1 /* Extended regular expression matching and search library,
3 (Implements POSIX draft P10003.2/D11.2, except for
4 internationalization features.)
6 Copyright (C) 1993 Free Software Foundation, Inc.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
22 /* AIX requires this to be the first thing in the file. */
23 #if defined (_AIX) && !defined (REGEX_MALLOC)
29 /* We need this for `regex.h', and perhaps for the Emacs include files. */
30 #include <sys/types.h>
36 /* The `emacs' switch turns on certain matching commands
37 that make sense only in Emacs. */
44 /* Emacs uses `NULL' as a predicate. */
57 /* We used to test for `BSTRING' here, but only GCC and Emacs define
58 `BSTRING', as far as I know, and neither of them use this code. */
59 #if HAVE_STRING_H || STDC_HEADERS
62 #define bcmp(s1, s2, n) memcmp ((s1), (s2), (n))
65 #define bcopy(s, d, n) memcpy ((d), (s), (n))
68 #define bzero(s, n) memset ((s), 0, (n))
74 /* Define the syntax stuff for \<, \>, etc. */
76 /* This must be nonzero for the wordchar and notwordchar pattern
77 commands in re_match_2. */
84 extern char *re_syntax_table
;
86 #else /* not SYNTAX_TABLE */
88 /* How many characters in the character set. */
89 #define CHAR_SET_SIZE 256
91 static char re_syntax_table
[CHAR_SET_SIZE
];
102 bzero (re_syntax_table
, sizeof re_syntax_table
);
104 for (c
= 'a'; c
<= 'z'; c
++)
105 re_syntax_table
[c
] = Sword
;
107 for (c
= 'A'; c
<= 'Z'; c
++)
108 re_syntax_table
[c
] = Sword
;
110 for (c
= '0'; c
<= '9'; c
++)
111 re_syntax_table
[c
] = Sword
;
113 re_syntax_table
['_'] = Sword
;
118 #endif /* not SYNTAX_TABLE */
120 #define SYNTAX(c) re_syntax_table[c]
122 #endif /* not emacs */
124 /* Get the interface, including the syntax bits. */
127 /* isalpha etc. are used for the character classes. */
130 /* Jim Meyering writes:
132 "... Some ctype macros are valid only for character codes that
133 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
134 using /bin/cc or gcc but without giving an ansi option). So, all
135 ctype uses should be through macros like ISPRINT... If
136 STDC_HEADERS is defined, then autoconf has verified that the ctype
137 macros don't need to be guarded with references to isascii. ...
138 Defining isascii to 1 should let any compiler worth its salt
139 eliminate the && through constant folding." */
140 #if ! defined (isascii) || defined (STDC_HEADERS)
146 #define ISBLANK(c) (isascii (c) && isblank (c))
148 #define ISBLANK(c) ((c) == ' ' || (c) == '\t')
151 #define ISGRAPH(c) (isascii (c) && isgraph (c))
153 #define ISGRAPH(c) (isascii (c) && isprint (c) && !isspace (c))
156 #define ISPRINT(c) (isascii (c) && isprint (c))
157 #define ISDIGIT(c) (isascii (c) && isdigit (c))
158 #define ISALNUM(c) (isascii (c) && isalnum (c))
159 #define ISALPHA(c) (isascii (c) && isalpha (c))
160 #define ISCNTRL(c) (isascii (c) && iscntrl (c))
161 #define ISLOWER(c) (isascii (c) && islower (c))
162 #define ISPUNCT(c) (isascii (c) && ispunct (c))
163 #define ISSPACE(c) (isascii (c) && isspace (c))
164 #define ISUPPER(c) (isascii (c) && isupper (c))
165 #define ISXDIGIT(c) (isascii (c) && isxdigit (c))
171 /* We remove any previous definition of `SIGN_EXTEND_CHAR',
172 since ours (we hope) works properly with all combinations of
173 machines, compilers, `char' and `unsigned char' argument types.
174 (Per Bothner suggested the basic approach.) */
175 #undef SIGN_EXTEND_CHAR
177 #define SIGN_EXTEND_CHAR(c) ((signed char) (c))
178 #else /* not __STDC__ */
179 /* As in Harbison and Steele. */
180 #define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
183 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
184 use `alloca' instead of `malloc'. This is because using malloc in
185 re_search* or re_match* could cause memory leaks when C-g is used in
186 Emacs; also, malloc is slower and causes storage fragmentation. On
187 the other hand, malloc is more portable, and easier to debug.
189 Because we sometimes use alloca, some routines have to be macros,
190 not functions -- `alloca'-allocated space disappears at the end of the
191 function it is called in. */
195 #define REGEX_ALLOCATE malloc
196 #define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
198 #else /* not REGEX_MALLOC */
200 /* Emacs already defines alloca, sometimes. */
203 /* Make alloca work the best possible way. */
205 #define alloca __builtin_alloca
206 #else /* not __GNUC__ */
209 #else /* not __GNUC__ or HAVE_ALLOCA_H */
210 #ifndef _AIX /* Already did AIX, up at the top. */
212 #endif /* not _AIX */
213 #endif /* not HAVE_ALLOCA_H */
214 #endif /* not __GNUC__ */
216 #endif /* not alloca */
218 #define REGEX_ALLOCATE alloca
220 /* Assumes a `char *destination' variable. */
221 #define REGEX_REALLOCATE(source, osize, nsize) \
222 (destination = (char *) alloca (nsize), \
223 bcopy (source, destination, osize), \
226 #endif /* not REGEX_MALLOC */
229 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
230 `string1' or just past its end. This works if PTR is NULL, which is
232 #define FIRST_STRING_P(ptr) \
233 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
235 /* (Re)Allocate N items of type T using malloc, or fail. */
236 #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
237 #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
238 #define RETALLOC_IF(addr, n, t) \
239 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
240 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
242 #define BYTEWIDTH 8 /* In bits. */
244 #define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
246 #define MAX(a, b) ((a) > (b) ? (a) : (b))
247 #define MIN(a, b) ((a) < (b) ? (a) : (b))
249 typedef char boolean
;
253 /* These are the command codes that appear in compiled regular
254 expressions. Some opcodes are followed by argument bytes. A
255 command code can specify any interpretation whatsoever for its
256 arguments. Zero bytes may appear in the compiled regular expression.
258 The value of `exactn' is needed in search.c (search_buffer) in Emacs.
259 So regex.h defines a symbol `RE_EXACTN_VALUE' to be 1; the value of
260 `exactn' we use here must also be 1. */
266 /* Followed by one byte giving n, then by n literal bytes. */
269 /* Matches any (more or less) character. */
272 /* Matches any one char belonging to specified set. First
273 following byte is number of bitmap bytes. Then come bytes
274 for a bitmap saying which chars are in. Bits in each byte
275 are ordered low-bit-first. A character is in the set if its
276 bit is 1. A character too large to have a bit in the map is
277 automatically not in the set. */
280 /* Same parameters as charset, but match any character that is
281 not one of those specified. */
284 /* Start remembering the text that is matched, for storing in a
285 register. Followed by one byte with the register number, in
286 the range 0 to one less than the pattern buffer's re_nsub
287 field. Then followed by one byte with the number of groups
288 inner to this one. (This last has to be part of the
289 start_memory only because we need it in the on_failure_jump
293 /* Stop remembering the text that is matched and store it in a
294 memory register. Followed by one byte with the register
295 number, in the range 0 to one less than `re_nsub' in the
296 pattern buffer, and one byte with the number of inner groups,
297 just like `start_memory'. (We need the number of inner
298 groups here because we don't have any easy way of finding the
299 corresponding start_memory when we're at a stop_memory.) */
302 /* Match a duplicate of something remembered. Followed by one
303 byte containing the register number. */
306 /* Fail unless at beginning of line. */
309 /* Fail unless at end of line. */
312 /* Succeeds if at beginning of buffer (if emacs) or at beginning
313 of string to be matched (if not). */
316 /* Analogously, for end of buffer/string. */
319 /* Followed by two byte relative address to which to jump. */
322 /* Same as jump, but marks the end of an alternative. */
325 /* Followed by two-byte relative address of place to resume at
326 in case of failure. */
329 /* Like on_failure_jump, but pushes a placeholder instead of the
330 current string position when executed. */
331 on_failure_keep_string_jump
,
333 /* Throw away latest failure point and then jump to following
334 two-byte relative address. */
337 /* Change to pop_failure_jump if know won't have to backtrack to
338 match; otherwise change to jump. This is used to jump
339 back to the beginning of a repeat. If what follows this jump
340 clearly won't match what the repeat does, such that we can be
341 sure that there is no use backtracking out of repetitions
342 already matched, then we change it to a pop_failure_jump.
343 Followed by two-byte address. */
346 /* Jump to following two-byte address, and push a dummy failure
347 point. This failure point will be thrown away if an attempt
348 is made to use it for a failure. A `+' construct makes this
349 before the first repeat. Also used as an intermediary kind
350 of jump when compiling an alternative. */
353 /* Push a dummy failure point and continue. Used at the end of
357 /* Followed by two-byte relative address and two-byte number n.
358 After matching N times, jump to the address upon failure. */
361 /* Followed by two-byte relative address, and two-byte number n.
362 Jump to the address N times, then fail. */
365 /* Set the following two-byte relative address to the
366 subsequent two-byte number. The address *includes* the two
370 wordchar
, /* Matches any word-constituent character. */
371 notwordchar
, /* Matches any char that is not a word-constituent. */
373 wordbeg
, /* Succeeds if at word beginning. */
374 wordend
, /* Succeeds if at word end. */
376 wordbound
, /* Succeeds if at a word boundary. */
377 notwordbound
/* Succeeds if not at a word boundary. */
380 ,before_dot
, /* Succeeds if before point. */
381 at_dot
, /* Succeeds if at point. */
382 after_dot
, /* Succeeds if after point. */
384 /* Matches any character whose syntax is specified. Followed by
385 a byte which contains a syntax code, e.g., Sword. */
388 /* Matches any character whose syntax is not that specified. */
393 /* Common operations on the compiled pattern. */
395 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */
397 #define STORE_NUMBER(destination, number) \
399 (destination)[0] = (number) & 0377; \
400 (destination)[1] = (number) >> 8; \
403 /* Same as STORE_NUMBER, except increment DESTINATION to
404 the byte after where the number is stored. Therefore, DESTINATION
405 must be an lvalue. */
407 #define STORE_NUMBER_AND_INCR(destination, number) \
409 STORE_NUMBER (destination, number); \
410 (destination) += 2; \
413 /* Put into DESTINATION a number stored in two contiguous bytes starting
416 #define EXTRACT_NUMBER(destination, source) \
418 (destination) = *(source) & 0377; \
419 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
424 extract_number (dest
, source
)
426 unsigned char *source
;
428 int temp
= SIGN_EXTEND_CHAR (*(source
+ 1));
429 *dest
= *source
& 0377;
433 #ifndef EXTRACT_MACROS /* To debug the macros. */
434 #undef EXTRACT_NUMBER
435 #define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
436 #endif /* not EXTRACT_MACROS */
440 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
441 SOURCE must be an lvalue. */
443 #define EXTRACT_NUMBER_AND_INCR(destination, source) \
445 EXTRACT_NUMBER (destination, source); \
451 extract_number_and_incr (destination
, source
)
453 unsigned char **source
;
455 extract_number (destination
, *source
);
459 #ifndef EXTRACT_MACROS
460 #undef EXTRACT_NUMBER_AND_INCR
461 #define EXTRACT_NUMBER_AND_INCR(dest, src) \
462 extract_number_and_incr (&dest, &src)
463 #endif /* not EXTRACT_MACROS */
467 /* If DEBUG is defined, Regex prints many voluminous messages about what
468 it is doing (if the variable `debug' is nonzero). If linked with the
469 main program in `iregex.c', you can enter patterns and strings
470 interactively. And if linked with the main program in `main.c' and
471 the other test files, you can run the already-written tests. */
475 /* We use standard I/O for debugging. */
478 /* It is useful to test things that ``must'' be true when debugging. */
481 static int debug
= 0;
483 #define DEBUG_STATEMENT(e) e
484 #define DEBUG_PRINT1(x) if (debug) printf (x)
485 #define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
486 #define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
487 #define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
488 #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
489 if (debug) print_partial_compiled_pattern (s, e)
490 #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
491 if (debug) print_double_string (w, s1, sz1, s2, sz2)
494 extern void printchar ();
496 /* Print the fastmap in human-readable form. */
499 print_fastmap (fastmap
)
502 unsigned was_a_range
= 0;
505 while (i
< (1 << BYTEWIDTH
))
511 while (i
< (1 << BYTEWIDTH
) && fastmap
[i
])
527 /* Print a compiled pattern string in human-readable form, starting at
528 the START pointer into it and ending just before the pointer END. */
531 print_partial_compiled_pattern (start
, end
)
532 unsigned char *start
;
536 unsigned char *p
= start
;
537 unsigned char *pend
= end
;
545 /* Loop over pattern commands. */
548 printf ("%d:\t", p
- start
);
550 switch ((re_opcode_t
) *p
++)
558 printf ("/exactn/%d", mcnt
);
569 printf ("/start_memory/%d/%d", mcnt
, *p
++);
574 printf ("/stop_memory/%d/%d", mcnt
, *p
++);
578 printf ("/duplicate/%d", *p
++);
588 register int c
, last
= -100;
589 register int in_range
= 0;
591 printf ("/charset [%s",
592 (re_opcode_t
) *(p
- 1) == charset_not
? "^" : "");
594 assert (p
+ *p
< pend
);
596 for (c
= 0; c
< 256; c
++)
598 && (p
[1 + (c
/8)] & (1 << (c
% 8))))
600 /* Are we starting a range? */
601 if (last
+ 1 == c
&& ! in_range
)
606 /* Have we broken a range? */
607 else if (last
+ 1 != c
&& in_range
)
636 case on_failure_jump
:
637 extract_number_and_incr (&mcnt
, &p
);
638 printf ("/on_failure_jump to %d", p
+ mcnt
- start
);
641 case on_failure_keep_string_jump
:
642 extract_number_and_incr (&mcnt
, &p
);
643 printf ("/on_failure_keep_string_jump to %d", p
+ mcnt
- start
);
646 case dummy_failure_jump
:
647 extract_number_and_incr (&mcnt
, &p
);
648 printf ("/dummy_failure_jump to %d", p
+ mcnt
- start
);
651 case push_dummy_failure
:
652 printf ("/push_dummy_failure");
656 extract_number_and_incr (&mcnt
, &p
);
657 printf ("/maybe_pop_jump to %d", p
+ mcnt
- start
);
660 case pop_failure_jump
:
661 extract_number_and_incr (&mcnt
, &p
);
662 printf ("/pop_failure_jump to %d", p
+ mcnt
- start
);
666 extract_number_and_incr (&mcnt
, &p
);
667 printf ("/jump_past_alt to %d", p
+ mcnt
- start
);
671 extract_number_and_incr (&mcnt
, &p
);
672 printf ("/jump to %d", p
+ mcnt
- start
);
676 extract_number_and_incr (&mcnt
, &p
);
677 extract_number_and_incr (&mcnt2
, &p
);
678 printf ("/succeed_n to %d, %d times", p
+ mcnt
- start
, mcnt2
);
682 extract_number_and_incr (&mcnt
, &p
);
683 extract_number_and_incr (&mcnt2
, &p
);
684 printf ("/jump_n to %d, %d times", p
+ mcnt
- start
, mcnt2
);
688 extract_number_and_incr (&mcnt
, &p
);
689 extract_number_and_incr (&mcnt2
, &p
);
690 printf ("/set_number_at location %d to %d", p
+ mcnt
- start
, mcnt2
);
694 printf ("/wordbound");
698 printf ("/notwordbound");
710 printf ("/before_dot");
718 printf ("/after_dot");
722 printf ("/syntaxspec");
724 printf ("/%d", mcnt
);
728 printf ("/notsyntaxspec");
730 printf ("/%d", mcnt
);
735 printf ("/wordchar");
739 printf ("/notwordchar");
751 printf ("?%d", *(p
-1));
757 printf ("%d:\tend of pattern.\n", p
- start
);
762 print_compiled_pattern (bufp
)
763 struct re_pattern_buffer
*bufp
;
765 unsigned char *buffer
= bufp
->buffer
;
767 print_partial_compiled_pattern (buffer
, buffer
+ bufp
->used
);
768 printf ("%d bytes used/%d bytes allocated.\n", bufp
->used
, bufp
->allocated
);
770 if (bufp
->fastmap_accurate
&& bufp
->fastmap
)
772 printf ("fastmap: ");
773 print_fastmap (bufp
->fastmap
);
776 printf ("re_nsub: %d\t", bufp
->re_nsub
);
777 printf ("regs_alloc: %d\t", bufp
->regs_allocated
);
778 printf ("can_be_null: %d\t", bufp
->can_be_null
);
779 printf ("newline_anchor: %d\n", bufp
->newline_anchor
);
780 printf ("no_sub: %d\t", bufp
->no_sub
);
781 printf ("not_bol: %d\t", bufp
->not_bol
);
782 printf ("not_eol: %d\t", bufp
->not_eol
);
783 printf ("syntax: %d\n", bufp
->syntax
);
784 /* Perhaps we should print the translate table? */
789 print_double_string (where
, string1
, size1
, string2
, size2
)
802 if (FIRST_STRING_P (where
))
804 for (this_char
= where
- string1
; this_char
< size1
; this_char
++)
805 printchar (string1
[this_char
]);
810 for (this_char
= where
- string2
; this_char
< size2
; this_char
++)
811 printchar (string2
[this_char
]);
815 #else /* not DEBUG */
820 #define DEBUG_STATEMENT(e)
821 #define DEBUG_PRINT1(x)
822 #define DEBUG_PRINT2(x1, x2)
823 #define DEBUG_PRINT3(x1, x2, x3)
824 #define DEBUG_PRINT4(x1, x2, x3, x4)
825 #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
826 #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
828 #endif /* not DEBUG */
830 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
831 also be assigned to arbitrarily: each pattern buffer stores its own
832 syntax, so it can be changed between regex compilations. */
833 reg_syntax_t re_syntax_options
= RE_SYNTAX_EMACS
;
836 /* Specify the precise syntax of regexps for compilation. This provides
837 for compatibility for various utilities which historically have
838 different, incompatible syntaxes.
840 The argument SYNTAX is a bit mask comprised of the various bits
841 defined in regex.h. We return the old syntax. */
844 re_set_syntax (syntax
)
847 reg_syntax_t ret
= re_syntax_options
;
849 re_syntax_options
= syntax
;
853 /* This table gives an error message for each of the error codes listed
854 in regex.h. Obviously the order here has to be same as there. */
856 static const char *re_error_msg
[] =
857 { NULL
, /* REG_NOERROR */
858 "No match", /* REG_NOMATCH */
859 "Invalid regular expression", /* REG_BADPAT */
860 "Invalid collation character", /* REG_ECOLLATE */
861 "Invalid character class name", /* REG_ECTYPE */
862 "Trailing backslash", /* REG_EESCAPE */
863 "Invalid back reference", /* REG_ESUBREG */
864 "Unmatched [ or [^", /* REG_EBRACK */
865 "Unmatched ( or \\(", /* REG_EPAREN */
866 "Unmatched \\{", /* REG_EBRACE */
867 "Invalid content of \\{\\}", /* REG_BADBR */
868 "Invalid range end", /* REG_ERANGE */
869 "Memory exhausted", /* REG_ESPACE */
870 "Invalid preceding regular expression", /* REG_BADRPT */
871 "Premature end of regular expression", /* REG_EEND */
872 "Regular expression too big", /* REG_ESIZE */
873 "Unmatched ) or \\)", /* REG_ERPAREN */
876 /* Avoiding alloca during matching, to placate r_alloc. */
878 /* Define MATCH_MAY_ALLOCATE if we need to make sure that the
879 searching and matching functions should not call alloca. On some
880 systems, alloca is implemented in terms of malloc, and if we're
881 using the relocating allocator routines, then malloc could cause a
882 relocation, which might (if the strings being searched are in the
883 ralloc heap) shift the data out from underneath the regexp
886 Here's another reason to avoid allocation: Emacs insists on
887 processing input from X in a signal handler; processing X input may
888 call malloc; if input arrives while a matching routine is calling
889 malloc, then we're scrod. But Emacs can't just block input while
890 calling matching routines; then we don't notice interrupts when
891 they come in. So, Emacs blocks input around all regexp calls
892 except the matching calls, which it leaves unprotected, in the
893 faith that they will not malloc. */
895 /* Normally, this is fine. */
896 #define MATCH_MAY_ALLOCATE
898 /* But under some circumstances, it's not. */
899 #if defined (emacs) || (defined (REL_ALLOC) && defined (C_ALLOCA))
900 #undef MATCH_MAY_ALLOCATE
904 /* Failure stack declarations and macros; both re_compile_fastmap and
905 re_match_2 use a failure stack. These have to be macros because of
909 /* Number of failure points for which to initially allocate space
910 when matching. If this number is exceeded, we allocate more
911 space, so it is not a hard limit. */
912 #ifndef INIT_FAILURE_ALLOC
913 #define INIT_FAILURE_ALLOC 5
916 /* Roughly the maximum number of failure points on the stack. Would be
917 exactly that if always used MAX_FAILURE_SPACE each time we failed.
918 This is a variable only so users of regex can assign to it; we never
919 change it ourselves. */
920 int re_max_failures
= 2000;
922 typedef const unsigned char *fail_stack_elt_t
;
926 fail_stack_elt_t
*stack
;
928 unsigned avail
; /* Offset of next open position. */
931 #define FAIL_STACK_EMPTY() (fail_stack.avail == 0)
932 #define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
933 #define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
934 #define FAIL_STACK_TOP() (fail_stack.stack[fail_stack.avail])
937 /* Initialize `fail_stack'. Do `return -2' if the alloc fails. */
939 #ifdef MATCH_MAY_ALLOCATE
940 #define INIT_FAIL_STACK() \
942 fail_stack.stack = (fail_stack_elt_t *) \
943 REGEX_ALLOCATE (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t)); \
945 if (fail_stack.stack == NULL) \
948 fail_stack.size = INIT_FAILURE_ALLOC; \
949 fail_stack.avail = 0; \
952 #define INIT_FAIL_STACK() \
954 fail_stack.avail = 0; \
959 /* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
961 Return 1 if succeeds, and 0 if either ran out of memory
962 allocating space for it or it was already too large.
964 REGEX_REALLOCATE requires `destination' be declared. */
966 #define DOUBLE_FAIL_STACK(fail_stack) \
967 ((fail_stack).size > re_max_failures * MAX_FAILURE_ITEMS \
969 : ((fail_stack).stack = (fail_stack_elt_t *) \
970 REGEX_REALLOCATE ((fail_stack).stack, \
971 (fail_stack).size * sizeof (fail_stack_elt_t), \
972 ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)), \
974 (fail_stack).stack == NULL \
976 : ((fail_stack).size <<= 1, \
980 /* Push PATTERN_OP on FAIL_STACK.
982 Return 1 if was able to do so and 0 if ran out of memory allocating
984 #define PUSH_PATTERN_OP(pattern_op, fail_stack) \
985 ((FAIL_STACK_FULL () \
986 && !DOUBLE_FAIL_STACK (fail_stack)) \
988 : ((fail_stack).stack[(fail_stack).avail++] = pattern_op, \
991 /* This pushes an item onto the failure stack. Must be a four-byte
992 value. Assumes the variable `fail_stack'. Probably should only
993 be called from within `PUSH_FAILURE_POINT'. */
994 #define PUSH_FAILURE_ITEM(item) \
995 fail_stack.stack[fail_stack.avail++] = (fail_stack_elt_t) item
997 /* The complement operation. Assumes `fail_stack' is nonempty. */
998 #define POP_FAILURE_ITEM() fail_stack.stack[--fail_stack.avail]
1000 /* Used to omit pushing failure point id's when we're not debugging. */
1002 #define DEBUG_PUSH PUSH_FAILURE_ITEM
1003 #define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_ITEM ()
1005 #define DEBUG_PUSH(item)
1006 #define DEBUG_POP(item_addr)
1010 /* Push the information about the state we will need
1011 if we ever fail back to it.
1013 Requires variables fail_stack, regstart, regend, reg_info, and
1014 num_regs be declared. DOUBLE_FAIL_STACK requires `destination' be
1017 Does `return FAILURE_CODE' if runs out of memory. */
1019 #define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \
1021 char *destination; \
1022 /* Must be int, so when we don't save any registers, the arithmetic \
1023 of 0 + -1 isn't done as unsigned. */ \
1026 DEBUG_STATEMENT (failure_id++); \
1027 DEBUG_STATEMENT (nfailure_points_pushed++); \
1028 DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \
1029 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\
1030 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1032 DEBUG_PRINT2 (" slots needed: %d\n", NUM_FAILURE_ITEMS); \
1033 DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \
1035 /* Ensure we have enough space allocated for what we will push. */ \
1036 while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \
1038 if (!DOUBLE_FAIL_STACK (fail_stack)) \
1039 return failure_code; \
1041 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \
1042 (fail_stack).size); \
1043 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1046 /* Push the info, starting with the registers. */ \
1047 DEBUG_PRINT1 ("\n"); \
1049 for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
1052 DEBUG_PRINT2 (" Pushing reg: %d\n", this_reg); \
1053 DEBUG_STATEMENT (num_regs_pushed++); \
1055 DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
1056 PUSH_FAILURE_ITEM (regstart[this_reg]); \
1058 DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
1059 PUSH_FAILURE_ITEM (regend[this_reg]); \
1061 DEBUG_PRINT2 (" info: 0x%x\n ", reg_info[this_reg]); \
1062 DEBUG_PRINT2 (" match_null=%d", \
1063 REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \
1064 DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \
1065 DEBUG_PRINT2 (" matched_something=%d", \
1066 MATCHED_SOMETHING (reg_info[this_reg])); \
1067 DEBUG_PRINT2 (" ever_matched=%d", \
1068 EVER_MATCHED_SOMETHING (reg_info[this_reg])); \
1069 DEBUG_PRINT1 ("\n"); \
1070 PUSH_FAILURE_ITEM (reg_info[this_reg].word); \
1073 DEBUG_PRINT2 (" Pushing low active reg: %d\n", lowest_active_reg);\
1074 PUSH_FAILURE_ITEM (lowest_active_reg); \
1076 DEBUG_PRINT2 (" Pushing high active reg: %d\n", highest_active_reg);\
1077 PUSH_FAILURE_ITEM (highest_active_reg); \
1079 DEBUG_PRINT2 (" Pushing pattern 0x%x: ", pattern_place); \
1080 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \
1081 PUSH_FAILURE_ITEM (pattern_place); \
1083 DEBUG_PRINT2 (" Pushing string 0x%x: `", string_place); \
1084 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \
1086 DEBUG_PRINT1 ("'\n"); \
1087 PUSH_FAILURE_ITEM (string_place); \
1089 DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \
1090 DEBUG_PUSH (failure_id); \
1093 /* This is the number of items that are pushed and popped on the stack
1094 for each register. */
1095 #define NUM_REG_ITEMS 3
1097 /* Individual items aside from the registers. */
1099 #define NUM_NONREG_ITEMS 5 /* Includes failure point id. */
1101 #define NUM_NONREG_ITEMS 4
1104 /* We push at most this many items on the stack. */
1105 #define MAX_FAILURE_ITEMS ((num_regs - 1) * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
1107 /* We actually push this many items. */
1108 #define NUM_FAILURE_ITEMS \
1109 ((highest_active_reg - lowest_active_reg + 1) * NUM_REG_ITEMS \
1112 /* How many items can still be added to the stack without overflowing it. */
1113 #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1116 /* Pops what PUSH_FAIL_STACK pushes.
1118 We restore into the parameters, all of which should be lvalues:
1119 STR -- the saved data position.
1120 PAT -- the saved pattern position.
1121 LOW_REG, HIGH_REG -- the highest and lowest active registers.
1122 REGSTART, REGEND -- arrays of string positions.
1123 REG_INFO -- array of information about each subexpression.
1125 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1126 `pend', `string1', `size1', `string2', and `size2'. */
1128 #define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
1130 DEBUG_STATEMENT (fail_stack_elt_t failure_id;) \
1132 const unsigned char *string_temp; \
1134 assert (!FAIL_STACK_EMPTY ()); \
1136 /* Remove failure points and point to how many regs pushed. */ \
1137 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1138 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
1139 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
1141 assert (fail_stack.avail >= NUM_NONREG_ITEMS); \
1143 DEBUG_POP (&failure_id); \
1144 DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \
1146 /* If the saved string location is NULL, it came from an \
1147 on_failure_keep_string_jump opcode, and we want to throw away the \
1148 saved NULL, thus retaining our current position in the string. */ \
1149 string_temp = POP_FAILURE_ITEM (); \
1150 if (string_temp != NULL) \
1151 str = (const char *) string_temp; \
1153 DEBUG_PRINT2 (" Popping string 0x%x: `", str); \
1154 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1155 DEBUG_PRINT1 ("'\n"); \
1157 pat = (unsigned char *) POP_FAILURE_ITEM (); \
1158 DEBUG_PRINT2 (" Popping pattern 0x%x: ", pat); \
1159 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1161 /* Restore register info. */ \
1162 high_reg = (unsigned) POP_FAILURE_ITEM (); \
1163 DEBUG_PRINT2 (" Popping high active reg: %d\n", high_reg); \
1165 low_reg = (unsigned) POP_FAILURE_ITEM (); \
1166 DEBUG_PRINT2 (" Popping low active reg: %d\n", low_reg); \
1168 for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \
1170 DEBUG_PRINT2 (" Popping reg: %d\n", this_reg); \
1172 reg_info[this_reg].word = POP_FAILURE_ITEM (); \
1173 DEBUG_PRINT2 (" info: 0x%x\n", reg_info[this_reg]); \
1175 regend[this_reg] = (const char *) POP_FAILURE_ITEM (); \
1176 DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
1178 regstart[this_reg] = (const char *) POP_FAILURE_ITEM (); \
1179 DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
1182 DEBUG_STATEMENT (nfailure_points_popped++); \
1183 } /* POP_FAILURE_POINT */
1187 /* Structure for per-register (a.k.a. per-group) information.
1188 This must not be longer than one word, because we push this value
1189 onto the failure stack. Other register information, such as the
1190 starting and ending positions (which are addresses), and the list of
1191 inner groups (which is a bits list) are maintained in separate
1194 We are making a (strictly speaking) nonportable assumption here: that
1195 the compiler will pack our bit fields into something that fits into
1196 the type of `word', i.e., is something that fits into one item on the
1200 fail_stack_elt_t word
;
1203 /* This field is one if this group can match the empty string,
1204 zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */
1205 #define MATCH_NULL_UNSET_VALUE 3
1206 unsigned match_null_string_p
: 2;
1207 unsigned is_active
: 1;
1208 unsigned matched_something
: 1;
1209 unsigned ever_matched_something
: 1;
1211 } register_info_type
;
1213 #define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p)
1214 #define IS_ACTIVE(R) ((R).bits.is_active)
1215 #define MATCHED_SOMETHING(R) ((R).bits.matched_something)
1216 #define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something)
1219 /* Call this when have matched a real character; it sets `matched' flags
1220 for the subexpressions which we are currently inside. Also records
1221 that those subexprs have matched. */
1222 #define SET_REGS_MATCHED() \
1226 for (r = lowest_active_reg; r <= highest_active_reg; r++) \
1228 MATCHED_SOMETHING (reg_info[r]) \
1229 = EVER_MATCHED_SOMETHING (reg_info[r]) \
1236 /* Registers are set to a sentinel when they haven't yet matched. */
1237 #define REG_UNSET_VALUE ((char *) -1)
1238 #define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
1242 /* How do we implement a missing MATCH_MAY_ALLOCATE?
1243 We make the fail stack a global thing, and then grow it to
1244 re_max_failures when we compile. */
1245 #ifndef MATCH_MAY_ALLOCATE
1246 static fail_stack_type fail_stack
;
1248 static const char ** regstart
, ** regend
;
1249 static const char ** old_regstart
, ** old_regend
;
1250 static const char **best_regstart
, **best_regend
;
1251 static register_info_type
*reg_info
;
1252 static const char **reg_dummy
;
1253 static register_info_type
*reg_info_dummy
;
1257 /* Subroutine declarations and macros for regex_compile. */
1259 static void store_op1 (), store_op2 ();
1260 static void insert_op1 (), insert_op2 ();
1261 static boolean
at_begline_loc_p (), at_endline_loc_p ();
1262 static boolean
group_in_compile_stack ();
1263 static reg_errcode_t
compile_range ();
1265 /* Fetch the next character in the uncompiled pattern---translating it
1266 if necessary. Also cast from a signed character in the constant
1267 string passed to us by the user to an unsigned char that we can use
1268 as an array index (in, e.g., `translate'). */
1269 #define PATFETCH(c) \
1270 do {if (p == pend) return REG_EEND; \
1271 c = (unsigned char) *p++; \
1272 if (translate) c = translate[c]; \
1275 /* Fetch the next character in the uncompiled pattern, with no
1277 #define PATFETCH_RAW(c) \
1278 do {if (p == pend) return REG_EEND; \
1279 c = (unsigned char) *p++; \
1282 /* Go backwards one character in the pattern. */
1283 #define PATUNFETCH p--
1286 /* If `translate' is non-null, return translate[D], else just D. We
1287 cast the subscript to translate because some data is declared as
1288 `char *', to avoid warnings when a string constant is passed. But
1289 when we use a character as a subscript we must make it unsigned. */
1290 #define TRANSLATE(d) (translate ? translate[(unsigned char) (d)] : (d))
1293 /* Macros for outputting the compiled pattern into `buffer'. */
1295 /* If the buffer isn't allocated when it comes in, use this. */
1296 #define INIT_BUF_SIZE 32
1298 /* Make sure we have at least N more bytes of space in buffer. */
1299 #define GET_BUFFER_SPACE(n) \
1300 while (b - bufp->buffer + (n) > bufp->allocated) \
1303 /* Make sure we have one more byte of buffer space and then add C to it. */
1304 #define BUF_PUSH(c) \
1306 GET_BUFFER_SPACE (1); \
1307 *b++ = (unsigned char) (c); \
1311 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1312 #define BUF_PUSH_2(c1, c2) \
1314 GET_BUFFER_SPACE (2); \
1315 *b++ = (unsigned char) (c1); \
1316 *b++ = (unsigned char) (c2); \
1320 /* As with BUF_PUSH_2, except for three bytes. */
1321 #define BUF_PUSH_3(c1, c2, c3) \
1323 GET_BUFFER_SPACE (3); \
1324 *b++ = (unsigned char) (c1); \
1325 *b++ = (unsigned char) (c2); \
1326 *b++ = (unsigned char) (c3); \
1330 /* Store a jump with opcode OP at LOC to location TO. We store a
1331 relative address offset by the three bytes the jump itself occupies. */
1332 #define STORE_JUMP(op, loc, to) \
1333 store_op1 (op, loc, (to) - (loc) - 3)
1335 /* Likewise, for a two-argument jump. */
1336 #define STORE_JUMP2(op, loc, to, arg) \
1337 store_op2 (op, loc, (to) - (loc) - 3, arg)
1339 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
1340 #define INSERT_JUMP(op, loc, to) \
1341 insert_op1 (op, loc, (to) - (loc) - 3, b)
1343 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1344 #define INSERT_JUMP2(op, loc, to, arg) \
1345 insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
1348 /* This is not an arbitrary limit: the arguments which represent offsets
1349 into the pattern are two bytes long. So if 2^16 bytes turns out to
1350 be too small, many things would have to change. */
1351 #define MAX_BUF_SIZE (1L << 16)
1354 /* Extend the buffer by twice its current size via realloc and
1355 reset the pointers that pointed into the old block to point to the
1356 correct places in the new one. If extending the buffer results in it
1357 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1358 #define EXTEND_BUFFER() \
1360 unsigned char *old_buffer = bufp->buffer; \
1361 if (bufp->allocated == MAX_BUF_SIZE) \
1363 bufp->allocated <<= 1; \
1364 if (bufp->allocated > MAX_BUF_SIZE) \
1365 bufp->allocated = MAX_BUF_SIZE; \
1366 bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated);\
1367 if (bufp->buffer == NULL) \
1368 return REG_ESPACE; \
1369 /* If the buffer moved, move all the pointers into it. */ \
1370 if (old_buffer != bufp->buffer) \
1372 b = (b - old_buffer) + bufp->buffer; \
1373 begalt = (begalt - old_buffer) + bufp->buffer; \
1374 if (fixup_alt_jump) \
1375 fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\
1377 laststart = (laststart - old_buffer) + bufp->buffer; \
1378 if (pending_exact) \
1379 pending_exact = (pending_exact - old_buffer) + bufp->buffer; \
1384 /* Since we have one byte reserved for the register number argument to
1385 {start,stop}_memory, the maximum number of groups we can report
1386 things about is what fits in that byte. */
1387 #define MAX_REGNUM 255
1389 /* But patterns can have more than `MAX_REGNUM' registers. We just
1390 ignore the excess. */
1391 typedef unsigned regnum_t
;
1394 /* Macros for the compile stack. */
1396 /* Since offsets can go either forwards or backwards, this type needs to
1397 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1398 typedef int pattern_offset_t
;
1402 pattern_offset_t begalt_offset
;
1403 pattern_offset_t fixup_alt_jump
;
1404 pattern_offset_t inner_group_offset
;
1405 pattern_offset_t laststart_offset
;
1407 } compile_stack_elt_t
;
1412 compile_stack_elt_t
*stack
;
1414 unsigned avail
; /* Offset of next open position. */
1415 } compile_stack_type
;
1418 #define INIT_COMPILE_STACK_SIZE 32
1420 #define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1421 #define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1423 /* The next available element. */
1424 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1427 /* Set the bit for character C in a list. */
1428 #define SET_LIST_BIT(c) \
1429 (b[((unsigned char) (c)) / BYTEWIDTH] \
1430 |= 1 << (((unsigned char) c) % BYTEWIDTH))
1433 /* Get the next unsigned number in the uncompiled pattern. */
1434 #define GET_UNSIGNED_NUMBER(num) \
1438 while (ISDIGIT (c)) \
1442 num = num * 10 + c - '0'; \
1450 #define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */
1452 #define IS_CHAR_CLASS(string) \
1453 (STREQ (string, "alpha") || STREQ (string, "upper") \
1454 || STREQ (string, "lower") || STREQ (string, "digit") \
1455 || STREQ (string, "alnum") || STREQ (string, "xdigit") \
1456 || STREQ (string, "space") || STREQ (string, "print") \
1457 || STREQ (string, "punct") || STREQ (string, "graph") \
1458 || STREQ (string, "cntrl") || STREQ (string, "blank"))
1460 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
1461 Returns one of error codes defined in `regex.h', or zero for success.
1463 Assumes the `allocated' (and perhaps `buffer') and `translate'
1464 fields are set in BUFP on entry.
1466 If it succeeds, results are put in BUFP (if it returns an error, the
1467 contents of BUFP are undefined):
1468 `buffer' is the compiled pattern;
1469 `syntax' is set to SYNTAX;
1470 `used' is set to the length of the compiled pattern;
1471 `fastmap_accurate' is zero;
1472 `re_nsub' is the number of subexpressions in PATTERN;
1473 `not_bol' and `not_eol' are zero;
1475 The `fastmap' and `newline_anchor' fields are neither
1476 examined nor set. */
1478 static reg_errcode_t
1479 regex_compile (pattern
, size
, syntax
, bufp
)
1480 const char *pattern
;
1482 reg_syntax_t syntax
;
1483 struct re_pattern_buffer
*bufp
;
1485 /* We fetch characters from PATTERN here. Even though PATTERN is
1486 `char *' (i.e., signed), we declare these variables as unsigned, so
1487 they can be reliably used as array indices. */
1488 register unsigned char c
, c1
;
1490 /* A random tempory spot in PATTERN. */
1493 /* Points to the end of the buffer, where we should append. */
1494 register unsigned char *b
;
1496 /* Keeps track of unclosed groups. */
1497 compile_stack_type compile_stack
;
1499 /* Points to the current (ending) position in the pattern. */
1500 const char *p
= pattern
;
1501 const char *pend
= pattern
+ size
;
1503 /* How to translate the characters in the pattern. */
1504 char *translate
= bufp
->translate
;
1506 /* Address of the count-byte of the most recently inserted `exactn'
1507 command. This makes it possible to tell if a new exact-match
1508 character can be added to that command or if the character requires
1509 a new `exactn' command. */
1510 unsigned char *pending_exact
= 0;
1512 /* Address of start of the most recently finished expression.
1513 This tells, e.g., postfix * where to find the start of its
1514 operand. Reset at the beginning of groups and alternatives. */
1515 unsigned char *laststart
= 0;
1517 /* Address of beginning of regexp, or inside of last group. */
1518 unsigned char *begalt
;
1520 /* Place in the uncompiled pattern (i.e., the {) to
1521 which to go back if the interval is invalid. */
1522 const char *beg_interval
;
1524 /* Address of the place where a forward jump should go to the end of
1525 the containing expression. Each alternative of an `or' -- except the
1526 last -- ends with a forward jump of this sort. */
1527 unsigned char *fixup_alt_jump
= 0;
1529 /* Counts open-groups as they are encountered. Remembered for the
1530 matching close-group on the compile stack, so the same register
1531 number is put in the stop_memory as the start_memory. */
1532 regnum_t regnum
= 0;
1535 DEBUG_PRINT1 ("\nCompiling pattern: ");
1538 unsigned debug_count
;
1540 for (debug_count
= 0; debug_count
< size
; debug_count
++)
1541 printchar (pattern
[debug_count
]);
1546 /* Initialize the compile stack. */
1547 compile_stack
.stack
= TALLOC (INIT_COMPILE_STACK_SIZE
, compile_stack_elt_t
);
1548 if (compile_stack
.stack
== NULL
)
1551 compile_stack
.size
= INIT_COMPILE_STACK_SIZE
;
1552 compile_stack
.avail
= 0;
1554 /* Initialize the pattern buffer. */
1555 bufp
->syntax
= syntax
;
1556 bufp
->fastmap_accurate
= 0;
1557 bufp
->not_bol
= bufp
->not_eol
= 0;
1559 /* Set `used' to zero, so that if we return an error, the pattern
1560 printer (for debugging) will think there's no pattern. We reset it
1564 /* Always count groups, whether or not bufp->no_sub is set. */
1567 #if !defined (emacs) && !defined (SYNTAX_TABLE)
1568 /* Initialize the syntax table. */
1569 init_syntax_once ();
1572 if (bufp
->allocated
== 0)
1575 { /* If zero allocated, but buffer is non-null, try to realloc
1576 enough space. This loses if buffer's address is bogus, but
1577 that is the user's responsibility. */
1578 RETALLOC (bufp
->buffer
, INIT_BUF_SIZE
, unsigned char);
1581 { /* Caller did not allocate a buffer. Do it for them. */
1582 bufp
->buffer
= TALLOC (INIT_BUF_SIZE
, unsigned char);
1584 if (!bufp
->buffer
) return REG_ESPACE
;
1586 bufp
->allocated
= INIT_BUF_SIZE
;
1589 begalt
= b
= bufp
->buffer
;
1591 /* Loop through the uncompiled pattern until we're at the end. */
1600 if ( /* If at start of pattern, it's an operator. */
1602 /* If context independent, it's an operator. */
1603 || syntax
& RE_CONTEXT_INDEP_ANCHORS
1604 /* Otherwise, depends on what's come before. */
1605 || at_begline_loc_p (pattern
, p
, syntax
))
1615 if ( /* If at end of pattern, it's an operator. */
1617 /* If context independent, it's an operator. */
1618 || syntax
& RE_CONTEXT_INDEP_ANCHORS
1619 /* Otherwise, depends on what's next. */
1620 || at_endline_loc_p (p
, pend
, syntax
))
1630 if ((syntax
& RE_BK_PLUS_QM
)
1631 || (syntax
& RE_LIMITED_OPS
))
1635 /* If there is no previous pattern... */
1638 if (syntax
& RE_CONTEXT_INVALID_OPS
)
1640 else if (!(syntax
& RE_CONTEXT_INDEP_OPS
))
1645 /* Are we optimizing this jump? */
1646 boolean keep_string_p
= false;
1648 /* 1 means zero (many) matches is allowed. */
1649 char zero_times_ok
= 0, many_times_ok
= 0;
1651 /* If there is a sequence of repetition chars, collapse it
1652 down to just one (the right one). We can't combine
1653 interval operators with these because of, e.g., `a{2}*',
1654 which should only match an even number of `a's. */
1658 zero_times_ok
|= c
!= '+';
1659 many_times_ok
|= c
!= '?';
1667 || (!(syntax
& RE_BK_PLUS_QM
) && (c
== '+' || c
== '?')))
1670 else if (syntax
& RE_BK_PLUS_QM
&& c
== '\\')
1672 if (p
== pend
) return REG_EESCAPE
;
1675 if (!(c1
== '+' || c1
== '?'))
1690 /* If we get here, we found another repeat character. */
1693 /* Star, etc. applied to an empty pattern is equivalent
1694 to an empty pattern. */
1698 /* Now we know whether or not zero matches is allowed
1699 and also whether or not two or more matches is allowed. */
1701 { /* More than one repetition is allowed, so put in at the
1702 end a backward relative jump from `b' to before the next
1703 jump we're going to put in below (which jumps from
1704 laststart to after this jump).
1706 But if we are at the `*' in the exact sequence `.*\n',
1707 insert an unconditional jump backwards to the .,
1708 instead of the beginning of the loop. This way we only
1709 push a failure point once, instead of every time
1710 through the loop. */
1711 assert (p
- 1 > pattern
);
1713 /* Allocate the space for the jump. */
1714 GET_BUFFER_SPACE (3);
1716 /* We know we are not at the first character of the pattern,
1717 because laststart was nonzero. And we've already
1718 incremented `p', by the way, to be the character after
1719 the `*'. Do we have to do something analogous here
1720 for null bytes, because of RE_DOT_NOT_NULL? */
1721 if (TRANSLATE (*(p
- 2)) == TRANSLATE ('.')
1723 && p
< pend
&& TRANSLATE (*p
) == TRANSLATE ('\n')
1724 && !(syntax
& RE_DOT_NEWLINE
))
1725 { /* We have .*\n. */
1726 STORE_JUMP (jump
, b
, laststart
);
1727 keep_string_p
= true;
1730 /* Anything else. */
1731 STORE_JUMP (maybe_pop_jump
, b
, laststart
- 3);
1733 /* We've added more stuff to the buffer. */
1737 /* On failure, jump from laststart to b + 3, which will be the
1738 end of the buffer after this jump is inserted. */
1739 GET_BUFFER_SPACE (3);
1740 INSERT_JUMP (keep_string_p
? on_failure_keep_string_jump
1748 /* At least one repetition is required, so insert a
1749 `dummy_failure_jump' before the initial
1750 `on_failure_jump' instruction of the loop. This
1751 effects a skip over that instruction the first time
1752 we hit that loop. */
1753 GET_BUFFER_SPACE (3);
1754 INSERT_JUMP (dummy_failure_jump
, laststart
, laststart
+ 6);
1769 boolean had_char_class
= false;
1771 if (p
== pend
) return REG_EBRACK
;
1773 /* Ensure that we have enough space to push a charset: the
1774 opcode, the length count, and the bitset; 34 bytes in all. */
1775 GET_BUFFER_SPACE (34);
1779 /* We test `*p == '^' twice, instead of using an if
1780 statement, so we only need one BUF_PUSH. */
1781 BUF_PUSH (*p
== '^' ? charset_not
: charset
);
1785 /* Remember the first position in the bracket expression. */
1788 /* Push the number of bytes in the bitmap. */
1789 BUF_PUSH ((1 << BYTEWIDTH
) / BYTEWIDTH
);
1791 /* Clear the whole map. */
1792 bzero (b
, (1 << BYTEWIDTH
) / BYTEWIDTH
);
1794 /* charset_not matches newline according to a syntax bit. */
1795 if ((re_opcode_t
) b
[-2] == charset_not
1796 && (syntax
& RE_HAT_LISTS_NOT_NEWLINE
))
1797 SET_LIST_BIT ('\n');
1799 /* Read in characters and ranges, setting map bits. */
1802 if (p
== pend
) return REG_EBRACK
;
1806 /* \ might escape characters inside [...] and [^...]. */
1807 if ((syntax
& RE_BACKSLASH_ESCAPE_IN_LISTS
) && c
== '\\')
1809 if (p
== pend
) return REG_EESCAPE
;
1816 /* Could be the end of the bracket expression. If it's
1817 not (i.e., when the bracket expression is `[]' so
1818 far), the ']' character bit gets set way below. */
1819 if (c
== ']' && p
!= p1
+ 1)
1822 /* Look ahead to see if it's a range when the last thing
1823 was a character class. */
1824 if (had_char_class
&& c
== '-' && *p
!= ']')
1827 /* Look ahead to see if it's a range when the last thing
1828 was a character: if this is a hyphen not at the
1829 beginning or the end of a list, then it's the range
1832 && !(p
- 2 >= pattern
&& p
[-2] == '[')
1833 && !(p
- 3 >= pattern
&& p
[-3] == '[' && p
[-2] == '^')
1837 = compile_range (&p
, pend
, translate
, syntax
, b
);
1838 if (ret
!= REG_NOERROR
) return ret
;
1841 else if (p
[0] == '-' && p
[1] != ']')
1842 { /* This handles ranges made up of characters only. */
1845 /* Move past the `-'. */
1848 ret
= compile_range (&p
, pend
, translate
, syntax
, b
);
1849 if (ret
!= REG_NOERROR
) return ret
;
1852 /* See if we're at the beginning of a possible character
1855 else if (syntax
& RE_CHAR_CLASSES
&& c
== '[' && *p
== ':')
1856 { /* Leave room for the null. */
1857 char str
[CHAR_CLASS_MAX_LENGTH
+ 1];
1862 /* If pattern is `[[:'. */
1863 if (p
== pend
) return REG_EBRACK
;
1868 if (c
== ':' || c
== ']' || p
== pend
1869 || c1
== CHAR_CLASS_MAX_LENGTH
)
1875 /* If isn't a word bracketed by `[:' and:`]':
1876 undo the ending character, the letters, and leave
1877 the leading `:' and `[' (but set bits for them). */
1878 if (c
== ':' && *p
== ']')
1881 boolean is_alnum
= STREQ (str
, "alnum");
1882 boolean is_alpha
= STREQ (str
, "alpha");
1883 boolean is_blank
= STREQ (str
, "blank");
1884 boolean is_cntrl
= STREQ (str
, "cntrl");
1885 boolean is_digit
= STREQ (str
, "digit");
1886 boolean is_graph
= STREQ (str
, "graph");
1887 boolean is_lower
= STREQ (str
, "lower");
1888 boolean is_print
= STREQ (str
, "print");
1889 boolean is_punct
= STREQ (str
, "punct");
1890 boolean is_space
= STREQ (str
, "space");
1891 boolean is_upper
= STREQ (str
, "upper");
1892 boolean is_xdigit
= STREQ (str
, "xdigit");
1894 if (!IS_CHAR_CLASS (str
)) return REG_ECTYPE
;
1896 /* Throw away the ] at the end of the character
1900 if (p
== pend
) return REG_EBRACK
;
1902 for (ch
= 0; ch
< 1 << BYTEWIDTH
; ch
++)
1904 if ( (is_alnum
&& ISALNUM (ch
))
1905 || (is_alpha
&& ISALPHA (ch
))
1906 || (is_blank
&& ISBLANK (ch
))
1907 || (is_cntrl
&& ISCNTRL (ch
))
1908 || (is_digit
&& ISDIGIT (ch
))
1909 || (is_graph
&& ISGRAPH (ch
))
1910 || (is_lower
&& ISLOWER (ch
))
1911 || (is_print
&& ISPRINT (ch
))
1912 || (is_punct
&& ISPUNCT (ch
))
1913 || (is_space
&& ISSPACE (ch
))
1914 || (is_upper
&& ISUPPER (ch
))
1915 || (is_xdigit
&& ISXDIGIT (ch
)))
1918 had_char_class
= true;
1927 had_char_class
= false;
1932 had_char_class
= false;
1937 /* Discard any (non)matching list bytes that are all 0 at the
1938 end of the map. Decrease the map-length byte too. */
1939 while ((int) b
[-1] > 0 && b
[b
[-1] - 1] == 0)
1947 if (syntax
& RE_NO_BK_PARENS
)
1954 if (syntax
& RE_NO_BK_PARENS
)
1961 if (syntax
& RE_NEWLINE_ALT
)
1968 if (syntax
& RE_NO_BK_VBAR
)
1975 if (syntax
& RE_INTERVALS
&& syntax
& RE_NO_BK_BRACES
)
1976 goto handle_interval
;
1982 if (p
== pend
) return REG_EESCAPE
;
1984 /* Do not translate the character after the \, so that we can
1985 distinguish, e.g., \B from \b, even if we normally would
1986 translate, e.g., B to b. */
1992 if (syntax
& RE_NO_BK_PARENS
)
1993 goto normal_backslash
;
1999 if (COMPILE_STACK_FULL
)
2001 RETALLOC (compile_stack
.stack
, compile_stack
.size
<< 1,
2002 compile_stack_elt_t
);
2003 if (compile_stack
.stack
== NULL
) return REG_ESPACE
;
2005 compile_stack
.size
<<= 1;
2008 /* These are the values to restore when we hit end of this
2009 group. They are all relative offsets, so that if the
2010 whole pattern moves because of realloc, they will still
2012 COMPILE_STACK_TOP
.begalt_offset
= begalt
- bufp
->buffer
;
2013 COMPILE_STACK_TOP
.fixup_alt_jump
2014 = fixup_alt_jump
? fixup_alt_jump
- bufp
->buffer
+ 1 : 0;
2015 COMPILE_STACK_TOP
.laststart_offset
= b
- bufp
->buffer
;
2016 COMPILE_STACK_TOP
.regnum
= regnum
;
2018 /* We will eventually replace the 0 with the number of
2019 groups inner to this one. But do not push a
2020 start_memory for groups beyond the last one we can
2021 represent in the compiled pattern. */
2022 if (regnum
<= MAX_REGNUM
)
2024 COMPILE_STACK_TOP
.inner_group_offset
= b
- bufp
->buffer
+ 2;
2025 BUF_PUSH_3 (start_memory
, regnum
, 0);
2028 compile_stack
.avail
++;
2033 /* If we've reached MAX_REGNUM groups, then this open
2034 won't actually generate any code, so we'll have to
2035 clear pending_exact explicitly. */
2041 if (syntax
& RE_NO_BK_PARENS
) goto normal_backslash
;
2043 if (COMPILE_STACK_EMPTY
)
2044 if (syntax
& RE_UNMATCHED_RIGHT_PAREN_ORD
)
2045 goto normal_backslash
;
2051 { /* Push a dummy failure point at the end of the
2052 alternative for a possible future
2053 `pop_failure_jump' to pop. See comments at
2054 `push_dummy_failure' in `re_match_2'. */
2055 BUF_PUSH (push_dummy_failure
);
2057 /* We allocated space for this jump when we assigned
2058 to `fixup_alt_jump', in the `handle_alt' case below. */
2059 STORE_JUMP (jump_past_alt
, fixup_alt_jump
, b
- 1);
2062 /* See similar code for backslashed left paren above. */
2063 if (COMPILE_STACK_EMPTY
)
2064 if (syntax
& RE_UNMATCHED_RIGHT_PAREN_ORD
)
2069 /* Since we just checked for an empty stack above, this
2070 ``can't happen''. */
2071 assert (compile_stack
.avail
!= 0);
2073 /* We don't just want to restore into `regnum', because
2074 later groups should continue to be numbered higher,
2075 as in `(ab)c(de)' -- the second group is #2. */
2076 regnum_t this_group_regnum
;
2078 compile_stack
.avail
--;
2079 begalt
= bufp
->buffer
+ COMPILE_STACK_TOP
.begalt_offset
;
2081 = COMPILE_STACK_TOP
.fixup_alt_jump
2082 ? bufp
->buffer
+ COMPILE_STACK_TOP
.fixup_alt_jump
- 1
2084 laststart
= bufp
->buffer
+ COMPILE_STACK_TOP
.laststart_offset
;
2085 this_group_regnum
= COMPILE_STACK_TOP
.regnum
;
2086 /* If we've reached MAX_REGNUM groups, then this open
2087 won't actually generate any code, so we'll have to
2088 clear pending_exact explicitly. */
2091 /* We're at the end of the group, so now we know how many
2092 groups were inside this one. */
2093 if (this_group_regnum
<= MAX_REGNUM
)
2095 unsigned char *inner_group_loc
2096 = bufp
->buffer
+ COMPILE_STACK_TOP
.inner_group_offset
;
2098 *inner_group_loc
= regnum
- this_group_regnum
;
2099 BUF_PUSH_3 (stop_memory
, this_group_regnum
,
2100 regnum
- this_group_regnum
);
2106 case '|': /* `\|'. */
2107 if (syntax
& RE_LIMITED_OPS
|| syntax
& RE_NO_BK_VBAR
)
2108 goto normal_backslash
;
2110 if (syntax
& RE_LIMITED_OPS
)
2113 /* Insert before the previous alternative a jump which
2114 jumps to this alternative if the former fails. */
2115 GET_BUFFER_SPACE (3);
2116 INSERT_JUMP (on_failure_jump
, begalt
, b
+ 6);
2120 /* The alternative before this one has a jump after it
2121 which gets executed if it gets matched. Adjust that
2122 jump so it will jump to this alternative's analogous
2123 jump (put in below, which in turn will jump to the next
2124 (if any) alternative's such jump, etc.). The last such
2125 jump jumps to the correct final destination. A picture:
2131 If we are at `b', then fixup_alt_jump right now points to a
2132 three-byte space after `a'. We'll put in the jump, set
2133 fixup_alt_jump to right after `b', and leave behind three
2134 bytes which we'll fill in when we get to after `c'. */
2137 STORE_JUMP (jump_past_alt
, fixup_alt_jump
, b
);
2139 /* Mark and leave space for a jump after this alternative,
2140 to be filled in later either by next alternative or
2141 when know we're at the end of a series of alternatives. */
2143 GET_BUFFER_SPACE (3);
2152 /* If \{ is a literal. */
2153 if (!(syntax
& RE_INTERVALS
)
2154 /* If we're at `\{' and it's not the open-interval
2156 || ((syntax
& RE_INTERVALS
) && (syntax
& RE_NO_BK_BRACES
))
2157 || (p
- 2 == pattern
&& p
== pend
))
2158 goto normal_backslash
;
2162 /* If got here, then the syntax allows intervals. */
2164 /* At least (most) this many matches must be made. */
2165 int lower_bound
= -1, upper_bound
= -1;
2167 beg_interval
= p
- 1;
2171 if (syntax
& RE_NO_BK_BRACES
)
2172 goto unfetch_interval
;
2177 GET_UNSIGNED_NUMBER (lower_bound
);
2181 GET_UNSIGNED_NUMBER (upper_bound
);
2182 if (upper_bound
< 0) upper_bound
= RE_DUP_MAX
;
2185 /* Interval such as `{1}' => match exactly once. */
2186 upper_bound
= lower_bound
;
2188 if (lower_bound
< 0 || upper_bound
> RE_DUP_MAX
2189 || lower_bound
> upper_bound
)
2191 if (syntax
& RE_NO_BK_BRACES
)
2192 goto unfetch_interval
;
2197 if (!(syntax
& RE_NO_BK_BRACES
))
2199 if (c
!= '\\') return REG_EBRACE
;
2206 if (syntax
& RE_NO_BK_BRACES
)
2207 goto unfetch_interval
;
2212 /* We just parsed a valid interval. */
2214 /* If it's invalid to have no preceding re. */
2217 if (syntax
& RE_CONTEXT_INVALID_OPS
)
2219 else if (syntax
& RE_CONTEXT_INDEP_OPS
)
2222 goto unfetch_interval
;
2225 /* If the upper bound is zero, don't want to succeed at
2226 all; jump from `laststart' to `b + 3', which will be
2227 the end of the buffer after we insert the jump. */
2228 if (upper_bound
== 0)
2230 GET_BUFFER_SPACE (3);
2231 INSERT_JUMP (jump
, laststart
, b
+ 3);
2235 /* Otherwise, we have a nontrivial interval. When
2236 we're all done, the pattern will look like:
2237 set_number_at <jump count> <upper bound>
2238 set_number_at <succeed_n count> <lower bound>
2239 succeed_n <after jump addr> <succed_n count>
2241 jump_n <succeed_n addr> <jump count>
2242 (The upper bound and `jump_n' are omitted if
2243 `upper_bound' is 1, though.) */
2245 { /* If the upper bound is > 1, we need to insert
2246 more at the end of the loop. */
2247 unsigned nbytes
= 10 + (upper_bound
> 1) * 10;
2249 GET_BUFFER_SPACE (nbytes
);
2251 /* Initialize lower bound of the `succeed_n', even
2252 though it will be set during matching by its
2253 attendant `set_number_at' (inserted next),
2254 because `re_compile_fastmap' needs to know.
2255 Jump to the `jump_n' we might insert below. */
2256 INSERT_JUMP2 (succeed_n
, laststart
,
2257 b
+ 5 + (upper_bound
> 1) * 5,
2261 /* Code to initialize the lower bound. Insert
2262 before the `succeed_n'. The `5' is the last two
2263 bytes of this `set_number_at', plus 3 bytes of
2264 the following `succeed_n'. */
2265 insert_op2 (set_number_at
, laststart
, 5, lower_bound
, b
);
2268 if (upper_bound
> 1)
2269 { /* More than one repetition is allowed, so
2270 append a backward jump to the `succeed_n'
2271 that starts this interval.
2273 When we've reached this during matching,
2274 we'll have matched the interval once, so
2275 jump back only `upper_bound - 1' times. */
2276 STORE_JUMP2 (jump_n
, b
, laststart
+ 5,
2280 /* The location we want to set is the second
2281 parameter of the `jump_n'; that is `b-2' as
2282 an absolute address. `laststart' will be
2283 the `set_number_at' we're about to insert;
2284 `laststart+3' the number to set, the source
2285 for the relative address. But we are
2286 inserting into the middle of the pattern --
2287 so everything is getting moved up by 5.
2288 Conclusion: (b - 2) - (laststart + 3) + 5,
2289 i.e., b - laststart.
2291 We insert this at the beginning of the loop
2292 so that if we fail during matching, we'll
2293 reinitialize the bounds. */
2294 insert_op2 (set_number_at
, laststart
, b
- laststart
,
2295 upper_bound
- 1, b
);
2300 beg_interval
= NULL
;
2305 /* If an invalid interval, match the characters as literals. */
2306 assert (beg_interval
);
2308 beg_interval
= NULL
;
2310 /* normal_char and normal_backslash need `c'. */
2313 if (!(syntax
& RE_NO_BK_BRACES
))
2315 if (p
> pattern
&& p
[-1] == '\\')
2316 goto normal_backslash
;
2321 /* There is no way to specify the before_dot and after_dot
2322 operators. rms says this is ok. --karl */
2330 BUF_PUSH_2 (syntaxspec
, syntax_spec_code
[c
]);
2336 BUF_PUSH_2 (notsyntaxspec
, syntax_spec_code
[c
]);
2343 BUF_PUSH (wordchar
);
2349 BUF_PUSH (notwordchar
);
2362 BUF_PUSH (wordbound
);
2366 BUF_PUSH (notwordbound
);
2377 case '1': case '2': case '3': case '4': case '5':
2378 case '6': case '7': case '8': case '9':
2379 if (syntax
& RE_NO_BK_REFS
)
2387 /* Can't back reference to a subexpression if inside of it. */
2388 if (group_in_compile_stack (compile_stack
, c1
))
2392 BUF_PUSH_2 (duplicate
, c1
);
2398 if (syntax
& RE_BK_PLUS_QM
)
2401 goto normal_backslash
;
2405 /* You might think it would be useful for \ to mean
2406 not to translate; but if we don't translate it
2407 it will never match anything. */
2415 /* Expects the character in `c'. */
2417 /* If no exactn currently being built. */
2420 /* If last exactn not at current position. */
2421 || pending_exact
+ *pending_exact
+ 1 != b
2423 /* We have only one byte following the exactn for the count. */
2424 || *pending_exact
== (1 << BYTEWIDTH
) - 1
2426 /* If followed by a repetition operator. */
2427 || *p
== '*' || *p
== '^'
2428 || ((syntax
& RE_BK_PLUS_QM
)
2429 ? *p
== '\\' && (p
[1] == '+' || p
[1] == '?')
2430 : (*p
== '+' || *p
== '?'))
2431 || ((syntax
& RE_INTERVALS
)
2432 && ((syntax
& RE_NO_BK_BRACES
)
2434 : (p
[0] == '\\' && p
[1] == '{'))))
2436 /* Start building a new exactn. */
2440 BUF_PUSH_2 (exactn
, 0);
2441 pending_exact
= b
- 1;
2448 } /* while p != pend */
2451 /* Through the pattern now. */
2454 STORE_JUMP (jump_past_alt
, fixup_alt_jump
, b
);
2456 if (!COMPILE_STACK_EMPTY
)
2459 free (compile_stack
.stack
);
2461 /* We have succeeded; set the length of the buffer. */
2462 bufp
->used
= b
- bufp
->buffer
;
2467 DEBUG_PRINT1 ("\nCompiled pattern: \n");
2468 print_compiled_pattern (bufp
);
2472 #ifndef MATCH_MAY_ALLOCATE
2473 /* Initialize the failure stack to the largest possible stack. This
2474 isn't necessary unless we're trying to avoid calling alloca in
2475 the search and match routines. */
2477 int num_regs
= bufp
->re_nsub
+ 1;
2479 /* Since DOUBLE_FAIL_STACK refuses to double only if the current size
2480 is strictly greater than re_max_failures, the largest possible stack
2481 is 2 * re_max_failures failure points. */
2482 fail_stack
.size
= (2 * re_max_failures
* MAX_FAILURE_ITEMS
);
2483 if (fail_stack
.stack
)
2485 (fail_stack_elt_t
*) realloc (fail_stack
.stack
,
2487 * sizeof (fail_stack_elt_t
)));
2490 (fail_stack_elt_t
*) malloc (fail_stack
.size
2491 * sizeof (fail_stack_elt_t
));
2493 /* Initialize some other variables the matcher uses. */
2494 RETALLOC_IF (regstart
, num_regs
, const char *);
2495 RETALLOC_IF (regend
, num_regs
, const char *);
2496 RETALLOC_IF (old_regstart
, num_regs
, const char *);
2497 RETALLOC_IF (old_regend
, num_regs
, const char *);
2498 RETALLOC_IF (best_regstart
, num_regs
, const char *);
2499 RETALLOC_IF (best_regend
, num_regs
, const char *);
2500 RETALLOC_IF (reg_info
, num_regs
, register_info_type
);
2501 RETALLOC_IF (reg_dummy
, num_regs
, const char *);
2502 RETALLOC_IF (reg_info_dummy
, num_regs
, register_info_type
);
2507 } /* regex_compile */
2509 /* Subroutines for `regex_compile'. */
2511 /* Store OP at LOC followed by two-byte integer parameter ARG. */
2514 store_op1 (op
, loc
, arg
)
2519 *loc
= (unsigned char) op
;
2520 STORE_NUMBER (loc
+ 1, arg
);
2524 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
2527 store_op2 (op
, loc
, arg1
, arg2
)
2532 *loc
= (unsigned char) op
;
2533 STORE_NUMBER (loc
+ 1, arg1
);
2534 STORE_NUMBER (loc
+ 3, arg2
);
2538 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
2539 for OP followed by two-byte integer parameter ARG. */
2542 insert_op1 (op
, loc
, arg
, end
)
2548 register unsigned char *pfrom
= end
;
2549 register unsigned char *pto
= end
+ 3;
2551 while (pfrom
!= loc
)
2554 store_op1 (op
, loc
, arg
);
2558 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
2561 insert_op2 (op
, loc
, arg1
, arg2
, end
)
2567 register unsigned char *pfrom
= end
;
2568 register unsigned char *pto
= end
+ 5;
2570 while (pfrom
!= loc
)
2573 store_op2 (op
, loc
, arg1
, arg2
);
2577 /* P points to just after a ^ in PATTERN. Return true if that ^ comes
2578 after an alternative or a begin-subexpression. We assume there is at
2579 least one character before the ^. */
2582 at_begline_loc_p (pattern
, p
, syntax
)
2583 const char *pattern
, *p
;
2584 reg_syntax_t syntax
;
2586 const char *prev
= p
- 2;
2587 boolean prev_prev_backslash
= prev
> pattern
&& prev
[-1] == '\\';
2590 /* After a subexpression? */
2591 (*prev
== '(' && (syntax
& RE_NO_BK_PARENS
|| prev_prev_backslash
))
2592 /* After an alternative? */
2593 || (*prev
== '|' && (syntax
& RE_NO_BK_VBAR
|| prev_prev_backslash
));
2597 /* The dual of at_begline_loc_p. This one is for $. We assume there is
2598 at least one character after the $, i.e., `P < PEND'. */
2601 at_endline_loc_p (p
, pend
, syntax
)
2602 const char *p
, *pend
;
2605 const char *next
= p
;
2606 boolean next_backslash
= *next
== '\\';
2607 const char *next_next
= p
+ 1 < pend
? p
+ 1 : NULL
;
2610 /* Before a subexpression? */
2611 (syntax
& RE_NO_BK_PARENS
? *next
== ')'
2612 : next_backslash
&& next_next
&& *next_next
== ')')
2613 /* Before an alternative? */
2614 || (syntax
& RE_NO_BK_VBAR
? *next
== '|'
2615 : next_backslash
&& next_next
&& *next_next
== '|');
2619 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
2620 false if it's not. */
2623 group_in_compile_stack (compile_stack
, regnum
)
2624 compile_stack_type compile_stack
;
2629 for (this_element
= compile_stack
.avail
- 1;
2632 if (compile_stack
.stack
[this_element
].regnum
== regnum
)
2639 /* Read the ending character of a range (in a bracket expression) from the
2640 uncompiled pattern *P_PTR (which ends at PEND). We assume the
2641 starting character is in `P[-2]'. (`P[-1]' is the character `-'.)
2642 Then we set the translation of all bits between the starting and
2643 ending characters (inclusive) in the compiled pattern B.
2645 Return an error code.
2647 We use these short variable names so we can use the same macros as
2648 `regex_compile' itself. */
2650 static reg_errcode_t
2651 compile_range (p_ptr
, pend
, translate
, syntax
, b
)
2652 const char **p_ptr
, *pend
;
2654 reg_syntax_t syntax
;
2659 const char *p
= *p_ptr
;
2660 int range_start
, range_end
;
2665 /* Even though the pattern is a signed `char *', we need to fetch
2666 with unsigned char *'s; if the high bit of the pattern character
2667 is set, the range endpoints will be negative if we fetch using a
2670 We also want to fetch the endpoints without translating them; the
2671 appropriate translation is done in the bit-setting loop below. */
2672 range_start
= ((unsigned char *) p
)[-2];
2673 range_end
= ((unsigned char *) p
)[0];
2675 /* Have to increment the pointer into the pattern string, so the
2676 caller isn't still at the ending character. */
2679 /* If the start is after the end, the range is empty. */
2680 if (range_start
> range_end
)
2681 return syntax
& RE_NO_EMPTY_RANGES
? REG_ERANGE
: REG_NOERROR
;
2683 /* Here we see why `this_char' has to be larger than an `unsigned
2684 char' -- the range is inclusive, so if `range_end' == 0xff
2685 (assuming 8-bit characters), we would otherwise go into an infinite
2686 loop, since all characters <= 0xff. */
2687 for (this_char
= range_start
; this_char
<= range_end
; this_char
++)
2689 SET_LIST_BIT (TRANSLATE (this_char
));
2695 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
2696 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
2697 characters can start a string that matches the pattern. This fastmap
2698 is used by re_search to skip quickly over impossible starting points.
2700 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
2701 area as BUFP->fastmap.
2703 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
2706 Returns 0 if we succeed, -2 if an internal error. */
2709 re_compile_fastmap (bufp
)
2710 struct re_pattern_buffer
*bufp
;
2713 #ifdef MATCH_MAY_ALLOCATE
2714 fail_stack_type fail_stack
;
2716 #ifndef REGEX_MALLOC
2719 /* We don't push any register information onto the failure stack. */
2720 unsigned num_regs
= 0;
2722 register char *fastmap
= bufp
->fastmap
;
2723 unsigned char *pattern
= bufp
->buffer
;
2724 unsigned long size
= bufp
->used
;
2725 const unsigned char *p
= pattern
;
2726 register unsigned char *pend
= pattern
+ size
;
2728 /* Assume that each path through the pattern can be null until
2729 proven otherwise. We set this false at the bottom of switch
2730 statement, to which we get only if a particular path doesn't
2731 match the empty string. */
2732 boolean path_can_be_null
= true;
2734 /* We aren't doing a `succeed_n' to begin with. */
2735 boolean succeed_n_p
= false;
2737 assert (fastmap
!= NULL
&& p
!= NULL
);
2740 bzero (fastmap
, 1 << BYTEWIDTH
); /* Assume nothing's valid. */
2741 bufp
->fastmap_accurate
= 1; /* It will be when we're done. */
2742 bufp
->can_be_null
= 0;
2744 while (p
!= pend
|| !FAIL_STACK_EMPTY ())
2748 bufp
->can_be_null
|= path_can_be_null
;
2750 /* Reset for next path. */
2751 path_can_be_null
= true;
2753 p
= fail_stack
.stack
[--fail_stack
.avail
];
2756 /* We should never be about to go beyond the end of the pattern. */
2759 #ifdef SWITCH_ENUM_BUG
2760 switch ((int) ((re_opcode_t
) *p
++))
2762 switch ((re_opcode_t
) *p
++)
2766 /* I guess the idea here is to simply not bother with a fastmap
2767 if a backreference is used, since it's too hard to figure out
2768 the fastmap for the corresponding group. Setting
2769 `can_be_null' stops `re_search_2' from using the fastmap, so
2770 that is all we do. */
2772 bufp
->can_be_null
= 1;
2776 /* Following are the cases which match a character. These end
2785 for (j
= *p
++ * BYTEWIDTH
- 1; j
>= 0; j
--)
2786 if (p
[j
/ BYTEWIDTH
] & (1 << (j
% BYTEWIDTH
)))
2792 /* Chars beyond end of map must be allowed. */
2793 for (j
= *p
* BYTEWIDTH
; j
< (1 << BYTEWIDTH
); j
++)
2796 for (j
= *p
++ * BYTEWIDTH
- 1; j
>= 0; j
--)
2797 if (!(p
[j
/ BYTEWIDTH
] & (1 << (j
% BYTEWIDTH
))))
2803 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
2804 if (SYNTAX (j
) == Sword
)
2810 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
2811 if (SYNTAX (j
) != Sword
)
2817 /* `.' matches anything ... */
2818 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
2821 /* ... except perhaps newline. */
2822 if (!(bufp
->syntax
& RE_DOT_NEWLINE
))
2825 /* Return if we have already set `can_be_null'; if we have,
2826 then the fastmap is irrelevant. Something's wrong here. */
2827 else if (bufp
->can_be_null
)
2830 /* Otherwise, have to check alternative paths. */
2837 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
2838 if (SYNTAX (j
) == (enum syntaxcode
) k
)
2845 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
2846 if (SYNTAX (j
) != (enum syntaxcode
) k
)
2851 /* All cases after this match the empty string. These end with
2859 #endif /* not emacs */
2871 case push_dummy_failure
:
2876 case pop_failure_jump
:
2877 case maybe_pop_jump
:
2880 case dummy_failure_jump
:
2881 EXTRACT_NUMBER_AND_INCR (j
, p
);
2886 /* Jump backward implies we just went through the body of a
2887 loop and matched nothing. Opcode jumped to should be
2888 `on_failure_jump' or `succeed_n'. Just treat it like an
2889 ordinary jump. For a * loop, it has pushed its failure
2890 point already; if so, discard that as redundant. */
2891 if ((re_opcode_t
) *p
!= on_failure_jump
2892 && (re_opcode_t
) *p
!= succeed_n
)
2896 EXTRACT_NUMBER_AND_INCR (j
, p
);
2899 /* If what's on the stack is where we are now, pop it. */
2900 if (!FAIL_STACK_EMPTY ()
2901 && fail_stack
.stack
[fail_stack
.avail
- 1] == p
)
2907 case on_failure_jump
:
2908 case on_failure_keep_string_jump
:
2909 handle_on_failure_jump
:
2910 EXTRACT_NUMBER_AND_INCR (j
, p
);
2912 /* For some patterns, e.g., `(a?)?', `p+j' here points to the
2913 end of the pattern. We don't want to push such a point,
2914 since when we restore it above, entering the switch will
2915 increment `p' past the end of the pattern. We don't need
2916 to push such a point since we obviously won't find any more
2917 fastmap entries beyond `pend'. Such a pattern can match
2918 the null string, though. */
2921 if (!PUSH_PATTERN_OP (p
+ j
, fail_stack
))
2925 bufp
->can_be_null
= 1;
2929 EXTRACT_NUMBER_AND_INCR (k
, p
); /* Skip the n. */
2930 succeed_n_p
= false;
2937 /* Get to the number of times to succeed. */
2940 /* Increment p past the n for when k != 0. */
2941 EXTRACT_NUMBER_AND_INCR (k
, p
);
2945 succeed_n_p
= true; /* Spaghetti code alert. */
2946 goto handle_on_failure_jump
;
2963 abort (); /* We have listed all the cases. */
2966 /* Getting here means we have found the possible starting
2967 characters for one path of the pattern -- and that the empty
2968 string does not match. We need not follow this path further.
2969 Instead, look at the next alternative (remembered on the
2970 stack), or quit if no more. The test at the top of the loop
2971 does these things. */
2972 path_can_be_null
= false;
2976 /* Set `can_be_null' for the last path (also the first path, if the
2977 pattern is empty). */
2978 bufp
->can_be_null
|= path_can_be_null
;
2980 } /* re_compile_fastmap */
2982 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
2983 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
2984 this memory for recording register information. STARTS and ENDS
2985 must be allocated using the malloc library routine, and must each
2986 be at least NUM_REGS * sizeof (regoff_t) bytes long.
2988 If NUM_REGS == 0, then subsequent matches should allocate their own
2991 Unless this function is called, the first search or match using
2992 PATTERN_BUFFER will allocate its own register data, without
2993 freeing the old data. */
2996 re_set_registers (bufp
, regs
, num_regs
, starts
, ends
)
2997 struct re_pattern_buffer
*bufp
;
2998 struct re_registers
*regs
;
3000 regoff_t
*starts
, *ends
;
3004 bufp
->regs_allocated
= REGS_REALLOCATE
;
3005 regs
->num_regs
= num_regs
;
3006 regs
->start
= starts
;
3011 bufp
->regs_allocated
= REGS_UNALLOCATED
;
3013 regs
->start
= regs
->end
= (regoff_t
) 0;
3017 /* Searching routines. */
3019 /* Like re_search_2, below, but only one string is specified, and
3020 doesn't let you say where to stop matching. */
3023 re_search (bufp
, string
, size
, startpos
, range
, regs
)
3024 struct re_pattern_buffer
*bufp
;
3026 int size
, startpos
, range
;
3027 struct re_registers
*regs
;
3029 return re_search_2 (bufp
, NULL
, 0, string
, size
, startpos
, range
,
3034 /* Using the compiled pattern in BUFP->buffer, first tries to match the
3035 virtual concatenation of STRING1 and STRING2, starting first at index
3036 STARTPOS, then at STARTPOS + 1, and so on.
3038 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
3040 RANGE is how far to scan while trying to match. RANGE = 0 means try
3041 only at STARTPOS; in general, the last start tried is STARTPOS +
3044 In REGS, return the indices of the virtual concatenation of STRING1
3045 and STRING2 that matched the entire BUFP->buffer and its contained
3048 Do not consider matching one past the index STOP in the virtual
3049 concatenation of STRING1 and STRING2.
3051 We return either the position in the strings at which the match was
3052 found, -1 if no match, or -2 if error (such as failure
3056 re_search_2 (bufp
, string1
, size1
, string2
, size2
, startpos
, range
, regs
, stop
)
3057 struct re_pattern_buffer
*bufp
;
3058 const char *string1
, *string2
;
3062 struct re_registers
*regs
;
3066 register char *fastmap
= bufp
->fastmap
;
3067 register char *translate
= bufp
->translate
;
3068 int total_size
= size1
+ size2
;
3069 int endpos
= startpos
+ range
;
3071 /* Check for out-of-range STARTPOS. */
3072 if (startpos
< 0 || startpos
> total_size
)
3075 /* Fix up RANGE if it might eventually take us outside
3076 the virtual concatenation of STRING1 and STRING2. */
3078 range
= -1 - startpos
;
3079 else if (endpos
> total_size
)
3080 range
= total_size
- startpos
;
3082 /* If the search isn't to be a backwards one, don't waste time in a
3083 search for a pattern that must be anchored. */
3084 if (bufp
->used
> 0 && (re_opcode_t
) bufp
->buffer
[0] == begbuf
&& range
> 0)
3092 /* Update the fastmap now if not correct already. */
3093 if (fastmap
&& !bufp
->fastmap_accurate
)
3094 if (re_compile_fastmap (bufp
) == -2)
3097 /* Loop through the string, looking for a place to start matching. */
3100 /* If a fastmap is supplied, skip quickly over characters that
3101 cannot be the start of a match. If the pattern can match the
3102 null string, however, we don't need to skip characters; we want
3103 the first null string. */
3104 if (fastmap
&& startpos
< total_size
&& !bufp
->can_be_null
)
3106 if (range
> 0) /* Searching forwards. */
3108 register const char *d
;
3109 register int lim
= 0;
3112 if (startpos
< size1
&& startpos
+ range
>= size1
)
3113 lim
= range
- (size1
- startpos
);
3115 d
= (startpos
>= size1
? string2
- size1
: string1
) + startpos
;
3117 /* Written out as an if-else to avoid testing `translate'
3121 && !fastmap
[(unsigned char)
3122 translate
[(unsigned char) *d
++]])
3125 while (range
> lim
&& !fastmap
[(unsigned char) *d
++])
3128 startpos
+= irange
- range
;
3130 else /* Searching backwards. */
3132 register char c
= (size1
== 0 || startpos
>= size1
3133 ? string2
[startpos
- size1
]
3134 : string1
[startpos
]);
3136 if (!fastmap
[(unsigned char) TRANSLATE (c
)])
3141 /* If can't match the null string, and that's all we have left, fail. */
3142 if (range
>= 0 && startpos
== total_size
&& fastmap
3143 && !bufp
->can_be_null
)
3146 val
= re_match_2 (bufp
, string1
, size1
, string2
, size2
,
3147 startpos
, regs
, stop
);
3171 /* Declarations and macros for re_match_2. */
3173 static int bcmp_translate ();
3174 static boolean
alt_match_null_string_p (),
3175 common_op_match_null_string_p (),
3176 group_match_null_string_p ();
3178 /* This converts PTR, a pointer into one of the search strings `string1'
3179 and `string2' into an offset from the beginning of that string. */
3180 #define POINTER_TO_OFFSET(ptr) \
3181 (FIRST_STRING_P (ptr) ? (ptr) - string1 : (ptr) - string2 + size1)
3183 /* Macros for dealing with the split strings in re_match_2. */
3185 #define MATCHING_IN_FIRST_STRING (dend == end_match_1)
3187 /* Call before fetching a character with *d. This switches over to
3188 string2 if necessary. */
3189 #define PREFETCH() \
3192 /* End of string2 => fail. */ \
3193 if (dend == end_match_2) \
3195 /* End of string1 => advance to string2. */ \
3197 dend = end_match_2; \
3201 /* Test if at very beginning or at very end of the virtual concatenation
3202 of `string1' and `string2'. If only one string, it's `string2'. */
3203 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
3204 #define AT_STRINGS_END(d) ((d) == end2)
3207 /* Test if D points to a character which is word-constituent. We have
3208 two special cases to check for: if past the end of string1, look at
3209 the first character in string2; and if before the beginning of
3210 string2, look at the last character in string1. */
3211 #define WORDCHAR_P(d) \
3212 (SYNTAX ((d) == end1 ? *string2 \
3213 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
3216 /* Test if the character before D and the one at D differ with respect
3217 to being word-constituent. */
3218 #define AT_WORD_BOUNDARY(d) \
3219 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
3220 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
3223 /* Free everything we malloc. */
3224 #ifdef MATCH_MAY_ALLOCATE
3226 #define FREE_VAR(var) if (var) free (var); var = NULL
3227 #define FREE_VARIABLES() \
3229 FREE_VAR (fail_stack.stack); \
3230 FREE_VAR (regstart); \
3231 FREE_VAR (regend); \
3232 FREE_VAR (old_regstart); \
3233 FREE_VAR (old_regend); \
3234 FREE_VAR (best_regstart); \
3235 FREE_VAR (best_regend); \
3236 FREE_VAR (reg_info); \
3237 FREE_VAR (reg_dummy); \
3238 FREE_VAR (reg_info_dummy); \
3240 #else /* not REGEX_MALLOC */
3241 /* Some MIPS systems (at least) want this to free alloca'd storage. */
3242 #define FREE_VARIABLES() alloca (0)
3243 #endif /* not REGEX_MALLOC */
3245 #define FREE_VARIABLES() /* Do nothing! */
3246 #endif /* not MATCH_MAY_ALLOCATE */
3248 /* These values must meet several constraints. They must not be valid
3249 register values; since we have a limit of 255 registers (because
3250 we use only one byte in the pattern for the register number), we can
3251 use numbers larger than 255. They must differ by 1, because of
3252 NUM_FAILURE_ITEMS above. And the value for the lowest register must
3253 be larger than the value for the highest register, so we do not try
3254 to actually save any registers when none are active. */
3255 #define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
3256 #define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
3258 /* Matching routines. */
3260 #ifndef emacs /* Emacs never uses this. */
3261 /* re_match is like re_match_2 except it takes only a single string. */
3264 re_match (bufp
, string
, size
, pos
, regs
)
3265 struct re_pattern_buffer
*bufp
;
3268 struct re_registers
*regs
;
3270 return re_match_2 (bufp
, NULL
, 0, string
, size
, pos
, regs
, size
);
3272 #endif /* not emacs */
3275 /* re_match_2 matches the compiled pattern in BUFP against the
3276 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
3277 and SIZE2, respectively). We start matching at POS, and stop
3280 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
3281 store offsets for the substring each group matched in REGS. See the
3282 documentation for exactly how many groups we fill.
3284 We return -1 if no match, -2 if an internal error (such as the
3285 failure stack overflowing). Otherwise, we return the length of the
3286 matched substring. */
3289 re_match_2 (bufp
, string1
, size1
, string2
, size2
, pos
, regs
, stop
)
3290 struct re_pattern_buffer
*bufp
;
3291 const char *string1
, *string2
;
3294 struct re_registers
*regs
;
3297 /* General temporaries. */
3301 /* Just past the end of the corresponding string. */
3302 const char *end1
, *end2
;
3304 /* Pointers into string1 and string2, just past the last characters in
3305 each to consider matching. */
3306 const char *end_match_1
, *end_match_2
;
3308 /* Where we are in the data, and the end of the current string. */
3309 const char *d
, *dend
;
3311 /* Where we are in the pattern, and the end of the pattern. */
3312 unsigned char *p
= bufp
->buffer
;
3313 register unsigned char *pend
= p
+ bufp
->used
;
3315 /* We use this to map every character in the string. */
3316 char *translate
= bufp
->translate
;
3318 /* Failure point stack. Each place that can handle a failure further
3319 down the line pushes a failure point on this stack. It consists of
3320 restart, regend, and reg_info for all registers corresponding to
3321 the subexpressions we're currently inside, plus the number of such
3322 registers, and, finally, two char *'s. The first char * is where
3323 to resume scanning the pattern; the second one is where to resume
3324 scanning the strings. If the latter is zero, the failure point is
3325 a ``dummy''; if a failure happens and the failure point is a dummy,
3326 it gets discarded and the next next one is tried. */
3327 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
3328 fail_stack_type fail_stack
;
3331 static unsigned failure_id
= 0;
3332 unsigned nfailure_points_pushed
= 0, nfailure_points_popped
= 0;
3335 /* We fill all the registers internally, independent of what we
3336 return, for use in backreferences. The number here includes
3337 an element for register zero. */
3338 unsigned num_regs
= bufp
->re_nsub
+ 1;
3340 /* The currently active registers. */
3341 unsigned lowest_active_reg
= NO_LOWEST_ACTIVE_REG
;
3342 unsigned highest_active_reg
= NO_HIGHEST_ACTIVE_REG
;
3344 /* Information on the contents of registers. These are pointers into
3345 the input strings; they record just what was matched (on this
3346 attempt) by a subexpression part of the pattern, that is, the
3347 regnum-th regstart pointer points to where in the pattern we began
3348 matching and the regnum-th regend points to right after where we
3349 stopped matching the regnum-th subexpression. (The zeroth register
3350 keeps track of what the whole pattern matches.) */
3351 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3352 const char **regstart
, **regend
;
3355 /* If a group that's operated upon by a repetition operator fails to
3356 match anything, then the register for its start will need to be
3357 restored because it will have been set to wherever in the string we
3358 are when we last see its open-group operator. Similarly for a
3360 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3361 const char **old_regstart
, **old_regend
;
3364 /* The is_active field of reg_info helps us keep track of which (possibly
3365 nested) subexpressions we are currently in. The matched_something
3366 field of reg_info[reg_num] helps us tell whether or not we have
3367 matched any of the pattern so far this time through the reg_num-th
3368 subexpression. These two fields get reset each time through any
3369 loop their register is in. */
3370 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
3371 register_info_type
*reg_info
;
3374 /* The following record the register info as found in the above
3375 variables when we find a match better than any we've seen before.
3376 This happens as we backtrack through the failure points, which in
3377 turn happens only if we have not yet matched the entire string. */
3378 unsigned best_regs_set
= false;
3379 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3380 const char **best_regstart
, **best_regend
;
3383 /* Logically, this is `best_regend[0]'. But we don't want to have to
3384 allocate space for that if we're not allocating space for anything
3385 else (see below). Also, we never need info about register 0 for
3386 any of the other register vectors, and it seems rather a kludge to
3387 treat `best_regend' differently than the rest. So we keep track of
3388 the end of the best match so far in a separate variable. We
3389 initialize this to NULL so that when we backtrack the first time
3390 and need to test it, it's not garbage. */
3391 const char *match_end
= NULL
;
3393 /* Used when we pop values we don't care about. */
3394 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3395 const char **reg_dummy
;
3396 register_info_type
*reg_info_dummy
;
3400 /* Counts the total number of registers pushed. */
3401 unsigned num_regs_pushed
= 0;
3404 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
3408 #ifdef MATCH_MAY_ALLOCATE
3409 /* Do not bother to initialize all the register variables if there are
3410 no groups in the pattern, as it takes a fair amount of time. If
3411 there are groups, we include space for register 0 (the whole
3412 pattern), even though we never use it, since it simplifies the
3413 array indexing. We should fix this. */
3416 regstart
= REGEX_TALLOC (num_regs
, const char *);
3417 regend
= REGEX_TALLOC (num_regs
, const char *);
3418 old_regstart
= REGEX_TALLOC (num_regs
, const char *);
3419 old_regend
= REGEX_TALLOC (num_regs
, const char *);
3420 best_regstart
= REGEX_TALLOC (num_regs
, const char *);
3421 best_regend
= REGEX_TALLOC (num_regs
, const char *);
3422 reg_info
= REGEX_TALLOC (num_regs
, register_info_type
);
3423 reg_dummy
= REGEX_TALLOC (num_regs
, const char *);
3424 reg_info_dummy
= REGEX_TALLOC (num_regs
, register_info_type
);
3426 if (!(regstart
&& regend
&& old_regstart
&& old_regend
&& reg_info
3427 && best_regstart
&& best_regend
&& reg_dummy
&& reg_info_dummy
))
3433 #if defined (REGEX_MALLOC)
3436 /* We must initialize all our variables to NULL, so that
3437 `FREE_VARIABLES' doesn't try to free them. */
3438 regstart
= regend
= old_regstart
= old_regend
= best_regstart
3439 = best_regend
= reg_dummy
= NULL
;
3440 reg_info
= reg_info_dummy
= (register_info_type
*) NULL
;
3442 #endif /* REGEX_MALLOC */
3443 #endif /* MATCH_MAY_ALLOCATE */
3445 /* The starting position is bogus. */
3446 if (pos
< 0 || pos
> size1
+ size2
)
3452 /* Initialize subexpression text positions to -1 to mark ones that no
3453 start_memory/stop_memory has been seen for. Also initialize the
3454 register information struct. */
3455 for (mcnt
= 1; mcnt
< num_regs
; mcnt
++)
3457 regstart
[mcnt
] = regend
[mcnt
]
3458 = old_regstart
[mcnt
] = old_regend
[mcnt
] = REG_UNSET_VALUE
;
3460 REG_MATCH_NULL_STRING_P (reg_info
[mcnt
]) = MATCH_NULL_UNSET_VALUE
;
3461 IS_ACTIVE (reg_info
[mcnt
]) = 0;
3462 MATCHED_SOMETHING (reg_info
[mcnt
]) = 0;
3463 EVER_MATCHED_SOMETHING (reg_info
[mcnt
]) = 0;
3466 /* We move `string1' into `string2' if the latter's empty -- but not if
3467 `string1' is null. */
3468 if (size2
== 0 && string1
!= NULL
)
3475 end1
= string1
+ size1
;
3476 end2
= string2
+ size2
;
3478 /* Compute where to stop matching, within the two strings. */
3481 end_match_1
= string1
+ stop
;
3482 end_match_2
= string2
;
3487 end_match_2
= string2
+ stop
- size1
;
3490 /* `p' scans through the pattern as `d' scans through the data.
3491 `dend' is the end of the input string that `d' points within. `d'
3492 is advanced into the following input string whenever necessary, but
3493 this happens before fetching; therefore, at the beginning of the
3494 loop, `d' can be pointing at the end of a string, but it cannot
3496 if (size1
> 0 && pos
<= size1
)
3503 d
= string2
+ pos
- size1
;
3507 DEBUG_PRINT1 ("The compiled pattern is: ");
3508 DEBUG_PRINT_COMPILED_PATTERN (bufp
, p
, pend
);
3509 DEBUG_PRINT1 ("The string to match is: `");
3510 DEBUG_PRINT_DOUBLE_STRING (d
, string1
, size1
, string2
, size2
);
3511 DEBUG_PRINT1 ("'\n");
3513 /* This loops over pattern commands. It exits by returning from the
3514 function if the match is complete, or it drops through if the match
3515 fails at this starting point in the input data. */
3518 DEBUG_PRINT2 ("\n0x%x: ", p
);
3521 { /* End of pattern means we might have succeeded. */
3522 DEBUG_PRINT1 ("end of pattern ... ");
3524 /* If we haven't matched the entire string, and we want the
3525 longest match, try backtracking. */
3526 if (d
!= end_match_2
)
3528 DEBUG_PRINT1 ("backtracking.\n");
3530 if (!FAIL_STACK_EMPTY ())
3531 { /* More failure points to try. */
3532 boolean same_str_p
= (FIRST_STRING_P (match_end
)
3533 == MATCHING_IN_FIRST_STRING
);
3535 /* If exceeds best match so far, save it. */
3537 || (same_str_p
&& d
> match_end
)
3538 || (!same_str_p
&& !MATCHING_IN_FIRST_STRING
))
3540 best_regs_set
= true;
3543 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
3545 for (mcnt
= 1; mcnt
< num_regs
; mcnt
++)
3547 best_regstart
[mcnt
] = regstart
[mcnt
];
3548 best_regend
[mcnt
] = regend
[mcnt
];
3554 /* If no failure points, don't restore garbage. */
3555 else if (best_regs_set
)
3558 /* Restore best match. It may happen that `dend ==
3559 end_match_1' while the restored d is in string2.
3560 For example, the pattern `x.*y.*z' against the
3561 strings `x-' and `y-z-', if the two strings are
3562 not consecutive in memory. */
3563 DEBUG_PRINT1 ("Restoring best registers.\n");
3566 dend
= ((d
>= string1
&& d
<= end1
)
3567 ? end_match_1
: end_match_2
);
3569 for (mcnt
= 1; mcnt
< num_regs
; mcnt
++)
3571 regstart
[mcnt
] = best_regstart
[mcnt
];
3572 regend
[mcnt
] = best_regend
[mcnt
];
3575 } /* d != end_match_2 */
3577 DEBUG_PRINT1 ("Accepting match.\n");
3579 /* If caller wants register contents data back, do it. */
3580 if (regs
&& !bufp
->no_sub
)
3582 /* Have the register data arrays been allocated? */
3583 if (bufp
->regs_allocated
== REGS_UNALLOCATED
)
3584 { /* No. So allocate them with malloc. We need one
3585 extra element beyond `num_regs' for the `-1' marker
3587 regs
->num_regs
= MAX (RE_NREGS
, num_regs
+ 1);
3588 regs
->start
= TALLOC (regs
->num_regs
, regoff_t
);
3589 regs
->end
= TALLOC (regs
->num_regs
, regoff_t
);
3590 if (regs
->start
== NULL
|| regs
->end
== NULL
)
3592 bufp
->regs_allocated
= REGS_REALLOCATE
;
3594 else if (bufp
->regs_allocated
== REGS_REALLOCATE
)
3595 { /* Yes. If we need more elements than were already
3596 allocated, reallocate them. If we need fewer, just
3598 if (regs
->num_regs
< num_regs
+ 1)
3600 regs
->num_regs
= num_regs
+ 1;
3601 RETALLOC (regs
->start
, regs
->num_regs
, regoff_t
);
3602 RETALLOC (regs
->end
, regs
->num_regs
, regoff_t
);
3603 if (regs
->start
== NULL
|| regs
->end
== NULL
)
3609 /* These braces fend off a "empty body in an else-statement"
3610 warning under GCC when assert expands to nothing. */
3611 assert (bufp
->regs_allocated
== REGS_FIXED
);
3614 /* Convert the pointer data in `regstart' and `regend' to
3615 indices. Register zero has to be set differently,
3616 since we haven't kept track of any info for it. */
3617 if (regs
->num_regs
> 0)
3619 regs
->start
[0] = pos
;
3620 regs
->end
[0] = (MATCHING_IN_FIRST_STRING
? d
- string1
3621 : d
- string2
+ size1
);
3624 /* Go through the first `min (num_regs, regs->num_regs)'
3625 registers, since that is all we initialized. */
3626 for (mcnt
= 1; mcnt
< MIN (num_regs
, regs
->num_regs
); mcnt
++)
3628 if (REG_UNSET (regstart
[mcnt
]) || REG_UNSET (regend
[mcnt
]))
3629 regs
->start
[mcnt
] = regs
->end
[mcnt
] = -1;
3632 regs
->start
[mcnt
] = POINTER_TO_OFFSET (regstart
[mcnt
]);
3633 regs
->end
[mcnt
] = POINTER_TO_OFFSET (regend
[mcnt
]);
3637 /* If the regs structure we return has more elements than
3638 were in the pattern, set the extra elements to -1. If
3639 we (re)allocated the registers, this is the case,
3640 because we always allocate enough to have at least one
3642 for (mcnt
= num_regs
; mcnt
< regs
->num_regs
; mcnt
++)
3643 regs
->start
[mcnt
] = regs
->end
[mcnt
] = -1;
3644 } /* regs && !bufp->no_sub */
3647 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
3648 nfailure_points_pushed
, nfailure_points_popped
,
3649 nfailure_points_pushed
- nfailure_points_popped
);
3650 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed
);
3652 mcnt
= d
- pos
- (MATCHING_IN_FIRST_STRING
3656 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt
);
3661 /* Otherwise match next pattern command. */
3662 #ifdef SWITCH_ENUM_BUG
3663 switch ((int) ((re_opcode_t
) *p
++))
3665 switch ((re_opcode_t
) *p
++)
3668 /* Ignore these. Used to ignore the n of succeed_n's which
3669 currently have n == 0. */
3671 DEBUG_PRINT1 ("EXECUTING no_op.\n");
3675 /* Match the next n pattern characters exactly. The following
3676 byte in the pattern defines n, and the n bytes after that
3677 are the characters to match. */
3680 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt
);
3682 /* This is written out as an if-else so we don't waste time
3683 testing `translate' inside the loop. */
3689 if (translate
[(unsigned char) *d
++] != (char) *p
++)
3699 if (*d
++ != (char) *p
++) goto fail
;
3703 SET_REGS_MATCHED ();
3707 /* Match any character except possibly a newline or a null. */
3709 DEBUG_PRINT1 ("EXECUTING anychar.\n");
3713 if ((!(bufp
->syntax
& RE_DOT_NEWLINE
) && TRANSLATE (*d
) == '\n')
3714 || (bufp
->syntax
& RE_DOT_NOT_NULL
&& TRANSLATE (*d
) == '\000'))
3717 SET_REGS_MATCHED ();
3718 DEBUG_PRINT2 (" Matched `%d'.\n", *d
);
3726 register unsigned char c
;
3727 boolean
not = (re_opcode_t
) *(p
- 1) == charset_not
;
3729 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
3732 c
= TRANSLATE (*d
); /* The character to match. */
3734 /* Cast to `unsigned' instead of `unsigned char' in case the
3735 bit list is a full 32 bytes long. */
3736 if (c
< (unsigned) (*p
* BYTEWIDTH
)
3737 && p
[1 + c
/ BYTEWIDTH
] & (1 << (c
% BYTEWIDTH
)))
3742 if (!not) goto fail
;
3744 SET_REGS_MATCHED ();
3750 /* The beginning of a group is represented by start_memory.
3751 The arguments are the register number in the next byte, and the
3752 number of groups inner to this one in the next. The text
3753 matched within the group is recorded (in the internal
3754 registers data structure) under the register number. */
3756 DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p
, p
[1]);
3758 /* Find out if this group can match the empty string. */
3759 p1
= p
; /* To send to group_match_null_string_p. */
3761 if (REG_MATCH_NULL_STRING_P (reg_info
[*p
]) == MATCH_NULL_UNSET_VALUE
)
3762 REG_MATCH_NULL_STRING_P (reg_info
[*p
])
3763 = group_match_null_string_p (&p1
, pend
, reg_info
);
3765 /* Save the position in the string where we were the last time
3766 we were at this open-group operator in case the group is
3767 operated upon by a repetition operator, e.g., with `(a*)*b'
3768 against `ab'; then we want to ignore where we are now in
3769 the string in case this attempt to match fails. */
3770 old_regstart
[*p
] = REG_MATCH_NULL_STRING_P (reg_info
[*p
])
3771 ? REG_UNSET (regstart
[*p
]) ? d
: regstart
[*p
]
3773 DEBUG_PRINT2 (" old_regstart: %d\n",
3774 POINTER_TO_OFFSET (old_regstart
[*p
]));
3777 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart
[*p
]));
3779 IS_ACTIVE (reg_info
[*p
]) = 1;
3780 MATCHED_SOMETHING (reg_info
[*p
]) = 0;
3782 /* This is the new highest active register. */
3783 highest_active_reg
= *p
;
3785 /* If nothing was active before, this is the new lowest active
3787 if (lowest_active_reg
== NO_LOWEST_ACTIVE_REG
)
3788 lowest_active_reg
= *p
;
3790 /* Move past the register number and inner group count. */
3795 /* The stop_memory opcode represents the end of a group. Its
3796 arguments are the same as start_memory's: the register
3797 number, and the number of inner groups. */
3799 DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p
, p
[1]);
3801 /* We need to save the string position the last time we were at
3802 this close-group operator in case the group is operated
3803 upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
3804 against `aba'; then we want to ignore where we are now in
3805 the string in case this attempt to match fails. */
3806 old_regend
[*p
] = REG_MATCH_NULL_STRING_P (reg_info
[*p
])
3807 ? REG_UNSET (regend
[*p
]) ? d
: regend
[*p
]
3809 DEBUG_PRINT2 (" old_regend: %d\n",
3810 POINTER_TO_OFFSET (old_regend
[*p
]));
3813 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend
[*p
]));
3815 /* This register isn't active anymore. */
3816 IS_ACTIVE (reg_info
[*p
]) = 0;
3818 /* If this was the only register active, nothing is active
3820 if (lowest_active_reg
== highest_active_reg
)
3822 lowest_active_reg
= NO_LOWEST_ACTIVE_REG
;
3823 highest_active_reg
= NO_HIGHEST_ACTIVE_REG
;
3826 { /* We must scan for the new highest active register, since
3827 it isn't necessarily one less than now: consider
3828 (a(b)c(d(e)f)g). When group 3 ends, after the f), the
3829 new highest active register is 1. */
3830 unsigned char r
= *p
- 1;
3831 while (r
> 0 && !IS_ACTIVE (reg_info
[r
]))
3834 /* If we end up at register zero, that means that we saved
3835 the registers as the result of an `on_failure_jump', not
3836 a `start_memory', and we jumped to past the innermost
3837 `stop_memory'. For example, in ((.)*) we save
3838 registers 1 and 2 as a result of the *, but when we pop
3839 back to the second ), we are at the stop_memory 1.
3840 Thus, nothing is active. */
3843 lowest_active_reg
= NO_LOWEST_ACTIVE_REG
;
3844 highest_active_reg
= NO_HIGHEST_ACTIVE_REG
;
3847 highest_active_reg
= r
;
3850 /* If just failed to match something this time around with a
3851 group that's operated on by a repetition operator, try to
3852 force exit from the ``loop'', and restore the register
3853 information for this group that we had before trying this
3855 if ((!MATCHED_SOMETHING (reg_info
[*p
])
3856 || (re_opcode_t
) p
[-3] == start_memory
)
3859 boolean is_a_jump_n
= false;
3863 switch ((re_opcode_t
) *p1
++)
3867 case pop_failure_jump
:
3868 case maybe_pop_jump
:
3870 case dummy_failure_jump
:
3871 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
3881 /* If the next operation is a jump backwards in the pattern
3882 to an on_failure_jump right before the start_memory
3883 corresponding to this stop_memory, exit from the loop
3884 by forcing a failure after pushing on the stack the
3885 on_failure_jump's jump in the pattern, and d. */
3886 if (mcnt
< 0 && (re_opcode_t
) *p1
== on_failure_jump
3887 && (re_opcode_t
) p1
[3] == start_memory
&& p1
[4] == *p
)
3889 /* If this group ever matched anything, then restore
3890 what its registers were before trying this last
3891 failed match, e.g., with `(a*)*b' against `ab' for
3892 regstart[1], and, e.g., with `((a*)*(b*)*)*'
3893 against `aba' for regend[3].
3895 Also restore the registers for inner groups for,
3896 e.g., `((a*)(b*))*' against `aba' (register 3 would
3897 otherwise get trashed). */
3899 if (EVER_MATCHED_SOMETHING (reg_info
[*p
]))
3903 EVER_MATCHED_SOMETHING (reg_info
[*p
]) = 0;
3905 /* Restore this and inner groups' (if any) registers. */
3906 for (r
= *p
; r
< *p
+ *(p
+ 1); r
++)
3908 regstart
[r
] = old_regstart
[r
];
3910 /* xx why this test? */
3911 if ((int) old_regend
[r
] >= (int) regstart
[r
])
3912 regend
[r
] = old_regend
[r
];
3916 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
3917 PUSH_FAILURE_POINT (p1
+ mcnt
, d
, -2);
3923 /* Move past the register number and the inner group count. */
3928 /* \<digit> has been turned into a `duplicate' command which is
3929 followed by the numeric value of <digit> as the register number. */
3932 register const char *d2
, *dend2
;
3933 int regno
= *p
++; /* Get which register to match against. */
3934 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno
);
3936 /* Can't back reference a group which we've never matched. */
3937 if (REG_UNSET (regstart
[regno
]) || REG_UNSET (regend
[regno
]))
3940 /* Where in input to try to start matching. */
3941 d2
= regstart
[regno
];
3943 /* Where to stop matching; if both the place to start and
3944 the place to stop matching are in the same string, then
3945 set to the place to stop, otherwise, for now have to use
3946 the end of the first string. */
3948 dend2
= ((FIRST_STRING_P (regstart
[regno
])
3949 == FIRST_STRING_P (regend
[regno
]))
3950 ? regend
[regno
] : end_match_1
);
3953 /* If necessary, advance to next segment in register
3957 if (dend2
== end_match_2
) break;
3958 if (dend2
== regend
[regno
]) break;
3960 /* End of string1 => advance to string2. */
3962 dend2
= regend
[regno
];
3964 /* At end of register contents => success */
3965 if (d2
== dend2
) break;
3967 /* If necessary, advance to next segment in data. */
3970 /* How many characters left in this segment to match. */
3973 /* Want how many consecutive characters we can match in
3974 one shot, so, if necessary, adjust the count. */
3975 if (mcnt
> dend2
- d2
)
3978 /* Compare that many; failure if mismatch, else move
3981 ? bcmp_translate (d
, d2
, mcnt
, translate
)
3982 : bcmp (d
, d2
, mcnt
))
3984 d
+= mcnt
, d2
+= mcnt
;
3990 /* begline matches the empty string at the beginning of the string
3991 (unless `not_bol' is set in `bufp'), and, if
3992 `newline_anchor' is set, after newlines. */
3994 DEBUG_PRINT1 ("EXECUTING begline.\n");
3996 if (AT_STRINGS_BEG (d
))
3998 if (!bufp
->not_bol
) break;
4000 else if (d
[-1] == '\n' && bufp
->newline_anchor
)
4004 /* In all other cases, we fail. */
4008 /* endline is the dual of begline. */
4010 DEBUG_PRINT1 ("EXECUTING endline.\n");
4012 if (AT_STRINGS_END (d
))
4014 if (!bufp
->not_eol
) break;
4017 /* We have to ``prefetch'' the next character. */
4018 else if ((d
== end1
? *string2
: *d
) == '\n'
4019 && bufp
->newline_anchor
)
4026 /* Match at the very beginning of the data. */
4028 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
4029 if (AT_STRINGS_BEG (d
))
4034 /* Match at the very end of the data. */
4036 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
4037 if (AT_STRINGS_END (d
))
4042 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
4043 pushes NULL as the value for the string on the stack. Then
4044 `pop_failure_point' will keep the current value for the
4045 string, instead of restoring it. To see why, consider
4046 matching `foo\nbar' against `.*\n'. The .* matches the foo;
4047 then the . fails against the \n. But the next thing we want
4048 to do is match the \n against the \n; if we restored the
4049 string value, we would be back at the foo.
4051 Because this is used only in specific cases, we don't need to
4052 check all the things that `on_failure_jump' does, to make
4053 sure the right things get saved on the stack. Hence we don't
4054 share its code. The only reason to push anything on the
4055 stack at all is that otherwise we would have to change
4056 `anychar's code to do something besides goto fail in this
4057 case; that seems worse than this. */
4058 case on_failure_keep_string_jump
:
4059 DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
4061 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
4062 DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt
, p
+ mcnt
);
4064 PUSH_FAILURE_POINT (p
+ mcnt
, NULL
, -2);
4068 /* Uses of on_failure_jump:
4070 Each alternative starts with an on_failure_jump that points
4071 to the beginning of the next alternative. Each alternative
4072 except the last ends with a jump that in effect jumps past
4073 the rest of the alternatives. (They really jump to the
4074 ending jump of the following alternative, because tensioning
4075 these jumps is a hassle.)
4077 Repeats start with an on_failure_jump that points past both
4078 the repetition text and either the following jump or
4079 pop_failure_jump back to this on_failure_jump. */
4080 case on_failure_jump
:
4082 DEBUG_PRINT1 ("EXECUTING on_failure_jump");
4084 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
4085 DEBUG_PRINT3 (" %d (to 0x%x)", mcnt
, p
+ mcnt
);
4087 /* If this on_failure_jump comes right before a group (i.e.,
4088 the original * applied to a group), save the information
4089 for that group and all inner ones, so that if we fail back
4090 to this point, the group's information will be correct.
4091 For example, in \(a*\)*\1, we need the preceding group,
4092 and in \(\(a*\)b*\)\2, we need the inner group. */
4094 /* We can't use `p' to check ahead because we push
4095 a failure point to `p + mcnt' after we do this. */
4098 /* We need to skip no_op's before we look for the
4099 start_memory in case this on_failure_jump is happening as
4100 the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
4102 while (p1
< pend
&& (re_opcode_t
) *p1
== no_op
)
4105 if (p1
< pend
&& (re_opcode_t
) *p1
== start_memory
)
4107 /* We have a new highest active register now. This will
4108 get reset at the start_memory we are about to get to,
4109 but we will have saved all the registers relevant to
4110 this repetition op, as described above. */
4111 highest_active_reg
= *(p1
+ 1) + *(p1
+ 2);
4112 if (lowest_active_reg
== NO_LOWEST_ACTIVE_REG
)
4113 lowest_active_reg
= *(p1
+ 1);
4116 DEBUG_PRINT1 (":\n");
4117 PUSH_FAILURE_POINT (p
+ mcnt
, d
, -2);
4121 /* A smart repeat ends with `maybe_pop_jump'.
4122 We change it to either `pop_failure_jump' or `jump'. */
4123 case maybe_pop_jump
:
4124 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
4125 DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt
);
4127 register unsigned char *p2
= p
;
4129 /* Compare the beginning of the repeat with what in the
4130 pattern follows its end. If we can establish that there
4131 is nothing that they would both match, i.e., that we
4132 would have to backtrack because of (as in, e.g., `a*a')
4133 then we can change to pop_failure_jump, because we'll
4134 never have to backtrack.
4136 This is not true in the case of alternatives: in
4137 `(a|ab)*' we do need to backtrack to the `ab' alternative
4138 (e.g., if the string was `ab'). But instead of trying to
4139 detect that here, the alternative has put on a dummy
4140 failure point which is what we will end up popping. */
4142 /* Skip over open/close-group commands.
4143 If what follows this loop is a ...+ construct,
4144 look at what begins its body, since we will have to
4145 match at least one of that. */
4149 && ((re_opcode_t
) *p2
== stop_memory
4150 || (re_opcode_t
) *p2
== start_memory
))
4152 else if (p2
+ 6 < pend
4153 && (re_opcode_t
) *p2
== dummy_failure_jump
)
4160 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
4161 to the `maybe_finalize_jump' of this case. Examine what
4164 /* If we're at the end of the pattern, we can change. */
4167 /* Consider what happens when matching ":\(.*\)"
4168 against ":/". I don't really understand this code
4170 p
[-3] = (unsigned char) pop_failure_jump
;
4172 (" End of pattern: change to `pop_failure_jump'.\n");
4175 else if ((re_opcode_t
) *p2
== exactn
4176 || (bufp
->newline_anchor
&& (re_opcode_t
) *p2
== endline
))
4178 register unsigned char c
4179 = *p2
== (unsigned char) endline
? '\n' : p2
[2];
4181 if ((re_opcode_t
) p1
[3] == exactn
&& p1
[5] != c
)
4183 p
[-3] = (unsigned char) pop_failure_jump
;
4184 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
4188 else if ((re_opcode_t
) p1
[3] == charset
4189 || (re_opcode_t
) p1
[3] == charset_not
)
4191 int not = (re_opcode_t
) p1
[3] == charset_not
;
4193 if (c
< (unsigned char) (p1
[4] * BYTEWIDTH
)
4194 && p1
[5 + c
/ BYTEWIDTH
] & (1 << (c
% BYTEWIDTH
)))
4197 /* `not' is equal to 1 if c would match, which means
4198 that we can't change to pop_failure_jump. */
4201 p
[-3] = (unsigned char) pop_failure_jump
;
4202 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4206 else if ((re_opcode_t
) *p2
== charset
)
4208 register unsigned char c
4209 = *p2
== (unsigned char) endline
? '\n' : p2
[2];
4211 if ((re_opcode_t
) p1
[3] == exactn
4212 && ! (p2
[1] * BYTEWIDTH
> p1
[4]
4213 && (p2
[1 + p1
[4] / BYTEWIDTH
]
4214 & (1 << (p1
[4] % BYTEWIDTH
)))))
4216 p
[-3] = (unsigned char) pop_failure_jump
;
4217 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
4221 else if ((re_opcode_t
) p1
[3] == charset_not
)
4224 /* We win if the charset_not inside the loop
4225 lists every character listed in the charset after. */
4226 for (idx
= 0; idx
< p2
[1]; idx
++)
4227 if (! (p2
[2 + idx
] == 0
4229 && ((p2
[2 + idx
] & ~ p1
[5 + idx
]) == 0))))
4234 p
[-3] = (unsigned char) pop_failure_jump
;
4235 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4238 else if ((re_opcode_t
) p1
[3] == charset
)
4241 /* We win if the charset inside the loop
4242 has no overlap with the one after the loop. */
4243 for (idx
= 0; idx
< p2
[1] && idx
< p1
[4]; idx
++)
4244 if ((p2
[2 + idx
] & p1
[5 + idx
]) != 0)
4247 if (idx
== p2
[1] || idx
== p1
[4])
4249 p
[-3] = (unsigned char) pop_failure_jump
;
4250 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4255 p
-= 2; /* Point at relative address again. */
4256 if ((re_opcode_t
) p
[-1] != pop_failure_jump
)
4258 p
[-1] = (unsigned char) jump
;
4259 DEBUG_PRINT1 (" Match => jump.\n");
4260 goto unconditional_jump
;
4262 /* Note fall through. */
4265 /* The end of a simple repeat has a pop_failure_jump back to
4266 its matching on_failure_jump, where the latter will push a
4267 failure point. The pop_failure_jump takes off failure
4268 points put on by this pop_failure_jump's matching
4269 on_failure_jump; we got through the pattern to here from the
4270 matching on_failure_jump, so didn't fail. */
4271 case pop_failure_jump
:
4273 /* We need to pass separate storage for the lowest and
4274 highest registers, even though we don't care about the
4275 actual values. Otherwise, we will restore only one
4276 register from the stack, since lowest will == highest in
4277 `pop_failure_point'. */
4278 unsigned dummy_low_reg
, dummy_high_reg
;
4279 unsigned char *pdummy
;
4282 DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
4283 POP_FAILURE_POINT (sdummy
, pdummy
,
4284 dummy_low_reg
, dummy_high_reg
,
4285 reg_dummy
, reg_dummy
, reg_info_dummy
);
4287 /* Note fall through. */
4290 /* Unconditionally jump (without popping any failure points). */
4293 EXTRACT_NUMBER_AND_INCR (mcnt
, p
); /* Get the amount to jump. */
4294 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt
);
4295 p
+= mcnt
; /* Do the jump. */
4296 DEBUG_PRINT2 ("(to 0x%x).\n", p
);
4300 /* We need this opcode so we can detect where alternatives end
4301 in `group_match_null_string_p' et al. */
4303 DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
4304 goto unconditional_jump
;
4307 /* Normally, the on_failure_jump pushes a failure point, which
4308 then gets popped at pop_failure_jump. We will end up at
4309 pop_failure_jump, also, and with a pattern of, say, `a+', we
4310 are skipping over the on_failure_jump, so we have to push
4311 something meaningless for pop_failure_jump to pop. */
4312 case dummy_failure_jump
:
4313 DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
4314 /* It doesn't matter what we push for the string here. What
4315 the code at `fail' tests is the value for the pattern. */
4316 PUSH_FAILURE_POINT (0, 0, -2);
4317 goto unconditional_jump
;
4320 /* At the end of an alternative, we need to push a dummy failure
4321 point in case we are followed by a `pop_failure_jump', because
4322 we don't want the failure point for the alternative to be
4323 popped. For example, matching `(a|ab)*' against `aab'
4324 requires that we match the `ab' alternative. */
4325 case push_dummy_failure
:
4326 DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
4327 /* See comments just above at `dummy_failure_jump' about the
4329 PUSH_FAILURE_POINT (0, 0, -2);
4332 /* Have to succeed matching what follows at least n times.
4333 After that, handle like `on_failure_jump'. */
4335 EXTRACT_NUMBER (mcnt
, p
+ 2);
4336 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt
);
4339 /* Originally, this is how many times we HAVE to succeed. */
4344 STORE_NUMBER_AND_INCR (p
, mcnt
);
4345 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p
, mcnt
);
4349 DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n", p
+2);
4350 p
[2] = (unsigned char) no_op
;
4351 p
[3] = (unsigned char) no_op
;
4357 EXTRACT_NUMBER (mcnt
, p
+ 2);
4358 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt
);
4360 /* Originally, this is how many times we CAN jump. */
4364 STORE_NUMBER (p
+ 2, mcnt
);
4365 goto unconditional_jump
;
4367 /* If don't have to jump any more, skip over the rest of command. */
4374 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
4376 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
4378 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
4379 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1
, mcnt
);
4380 STORE_NUMBER (p1
, mcnt
);
4385 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
4386 if (AT_WORD_BOUNDARY (d
))
4391 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
4392 if (AT_WORD_BOUNDARY (d
))
4397 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
4398 if (WORDCHAR_P (d
) && (AT_STRINGS_BEG (d
) || !WORDCHAR_P (d
- 1)))
4403 DEBUG_PRINT1 ("EXECUTING wordend.\n");
4404 if (!AT_STRINGS_BEG (d
) && WORDCHAR_P (d
- 1)
4405 && (!WORDCHAR_P (d
) || AT_STRINGS_END (d
)))
4412 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
4413 if (PTR_CHAR_POS ((unsigned char *) d
) >= point
)
4418 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
4419 if (PTR_CHAR_POS ((unsigned char *) d
) != point
)
4424 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
4425 if (PTR_CHAR_POS ((unsigned char *) d
) <= point
)
4428 #else /* not emacs19 */
4430 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
4431 if (PTR_CHAR_POS ((unsigned char *) d
) + 1 != point
)
4434 #endif /* not emacs19 */
4437 DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt
);
4442 DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
4446 if (SYNTAX (*d
++) != (enum syntaxcode
) mcnt
)
4448 SET_REGS_MATCHED ();
4452 DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt
);
4454 goto matchnotsyntax
;
4457 DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
4461 if (SYNTAX (*d
++) == (enum syntaxcode
) mcnt
)
4463 SET_REGS_MATCHED ();
4466 #else /* not emacs */
4468 DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
4470 if (!WORDCHAR_P (d
))
4472 SET_REGS_MATCHED ();
4477 DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
4481 SET_REGS_MATCHED ();
4484 #endif /* not emacs */
4489 continue; /* Successfully executed one pattern command; keep going. */
4492 /* We goto here if a matching operation fails. */
4494 if (!FAIL_STACK_EMPTY ())
4495 { /* A restart point is known. Restore to that state. */
4496 DEBUG_PRINT1 ("\nFAIL:\n");
4497 POP_FAILURE_POINT (d
, p
,
4498 lowest_active_reg
, highest_active_reg
,
4499 regstart
, regend
, reg_info
);
4501 /* If this failure point is a dummy, try the next one. */
4505 /* If we failed to the end of the pattern, don't examine *p. */
4509 boolean is_a_jump_n
= false;
4511 /* If failed to a backwards jump that's part of a repetition
4512 loop, need to pop this failure point and use the next one. */
4513 switch ((re_opcode_t
) *p
)
4517 case maybe_pop_jump
:
4518 case pop_failure_jump
:
4521 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
4524 if ((is_a_jump_n
&& (re_opcode_t
) *p1
== succeed_n
)
4526 && (re_opcode_t
) *p1
== on_failure_jump
))
4534 if (d
>= string1
&& d
<= end1
)
4538 break; /* Matching at this starting point really fails. */
4542 goto restore_best_regs
;
4546 return -1; /* Failure to match. */
4549 /* Subroutine definitions for re_match_2. */
4552 /* We are passed P pointing to a register number after a start_memory.
4554 Return true if the pattern up to the corresponding stop_memory can
4555 match the empty string, and false otherwise.
4557 If we find the matching stop_memory, sets P to point to one past its number.
4558 Otherwise, sets P to an undefined byte less than or equal to END.
4560 We don't handle duplicates properly (yet). */
4563 group_match_null_string_p (p
, end
, reg_info
)
4564 unsigned char **p
, *end
;
4565 register_info_type
*reg_info
;
4568 /* Point to after the args to the start_memory. */
4569 unsigned char *p1
= *p
+ 2;
4573 /* Skip over opcodes that can match nothing, and return true or
4574 false, as appropriate, when we get to one that can't, or to the
4575 matching stop_memory. */
4577 switch ((re_opcode_t
) *p1
)
4579 /* Could be either a loop or a series of alternatives. */
4580 case on_failure_jump
:
4582 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
4584 /* If the next operation is not a jump backwards in the
4589 /* Go through the on_failure_jumps of the alternatives,
4590 seeing if any of the alternatives cannot match nothing.
4591 The last alternative starts with only a jump,
4592 whereas the rest start with on_failure_jump and end
4593 with a jump, e.g., here is the pattern for `a|b|c':
4595 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
4596 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
4599 So, we have to first go through the first (n-1)
4600 alternatives and then deal with the last one separately. */
4603 /* Deal with the first (n-1) alternatives, which start
4604 with an on_failure_jump (see above) that jumps to right
4605 past a jump_past_alt. */
4607 while ((re_opcode_t
) p1
[mcnt
-3] == jump_past_alt
)
4609 /* `mcnt' holds how many bytes long the alternative
4610 is, including the ending `jump_past_alt' and
4613 if (!alt_match_null_string_p (p1
, p1
+ mcnt
- 3,
4617 /* Move to right after this alternative, including the
4621 /* Break if it's the beginning of an n-th alternative
4622 that doesn't begin with an on_failure_jump. */
4623 if ((re_opcode_t
) *p1
!= on_failure_jump
)
4626 /* Still have to check that it's not an n-th
4627 alternative that starts with an on_failure_jump. */
4629 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
4630 if ((re_opcode_t
) p1
[mcnt
-3] != jump_past_alt
)
4632 /* Get to the beginning of the n-th alternative. */
4638 /* Deal with the last alternative: go back and get number
4639 of the `jump_past_alt' just before it. `mcnt' contains
4640 the length of the alternative. */
4641 EXTRACT_NUMBER (mcnt
, p1
- 2);
4643 if (!alt_match_null_string_p (p1
, p1
+ mcnt
, reg_info
))
4646 p1
+= mcnt
; /* Get past the n-th alternative. */
4652 assert (p1
[1] == **p
);
4658 if (!common_op_match_null_string_p (&p1
, end
, reg_info
))
4661 } /* while p1 < end */
4664 } /* group_match_null_string_p */
4667 /* Similar to group_match_null_string_p, but doesn't deal with alternatives:
4668 It expects P to be the first byte of a single alternative and END one
4669 byte past the last. The alternative can contain groups. */
4672 alt_match_null_string_p (p
, end
, reg_info
)
4673 unsigned char *p
, *end
;
4674 register_info_type
*reg_info
;
4677 unsigned char *p1
= p
;
4681 /* Skip over opcodes that can match nothing, and break when we get
4682 to one that can't. */
4684 switch ((re_opcode_t
) *p1
)
4687 case on_failure_jump
:
4689 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
4694 if (!common_op_match_null_string_p (&p1
, end
, reg_info
))
4697 } /* while p1 < end */
4700 } /* alt_match_null_string_p */
4703 /* Deals with the ops common to group_match_null_string_p and
4704 alt_match_null_string_p.
4706 Sets P to one after the op and its arguments, if any. */
4709 common_op_match_null_string_p (p
, end
, reg_info
)
4710 unsigned char **p
, *end
;
4711 register_info_type
*reg_info
;
4716 unsigned char *p1
= *p
;
4718 switch ((re_opcode_t
) *p1
++)
4738 assert (reg_no
> 0 && reg_no
<= MAX_REGNUM
);
4739 ret
= group_match_null_string_p (&p1
, end
, reg_info
);
4741 /* Have to set this here in case we're checking a group which
4742 contains a group and a back reference to it. */
4744 if (REG_MATCH_NULL_STRING_P (reg_info
[reg_no
]) == MATCH_NULL_UNSET_VALUE
)
4745 REG_MATCH_NULL_STRING_P (reg_info
[reg_no
]) = ret
;
4751 /* If this is an optimized succeed_n for zero times, make the jump. */
4753 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
4761 /* Get to the number of times to succeed. */
4763 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
4768 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
4776 if (!REG_MATCH_NULL_STRING_P (reg_info
[*p1
]))
4784 /* All other opcodes mean we cannot match the empty string. */
4790 } /* common_op_match_null_string_p */
4793 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
4794 bytes; nonzero otherwise. */
4797 bcmp_translate (s1
, s2
, len
, translate
)
4798 unsigned char *s1
, *s2
;
4802 register unsigned char *p1
= s1
, *p2
= s2
;
4805 if (translate
[*p1
++] != translate
[*p2
++]) return 1;
4811 /* Entry points for GNU code. */
4813 /* re_compile_pattern is the GNU regular expression compiler: it
4814 compiles PATTERN (of length SIZE) and puts the result in BUFP.
4815 Returns 0 if the pattern was valid, otherwise an error string.
4817 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
4818 are set in BUFP on entry.
4820 We call regex_compile to do the actual compilation. */
4823 re_compile_pattern (pattern
, length
, bufp
)
4824 const char *pattern
;
4826 struct re_pattern_buffer
*bufp
;
4830 /* GNU code is written to assume at least RE_NREGS registers will be set
4831 (and at least one extra will be -1). */
4832 bufp
->regs_allocated
= REGS_UNALLOCATED
;
4834 /* And GNU code determines whether or not to get register information
4835 by passing null for the REGS argument to re_match, etc., not by
4839 /* Match anchors at newline. */
4840 bufp
->newline_anchor
= 1;
4842 ret
= regex_compile (pattern
, length
, re_syntax_options
, bufp
);
4844 return re_error_msg
[(int) ret
];
4847 /* Entry points compatible with 4.2 BSD regex library. We don't define
4848 them if this is an Emacs or POSIX compilation. */
4850 #if !defined (emacs) && !defined (_POSIX_SOURCE)
4852 /* BSD has one and only one pattern buffer. */
4853 static struct re_pattern_buffer re_comp_buf
;
4863 if (!re_comp_buf
.buffer
)
4864 return "No previous regular expression";
4868 if (!re_comp_buf
.buffer
)
4870 re_comp_buf
.buffer
= (unsigned char *) malloc (200);
4871 if (re_comp_buf
.buffer
== NULL
)
4872 return "Memory exhausted";
4873 re_comp_buf
.allocated
= 200;
4875 re_comp_buf
.fastmap
= (char *) malloc (1 << BYTEWIDTH
);
4876 if (re_comp_buf
.fastmap
== NULL
)
4877 return "Memory exhausted";
4880 /* Since `re_exec' always passes NULL for the `regs' argument, we
4881 don't need to initialize the pattern buffer fields which affect it. */
4883 /* Match anchors at newlines. */
4884 re_comp_buf
.newline_anchor
= 1;
4886 ret
= regex_compile (s
, strlen (s
), re_syntax_options
, &re_comp_buf
);
4888 /* Yes, we're discarding `const' here. */
4889 return (char *) re_error_msg
[(int) ret
];
4897 const int len
= strlen (s
);
4899 0 <= re_search (&re_comp_buf
, s
, len
, 0, len
, (struct re_registers
*) 0);
4901 #endif /* not emacs and not _POSIX_SOURCE */
4903 /* POSIX.2 functions. Don't define these for Emacs. */
4907 /* regcomp takes a regular expression as a string and compiles it.
4909 PREG is a regex_t *. We do not expect any fields to be initialized,
4910 since POSIX says we shouldn't. Thus, we set
4912 `buffer' to the compiled pattern;
4913 `used' to the length of the compiled pattern;
4914 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
4915 REG_EXTENDED bit in CFLAGS is set; otherwise, to
4916 RE_SYNTAX_POSIX_BASIC;
4917 `newline_anchor' to REG_NEWLINE being set in CFLAGS;
4918 `fastmap' and `fastmap_accurate' to zero;
4919 `re_nsub' to the number of subexpressions in PATTERN.
4921 PATTERN is the address of the pattern string.
4923 CFLAGS is a series of bits which affect compilation.
4925 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
4926 use POSIX basic syntax.
4928 If REG_NEWLINE is set, then . and [^...] don't match newline.
4929 Also, regexec will try a match beginning after every newline.
4931 If REG_ICASE is set, then we considers upper- and lowercase
4932 versions of letters to be equivalent when matching.
4934 If REG_NOSUB is set, then when PREG is passed to regexec, that
4935 routine will report only success or failure, and nothing about the
4938 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
4939 the return codes and their meanings.) */
4942 regcomp (preg
, pattern
, cflags
)
4944 const char *pattern
;
4949 = (cflags
& REG_EXTENDED
) ?
4950 RE_SYNTAX_POSIX_EXTENDED
: RE_SYNTAX_POSIX_BASIC
;
4952 /* regex_compile will allocate the space for the compiled pattern. */
4954 preg
->allocated
= 0;
4957 /* Don't bother to use a fastmap when searching. This simplifies the
4958 REG_NEWLINE case: if we used a fastmap, we'd have to put all the
4959 characters after newlines into the fastmap. This way, we just try
4963 if (cflags
& REG_ICASE
)
4967 preg
->translate
= (char *) malloc (CHAR_SET_SIZE
);
4968 if (preg
->translate
== NULL
)
4969 return (int) REG_ESPACE
;
4971 /* Map uppercase characters to corresponding lowercase ones. */
4972 for (i
= 0; i
< CHAR_SET_SIZE
; i
++)
4973 preg
->translate
[i
] = ISUPPER (i
) ? tolower (i
) : i
;
4976 preg
->translate
= NULL
;
4978 /* If REG_NEWLINE is set, newlines are treated differently. */
4979 if (cflags
& REG_NEWLINE
)
4980 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
4981 syntax
&= ~RE_DOT_NEWLINE
;
4982 syntax
|= RE_HAT_LISTS_NOT_NEWLINE
;
4983 /* It also changes the matching behavior. */
4984 preg
->newline_anchor
= 1;
4987 preg
->newline_anchor
= 0;
4989 preg
->no_sub
= !!(cflags
& REG_NOSUB
);
4991 /* POSIX says a null character in the pattern terminates it, so we
4992 can use strlen here in compiling the pattern. */
4993 ret
= regex_compile (pattern
, strlen (pattern
), syntax
, preg
);
4995 /* POSIX doesn't distinguish between an unmatched open-group and an
4996 unmatched close-group: both are REG_EPAREN. */
4997 if (ret
== REG_ERPAREN
) ret
= REG_EPAREN
;
5003 /* regexec searches for a given pattern, specified by PREG, in the
5006 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
5007 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
5008 least NMATCH elements, and we set them to the offsets of the
5009 corresponding matched substrings.
5011 EFLAGS specifies `execution flags' which affect matching: if
5012 REG_NOTBOL is set, then ^ does not match at the beginning of the
5013 string; if REG_NOTEOL is set, then $ does not match at the end.
5015 We return 0 if we find a match and REG_NOMATCH if not. */
5018 regexec (preg
, string
, nmatch
, pmatch
, eflags
)
5019 const regex_t
*preg
;
5022 regmatch_t pmatch
[];
5026 struct re_registers regs
;
5027 regex_t private_preg
;
5028 int len
= strlen (string
);
5029 boolean want_reg_info
= !preg
->no_sub
&& nmatch
> 0;
5031 private_preg
= *preg
;
5033 private_preg
.not_bol
= !!(eflags
& REG_NOTBOL
);
5034 private_preg
.not_eol
= !!(eflags
& REG_NOTEOL
);
5036 /* The user has told us exactly how many registers to return
5037 information about, via `nmatch'. We have to pass that on to the
5038 matching routines. */
5039 private_preg
.regs_allocated
= REGS_FIXED
;
5043 regs
.num_regs
= nmatch
;
5044 regs
.start
= TALLOC (nmatch
, regoff_t
);
5045 regs
.end
= TALLOC (nmatch
, regoff_t
);
5046 if (regs
.start
== NULL
|| regs
.end
== NULL
)
5047 return (int) REG_NOMATCH
;
5050 /* Perform the searching operation. */
5051 ret
= re_search (&private_preg
, string
, len
,
5052 /* start: */ 0, /* range: */ len
,
5053 want_reg_info
? ®s
: (struct re_registers
*) 0);
5055 /* Copy the register information to the POSIX structure. */
5062 for (r
= 0; r
< nmatch
; r
++)
5064 pmatch
[r
].rm_so
= regs
.start
[r
];
5065 pmatch
[r
].rm_eo
= regs
.end
[r
];
5069 /* If we needed the temporary register info, free the space now. */
5074 /* We want zero return to mean success, unlike `re_search'. */
5075 return ret
>= 0 ? (int) REG_NOERROR
: (int) REG_NOMATCH
;
5079 /* Returns a message corresponding to an error code, ERRCODE, returned
5080 from either regcomp or regexec. We don't use PREG here. */
5083 regerror (errcode
, preg
, errbuf
, errbuf_size
)
5085 const regex_t
*preg
;
5093 || errcode
>= (sizeof (re_error_msg
) / sizeof (re_error_msg
[0])))
5094 /* Only error codes returned by the rest of the code should be passed
5095 to this routine. If we are given anything else, or if other regex
5096 code generates an invalid error code, then the program has a bug.
5097 Dump core so we can fix it. */
5100 msg
= re_error_msg
[errcode
];
5102 /* POSIX doesn't require that we do anything in this case, but why
5107 msg_size
= strlen (msg
) + 1; /* Includes the null. */
5109 if (errbuf_size
!= 0)
5111 if (msg_size
> errbuf_size
)
5113 strncpy (errbuf
, msg
, errbuf_size
- 1);
5114 errbuf
[errbuf_size
- 1] = 0;
5117 strcpy (errbuf
, msg
);
5124 /* Free dynamically allocated space used by PREG. */
5130 if (preg
->buffer
!= NULL
)
5131 free (preg
->buffer
);
5132 preg
->buffer
= NULL
;
5134 preg
->allocated
= 0;
5137 if (preg
->fastmap
!= NULL
)
5138 free (preg
->fastmap
);
5139 preg
->fastmap
= NULL
;
5140 preg
->fastmap_accurate
= 0;
5142 if (preg
->translate
!= NULL
)
5143 free (preg
->translate
);
5144 preg
->translate
= NULL
;
5147 #endif /* not emacs */
5151 make-backup-files: t
5153 trim-versions-without-asking: nil