, "digit");
1897 boolean is_graph
= STREQ (str
, "graph");
1898 boolean is_lower
= STREQ (str
, "lower");
1899 boolean is_print
= STREQ (str
, "print");
1900 boolean is_punct
= STREQ (str
, "punct");
1901 boolean is_space
= STREQ (str
, "space");
1902 boolean is_upper
= STREQ (str
, "upper");
1903 boolean is_xdigit
= STREQ (str
, "xdigit");
1905 if (!IS_CHAR_CLASS (str
)) return REG_ECTYPE
;
1907 /* Throw away the ] at the end of the character
1911 if (p
== pend
) return REG_EBRACK
;
1913 for (ch
= 0; ch
< 1 << BYTEWIDTH
; ch
++)
1915 if ( (is_alnum
&& ISALNUM (ch
))
1916 || (is_alpha
&& ISALPHA (ch
))
1917 || (is_blank
&& ISBLANK (ch
))
1918 || (is_cntrl
&& ISCNTRL (ch
))
1919 || (is_digit
&& ISDIGIT (ch
))
1920 || (is_graph
&& ISGRAPH (ch
))
1921 || (is_lower
&& ISLOWER (ch
))
1922 || (is_print
&& ISPRINT (ch
))
1923 || (is_punct
&& ISPUNCT (ch
))
1924 || (is_space
&& ISSPACE (ch
))
1925 || (is_upper
&& ISUPPER (ch
))
1926 || (is_xdigit
&& ISXDIGIT (ch
)))
1929 had_char_class
= true;
1938 had_char_class
= false;
1943 had_char_class
= false;
1948 /* Discard any (non)matching list bytes that are all 0 at the
1949 end of the map. Decrease the map-length byte too. */
1950 while ((int) b
[-1] > 0 && b
[b
[-1] - 1] == 0)
1958 if (syntax
& RE_NO_BK_PARENS
)
1965 if (syntax
& RE_NO_BK_PARENS
)
1972 if (syntax
& RE_NEWLINE_ALT
)
1979 if (syntax
& RE_NO_BK_VBAR
)
1986 if (syntax
& RE_INTERVALS
&& syntax
& RE_NO_BK_BRACES
)
1987 goto handle_interval
;
1993 if (p
== pend
) return REG_EESCAPE
;
1995 /* Do not translate the character after the \, so that we can
1996 distinguish, e.g., \B from \b, even if we normally would
1997 translate, e.g., B to b. */
2003 if (syntax
& RE_NO_BK_PARENS
)
2004 goto normal_backslash
;
2010 if (COMPILE_STACK_FULL
)
2012 RETALLOC (compile_stack
.stack
, compile_stack
.size
<< 1,
2013 compile_stack_elt_t
);
2014 if (compile_stack
.stack
== NULL
) return REG_ESPACE
;
2016 compile_stack
.size
<<= 1;
2019 /* These are the values to restore when we hit end of this
2020 group. They are all relative offsets, so that if the
2021 whole pattern moves because of realloc, they will still
2023 COMPILE_STACK_TOP
.begalt_offset
= begalt
- bufp
->buffer
;
2024 COMPILE_STACK_TOP
.fixup_alt_jump
2025 = fixup_alt_jump
? fixup_alt_jump
- bufp
->buffer
+ 1 : 0;
2026 COMPILE_STACK_TOP
.laststart_offset
= b
- bufp
->buffer
;
2027 COMPILE_STACK_TOP
.regnum
= regnum
;
2029 /* We will eventually replace the 0 with the number of
2030 groups inner to this one. But do not push a
2031 start_memory for groups beyond the last one we can
2032 represent in the compiled pattern. */
2033 if (regnum
<= MAX_REGNUM
)
2035 COMPILE_STACK_TOP
.inner_group_offset
= b
- bufp
->buffer
+ 2;
2036 BUF_PUSH_3 (start_memory
, regnum
, 0);
2039 compile_stack
.avail
++;
2044 /* If we've reached MAX_REGNUM groups, then this open
2045 won't actually generate any code, so we'll have to
2046 clear pending_exact explicitly. */
2052 if (syntax
& RE_NO_BK_PARENS
) goto normal_backslash
;
2054 if (COMPILE_STACK_EMPTY
)
2055 if (syntax
& RE_UNMATCHED_RIGHT_PAREN_ORD
)
2056 goto normal_backslash
;
2062 { /* Push a dummy failure point at the end of the
2063 alternative for a possible future
2064 `pop_failure_jump' to pop. See comments at
2065 `push_dummy_failure' in `re_match_2'. */
2066 BUF_PUSH (push_dummy_failure
);
2068 /* We allocated space for this jump when we assigned
2069 to `fixup_alt_jump', in the `handle_alt' case below. */
2070 STORE_JUMP (jump_past_alt
, fixup_alt_jump
, b
- 1);
2073 /* See similar code for backslashed left paren above. */
2074 if (COMPILE_STACK_EMPTY
)
2075 if (syntax
& RE_UNMATCHED_RIGHT_PAREN_ORD
)
2080 /* Since we just checked for an empty stack above, this
2081 ``can't happen''. */
2082 assert (compile_stack
.avail
!= 0);
2084 /* We don't just want to restore into `regnum', because
2085 later groups should continue to be numbered higher,
2086 as in `(ab)c(de)' -- the second group is #2. */
2087 regnum_t this_group_regnum
;
2089 compile_stack
.avail
--;
2090 begalt
= bufp
->buffer
+ COMPILE_STACK_TOP
.begalt_offset
;
2092 = COMPILE_STACK_TOP
.fixup_alt_jump
2093 ? bufp
->buffer
+ COMPILE_STACK_TOP
.fixup_alt_jump
- 1
2095 laststart
= bufp
->buffer
+ COMPILE_STACK_TOP
.laststart_offset
;
2096 this_group_regnum
= COMPILE_STACK_TOP
.regnum
;
2097 /* If we've reached MAX_REGNUM groups, then this open
2098 won't actually generate any code, so we'll have to
2099 clear pending_exact explicitly. */
2102 /* We're at the end of the group, so now we know how many
2103 groups were inside this one. */
2104 if (this_group_regnum
<= MAX_REGNUM
)
2106 unsigned char *inner_group_loc
2107 = bufp
->buffer
+ COMPILE_STACK_TOP
.inner_group_offset
;
2109 *inner_group_loc
= regnum
- this_group_regnum
;
2110 BUF_PUSH_3 (stop_memory
, this_group_regnum
,
2111 regnum
- this_group_regnum
);
2117 case '|': /* `\|'. */
2118 if (syntax
& RE_LIMITED_OPS
|| syntax
& RE_NO_BK_VBAR
)
2119 goto normal_backslash
;
2121 if (syntax
& RE_LIMITED_OPS
)
2124 /* Insert before the previous alternative a jump which
2125 jumps to this alternative if the former fails. */
2126 GET_BUFFER_SPACE (3);
2127 INSERT_JUMP (on_failure_jump
, begalt
, b
+ 6);
2131 /* The alternative before this one has a jump after it
2132 which gets executed if it gets matched. Adjust that
2133 jump so it will jump to this alternative's analogous
2134 jump (put in below, which in turn will jump to the next
2135 (if any) alternative's such jump, etc.). The last such
2136 jump jumps to the correct final destination. A picture:
2142 If we are at `b', then fixup_alt_jump right now points to a
2143 three-byte space after `a'. We'll put in the jump, set
2144 fixup_alt_jump to right after `b', and leave behind three
2145 bytes which we'll fill in when we get to after `c'. */
2148 STORE_JUMP (jump_past_alt
, fixup_alt_jump
, b
);
2150 /* Mark and leave space for a jump after this alternative,
2151 to be filled in later either by next alternative or
2152 when know we're at the end of a series of alternatives. */
2154 GET_BUFFER_SPACE (3);
2163 /* If \{ is a literal. */
2164 if (!(syntax
& RE_INTERVALS
)
2165 /* If we're at `\{' and it's not the open-interval
2167 || ((syntax
& RE_INTERVALS
) && (syntax
& RE_NO_BK_BRACES
))
2168 || (p
- 2 == pattern
&& p
== pend
))
2169 goto normal_backslash
;
2173 /* If got here, then the syntax allows intervals. */
2175 /* At least (most) this many matches must be made. */
2176 int lower_bound
= -1, upper_bound
= -1;
2178 beg_interval
= p
- 1;
2182 if (syntax
& RE_NO_BK_BRACES
)
2183 goto unfetch_interval
;
2188 GET_UNSIGNED_NUMBER (lower_bound
);
2192 GET_UNSIGNED_NUMBER (upper_bound
);
2193 if (upper_bound
< 0) upper_bound
= RE_DUP_MAX
;
2196 /* Interval such as `{1}' => match exactly once. */
2197 upper_bound
= lower_bound
;
2199 if (lower_bound
< 0 || upper_bound
> RE_DUP_MAX
2200 || lower_bound
> upper_bound
)
2202 if (syntax
& RE_NO_BK_BRACES
)
2203 goto unfetch_interval
;
2208 if (!(syntax
& RE_NO_BK_BRACES
))
2210 if (c
!= '\\') return REG_EBRACE
;
2217 if (syntax
& RE_NO_BK_BRACES
)
2218 goto unfetch_interval
;
2223 /* We just parsed a valid interval. */
2225 /* If it's invalid to have no preceding re. */
2228 if (syntax
& RE_CONTEXT_INVALID_OPS
)
2230 else if (syntax
& RE_CONTEXT_INDEP_OPS
)
2233 goto unfetch_interval
;
2236 /* If the upper bound is zero, don't want to succeed at
2237 all; jump from `laststart' to `b + 3', which will be
2238 the end of the buffer after we insert the jump. */
2239 if (upper_bound
== 0)
2241 GET_BUFFER_SPACE (3);
2242 INSERT_JUMP (jump
, laststart
, b
+ 3);
2246 /* Otherwise, we have a nontrivial interval. When
2247 we're all done, the pattern will look like:
2248 set_number_at <jump count> <upper bound>
2249 set_number_at <succeed_n count> <lower bound>
2250 succeed_n <after jump addr> <succed_n count>
2252 jump_n <succeed_n addr> <jump count>
2253 (The upper bound and `jump_n' are omitted if
2254 `upper_bound' is 1, though.) */
2256 { /* If the upper bound is > 1, we need to insert
2257 more at the end of the loop. */
2258 unsigned nbytes
= 10 + (upper_bound
> 1) * 10;
2260 GET_BUFFER_SPACE (nbytes
);
2262 /* Initialize lower bound of the `succeed_n', even
2263 though it will be set during matching by its
2264 attendant `set_number_at' (inserted next),
2265 because `re_compile_fastmap' needs to know.
2266 Jump to the `jump_n' we might insert below. */
2267 INSERT_JUMP2 (succeed_n
, laststart
,
2268 b
+ 5 + (upper_bound
> 1) * 5,
2272 /* Code to initialize the lower bound. Insert
2273 before the `succeed_n'. The `5' is the last two
2274 bytes of this `set_number_at', plus 3 bytes of
2275 the following `succeed_n'. */
2276 insert_op2 (set_number_at
, laststart
, 5, lower_bound
, b
);
2279 if (upper_bound
> 1)
2280 { /* More than one repetition is allowed, so
2281 append a backward jump to the `succeed_n'
2282 that starts this interval.
2284 When we've reached this during matching,
2285 we'll have matched the interval once, so
2286 jump back only `upper_bound - 1' times. */
2287 STORE_JUMP2 (jump_n
, b
, laststart
+ 5,
2291 /* The location we want to set is the second
2292 parameter of the `jump_n'; that is `b-2' as
2293 an absolute address. `laststart' will be
2294 the `set_number_at' we're about to insert;
2295 `laststart+3' the number to set, the source
2296 for the relative address. But we are
2297 inserting into the middle of the pattern --
2298 so everything is getting moved up by 5.
2299 Conclusion: (b - 2) - (laststart + 3) + 5,
2300 i.e., b - laststart.
2302 We insert this at the beginning of the loop
2303 so that if we fail during matching, we'll
2304 reinitialize the bounds. */
2305 insert_op2 (set_number_at
, laststart
, b
- laststart
,
2306 upper_bound
- 1, b
);
2311 beg_interval
= NULL
;
2316 /* If an invalid interval, match the characters as literals. */
2317 assert (beg_interval
);
2319 beg_interval
= NULL
;
2321 /* normal_char and normal_backslash need `c'. */
2324 if (!(syntax
& RE_NO_BK_BRACES
))
2326 if (p
> pattern
&& p
[-1] == '\\')
2327 goto normal_backslash
;
2332 /* There is no way to specify the before_dot and after_dot
2333 operators. rms says this is ok. --karl */
2341 BUF_PUSH_2 (syntaxspec
, syntax_spec_code
[c
]);
2347 BUF_PUSH_2 (notsyntaxspec
, syntax_spec_code
[c
]);
2354 BUF_PUSH (wordchar
);
2360 BUF_PUSH (notwordchar
);
2373 BUF_PUSH (wordbound
);
2377 BUF_PUSH (notwordbound
);
2388 case '1': case '2': case '3': case '4': case '5':
2389 case '6': case '7': case '8': case '9':
2390 if (syntax
& RE_NO_BK_REFS
)
2398 /* Can't back reference to a subexpression if inside of it. */
2399 if (group_in_compile_stack (compile_stack
, c1
))
2403 BUF_PUSH_2 (duplicate
, c1
);
2409 if (syntax
& RE_BK_PLUS_QM
)
2412 goto normal_backslash
;
2416 /* You might think it would be useful for \ to mean
2417 not to translate; but if we don't translate it
2418 it will never match anything. */
2426 /* Expects the character in `c'. */
2428 /* If no exactn currently being built. */
2431 /* If last exactn not at current position. */
2432 || pending_exact
+ *pending_exact
+ 1 != b
2434 /* We have only one byte following the exactn for the count. */
2435 || *pending_exact
== (1 << BYTEWIDTH
) - 1
2437 /* If followed by a repetition operator. */
2438 || *p
== '*' || *p
== '^'
2439 || ((syntax
& RE_BK_PLUS_QM
)
2440 ? *p
== '\\' && (p
[1] == '+' || p
[1] == '?')
2441 : (*p
== '+' || *p
== '?'))
2442 || ((syntax
& RE_INTERVALS
)
2443 && ((syntax
& RE_NO_BK_BRACES
)
2445 : (p
[0] == '\\' && p
[1] == '{'))))
2447 /* Start building a new exactn. */
2451 BUF_PUSH_2 (exactn
, 0);
2452 pending_exact
= b
- 1;
2459 } /* while p != pend */
2462 /* Through the pattern now. */
2465 STORE_JUMP (jump_past_alt
, fixup_alt_jump
, b
);
2467 if (!COMPILE_STACK_EMPTY
)
2470 free (compile_stack
.stack
);
2472 /* We have succeeded; set the length of the buffer. */
2473 bufp
->used
= b
- bufp
->buffer
;
2478 DEBUG_PRINT1 ("\nCompiled pattern: \n");
2479 print_compiled_pattern (bufp
);
2483 #ifndef MATCH_MAY_ALLOCATE
2484 /* Initialize the failure stack to the largest possible stack. This
2485 isn't necessary unless we're trying to avoid calling alloca in
2486 the search and match routines. */
2488 int num_regs
= bufp
->re_nsub
+ 1;
2490 /* Since DOUBLE_FAIL_STACK refuses to double only if the current size
2491 is strictly greater than re_max_failures, the largest possible stack
2492 is 2 * re_max_failures failure points. */
2493 fail_stack
.size
= (2 * re_max_failures
* MAX_FAILURE_ITEMS
);
2494 if (fail_stack
.stack
)
2496 (fail_stack_elt_t
*) realloc (fail_stack
.stack
,
2498 * sizeof (fail_stack_elt_t
)));
2501 (fail_stack_elt_t
*) malloc (fail_stack
.size
2502 * sizeof (fail_stack_elt_t
));
2504 /* Initialize some other variables the matcher uses. */
2505 RETALLOC_IF (regstart
, num_regs
, const char *);
2506 RETALLOC_IF (regend
, num_regs
, const char *);
2507 RETALLOC_IF (old_regstart
, num_regs
, const char *);
2508 RETALLOC_IF (old_regend
, num_regs
, const char *);
2509 RETALLOC_IF (best_regstart
, num_regs
, const char *);
2510 RETALLOC_IF (best_regend
, num_regs
, const char *);
2511 RETALLOC_IF (reg_info
, num_regs
, register_info_type
);
2512 RETALLOC_IF (reg_dummy
, num_regs
, const char *);
2513 RETALLOC_IF (reg_info_dummy
, num_regs
, register_info_type
);
2518 } /* regex_compile */
2520 /* Subroutines for `regex_compile'. */
2522 /* Store OP at LOC followed by two-byte integer parameter ARG. */
2525 store_op1 (op
, loc
, arg
)
2530 *loc
= (unsigned char) op
;
2531 STORE_NUMBER (loc
+ 1, arg
);
2535 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
2538 store_op2 (op
, loc
, arg1
, arg2
)
2543 *loc
= (unsigned char) op
;
2544 STORE_NUMBER (loc
+ 1, arg1
);
2545 STORE_NUMBER (loc
+ 3, arg2
);
2549 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
2550 for OP followed by two-byte integer parameter ARG. */
2553 insert_op1 (op
, loc
, arg
, end
)
2559 register unsigned char *pfrom
= end
;
2560 register unsigned char *pto
= end
+ 3;
2562 while (pfrom
!= loc
)
2565 store_op1 (op
, loc
, arg
);
2569 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
2572 insert_op2 (op
, loc
, arg1
, arg2
, end
)
2578 register unsigned char *pfrom
= end
;
2579 register unsigned char *pto
= end
+ 5;
2581 while (pfrom
!= loc
)
2584 store_op2 (op
, loc
, arg1
, arg2
);
2588 /* P points to just after a ^ in PATTERN. Return true if that ^ comes
2589 after an alternative or a begin-subexpression. We assume there is at
2590 least one character before the ^. */
2593 at_begline_loc_p (pattern
, p
, syntax
)
2594 const char *pattern
, *p
;
2595 reg_syntax_t syntax
;
2597 const char *prev
= p
- 2;
2598 boolean prev_prev_backslash
= prev
> pattern
&& prev
[-1] == '\\';
2601 /* After a subexpression? */
2602 (*prev
== '(' && (syntax
& RE_NO_BK_PARENS
|| prev_prev_backslash
))
2603 /* After an alternative? */
2604 || (*prev
== '|' && (syntax
& RE_NO_BK_VBAR
|| prev_prev_backslash
));
2608 /* The dual of at_begline_loc_p. This one is for $. We assume there is
2609 at least one character after the $, i.e., `P < PEND'. */
2612 at_endline_loc_p (p
, pend
, syntax
)
2613 const char *p
, *pend
;
2616 const char *next
= p
;
2617 boolean next_backslash
= *next
== '\\';
2618 const char *next_next
= p
+ 1 < pend
? p
+ 1 : NULL
;
2621 /* Before a subexpression? */
2622 (syntax
& RE_NO_BK_PARENS
? *next
== ')'
2623 : next_backslash
&& next_next
&& *next_next
== ')')
2624 /* Before an alternative? */
2625 || (syntax
& RE_NO_BK_VBAR
? *next
== '|'
2626 : next_backslash
&& next_next
&& *next_next
== '|');
2630 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
2631 false if it's not. */
2634 group_in_compile_stack (compile_stack
, regnum
)
2635 compile_stack_type compile_stack
;
2640 for (this_element
= compile_stack
.avail
- 1;
2643 if (compile_stack
.stack
[this_element
].regnum
== regnum
)
2650 /* Read the ending character of a range (in a bracket expression) from the
2651 uncompiled pattern *P_PTR (which ends at PEND). We assume the
2652 starting character is in `P[-2]'. (`P[-1]' is the character `-'.)
2653 Then we set the translation of all bits between the starting and
2654 ending characters (inclusive) in the compiled pattern B.
2656 Return an error code.
2658 We use these short variable names so we can use the same macros as
2659 `regex_compile' itself. */
2661 static reg_errcode_t
2662 compile_range (p_ptr
, pend
, translate
, syntax
, b
)
2663 const char **p_ptr
, *pend
;
2665 reg_syntax_t syntax
;
2670 const char *p
= *p_ptr
;
2671 int range_start
, range_end
;
2676 /* Even though the pattern is a signed `char *', we need to fetch
2677 with unsigned char *'s; if the high bit of the pattern character
2678 is set, the range endpoints will be negative if we fetch using a
2681 We also want to fetch the endpoints without translating them; the
2682 appropriate translation is done in the bit-setting loop below. */
2683 range_start
= ((unsigned char *) p
)[-2];
2684 range_end
= ((unsigned char *) p
)[0];
2686 /* Have to increment the pointer into the pattern string, so the
2687 caller isn't still at the ending character. */
2690 /* If the start is after the end, the range is empty. */
2691 if (range_start
> range_end
)
2692 return syntax
& RE_NO_EMPTY_RANGES
? REG_ERANGE
: REG_NOERROR
;
2694 /* Here we see why `this_char' has to be larger than an `unsigned
2695 char' -- the range is inclusive, so if `range_end' == 0xff
2696 (assuming 8-bit characters), we would otherwise go into an infinite
2697 loop, since all characters <= 0xff. */
2698 for (this_char
= range_start
; this_char
<= range_end
; this_char
++)
2700 SET_LIST_BIT (TRANSLATE (this_char
));
2706 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
2707 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
2708 characters can start a string that matches the pattern. This fastmap
2709 is used by re_search to skip quickly over impossible starting points.
2711 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
2712 area as BUFP->fastmap.
2714 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
2717 Returns 0 if we succeed, -2 if an internal error. */
2720 re_compile_fastmap (bufp
)
2721 struct re_pattern_buffer
*bufp
;
2724 #ifdef MATCH_MAY_ALLOCATE
2725 fail_stack_type fail_stack
;
2727 #ifndef REGEX_MALLOC
2730 /* We don't push any register information onto the failure stack. */
2731 unsigned num_regs
= 0;
2733 register char *fastmap
= bufp
->fastmap
;
2734 unsigned char *pattern
= bufp
->buffer
;
2735 unsigned long size
= bufp
->used
;
2736 const unsigned char *p
= pattern
;
2737 register unsigned char *pend
= pattern
+ size
;
2739 /* Assume that each path through the pattern can be null until
2740 proven otherwise. We set this false at the bottom of switch
2741 statement, to which we get only if a particular path doesn't
2742 match the empty string. */
2743 boolean path_can_be_null
= true;
2745 /* We aren't doing a `succeed_n' to begin with. */
2746 boolean succeed_n_p
= false;
2748 assert (fastmap
!= NULL
&& p
!= NULL
);
2751 bzero (fastmap
, 1 << BYTEWIDTH
); /* Assume nothing's valid. */
2752 bufp
->fastmap_accurate
= 1; /* It will be when we're done. */
2753 bufp
->can_be_null
= 0;
2755 while (p
!= pend
|| !FAIL_STACK_EMPTY ())
2759 bufp
->can_be_null
|= path_can_be_null
;
2761 /* Reset for next path. */
2762 path_can_be_null
= true;
2764 p
= fail_stack
.stack
[--fail_stack
.avail
];
2767 /* We should never be about to go beyond the end of the pattern. */
2770 #ifdef SWITCH_ENUM_BUG
2771 switch ((int) ((re_opcode_t
) *p
++))
2773 switch ((re_opcode_t
) *p
++)
2777 /* I guess the idea here is to simply not bother with a fastmap
2778 if a backreference is used, since it's too hard to figure out
2779 the fastmap for the corresponding group. Setting
2780 `can_be_null' stops `re_search_2' from using the fastmap, so
2781 that is all we do. */
2783 bufp
->can_be_null
= 1;
2787 /* Following are the cases which match a character. These end
2796 for (j
= *p
++ * BYTEWIDTH
- 1; j
>= 0; j
--)
2797 if (p
[j
/ BYTEWIDTH
] & (1 << (j
% BYTEWIDTH
)))
2803 /* Chars beyond end of map must be allowed. */
2804 for (j
= *p
* BYTEWIDTH
; j
< (1 << BYTEWIDTH
); j
++)
2807 for (j
= *p
++ * BYTEWIDTH
- 1; j
>= 0; j
--)
2808 if (!(p
[j
/ BYTEWIDTH
] & (1 << (j
% BYTEWIDTH
))))
2814 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
2815 if (SYNTAX (j
) == Sword
)
2821 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
2822 if (SYNTAX (j
) != Sword
)
2828 /* `.' matches anything ... */
2829 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
2832 /* ... except perhaps newline. */
2833 if (!(bufp
->syntax
& RE_DOT_NEWLINE
))
2836 /* Return if we have already set `can_be_null'; if we have,
2837 then the fastmap is irrelevant. Something's wrong here. */
2838 else if (bufp
->can_be_null
)
2841 /* Otherwise, have to check alternative paths. */
2848 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
2849 if (SYNTAX (j
) == (enum syntaxcode
) k
)
2856 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
2857 if (SYNTAX (j
) != (enum syntaxcode
) k
)
2862 /* All cases after this match the empty string. These end with
2870 #endif /* not emacs */
2882 case push_dummy_failure
:
2887 case pop_failure_jump
:
2888 case maybe_pop_jump
:
2891 case dummy_failure_jump
:
2892 EXTRACT_NUMBER_AND_INCR (j
, p
);
2897 /* Jump backward implies we just went through the body of a
2898 loop and matched nothing. Opcode jumped to should be
2899 `on_failure_jump' or `succeed_n'. Just treat it like an
2900 ordinary jump. For a * loop, it has pushed its failure
2901 point already; if so, discard that as redundant. */
2902 if ((re_opcode_t
) *p
!= on_failure_jump
2903 && (re_opcode_t
) *p
!= succeed_n
)
2907 EXTRACT_NUMBER_AND_INCR (j
, p
);
2910 /* If what's on the stack is where we are now, pop it. */
2911 if (!FAIL_STACK_EMPTY ()
2912 && fail_stack
.stack
[fail_stack
.avail
- 1] == p
)
2918 case on_failure_jump
:
2919 case on_failure_keep_string_jump
:
2920 handle_on_failure_jump
:
2921 EXTRACT_NUMBER_AND_INCR (j
, p
);
2923 /* For some patterns, e.g., `(a?)?', `p+j' here points to the
2924 end of the pattern. We don't want to push such a point,
2925 since when we restore it above, entering the switch will
2926 increment `p' past the end of the pattern. We don't need
2927 to push such a point since we obviously won't find any more
2928 fastmap entries beyond `pend'. Such a pattern can match
2929 the null string, though. */
2932 if (!PUSH_PATTERN_OP (p
+ j
, fail_stack
))
2936 bufp
->can_be_null
= 1;
2940 EXTRACT_NUMBER_AND_INCR (k
, p
); /* Skip the n. */
2941 succeed_n_p
= false;
2948 /* Get to the number of times to succeed. */
2951 /* Increment p past the n for when k != 0. */
2952 EXTRACT_NUMBER_AND_INCR (k
, p
);
2956 succeed_n_p
= true; /* Spaghetti code alert. */
2957 goto handle_on_failure_jump
;
2974 abort (); /* We have listed all the cases. */
2977 /* Getting here means we have found the possible starting
2978 characters for one path of the pattern -- and that the empty
2979 string does not match. We need not follow this path further.
2980 Instead, look at the next alternative (remembered on the
2981 stack), or quit if no more. The test at the top of the loop
2982 does these things. */
2983 path_can_be_null
= false;
2987 /* Set `can_be_null' for the last path (also the first path, if the
2988 pattern is empty). */
2989 bufp
->can_be_null
|= path_can_be_null
;
2991 } /* re_compile_fastmap */
2993 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
2994 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
2995 this memory for recording register information. STARTS and ENDS
2996 must be allocated using the malloc library routine, and must each
2997 be at least NUM_REGS * sizeof (regoff_t) bytes long.
2999 If NUM_REGS == 0, then subsequent matches should allocate their own
3002 Unless this function is called, the first search or match using
3003 PATTERN_BUFFER will allocate its own register data, without
3004 freeing the old data. */
3007 re_set_registers (bufp
, regs
, num_regs
, starts
, ends
)
3008 struct re_pattern_buffer
*bufp
;
3009 struct re_registers
*regs
;
3011 regoff_t
*starts
, *ends
;
3015 bufp
->regs_allocated
= REGS_REALLOCATE
;
3016 regs
->num_regs
= num_regs
;
3017 regs
->start
= starts
;
3022 bufp
->regs_allocated
= REGS_UNALLOCATED
;
3024 regs
->start
= regs
->end
= (regoff_t
) 0;
3028 /* Searching routines. */
3030 /* Like re_search_2, below, but only one string is specified, and
3031 doesn't let you say where to stop matching. */
3034 re_search (bufp
, string
, size
, startpos
, range
, regs
)
3035 struct re_pattern_buffer
*bufp
;
3037 int size
, startpos
, range
;
3038 struct re_registers
*regs
;
3040 return re_search_2 (bufp
, NULL
, 0, string
, size
, startpos
, range
,
3045 /* Using the compiled pattern in BUFP->buffer, first tries to match the
3046 virtual concatenation of STRING1 and STRING2, starting first at index
3047 STARTPOS, then at STARTPOS + 1, and so on.
3049 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
3051 RANGE is how far to scan while trying to match. RANGE = 0 means try
3052 only at STARTPOS; in general, the last start tried is STARTPOS +
3055 In REGS, return the indices of the virtual concatenation of STRING1
3056 and STRING2 that matched the entire BUFP->buffer and its contained
3059 Do not consider matching one past the index STOP in the virtual
3060 concatenation of STRING1 and STRING2.
3062 We return either the position in the strings at which the match was
3063 found, -1 if no match, or -2 if error (such as failure
3067 re_search_2 (bufp
, string1
, size1
, string2
, size2
, startpos
, range
, regs
, stop
)
3068 struct re_pattern_buffer
*bufp
;
3069 const char *string1
, *string2
;
3073 struct re_registers
*regs
;
3077 register char *fastmap
= bufp
->fastmap
;
3078 register char *translate
= bufp
->translate
;
3079 int total_size
= size1
+ size2
;
3080 int endpos
= startpos
+ range
;
3082 /* Check for out-of-range STARTPOS. */
3083 if (startpos
< 0 || startpos
> total_size
)
3086 /* Fix up RANGE if it might eventually take us outside
3087 the virtual concatenation of STRING1 and STRING2. */
3089 range
= -1 - startpos
;
3090 else if (endpos
> total_size
)
3091 range
= total_size
- startpos
;
3093 /* If the search isn't to be a backwards one, don't waste time in a
3094 search for a pattern that must be anchored. */
3095 if (bufp
->used
> 0 && (re_opcode_t
) bufp
->buffer
[0] == begbuf
&& range
> 0)
3103 /* Update the fastmap now if not correct already. */
3104 if (fastmap
&& !bufp
->fastmap_accurate
)
3105 if (re_compile_fastmap (bufp
) == -2)
3108 /* Loop through the string, looking for a place to start matching. */
3111 /* If a fastmap is supplied, skip quickly over characters that
3112 cannot be the start of a match. If the pattern can match the
3113 null string, however, we don't need to skip characters; we want
3114 the first null string. */
3115 if (fastmap
&& startpos
< total_size
&& !bufp
->can_be_null
)
3117 if (range
> 0) /* Searching forwards. */
3119 register const char *d
;
3120 register int lim
= 0;
3123 if (startpos
< size1
&& startpos
+ range
>= size1
)
3124 lim
= range
- (size1
- startpos
);
3126 d
= (startpos
>= size1
? string2
- size1
: string1
) + startpos
;
3128 /* Written out as an if-else to avoid testing `translate'
3132 && !fastmap
[(unsigned char)
3133 translate
[(unsigned char) *d
++]])
3136 while (range
> lim
&& !fastmap
[(unsigned char) *d
++])
3139 startpos
+= irange
- range
;
3141 else /* Searching backwards. */
3143 register char c
= (size1
== 0 || startpos
>= size1
3144 ? string2
[startpos
- size1
]
3145 : string1
[startpos
]);
3147 if (!fastmap
[(unsigned char) TRANSLATE (c
)])
3152 /* If can't match the null string, and that's all we have left, fail. */
3153 if (range
>= 0 && startpos
== total_size
&& fastmap
3154 && !bufp
->can_be_null
)
3157 val
= re_match_2 (bufp
, string1
, size1
, string2
, size2
,
3158 startpos
, regs
, stop
);
3182 /* Declarations and macros for re_match_2. */
3184 static int bcmp_translate ();
3185 static boolean
alt_match_null_string_p (),
3186 common_op_match_null_string_p (),
3187 group_match_null_string_p ();
3189 /* This converts PTR, a pointer into one of the search strings `string1'
3190 and `string2' into an offset from the beginning of that string. */
3191 #define POINTER_TO_OFFSET(ptr) \
3192 (FIRST_STRING_P (ptr) ? (ptr) - string1 : (ptr) - string2 + size1)
3194 /* Macros for dealing with the split strings in re_match_2. */
3196 #define MATCHING_IN_FIRST_STRING (dend == end_match_1)
3198 /* Call before fetching a character with *d. This switches over to
3199 string2 if necessary. */
3200 #define PREFETCH() \
3203 /* End of string2 => fail. */ \
3204 if (dend == end_match_2) \
3206 /* End of string1 => advance to string2. */ \
3208 dend = end_match_2; \
3212 /* Test if at very beginning or at very end of the virtual concatenation
3213 of `string1' and `string2'. If only one string, it's `string2'. */
3214 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
3215 #define AT_STRINGS_END(d) ((d) == end2)
3218 /* Test if D points to a character which is word-constituent. We have
3219 two special cases to check for: if past the end of string1, look at
3220 the first character in string2; and if before the beginning of
3221 string2, look at the last character in string1. */
3222 #define WORDCHAR_P(d) \
3223 (SYNTAX ((d) == end1 ? *string2 \
3224 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
3227 /* Test if the character before D and the one at D differ with respect
3228 to being word-constituent. */
3229 #define AT_WORD_BOUNDARY(d) \
3230 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
3231 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
3234 /* Free everything we malloc. */
3235 #ifdef MATCH_MAY_ALLOCATE
3237 #define FREE_VAR(var) if (var) free (var); var = NULL
3238 #define FREE_VARIABLES() \
3240 FREE_VAR (fail_stack.stack); \
3241 FREE_VAR (regstart); \
3242 FREE_VAR (regend); \
3243 FREE_VAR (old_regstart); \
3244 FREE_VAR (old_regend); \
3245 FREE_VAR (best_regstart); \
3246 FREE_VAR (best_regend); \
3247 FREE_VAR (reg_info); \
3248 FREE_VAR (reg_dummy); \
3249 FREE_VAR (reg_info_dummy); \
3251 #else /* not REGEX_MALLOC */
3252 /* Some MIPS systems (at least) want this to free alloca'd storage. */
3253 #define FREE_VARIABLES() alloca (0)
3254 #endif /* not REGEX_MALLOC */
3256 #define FREE_VARIABLES() /* Do nothing! */
3257 #endif /* not MATCH_MAY_ALLOCATE */
3259 /* These values must meet several constraints. They must not be valid
3260 register values; since we have a limit of 255 registers (because
3261 we use only one byte in the pattern for the register number), we can
3262 use numbers larger than 255. They must differ by 1, because of
3263 NUM_FAILURE_ITEMS above. And the value for the lowest register must
3264 be larger than the value for the highest register, so we do not try
3265 to actually save any registers when none are active. */
3266 #define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
3267 #define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
3269 /* Matching routines. */
3271 #ifndef emacs /* Emacs never uses this. */
3272 /* re_match is like re_match_2 except it takes only a single string. */
3275 re_match (bufp
, string
, size
, pos
, regs
)
3276 struct re_pattern_buffer
*bufp
;
3279 struct re_registers
*regs
;
3281 return re_match_2 (bufp
, NULL
, 0, string
, size
, pos
, regs
, size
);
3283 #endif /* not emacs */
3286 /* re_match_2 matches the compiled pattern in BUFP against the
3287 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
3288 and SIZE2, respectively). We start matching at POS, and stop
3291 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
3292 store offsets for the substring each group matched in REGS. See the
3293 documentation for exactly how many groups we fill.
3295 We return -1 if no match, -2 if an internal error (such as the
3296 failure stack overflowing). Otherwise, we return the length of the
3297 matched substring. */
3300 re_match_2 (bufp
, string1
, size1
, string2
, size2
, pos
, regs
, stop
)
3301 struct re_pattern_buffer
*bufp
;
3302 const char *string1
, *string2
;
3305 struct re_registers
*regs
;
3308 /* General temporaries. */
3312 /* Just past the end of the corresponding string. */
3313 const char *end1
, *end2
;
3315 /* Pointers into string1 and string2, just past the last characters in
3316 each to consider matching. */
3317 const char *end_match_1
, *end_match_2
;
3319 /* Where we are in the data, and the end of the current string. */
3320 const char *d
, *dend
;
3322 /* Where we are in the pattern, and the end of the pattern. */
3323 unsigned char *p
= bufp
->buffer
;
3324 register unsigned char *pend
= p
+ bufp
->used
;
3326 /* We use this to map every character in the string. */
3327 char *translate
= bufp
->translate
;
3329 /* Failure point stack. Each place that can handle a failure further
3330 down the line pushes a failure point on this stack. It consists of
3331 restart, regend, and reg_info for all registers corresponding to
3332 the subexpressions we're currently inside, plus the number of such
3333 registers, and, finally, two char *'s. The first char * is where
3334 to resume scanning the pattern; the second one is where to resume
3335 scanning the strings. If the latter is zero, the failure point is
3336 a ``dummy''; if a failure happens and the failure point is a dummy,
3337 it gets discarded and the next next one is tried. */
3338 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
3339 fail_stack_type fail_stack
;
3342 static unsigned failure_id
= 0;
3343 unsigned nfailure_points_pushed
= 0, nfailure_points_popped
= 0;
3346 /* We fill all the registers internally, independent of what we
3347 return, for use in backreferences. The number here includes
3348 an element for register zero. */
3349 unsigned num_regs
= bufp
->re_nsub
+ 1;
3351 /* The currently active registers. */
3352 unsigned lowest_active_reg
= NO_LOWEST_ACTIVE_REG
;
3353 unsigned highest_active_reg
= NO_HIGHEST_ACTIVE_REG
;
3355 /* Information on the contents of registers. These are pointers into
3356 the input strings; they record just what was matched (on this
3357 attempt) by a subexpression part of the pattern, that is, the
3358 regnum-th regstart pointer points to where in the pattern we began
3359 matching and the regnum-th regend points to right after where we
3360 stopped matching the regnum-th subexpression. (The zeroth register
3361 keeps track of what the whole pattern matches.) */
3362 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3363 const char **regstart
, **regend
;
3366 /* If a group that's operated upon by a repetition operator fails to
3367 match anything, then the register for its start will need to be
3368 restored because it will have been set to wherever in the string we
3369 are when we last see its open-group operator. Similarly for a
3371 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3372 const char **old_regstart
, **old_regend
;
3375 /* The is_active field of reg_info helps us keep track of which (possibly
3376 nested) subexpressions we are currently in. The matched_something
3377 field of reg_info[reg_num] helps us tell whether or not we have
3378 matched any of the pattern so far this time through the reg_num-th
3379 subexpression. These two fields get reset each time through any
3380 loop their register is in. */
3381 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
3382 register_info_type
*reg_info
;
3385 /* The following record the register info as found in the above
3386 variables when we find a match better than any we've seen before.
3387 This happens as we backtrack through the failure points, which in
3388 turn happens only if we have not yet matched the entire string. */
3389 unsigned best_regs_set
= false;
3390 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3391 const char **best_regstart
, **best_regend
;
3394 /* Logically, this is `best_regend[0]'. But we don't want to have to
3395 allocate space for that if we're not allocating space for anything
3396 else (see below). Also, we never need info about register 0 for
3397 any of the other register vectors, and it seems rather a kludge to
3398 treat `best_regend' differently than the rest. So we keep track of
3399 the end of the best match so far in a separate variable. We
3400 initialize this to NULL so that when we backtrack the first time
3401 and need to test it, it's not garbage. */
3402 const char *match_end
= NULL
;
3404 /* Used when we pop values we don't care about. */
3405 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3406 const char **reg_dummy
;
3407 register_info_type
*reg_info_dummy
;
3411 /* Counts the total number of registers pushed. */
3412 unsigned num_regs_pushed
= 0;
3415 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
3419 #ifdef MATCH_MAY_ALLOCATE
3420 /* Do not bother to initialize all the register variables if there are
3421 no groups in the pattern, as it takes a fair amount of time. If
3422 there are groups, we include space for register 0 (the whole
3423 pattern), even though we never use it, since it simplifies the
3424 array indexing. We should fix this. */
3427 regstart
= REGEX_TALLOC (num_regs
, const char *);
3428 regend
= REGEX_TALLOC (num_regs
, const char *);
3429 old_regstart
= REGEX_TALLOC (num_regs
, const char *);
3430 old_regend
= REGEX_TALLOC (num_regs
, const char *);
3431 best_regstart
= REGEX_TALLOC (num_regs
, const char *);
3432 best_regend
= REGEX_TALLOC (num_regs
, const char *);
3433 reg_info
= REGEX_TALLOC (num_regs
, register_info_type
);
3434 reg_dummy
= REGEX_TALLOC (num_regs
, const char *);
3435 reg_info_dummy
= REGEX_TALLOC (num_regs
, register_info_type
);
3437 if (!(regstart
&& regend
&& old_regstart
&& old_regend
&& reg_info
3438 && best_regstart
&& best_regend
&& reg_dummy
&& reg_info_dummy
))
3444 #if defined (REGEX_MALLOC)
3447 /* We must initialize all our variables to NULL, so that
3448 `FREE_VARIABLES' doesn't try to free them. */
3449 regstart
= regend
= old_regstart
= old_regend
= best_regstart
3450 = best_regend
= reg_dummy
= NULL
;
3451 reg_info
= reg_info_dummy
= (register_info_type
*) NULL
;
3453 #endif /* REGEX_MALLOC */
3454 #endif /* MATCH_MAY_ALLOCATE */
3456 /* The starting position is bogus. */
3457 if (pos
< 0 || pos
> size1
+ size2
)
3463 /* Initialize subexpression text positions to -1 to mark ones that no
3464 start_memory/stop_memory has been seen for. Also initialize the
3465 register information struct. */
3466 for (mcnt
= 1; mcnt
< num_regs
; mcnt
++)
3468 regstart
[mcnt
] = regend
[mcnt
]
3469 = old_regstart
[mcnt
] = old_regend
[mcnt
] = REG_UNSET_VALUE
;
3471 REG_MATCH_NULL_STRING_P (reg_info
[mcnt
]) = MATCH_NULL_UNSET_VALUE
;
3472 IS_ACTIVE (reg_info
[mcnt
]) = 0;
3473 MATCHED_SOMETHING (reg_info
[mcnt
]) = 0;
3474 EVER_MATCHED_SOMETHING (reg_info
[mcnt
]) = 0;
3477 /* We move `string1' into `string2' if the latter's empty -- but not if
3478 `string1' is null. */
3479 if (size2
== 0 && string1
!= NULL
)
3486 end1
= string1
+ size1
;
3487 end2
= string2
+ size2
;
3489 /* Compute where to stop matching, within the two strings. */
3492 end_match_1
= string1
+ stop
;
3493 end_match_2
= string2
;
3498 end_match_2
= string2
+ stop
- size1
;
3501 /* `p' scans through the pattern as `d' scans through the data.
3502 `dend' is the end of the input string that `d' points within. `d'
3503 is advanced into the following input string whenever necessary, but
3504 this happens before fetching; therefore, at the beginning of the
3505 loop, `d' can be pointing at the end of a string, but it cannot
3507 if (size1
> 0 && pos
<= size1
)
3514 d
= string2
+ pos
- size1
;
3518 DEBUG_PRINT1 ("The compiled pattern is: ");
3519 DEBUG_PRINT_COMPILED_PATTERN (bufp
, p
, pend
);
3520 DEBUG_PRINT1 ("The string to match is: `");
3521 DEBUG_PRINT_DOUBLE_STRING (d
, string1
, size1
, string2
, size2
);
3522 DEBUG_PRINT1 ("'\n");
3524 /* This loops over pattern commands. It exits by returning from the
3525 function if the match is complete, or it drops through if the match
3526 fails at this starting point in the input data. */
3529 DEBUG_PRINT2 ("\n0x%x: ", p
);
3532 { /* End of pattern means we might have succeeded. */
3533 DEBUG_PRINT1 ("end of pattern ... ");
3535 /* If we haven't matched the entire string, and we want the
3536 longest match, try backtracking. */
3537 if (d
!= end_match_2
)
3539 DEBUG_PRINT1 ("backtracking.\n");
3541 if (!FAIL_STACK_EMPTY ())
3542 { /* More failure points to try. */
3543 boolean same_str_p
= (FIRST_STRING_P (match_end
)
3544 == MATCHING_IN_FIRST_STRING
);
3546 /* If exceeds best match so far, save it. */
3548 || (same_str_p
&& d
> match_end
)
3549 || (!same_str_p
&& !MATCHING_IN_FIRST_STRING
))
3551 best_regs_set
= true;
3554 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
3556 for (mcnt
= 1; mcnt
< num_regs
; mcnt
++)
3558 best_regstart
[mcnt
] = regstart
[mcnt
];
3559 best_regend
[mcnt
] = regend
[mcnt
];
3565 /* If no failure points, don't restore garbage. */
3566 else if (best_regs_set
)
3569 /* Restore best match. It may happen that `dend ==
3570 end_match_1' while the restored d is in string2.
3571 For example, the pattern `x.*y.*z' against the
3572 strings `x-' and `y-z-', if the two strings are
3573 not consecutive in memory. */
3574 DEBUG_PRINT1 ("Restoring best registers.\n");
3577 dend
= ((d
>= string1
&& d
<= end1
)
3578 ? end_match_1
: end_match_2
);
3580 for (mcnt
= 1; mcnt
< num_regs
; mcnt
++)
3582 regstart
[mcnt
] = best_regstart
[mcnt
];
3583 regend
[mcnt
] = best_regend
[mcnt
];
3586 } /* d != end_match_2 */
3588 DEBUG_PRINT1 ("Accepting match.\n");
3590 /* If caller wants register contents data back, do it. */
3591 if (regs
&& !bufp
->no_sub
)
3593 /* Have the register data arrays been allocated? */
3594 if (bufp
->regs_allocated
== REGS_UNALLOCATED
)
3595 { /* No. So allocate them with malloc. We need one
3596 extra element beyond `num_regs' for the `-1' marker
3598 regs
->num_regs
= MAX (RE_NREGS
, num_regs
+ 1);
3599 regs
->start
= TALLOC (regs
->num_regs
, regoff_t
);
3600 regs
->end
= TALLOC (regs
->num_regs
, regoff_t
);
3601 if (regs
->start
== NULL
|| regs
->end
== NULL
)
3603 bufp
->regs_allocated
= REGS_REALLOCATE
;
3605 else if (bufp
->regs_allocated
== REGS_REALLOCATE
)
3606 { /* Yes. If we need more elements than were already
3607 allocated, reallocate them. If we need fewer, just
3609 if (regs
->num_regs
< num_regs
+ 1)
3611 regs
->num_regs
= num_regs
+ 1;
3612 RETALLOC (regs
->start
, regs
->num_regs
, regoff_t
);
3613 RETALLOC (regs
->end
, regs
->num_regs
, regoff_t
);
3614 if (regs
->start
== NULL
|| regs
->end
== NULL
)
3620 /* These braces fend off a "empty body in an else-statement"
3621 warning under GCC when assert expands to nothing. */
3622 assert (bufp
->regs_allocated
== REGS_FIXED
);
3625 /* Convert the pointer data in `regstart' and `regend' to
3626 indices. Register zero has to be set differently,
3627 since we haven't kept track of any info for it. */
3628 if (regs
->num_regs
> 0)
3630 regs
->start
[0] = pos
;
3631 regs
->end
[0] = (MATCHING_IN_FIRST_STRING
? d
- string1
3632 : d
- string2
+ size1
);
3635 /* Go through the first `min (num_regs, regs->num_regs)'
3636 registers, since that is all we initialized. */
3637 for (mcnt
= 1; mcnt
< MIN (num_regs
, regs
->num_regs
); mcnt
++)
3639 if (REG_UNSET (regstart
[mcnt
]) || REG_UNSET (regend
[mcnt
]))
3640 regs
->start
[mcnt
] = regs
->end
[mcnt
] = -1;
3643 regs
->start
[mcnt
] = POINTER_TO_OFFSET (regstart
[mcnt
]);
3644 regs
->end
[mcnt
] = POINTER_TO_OFFSET (regend
[mcnt
]);
3648 /* If the regs structure we return has more elements than
3649 were in the pattern, set the extra elements to -1. If
3650 we (re)allocated the registers, this is the case,
3651 because we always allocate enough to have at least one
3653 for (mcnt
= num_regs
; mcnt
< regs
->num_regs
; mcnt
++)
3654 regs
->start
[mcnt
] = regs
->end
[mcnt
] = -1;
3655 } /* regs && !bufp->no_sub */
3658 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
3659 nfailure_points_pushed
, nfailure_points_popped
,
3660 nfailure_points_pushed
- nfailure_points_popped
);
3661 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed
);
3663 mcnt
= d
- pos
- (MATCHING_IN_FIRST_STRING
3667 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt
);
3672 /* Otherwise match next pattern command. */
3673 #ifdef SWITCH_ENUM_BUG
3674 switch ((int) ((re_opcode_t
) *p
++))
3676 switch ((re_opcode_t
) *p
++)
3679 /* Ignore these. Used to ignore the n of succeed_n's which
3680 currently have n == 0. */
3682 DEBUG_PRINT1 ("EXECUTING no_op.\n");
3686 /* Match the next n pattern characters exactly. The following
3687 byte in the pattern defines n, and the n bytes after that
3688 are the characters to match. */
3691 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt
);
3693 /* This is written out as an if-else so we don't waste time
3694 testing `translate' inside the loop. */
3700 if (translate
[(unsigned char) *d
++] != (char) *p
++)
3710 if (*d
++ != (char) *p
++) goto fail
;
3714 SET_REGS_MATCHED ();
3718 /* Match any character except possibly a newline or a null. */
3720 DEBUG_PRINT1 ("EXECUTING anychar.\n");
3724 if ((!(bufp
->syntax
& RE_DOT_NEWLINE
) && TRANSLATE (*d
) == '\n')
3725 || (bufp
->syntax
& RE_DOT_NOT_NULL
&& TRANSLATE (*d
) == '\000'))
3728 SET_REGS_MATCHED ();
3729 DEBUG_PRINT2 (" Matched `%d'.\n", *d
);
3737 register unsigned char c
;
3738 boolean
not = (re_opcode_t
) *(p
- 1) == charset_not
;
3740 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
3743 c
= TRANSLATE (*d
); /* The character to match. */
3745 /* Cast to `unsigned' instead of `unsigned char' in case the
3746 bit list is a full 32 bytes long. */
3747 if (c
< (unsigned) (*p
* BYTEWIDTH
)
3748 && p
[1 + c
/ BYTEWIDTH
] & (1 << (c
% BYTEWIDTH
)))
3753 if (!not) goto fail
;
3755 SET_REGS_MATCHED ();
3761 /* The beginning of a group is represented by start_memory.
3762 The arguments are the register number in the next byte, and the
3763 number of groups inner to this one in the next. The text
3764 matched within the group is recorded (in the internal
3765 registers data structure) under the register number. */
3767 DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p
, p
[1]);
3769 /* Find out if this group can match the empty string. */
3770 p1
= p
; /* To send to group_match_null_string_p. */
3772 if (REG_MATCH_NULL_STRING_P (reg_info
[*p
]) == MATCH_NULL_UNSET_VALUE
)
3773 REG_MATCH_NULL_STRING_P (reg_info
[*p
])
3774 = group_match_null_string_p (&p1
, pend
, reg_info
);
3776 /* Save the position in the string where we were the last time
3777 we were at this open-group operator in case the group is
3778 operated upon by a repetition operator, e.g., with `(a*)*b'
3779 against `ab'; then we want to ignore where we are now in
3780 the string in case this attempt to match fails. */
3781 old_regstart
[*p
] = REG_MATCH_NULL_STRING_P (reg_info
[*p
])
3782 ? REG_UNSET (regstart
[*p
]) ? d
: regstart
[*p
]
3784 DEBUG_PRINT2 (" old_regstart: %d\n",
3785 POINTER_TO_OFFSET (old_regstart
[*p
]));
3788 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart
[*p
]));
3790 IS_ACTIVE (reg_info
[*p
]) = 1;
3791 MATCHED_SOMETHING (reg_info
[*p
]) = 0;
3793 /* This is the new highest active register. */
3794 highest_active_reg
= *p
;
3796 /* If nothing was active before, this is the new lowest active
3798 if (lowest_active_reg
== NO_LOWEST_ACTIVE_REG
)
3799 lowest_active_reg
= *p
;
3801 /* Move past the register number and inner group count. */
3806 /* The stop_memory opcode represents the end of a group. Its
3807 arguments are the same as start_memory's: the register
3808 number, and the number of inner groups. */
3810 DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p
, p
[1]);
3812 /* We need to save the string position the last time we were at
3813 this close-group operator in case the group is operated
3814 upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
3815 against `aba'; then we want to ignore where we are now in
3816 the string in case this attempt to match fails. */
3817 old_regend
[*p
] = REG_MATCH_NULL_STRING_P (reg_info
[*p
])
3818 ? REG_UNSET (regend
[*p
]) ? d
: regend
[*p
]
3820 DEBUG_PRINT2 (" old_regend: %d\n",
3821 POINTER_TO_OFFSET (old_regend
[*p
]));
3824 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend
[*p
]));
3826 /* This register isn't active anymore. */
3827 IS_ACTIVE (reg_info
[*p
]) = 0;
3829 /* If this was the only register active, nothing is active
3831 if (lowest_active_reg
== highest_active_reg
)
3833 lowest_active_reg
= NO_LOWEST_ACTIVE_REG
;
3834 highest_active_reg
= NO_HIGHEST_ACTIVE_REG
;
3837 { /* We must scan for the new highest active register, since
3838 it isn't necessarily one less than now: consider
3839 (a(b)c(d(e)f)g). When group 3 ends, after the f), the
3840 new highest active register is 1. */
3841 unsigned char r
= *p
- 1;
3842 while (r
> 0 && !IS_ACTIVE (reg_info
[r
]))
3845 /* If we end up at register zero, that means that we saved
3846 the registers as the result of an `on_failure_jump', not
3847 a `start_memory', and we jumped to past the innermost
3848 `stop_memory'. For example, in ((.)*) we save
3849 registers 1 and 2 as a result of the *, but when we pop
3850 back to the second ), we are at the stop_memory 1.
3851 Thus, nothing is active. */
3854 lowest_active_reg
= NO_LOWEST_ACTIVE_REG
;
3855 highest_active_reg
= NO_HIGHEST_ACTIVE_REG
;
3858 highest_active_reg
= r
;
3861 /* If just failed to match something this time around with a
3862 group that's operated on by a repetition operator, try to
3863 force exit from the ``loop'', and restore the register
3864 information for this group that we had before trying this
3866 if ((!MATCHED_SOMETHING (reg_info
[*p
])
3867 || (re_opcode_t
) p
[-3] == start_memory
)
3870 boolean is_a_jump_n
= false;
3874 switch ((re_opcode_t
) *p1
++)
3878 case pop_failure_jump
:
3879 case maybe_pop_jump
:
3881 case dummy_failure_jump
:
3882 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
3892 /* If the next operation is a jump backwards in the pattern
3893 to an on_failure_jump right before the start_memory
3894 corresponding to this stop_memory, exit from the loop
3895 by forcing a failure after pushing on the stack the
3896 on_failure_jump's jump in the pattern, and d. */
3897 if (mcnt
< 0 && (re_opcode_t
) *p1
== on_failure_jump
3898 && (re_opcode_t
) p1
[3] == start_memory
&& p1
[4] == *p
)
3900 /* If this group ever matched anything, then restore
3901 what its registers were before trying this last
3902 failed match, e.g., with `(a*)*b' against `ab' for
3903 regstart[1], and, e.g., with `((a*)*(b*)*)*'
3904 against `aba' for regend[3].
3906 Also restore the registers for inner groups for,
3907 e.g., `((a*)(b*))*' against `aba' (register 3 would
3908 otherwise get trashed). */
3910 if (EVER_MATCHED_SOMETHING (reg_info
[*p
]))
3914 EVER_MATCHED_SOMETHING (reg_info
[*p
]) = 0;
3916 /* Restore this and inner groups' (if any) registers. */
3917 for (r
= *p
; r
< *p
+ *(p
+ 1); r
++)
3919 regstart
[r
] = old_regstart
[r
];
3921 /* xx why this test? */
3922 if ((int) old_regend
[r
] >= (int) regstart
[r
])
3923 regend
[r
] = old_regend
[r
];
3927 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
3928 PUSH_FAILURE_POINT (p1
+ mcnt
, d
, -2);
3934 /* Move past the register number and the inner group count. */
3939 /* \<digit> has been turned into a `duplicate' command which is
3940 followed by the numeric value of <digit> as the register number. */
3943 register const char *d2
, *dend2
;
3944 int regno
= *p
++; /* Get which register to match against. */
3945 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno
);
3947 /* Can't back reference a group which we've never matched. */
3948 if (REG_UNSET (regstart
[regno
]) || REG_UNSET (regend
[regno
]))
3951 /* Where in input to try to start matching. */
3952 d2
= regstart
[regno
];
3954 /* Where to stop matching; if both the place to start and
3955 the place to stop matching are in the same string, then
3956 set to the place to stop, otherwise, for now have to use
3957 the end of the first string. */
3959 dend2
= ((FIRST_STRING_P (regstart
[regno
])
3960 == FIRST_STRING_P (regend
[regno
]))
3961 ? regend
[regno
] : end_match_1
);
3964 /* If necessary, advance to next segment in register
3968 if (dend2
== end_match_2
) break;
3969 if (dend2
== regend
[regno
]) break;
3971 /* End of string1 => advance to string2. */
3973 dend2
= regend
[regno
];
3975 /* At end of register contents => success */
3976 if (d2
== dend2
) break;
3978 /* If necessary, advance to next segment in data. */
3981 /* How many characters left in this segment to match. */
3984 /* Want how many consecutive characters we can match in
3985 one shot, so, if necessary, adjust the count. */
3986 if (mcnt
> dend2
- d2
)
3989 /* Compare that many; failure if mismatch, else move
3992 ? bcmp_translate (d
, d2
, mcnt
, translate
)
3993 : bcmp (d
, d2
, mcnt
))
3995 d
+= mcnt
, d2
+= mcnt
;
4001 /* begline matches the empty string at the beginning of the string
4002 (unless `not_bol' is set in `bufp'), and, if
4003 `newline_anchor' is set, after newlines. */
4005 DEBUG_PRINT1 ("EXECUTING begline.\n");
4007 if (AT_STRINGS_BEG (d
))
4009 if (!bufp
->not_bol
) break;
4011 else if (d
[-1] == '\n' && bufp
->newline_anchor
)
4015 /* In all other cases, we fail. */
4019 /* endline is the dual of begline. */
4021 DEBUG_PRINT1 ("EXECUTING endline.\n");
4023 if (AT_STRINGS_END (d
))
4025 if (!bufp
->not_eol
) break;
4028 /* We have to ``prefetch'' the next character. */
4029 else if ((d
== end1
? *string2
: *d
) == '\n'
4030 && bufp
->newline_anchor
)
4037 /* Match at the very beginning of the data. */
4039 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
4040 if (AT_STRINGS_BEG (d
))
4045 /* Match at the very end of the data. */
4047 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
4048 if (AT_STRINGS_END (d
))
4053 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
4054 pushes NULL as the value for the string on the stack. Then
4055 `pop_failure_point' will keep the current value for the
4056 string, instead of restoring it. To see why, consider
4057 matching `foo\nbar' against `.*\n'. The .* matches the foo;
4058 then the . fails against the \n. But the next thing we want
4059 to do is match the \n against the \n; if we restored the
4060 string value, we would be back at the foo.
4062 Because this is used only in specific cases, we don't need to
4063 check all the things that `on_failure_jump' does, to make
4064 sure the right things get saved on the stack. Hence we don't
4065 share its code. The only reason to push anything on the
4066 stack at all is that otherwise we would have to change
4067 `anychar's code to do something besides goto fail in this
4068 case; that seems worse than this. */
4069 case on_failure_keep_string_jump
:
4070 DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
4072 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
4073 DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt
, p
+ mcnt
);
4075 PUSH_FAILURE_POINT (p
+ mcnt
, NULL
, -2);
4079 /* Uses of on_failure_jump:
4081 Each alternative starts with an on_failure_jump that points
4082 to the beginning of the next alternative. Each alternative
4083 except the last ends with a jump that in effect jumps past
4084 the rest of the alternatives. (They really jump to the
4085 ending jump of the following alternative, because tensioning
4086 these jumps is a hassle.)
4088 Repeats start with an on_failure_jump that points past both
4089 the repetition text and either the following jump or
4090 pop_failure_jump back to this on_failure_jump. */
4091 case on_failure_jump
:
4093 DEBUG_PRINT1 ("EXECUTING on_failure_jump");
4095 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
4096 DEBUG_PRINT3 (" %d (to 0x%x)", mcnt
, p
+ mcnt
);
4098 /* If this on_failure_jump comes right before a group (i.e.,
4099 the original * applied to a group), save the information
4100 for that group and all inner ones, so that if we fail back
4101 to this point, the group's information will be correct.
4102 For example, in \(a*\)*\1, we need the preceding group,
4103 and in \(\(a*\)b*\)\2, we need the inner group. */
4105 /* We can't use `p' to check ahead because we push
4106 a failure point to `p + mcnt' after we do this. */
4109 /* We need to skip no_op's before we look for the
4110 start_memory in case this on_failure_jump is happening as
4111 the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
4113 while (p1
< pend
&& (re_opcode_t
) *p1
== no_op
)
4116 if (p1
< pend
&& (re_opcode_t
) *p1
== start_memory
)
4118 /* We have a new highest active register now. This will
4119 get reset at the start_memory we are about to get to,
4120 but we will have saved all the registers relevant to
4121 this repetition op, as described above. */
4122 highest_active_reg
= *(p1
+ 1) + *(p1
+ 2);
4123 if (lowest_active_reg
== NO_LOWEST_ACTIVE_REG
)
4124 lowest_active_reg
= *(p1
+ 1);
4127 DEBUG_PRINT1 (":\n");
4128 PUSH_FAILURE_POINT (p
+ mcnt
, d
, -2);
4132 /* A smart repeat ends with `maybe_pop_jump'.
4133 We change it to either `pop_failure_jump' or `jump'. */
4134 case maybe_pop_jump
:
4135 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
4136 DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt
);
4138 register unsigned char *p2
= p
;
4140 /* Compare the beginning of the repeat with what in the
4141 pattern follows its end. If we can establish that there
4142 is nothing that they would both match, i.e., that we
4143 would have to backtrack because of (as in, e.g., `a*a')
4144 then we can change to pop_failure_jump, because we'll
4145 never have to backtrack.
4147 This is not true in the case of alternatives: in
4148 `(a|ab)*' we do need to backtrack to the `ab' alternative
4149 (e.g., if the string was `ab'). But instead of trying to
4150 detect that here, the alternative has put on a dummy
4151 failure point which is what we will end up popping. */
4153 /* Skip over open/close-group commands.
4154 If what follows this loop is a ...+ construct,
4155 look at what begins its body, since we will have to
4156 match at least one of that. */
4160 && ((re_opcode_t
) *p2
== stop_memory
4161 || (re_opcode_t
) *p2
== start_memory
))
4163 else if (p2
+ 6 < pend
4164 && (re_opcode_t
) *p2
== dummy_failure_jump
)
4171 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
4172 to the `maybe_finalize_jump' of this case. Examine what
4175 /* If we're at the end of the pattern, we can change. */
4178 /* Consider what happens when matching ":\(.*\)"
4179 against ":/". I don't really understand this code
4181 p
[-3] = (unsigned char) pop_failure_jump
;
4183 (" End of pattern: change to `pop_failure_jump'.\n");
4186 else if ((re_opcode_t
) *p2
== exactn
4187 || (bufp
->newline_anchor
&& (re_opcode_t
) *p2
== endline
))
4189 register unsigned char c
4190 = *p2
== (unsigned char) endline
? '\n' : p2
[2];
4192 if ((re_opcode_t
) p1
[3] == exactn
&& p1
[5] != c
)
4194 p
[-3] = (unsigned char) pop_failure_jump
;
4195 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
4199 else if ((re_opcode_t
) p1
[3] == charset
4200 || (re_opcode_t
) p1
[3] == charset_not
)
4202 int not = (re_opcode_t
) p1
[3] == charset_not
;
4204 if (c
< (unsigned char) (p1
[4] * BYTEWIDTH
)
4205 && p1
[5 + c
/ BYTEWIDTH
] & (1 << (c
% BYTEWIDTH
)))
4208 /* `not' is equal to 1 if c would match, which means
4209 that we can't change to pop_failure_jump. */
4212 p
[-3] = (unsigned char) pop_failure_jump
;
4213 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4217 else if ((re_opcode_t
) *p2
== charset
)
4219 register unsigned char c
4220 = *p2
== (unsigned char) endline
? '\n' : p2
[2];
4222 if ((re_opcode_t
) p1
[3] == exactn
4223 && ! (p2
[1] * BYTEWIDTH
> p1
[4]
4224 && (p2
[1 + p1
[4] / BYTEWIDTH
]
4225 & (1 << (p1
[4] % BYTEWIDTH
)))))
4227 p
[-3] = (unsigned char) pop_failure_jump
;
4228 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
4232 else if ((re_opcode_t
) p1
[3] == charset_not
)
4235 /* We win if the charset_not inside the loop
4236 lists every character listed in the charset after. */
4237 for (idx
= 0; idx
< p2
[1]; idx
++)
4238 if (! (p2
[2 + idx
] == 0
4240 && ((p2
[2 + idx
] & ~ p1
[5 + idx
]) == 0))))
4245 p
[-3] = (unsigned char) pop_failure_jump
;
4246 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4249 else if ((re_opcode_t
) p1
[3] == charset
)
4252 /* We win if the charset inside the loop
4253 has no overlap with the one after the loop. */
4254 for (idx
= 0; idx
< p2
[1] && idx
< p1
[4]; idx
++)
4255 if ((p2
[2 + idx
] & p1
[5 + idx
]) != 0)
4258 if (idx
== p2
[1] || idx
== p1
[4])
4260 p
[-3] = (unsigned char) pop_failure_jump
;
4261 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4266 p
-= 2; /* Point at relative address again. */
4267 if ((re_opcode_t
) p
[-1] != pop_failure_jump
)
4269 p
[-1] = (unsigned char) jump
;
4270 DEBUG_PRINT1 (" Match => jump.\n");
4271 goto unconditional_jump
;
4273 /* Note fall through. */
4276 /* The end of a simple repeat has a pop_failure_jump back to
4277 its matching on_failure_jump, where the latter will push a
4278 failure point. The pop_failure_jump takes off failure
4279 points put on by this pop_failure_jump's matching
4280 on_failure_jump; we got through the pattern to here from the
4281 matching on_failure_jump, so didn't fail. */
4282 case pop_failure_jump
:
4284 /* We need to pass separate storage for the lowest and
4285 highest registers, even though we don't care about the
4286 actual values. Otherwise, we will restore only one
4287 register from the stack, since lowest will == highest in
4288 `pop_failure_point'. */
4289 unsigned dummy_low_reg
, dummy_high_reg
;
4290 unsigned char *pdummy
;
4293 DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
4294 POP_FAILURE_POINT (sdummy
, pdummy
,
4295 dummy_low_reg
, dummy_high_reg
,
4296 reg_dummy
, reg_dummy
, reg_info_dummy
);
4298 /* Note fall through. */
4301 /* Unconditionally jump (without popping any failure points). */
4304 EXTRACT_NUMBER_AND_INCR (mcnt
, p
); /* Get the amount to jump. */
4305 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt
);
4306 p
+= mcnt
; /* Do the jump. */
4307 DEBUG_PRINT2 ("(to 0x%x).\n", p
);
4311 /* We need this opcode so we can detect where alternatives end
4312 in `group_match_null_string_p' et al. */
4314 DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
4315 goto unconditional_jump
;
4318 /* Normally, the on_failure_jump pushes a failure point, which
4319 then gets popped at pop_failure_jump. We will end up at
4320 pop_failure_jump, also, and with a pattern of, say, `a+', we
4321 are skipping over the on_failure_jump, so we have to push
4322 something meaningless for pop_failure_jump to pop. */
4323 case dummy_failure_jump
:
4324 DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
4325 /* It doesn't matter what we push for the string here. What
4326 the code at `fail' tests is the value for the pattern. */
4327 PUSH_FAILURE_POINT (0, 0, -2);
4328 goto unconditional_jump
;
4331 /* At the end of an alternative, we need to push a dummy failure
4332 point in case we are followed by a `pop_failure_jump', because
4333 we don't want the failure point for the alternative to be
4334 popped. For example, matching `(a|ab)*' against `aab'
4335 requires that we match the `ab' alternative. */
4336 case push_dummy_failure
:
4337 DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
4338 /* See comments just above at `dummy_failure_jump' about the
4340 PUSH_FAILURE_POINT (0, 0, -2);
4343 /* Have to succeed matching what follows at least n times.
4344 After that, handle like `on_failure_jump'. */
4346 EXTRACT_NUMBER (mcnt
, p
+ 2);
4347 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt
);
4350 /* Originally, this is how many times we HAVE to succeed. */
4355 STORE_NUMBER_AND_INCR (p
, mcnt
);
4356 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p
, mcnt
);
4360 DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n", p
+2);
4361 p
[2] = (unsigned char) no_op
;
4362 p
[3] = (unsigned char) no_op
;
4368 EXTRACT_NUMBER (mcnt
, p
+ 2);
4369 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt
);
4371 /* Originally, this is how many times we CAN jump. */
4375 STORE_NUMBER (p
+ 2, mcnt
);
4376 goto unconditional_jump
;
4378 /* If don't have to jump any more, skip over the rest of command. */
4385 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
4387 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
4389 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
4390 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1
, mcnt
);
4391 STORE_NUMBER (p1
, mcnt
);
4396 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
4397 if (AT_WORD_BOUNDARY (d
))
4402 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
4403 if (AT_WORD_BOUNDARY (d
))
4408 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
4409 if (WORDCHAR_P (d
) && (AT_STRINGS_BEG (d
) || !WORDCHAR_P (d
- 1)))
4414 DEBUG_PRINT1 ("EXECUTING wordend.\n");
4415 if (!AT_STRINGS_BEG (d
) && WORDCHAR_P (d
- 1)
4416 && (!WORDCHAR_P (d
) || AT_STRINGS_END (d
)))
4423 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
4424 if (PTR_CHAR_POS ((unsigned char *) d
) >= point
)
4429 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
4430 if (PTR_CHAR_POS ((unsigned char *) d
) != point
)
4435 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
4436 if (PTR_CHAR_POS ((unsigned char *) d
) <= point
)
4439 #else /* not emacs19 */
4441 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
4442 if (PTR_CHAR_POS ((unsigned char *) d
) + 1 != point
)
4445 #endif /* not emacs19 */
4448 DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt
);
4453 DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
4457 if (SYNTAX (*d
++) != (enum syntaxcode
) mcnt
)
4459 SET_REGS_MATCHED ();
4463 DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt
);
4465 goto matchnotsyntax
;
4468 DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
4472 if (SYNTAX (*d
++) == (enum syntaxcode
) mcnt
)
4474 SET_REGS_MATCHED ();
4477 #else /* not emacs */
4479 DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
4481 if (!WORDCHAR_P (d
))
4483 SET_REGS_MATCHED ();
4488 DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
4492 SET_REGS_MATCHED ();
4495 #endif /* not emacs */
4500 continue; /* Successfully executed one pattern command; keep going. */
4503 /* We goto here if a matching operation fails. */
4505 if (!FAIL_STACK_EMPTY ())
4506 { /* A restart point is known. Restore to that state. */
4507 DEBUG_PRINT1 ("\nFAIL:\n");
4508 POP_FAILURE_POINT (d
, p
,
4509 lowest_active_reg
, highest_active_reg
,
4510 regstart
, regend
, reg_info
);
4512 /* If this failure point is a dummy, try the next one. */
4516 /* If we failed to the end of the pattern, don't examine *p. */
4520 boolean is_a_jump_n
= false;
4522 /* If failed to a backwards jump that's part of a repetition
4523 loop, need to pop this failure point and use the next one. */
4524 switch ((re_opcode_t
) *p
)
4528 case maybe_pop_jump
:
4529 case pop_failure_jump
:
4532 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
4535 if ((is_a_jump_n
&& (re_opcode_t
) *p1
== succeed_n
)
4537 && (re_opcode_t
) *p1
== on_failure_jump
))
4545 if (d
>= string1
&& d
<= end1
)
4549 break; /* Matching at this starting point really fails. */
4553 goto restore_best_regs
;
4557 return -1; /* Failure to match. */
4560 /* Subroutine definitions for re_match_2. */
4563 /* We are passed P pointing to a register number after a start_memory.
4565 Return true if the pattern up to the corresponding stop_memory can
4566 match the empty string, and false otherwise.
4568 If we find the matching stop_memory, sets P to point to one past its number.
4569 Otherwise, sets P to an undefined byte less than or equal to END.
4571 We don't handle duplicates properly (yet). */
4574 group_match_null_string_p (p
, end
, reg_info
)
4575 unsigned char **p
, *end
;
4576 register_info_type
*reg_info
;
4579 /* Point to after the args to the start_memory. */
4580 unsigned char *p1
= *p
+ 2;
4584 /* Skip over opcodes that can match nothing, and return true or
4585 false, as appropriate, when we get to one that can't, or to the
4586 matching stop_memory. */
4588 switch ((re_opcode_t
) *p1
)
4590 /* Could be either a loop or a series of alternatives. */
4591 case on_failure_jump
:
4593 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
4595 /* If the next operation is not a jump backwards in the
4600 /* Go through the on_failure_jumps of the alternatives,
4601 seeing if any of the alternatives cannot match nothing.
4602 The last alternative starts with only a jump,
4603 whereas the rest start with on_failure_jump and end
4604 with a jump, e.g., here is the pattern for `a|b|c':
4606 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
4607 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
4610 So, we have to first go through the first (n-1)
4611 alternatives and then deal with the last one separately. */
4614 /* Deal with the first (n-1) alternatives, which start
4615 with an on_failure_jump (see above) that jumps to right
4616 past a jump_past_alt. */
4618 while ((re_opcode_t
) p1
[mcnt
-3] == jump_past_alt
)
4620 /* `mcnt' holds how many bytes long the alternative
4621 is, including the ending `jump_past_alt' and
4624 if (!alt_match_null_string_p (p1
, p1
+ mcnt
- 3,
4628 /* Move to right after this alternative, including the
4632 /* Break if it's the beginning of an n-th alternative
4633 that doesn't begin with an on_failure_jump. */
4634 if ((re_opcode_t
) *p1
!= on_failure_jump
)
4637 /* Still have to check that it's not an n-th
4638 alternative that starts with an on_failure_jump. */
4640 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
4641 if ((re_opcode_t
) p1
[mcnt
-3] != jump_past_alt
)
4643 /* Get to the beginning of the n-th alternative. */
4649 /* Deal with the last alternative: go back and get number
4650 of the `jump_past_alt' just before it. `mcnt' contains
4651 the length of the alternative. */
4652 EXTRACT_NUMBER (mcnt
, p1
- 2);
4654 if (!alt_match_null_string_p (p1
, p1
+ mcnt
, reg_info
))
4657 p1
+= mcnt
; /* Get past the n-th alternative. */
4663 assert (p1
[1] == **p
);
4669 if (!common_op_match_null_string_p (&p1
, end
, reg_info
))
4672 } /* while p1 < end */
4675 } /* group_match_null_string_p */
4678 /* Similar to group_match_null_string_p, but doesn't deal with alternatives:
4679 It expects P to be the first byte of a single alternative and END one
4680 byte past the last. The alternative can contain groups. */
4683 alt_match_null_string_p (p
, end
, reg_info
)
4684 unsigned char *p
, *end
;
4685 register_info_type
*reg_info
;
4688 unsigned char *p1
= p
;
4692 /* Skip over opcodes that can match nothing, and break when we get
4693 to one that can't. */
4695 switch ((re_opcode_t
) *p1
)
4698 case on_failure_jump
:
4700 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
4705 if (!common_op_match_null_string_p (&p1
, end
, reg_info
))
4708 } /* while p1 < end */
4711 } /* alt_match_null_string_p */
4714 /* Deals with the ops common to group_match_null_string_p and
4715 alt_match_null_string_p.
4717 Sets P to one after the op and its arguments, if any. */
4720 common_op_match_null_string_p (p
, end
, reg_info
)
4721 unsigned char **p
, *end
;
4722 register_info_type
*reg_info
;
4727 unsigned char *p1
= *p
;
4729 switch ((re_opcode_t
) *p1
++)
4749 assert (reg_no
> 0 && reg_no
<= MAX_REGNUM
);
4750 ret
= group_match_null_string_p (&p1
, end
, reg_info
);
4752 /* Have to set this here in case we're checking a group which
4753 contains a group and a back reference to it. */
4755 if (REG_MATCH_NULL_STRING_P (reg_info
[reg_no
]) == MATCH_NULL_UNSET_VALUE
)
4756 REG_MATCH_NULL_STRING_P (reg_info
[reg_no
]) = ret
;
4762 /* If this is an optimized succeed_n for zero times, make the jump. */
4764 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
4772 /* Get to the number of times to succeed. */
4774 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
4779 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
4787 if (!REG_MATCH_NULL_STRING_P (reg_info
[*p1
]))
4795 /* All other opcodes mean we cannot match the empty string. */
4801 } /* common_op_match_null_string_p */
4804 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
4805 bytes; nonzero otherwise. */
4808 bcmp_translate (s1
, s2
, len
, translate
)
4809 unsigned char *s1
, *s2
;
4813 register unsigned char *p1
= s1
, *p2
= s2
;
4816 if (translate
[*p1
++] != translate
[*p2
++]) return 1;
4822 /* Entry points for GNU code. */
4824 /* re_compile_pattern is the GNU regular expression compiler: it
4825 compiles PATTERN (of length SIZE) and puts the result in BUFP.
4826 Returns 0 if the pattern was valid, otherwise an error string.
4828 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
4829 are set in BUFP on entry.
4831 We call regex_compile to do the actual compilation. */
4834 re_compile_pattern (pattern
, length
, bufp
)
4835 const char *pattern
;
4837 struct re_pattern_buffer
*bufp
;
4841 /* GNU code is written to assume at least RE_NREGS registers will be set
4842 (and at least one extra will be -1). */
4843 bufp
->regs_allocated
= REGS_UNALLOCATED
;
4845 /* And GNU code determines whether or not to get register information
4846 by passing null for the REGS argument to re_match, etc., not by
4850 /* Match anchors at newline. */
4851 bufp
->newline_anchor
= 1;
4853 ret
= regex_compile (pattern
, length
, re_syntax_options
, bufp
);
4855 return re_error_msg
[(int) ret
];
4858 /* Entry points compatible with 4.2 BSD regex library. We don't define
4859 them if this is an Emacs or POSIX compilation. */
4861 #if !defined (emacs) && !defined (_POSIX_SOURCE)
4863 /* BSD has one and only one pattern buffer. */
4864 static struct re_pattern_buffer re_comp_buf
;
4874 if (!re_comp_buf
.buffer
)
4875 return "No previous regular expression";
4879 if (!re_comp_buf
.buffer
)
4881 re_comp_buf
.buffer
= (unsigned char *) malloc (200);
4882 if (re_comp_buf
.buffer
== NULL
)
4883 return "Memory exhausted";
4884 re_comp_buf
.allocated
= 200;
4886 re_comp_buf
.fastmap
= (char *) malloc (1 << BYTEWIDTH
);
4887 if (re_comp_buf
.fastmap
== NULL
)
4888 return "Memory exhausted";
4891 /* Since `re_exec' always passes NULL for the `regs' argument, we
4892 don't need to initialize the pattern buffer fields which affect it. */
4894 /* Match anchors at newlines. */
4895 re_comp_buf
.newline_anchor
= 1;
4897 ret
= regex_compile (s
, strlen (s
), re_syntax_options
, &re_comp_buf
);
4899 /* Yes, we're discarding `const' here. */
4900 return (char *) re_error_msg
[(int) ret
];
4908 const int len
= strlen (s
);
4910 0 <= re_search (&re_comp_buf
, s
, len
, 0, len
, (struct re_registers
*) 0);
4912 #endif /* not emacs and not _POSIX_SOURCE */
4914 /* POSIX.2 functions. Don't define these for Emacs. */
4918 /* regcomp takes a regular expression as a string and compiles it.
4920 PREG is a regex_t *. We do not expect any fields to be initialized,
4921 since POSIX says we shouldn't. Thus, we set
4923 `buffer' to the compiled pattern;
4924 `used' to the length of the compiled pattern;
4925 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
4926 REG_EXTENDED bit in CFLAGS is set; otherwise, to
4927 RE_SYNTAX_POSIX_BASIC;
4928 `newline_anchor' to REG_NEWLINE being set in CFLAGS;
4929 `fastmap' and `fastmap_accurate' to zero;
4930 `re_nsub' to the number of subexpressions in PATTERN.
4932 PATTERN is the address of the pattern string.
4934 CFLAGS is a series of bits which affect compilation.
4936 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
4937 use POSIX basic syntax.
4939 If REG_NEWLINE is set, then . and [^...] don't match newline.
4940 Also, regexec will try a match beginning after every newline.
4942 If REG_ICASE is set, then we considers upper- and lowercase
4943 versions of letters to be equivalent when matching.
4945 If REG_NOSUB is set, then when PREG is passed to regexec, that
4946 routine will report only success or failure, and nothing about the
4949 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
4950 the return codes and their meanings.) */
4953 regcomp (preg
, pattern
, cflags
)
4955 const char *pattern
;
4960 = (cflags
& REG_EXTENDED
) ?
4961 RE_SYNTAX_POSIX_EXTENDED
: RE_SYNTAX_POSIX_BASIC
;
4963 /* regex_compile will allocate the space for the compiled pattern. */
4965 preg
->allocated
= 0;
4968 /* Don't bother to use a fastmap when searching. This simplifies the
4969 REG_NEWLINE case: if we used a fastmap, we'd have to put all the
4970 characters after newlines into the fastmap. This way, we just try
4974 if (cflags
& REG_ICASE
)
4978 preg
->translate
= (char *) malloc (CHAR_SET_SIZE
);
4979 if (preg
->translate
== NULL
)
4980 return (int) REG_ESPACE
;
4982 /* Map uppercase characters to corresponding lowercase ones. */
4983 for (i
= 0; i
< CHAR_SET_SIZE
; i
++)
4984 preg
->translate
[i
] = ISUPPER (i
) ? tolower (i
) : i
;
4987 preg
->translate
= NULL
;
4989 /* If REG_NEWLINE is set, newlines are treated differently. */
4990 if (cflags
& REG_NEWLINE
)
4991 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
4992 syntax
&= ~RE_DOT_NEWLINE
;
4993 syntax
|= RE_HAT_LISTS_NOT_NEWLINE
;
4994 /* It also changes the matching behavior. */
4995 preg
->newline_anchor
= 1;
4998 preg
->newline_anchor
= 0;
5000 preg
->no_sub
= !!(cflags
& REG_NOSUB
);
5002 /* POSIX says a null character in the pattern terminates it, so we
5003 can use strlen here in compiling the pattern. */
5004 ret
= regex_compile (pattern
, strlen (pattern
), syntax
, preg
);
5006 /* POSIX doesn't distinguish between an unmatched open-group and an
5007 unmatched close-group: both are REG_EPAREN. */
5008 if (ret
== REG_ERPAREN
) ret
= REG_EPAREN
;
5014 /* regexec searches for a given pattern, specified by PREG, in the
5017 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
5018 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
5019 least NMATCH elements, and we set them to the offsets of the
5020 corresponding matched substrings.
5022 EFLAGS specifies `execution flags' which affect matching: if
5023 REG_NOTBOL is set, then ^ does not match at the beginning of the
5024 string; if REG_NOTEOL is set, then $ does not match at the end.
5026 We return 0 if we find a match and REG_NOMATCH if not. */
5029 regexec (preg
, string
, nmatch
, pmatch
, eflags
)
5030 const regex_t
*preg
;
5033 regmatch_t pmatch
[];
5037 struct re_registers regs
;
5038 regex_t private_preg
;
5039 int len
= strlen (string
);
5040 boolean want_reg_info
= !preg
->no_sub
&& nmatch
> 0;
5042 private_preg
= *preg
;
5044 private_preg
.not_bol
= !!(eflags
& REG_NOTBOL
);
5045 private_preg
.not_eol
= !!(eflags
& REG_NOTEOL
);
5047 /* The user has told us exactly how many registers to return
5048 information about, via `nmatch'. We have to pass that on to the
5049 matching routines. */
5050 private_preg
.regs_allocated
= REGS_FIXED
;
5054 regs
.num_regs
= nmatch
;
5055 regs
.start
= TALLOC (nmatch
, regoff_t
);
5056 regs
.end
= TALLOC (nmatch
, regoff_t
);
5057 if (regs
.start
== NULL
|| regs
.end
== NULL
)
5058 return (int) REG_NOMATCH
;
5061 /* Perform the searching operation. */
5062 ret
= re_search (&private_preg
, string
, len
,
5063 /* start: */ 0, /* range: */ len
,
5064 want_reg_info
? ®s
: (struct re_registers
*) 0);
5066 /* Copy the register information to the POSIX structure. */
5073 for (r
= 0; r
< nmatch
; r
++)
5075 pmatch
[r
].rm_so
= regs
.start
[r
];
5076 pmatch
[r
].rm_eo
= regs
.end
[r
];
5080 /* If we needed the temporary register info, free the space now. */
5085 /* We want zero return to mean success, unlike `re_search'. */
5086 return ret
>= 0 ? (int) REG_NOERROR
: (int) REG_NOMATCH
;
5090 /* Returns a message corresponding to an error code, ERRCODE, returned
5091 from either regcomp or regexec. We don't use PREG here. */
5094 regerror (errcode
, preg
, errbuf
, errbuf_size
)
5096 const regex_t
*preg
;
5104 || errcode
>= (sizeof (re_error_msg
) / sizeof (re_error_msg
[0])))
5105 /* Only error codes returned by the rest of the code should be passed
5106 to this routine. If we are given anything else, or if other regex
5107 code generates an invalid error code, then the program has a bug.
5108 Dump core so we can fix it. */
5111 msg
= re_error_msg
[errcode
];
5113 /* POSIX doesn't require that we do anything in this case, but why
5118 msg_size
= strlen (msg
) + 1; /* Includes the null. */
5120 if (errbuf_size
!= 0)
5122 if (msg_size
> errbuf_size
)
5124 strncpy (errbuf
, msg
, errbuf_size
- 1);
5125 errbuf
[errbuf_size
- 1] = 0;
5128 strcpy (errbuf
, msg
);
5135 /* Free dynamically allocated space used by PREG. */
5141 if (preg
->buffer
!= NULL
)
5142 free (preg
->buffer
);
5143 preg
->buffer
= NULL
;
5145 preg
->allocated
= 0;
5148 if (preg
->fastmap
!= NULL
)
5149 free (preg
->fastmap
);
5150 preg
->fastmap
= NULL
;
5151 preg
->fastmap_accurate
= 0;
5153 if (preg
->translate
!= NULL
)
5154 free (preg
->translate
);
5155 preg
->translate
= NULL
;
5158 #endif /* not emacs */
5162 make-backup-files: t
5164 trim-versions-without-asking: nil