1 /* Extended regular expression matching and search library,
3 (Implements POSIX draft P1003.2/D11.2, except for some of the
4 internationalization features.)
6 Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
7 2002, 2003 Free Software Foundation, Inc.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2, or (at your option)
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License along
20 with this program; if not, write to the Free Software Foundation,
21 Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
23 /* AIX requires this to be the first thing in the file. */
24 #if defined _AIX && !defined REGEX_MALLOC
35 #ifndef INSIDE_RECURSION
39 # define WIDE_CHAR_SUPPORT (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC)
41 /* For platform which support the ISO C amendement 1 functionality we
42 support user defined character classes. */
43 # if defined _LIBC || WIDE_CHAR_SUPPORT
44 /* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>. */
50 /* We have to keep the namespace clean. */
51 # define regfree(preg) __regfree (preg)
52 # define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
53 # define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
54 # define regerror(errcode, preg, errbuf, errbuf_size) \
55 __regerror(errcode, preg, errbuf, errbuf_size)
56 # define re_set_registers(bu, re, nu, st, en) \
57 __re_set_registers (bu, re, nu, st, en)
58 # define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
59 __re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
60 # define re_match(bufp, string, size, pos, regs) \
61 __re_match (bufp, string, size, pos, regs)
62 # define re_search(bufp, string, size, startpos, range, regs) \
63 __re_search (bufp, string, size, startpos, range, regs)
64 # define re_compile_pattern(pattern, length, bufp) \
65 __re_compile_pattern (pattern, length, bufp)
66 # define re_set_syntax(syntax) __re_set_syntax (syntax)
67 # define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
68 __re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
69 # define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
71 # define btowc __btowc
72 # define iswctype __iswctype
73 # define mbrtowc __mbrtowc
74 # define wcslen __wcslen
75 # define wcscoll __wcscoll
76 # define wcrtomb __wcrtomb
78 /* We are also using some library internals. */
79 # include <locale/localeinfo.h>
80 # include <locale/elem-hash.h>
81 # include <langinfo.h>
82 # include <locale/coll-lookup.h>
88 # define gettext(msgid) __dcgettext ("libc", msgid, LC_MESSAGES)
89 /* This define is so xgettext can find the internationalizable strings. */
90 # define gettext_noop(msgid) msgid
92 /* This is for other GNU distributions with internationalized messages. */
96 /* Support for bounded pointers. */
97 # if !defined _LIBC && !defined __BOUNDED_POINTERS__
98 # define __bounded /* nothing */
99 # define __unbounded /* nothing */
100 # define __ptrvalue /* nothing */
103 /* The `emacs' switch turns on certain matching commands
104 that make sense only in Emacs. */
111 # else /* not emacs */
113 /* If we are not linking with Emacs proper,
114 we can't use the relocating allocator
115 even if config.h says that we can. */
120 /* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
121 If nothing else has been done, use the method below. */
122 # ifdef INHIBIT_STRING_HEADER
123 # if !(defined HAVE_BZERO && defined HAVE_BCOPY)
124 # if !defined bzero && !defined bcopy
125 # undef INHIBIT_STRING_HEADER
130 /* This is the normal way of making sure we have a bcopy and a bzero.
131 This is used in most programs--a few other programs avoid this
132 by defining INHIBIT_STRING_HEADER. */
133 # ifndef INHIBIT_STRING_HEADER
137 # define bzero(s, n) (memset (s, '\0', n), (s))
139 # define bzero(s, n) __bzero (s, n)
144 /* Define the syntax stuff for \<, \>, etc. */
146 /* This must be nonzero for the wordchar and notwordchar pattern
147 commands in re_match_2. */
152 # ifdef SWITCH_ENUM_BUG
153 # define SWITCH_ENUM_CAST(x) ((int)(x))
155 # define SWITCH_ENUM_CAST(x) (x)
158 # endif /* not emacs */
163 # define MB_LEN_MAX 1
166 /* Get the interface, including the syntax bits. */
169 /* isalpha etc. are used for the character classes. */
172 /* Jim Meyering writes:
174 "... Some ctype macros are valid only for character codes that
175 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
176 using /bin/cc or gcc but without giving an ansi option). So, all
177 ctype uses should be through macros like ISPRINT... If
178 STDC_HEADERS is defined, then autoconf has verified that the ctype
179 macros don't need to be guarded with references to isascii. ...
180 Defining isascii to 1 should let any compiler worth its salt
181 eliminate the && through constant folding."
182 Solaris defines some of these symbols so we must undefine them first. */
184 # if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
185 # define IN_CTYPE_DOMAIN(c) 1
187 # define IN_CTYPE_DOMAIN(c) isascii(c)
191 # define ISBLANK(c) (IN_CTYPE_DOMAIN (c) && isblank (c))
193 # define ISBLANK(c) ((c) == ' ' || (c) == '\t')
196 # define ISGRAPH(c) (IN_CTYPE_DOMAIN (c) && isgraph (c))
198 # define ISGRAPH(c) (IN_CTYPE_DOMAIN (c) && isprint (c) && !isspace (c))
202 # define ISPRINT(c) (IN_CTYPE_DOMAIN (c) && isprint (c))
203 # define ISDIGIT(c) (IN_CTYPE_DOMAIN (c) && isdigit (c))
204 # define ISALNUM(c) (IN_CTYPE_DOMAIN (c) && isalnum (c))
205 # define ISALPHA(c) (IN_CTYPE_DOMAIN (c) && isalpha (c))
206 # define ISCNTRL(c) (IN_CTYPE_DOMAIN (c) && iscntrl (c))
207 # define ISLOWER(c) (IN_CTYPE_DOMAIN (c) && islower (c))
208 # define ISPUNCT(c) (IN_CTYPE_DOMAIN (c) && ispunct (c))
209 # define ISSPACE(c) (IN_CTYPE_DOMAIN (c) && isspace (c))
210 # define ISUPPER(c) (IN_CTYPE_DOMAIN (c) && isupper (c))
211 # define ISXDIGIT(c) (IN_CTYPE_DOMAIN (c) && isxdigit (c))
214 # define TOLOWER(c) _tolower(c)
216 # define TOLOWER(c) tolower(c)
220 /* How many characters in the character set. */
221 # define CHAR_SET_SIZE 256
225 extern char *re_syntax_table
;
227 # else /* not SYNTAX_TABLE */
229 static char re_syntax_table
[CHAR_SET_SIZE
];
232 init_syntax_once (void)
239 bzero (re_syntax_table
, sizeof re_syntax_table
);
241 for (c
= 0; c
< CHAR_SET_SIZE
; ++c
)
243 re_syntax_table
[c
] = Sword
;
245 re_syntax_table
['_'] = Sword
;
250 # endif /* not SYNTAX_TABLE */
252 # define SYNTAX(c) re_syntax_table[(unsigned char) (c)]
256 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
257 use `alloca' instead of `malloc'. This is because using malloc in
258 re_search* or re_match* could cause memory leaks when C-g is used in
259 Emacs; also, malloc is slower and causes storage fragmentation. On
260 the other hand, malloc is more portable, and easier to debug.
262 Because we sometimes use alloca, some routines have to be macros,
263 not functions -- `alloca'-allocated space disappears at the end of the
264 function it is called in. */
268 # define REGEX_ALLOCATE malloc
269 # define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
270 # define REGEX_FREE free
272 # else /* not REGEX_MALLOC */
274 /* Emacs already defines alloca, sometimes. */
277 /* Make alloca work the best possible way. */
279 # define alloca __builtin_alloca
280 # else /* not __GNUC__ */
283 # endif /* HAVE_ALLOCA_H */
284 # endif /* not __GNUC__ */
286 # endif /* not alloca */
288 # define REGEX_ALLOCATE alloca
290 /* Assumes a `char *destination' variable. */
291 # define REGEX_REALLOCATE(source, osize, nsize) \
292 (destination = (char *) alloca (nsize), \
293 memcpy (destination, source, osize))
295 /* No need to do anything to free, after alloca. */
296 # define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
298 # endif /* not REGEX_MALLOC */
300 /* Define how to allocate the failure stack. */
302 # if defined REL_ALLOC && defined REGEX_MALLOC
304 # define REGEX_ALLOCATE_STACK(size) \
305 r_alloc (&failure_stack_ptr, (size))
306 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
307 r_re_alloc (&failure_stack_ptr, (nsize))
308 # define REGEX_FREE_STACK(ptr) \
309 r_alloc_free (&failure_stack_ptr)
311 # else /* not using relocating allocator */
315 # define REGEX_ALLOCATE_STACK malloc
316 # define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
317 # define REGEX_FREE_STACK free
319 # else /* not REGEX_MALLOC */
321 # define REGEX_ALLOCATE_STACK alloca
323 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
324 REGEX_REALLOCATE (source, osize, nsize)
325 /* No need to explicitly free anything. */
326 # define REGEX_FREE_STACK(arg)
328 # endif /* not REGEX_MALLOC */
329 # endif /* not using relocating allocator */
332 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
333 `string1' or just past its end. This works if PTR is NULL, which is
335 # define FIRST_STRING_P(ptr) \
336 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
338 /* (Re)Allocate N items of type T using malloc, or fail. */
339 # define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
340 # define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
341 # define RETALLOC_IF(addr, n, t) \
342 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
343 # define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
345 # define BYTEWIDTH 8 /* In bits. */
347 # define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
351 # define MAX(a, b) ((a) > (b) ? (a) : (b))
352 # define MIN(a, b) ((a) < (b) ? (a) : (b))
354 typedef char boolean
;
358 static reg_errcode_t
byte_regex_compile (const char *pattern
, size_t size
,
360 struct re_pattern_buffer
*bufp
);
362 static int byte_re_match_2_internal (struct re_pattern_buffer
*bufp
,
363 const char *string1
, int size1
,
364 const char *string2
, int size2
,
366 struct re_registers
*regs
,
368 static int byte_re_search_2 (struct re_pattern_buffer
*bufp
,
369 const char *string1
, int size1
,
370 const char *string2
, int size2
,
371 int startpos
, int range
,
372 struct re_registers
*regs
, int stop
);
373 static int byte_re_compile_fastmap (struct re_pattern_buffer
*bufp
);
376 static reg_errcode_t
wcs_regex_compile (const char *pattern
, size_t size
,
378 struct re_pattern_buffer
*bufp
);
381 static int wcs_re_match_2_internal (struct re_pattern_buffer
*bufp
,
382 const char *cstring1
, int csize1
,
383 const char *cstring2
, int csize2
,
385 struct re_registers
*regs
,
387 wchar_t *string1
, int size1
,
388 wchar_t *string2
, int size2
,
389 int *mbs_offset1
, int *mbs_offset2
);
390 static int wcs_re_search_2 (struct re_pattern_buffer
*bufp
,
391 const char *string1
, int size1
,
392 const char *string2
, int size2
,
393 int startpos
, int range
,
394 struct re_registers
*regs
, int stop
);
395 static int wcs_re_compile_fastmap (struct re_pattern_buffer
*bufp
);
398 /* These are the command codes that appear in compiled regular
399 expressions. Some opcodes are followed by argument bytes. A
400 command code can specify any interpretation whatsoever for its
401 arguments. Zero bytes may appear in the compiled regular expression. */
407 /* Succeed right away--no more backtracking. */
410 /* Followed by one byte giving n, then by n literal bytes. */
414 /* Same as exactn, but contains binary data. */
418 /* Matches any (more or less) character. */
421 /* Matches any one char belonging to specified set. First
422 following byte is number of bitmap bytes. Then come bytes
423 for a bitmap saying which chars are in. Bits in each byte
424 are ordered low-bit-first. A character is in the set if its
425 bit is 1. A character too large to have a bit in the map is
426 automatically not in the set. */
427 /* ifdef MBS_SUPPORT, following element is length of character
428 classes, length of collating symbols, length of equivalence
429 classes, length of character ranges, and length of characters.
430 Next, character class element, collating symbols elements,
431 equivalence class elements, range elements, and character
433 See regex_compile function. */
436 /* Same parameters as charset, but match any character that is
437 not one of those specified. */
440 /* Start remembering the text that is matched, for storing in a
441 register. Followed by one byte with the register number, in
442 the range 0 to one less than the pattern buffer's re_nsub
443 field. Then followed by one byte with the number of groups
444 inner to this one. (This last has to be part of the
445 start_memory only because we need it in the on_failure_jump
449 /* Stop remembering the text that is matched and store it in a
450 memory register. Followed by one byte with the register
451 number, in the range 0 to one less than `re_nsub' in the
452 pattern buffer, and one byte with the number of inner groups,
453 just like `start_memory'. (We need the number of inner
454 groups here because we don't have any easy way of finding the
455 corresponding start_memory when we're at a stop_memory.) */
458 /* Match a duplicate of something remembered. Followed by one
459 byte containing the register number. */
462 /* Fail unless at beginning of line. */
465 /* Fail unless at end of line. */
468 /* Succeeds if at beginning of buffer (if emacs) or at beginning
469 of string to be matched (if not). */
472 /* Analogously, for end of buffer/string. */
475 /* Followed by two byte relative address to which to jump. */
478 /* Same as jump, but marks the end of an alternative. */
481 /* Followed by two-byte relative address of place to resume at
482 in case of failure. */
483 /* ifdef MBS_SUPPORT, the size of address is 1. */
486 /* Like on_failure_jump, but pushes a placeholder instead of the
487 current string position when executed. */
488 on_failure_keep_string_jump
,
490 /* Throw away latest failure point and then jump to following
491 two-byte relative address. */
492 /* ifdef MBS_SUPPORT, the size of address is 1. */
495 /* Change to pop_failure_jump if know won't have to backtrack to
496 match; otherwise change to jump. This is used to jump
497 back to the beginning of a repeat. If what follows this jump
498 clearly won't match what the repeat does, such that we can be
499 sure that there is no use backtracking out of repetitions
500 already matched, then we change it to a pop_failure_jump.
501 Followed by two-byte address. */
502 /* ifdef MBS_SUPPORT, the size of address is 1. */
505 /* Jump to following two-byte address, and push a dummy failure
506 point. This failure point will be thrown away if an attempt
507 is made to use it for a failure. A `+' construct makes this
508 before the first repeat. Also used as an intermediary kind
509 of jump when compiling an alternative. */
510 /* ifdef MBS_SUPPORT, the size of address is 1. */
513 /* Push a dummy failure point and continue. Used at the end of
517 /* Followed by two-byte relative address and two-byte number n.
518 After matching N times, jump to the address upon failure. */
519 /* ifdef MBS_SUPPORT, the size of address is 1. */
522 /* Followed by two-byte relative address, and two-byte number n.
523 Jump to the address N times, then fail. */
524 /* ifdef MBS_SUPPORT, the size of address is 1. */
527 /* Set the following two-byte relative address to the
528 subsequent two-byte number. The address *includes* the two
530 /* ifdef MBS_SUPPORT, the size of address is 1. */
533 wordchar
, /* Matches any word-constituent character. */
534 notwordchar
, /* Matches any char that is not a word-constituent. */
536 wordbeg
, /* Succeeds if at word beginning. */
537 wordend
, /* Succeeds if at word end. */
539 wordbound
, /* Succeeds if at a word boundary. */
540 notwordbound
/* Succeeds if not at a word boundary. */
543 ,before_dot
, /* Succeeds if before point. */
544 at_dot
, /* Succeeds if at point. */
545 after_dot
, /* Succeeds if after point. */
547 /* Matches any character whose syntax is specified. Followed by
548 a byte which contains a syntax code, e.g., Sword. */
551 /* Matches any character whose syntax is not that specified. */
555 #endif /* not INSIDE_RECURSION */
560 # define UCHAR_T unsigned char
561 # define COMPILED_BUFFER_VAR bufp->buffer
562 # define OFFSET_ADDRESS_SIZE 2
563 # define PREFIX(name) byte_##name
564 # define ARG_PREFIX(name) name
565 # define PUT_CHAR(c) putchar (c)
568 # define CHAR_T wchar_t
569 # define UCHAR_T wchar_t
570 # define COMPILED_BUFFER_VAR wc_buffer
571 # define OFFSET_ADDRESS_SIZE 1 /* the size which STORE_NUMBER macro use */
572 # define CHAR_CLASS_SIZE ((__alignof__(wctype_t)+sizeof(wctype_t))/sizeof(CHAR_T)+1)
573 # define PREFIX(name) wcs_##name
574 # define ARG_PREFIX(name) c##name
575 /* Should we use wide stream?? */
576 # define PUT_CHAR(c) printf ("%C", c);
582 # define INSIDE_RECURSION
584 # undef INSIDE_RECURSION
587 # define INSIDE_RECURSION
589 # undef INSIDE_RECURSION
592 #include "unlocked-io.h"
594 #ifdef INSIDE_RECURSION
595 /* Common operations on the compiled pattern. */
597 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */
598 /* ifdef MBS_SUPPORT, we store NUMBER in 1 element. */
601 # define STORE_NUMBER(destination, number) \
603 *(destination) = (UCHAR_T)(number); \
606 # define STORE_NUMBER(destination, number) \
608 (destination)[0] = (number) & 0377; \
609 (destination)[1] = (number) >> 8; \
613 /* Same as STORE_NUMBER, except increment DESTINATION to
614 the byte after where the number is stored. Therefore, DESTINATION
615 must be an lvalue. */
616 /* ifdef MBS_SUPPORT, we store NUMBER in 1 element. */
618 # define STORE_NUMBER_AND_INCR(destination, number) \
620 STORE_NUMBER (destination, number); \
621 (destination) += OFFSET_ADDRESS_SIZE; \
624 /* Put into DESTINATION a number stored in two contiguous bytes starting
626 /* ifdef MBS_SUPPORT, we store NUMBER in 1 element. */
629 # define EXTRACT_NUMBER(destination, source) \
631 (destination) = *(source); \
634 # define EXTRACT_NUMBER(destination, source) \
636 (destination) = *(source) & 0377; \
637 (destination) += (signed char) (*((source) + 1)) << 8; \
643 PREFIX(extract_number
) (int *dest
, UCHAR_T
*source
)
648 signed char temp
= source
[1];
649 *dest
= *source
& 0377;
654 # ifndef EXTRACT_MACROS /* To debug the macros. */
655 # undef EXTRACT_NUMBER
656 # define EXTRACT_NUMBER(dest, src) PREFIX(extract_number) (&dest, src)
657 # endif /* not EXTRACT_MACROS */
661 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
662 SOURCE must be an lvalue. */
664 # define EXTRACT_NUMBER_AND_INCR(destination, source) \
666 EXTRACT_NUMBER (destination, source); \
667 (source) += OFFSET_ADDRESS_SIZE; \
672 PREFIX(extract_number_and_incr
) (int *destination
, UCHAR_T
**source
)
674 PREFIX(extract_number
) (destination
, *source
);
675 *source
+= OFFSET_ADDRESS_SIZE
;
678 # ifndef EXTRACT_MACROS
679 # undef EXTRACT_NUMBER_AND_INCR
680 # define EXTRACT_NUMBER_AND_INCR(dest, src) \
681 PREFIX(extract_number_and_incr) (&dest, &src)
682 # endif /* not EXTRACT_MACROS */
688 /* If DEBUG is defined, Regex prints many voluminous messages about what
689 it is doing (if the variable `debug' is nonzero). If linked with the
690 main program in `iregex.c', you can enter patterns and strings
691 interactively. And if linked with the main program in `main.c' and
692 the other test files, you can run the already-written tests. */
696 # ifndef DEFINED_ONCE
698 /* We use standard I/O for debugging. */
701 /* It is useful to test things that ``must'' be true when debugging. */
706 # define DEBUG_STATEMENT(e) e
707 # define DEBUG_PRINT1(x) if (debug) printf (x)
708 # define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
709 # define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
710 # define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
711 # endif /* not DEFINED_ONCE */
713 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
714 if (debug) PREFIX(print_partial_compiled_pattern) (s, e)
715 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
716 if (debug) PREFIX(print_double_string) (w, s1, sz1, s2, sz2)
719 /* Print the fastmap in human-readable form. */
721 # ifndef DEFINED_ONCE
723 print_fastmap (char *fastmap
)
725 unsigned was_a_range
= 0;
728 while (i
< (1 << BYTEWIDTH
))
734 while (i
< (1 << BYTEWIDTH
) && fastmap
[i
])
748 # endif /* not DEFINED_ONCE */
751 /* Print a compiled pattern string in human-readable form, starting at
752 the START pointer into it and ending just before the pointer END. */
755 PREFIX(print_partial_compiled_pattern
) (UCHAR_T
*start
, UCHAR_T
*end
)
768 /* Loop over pattern commands. */
772 printf ("%td:\t", p
- start
);
774 printf ("%ld:\t", (long int) (p
- start
));
777 switch ((re_opcode_t
) *p
++)
785 printf ("/exactn/%d", mcnt
);
797 printf ("/exactn_bin/%d", mcnt
);
800 printf("/%lx", (long int) *p
++);
804 # endif /* MBS_SUPPORT */
808 printf ("/start_memory/%d/%ld", mcnt
, (long int) *p
++);
813 printf ("/stop_memory/%d/%ld", mcnt
, (long int) *p
++);
817 printf ("/duplicate/%ld", (long int) *p
++);
830 printf ("/charset [%s",
831 (re_opcode_t
) *(workp
- 1) == charset_not
? "^" : "");
833 length
= *workp
++; /* the length of char_classes */
834 for (i
=0 ; i
<length
; i
++)
835 printf("[:%lx:]", (long int) *p
++);
836 length
= *workp
++; /* the length of collating_symbol */
837 for (i
=0 ; i
<length
;)
841 PUT_CHAR((i
++,*p
++));
845 length
= *workp
++; /* the length of equivalence_class */
846 for (i
=0 ; i
<length
;)
850 PUT_CHAR((i
++,*p
++));
854 length
= *workp
++; /* the length of char_range */
855 for (i
=0 ; i
<length
; i
++)
857 wchar_t range_start
= *p
++;
858 wchar_t range_end
= *p
++;
859 printf("%C-%C", range_start
, range_end
);
861 length
= *workp
++; /* the length of char */
862 for (i
=0 ; i
<length
; i
++)
866 register int c
, last
= -100;
867 register int in_range
= 0;
869 printf ("/charset [%s",
870 (re_opcode_t
) *(p
- 1) == charset_not
? "^" : "");
872 assert (p
+ *p
< pend
);
874 for (c
= 0; c
< 256; c
++)
876 && (p
[1 + (c
/8)] & (1 << (c
% 8))))
878 /* Are we starting a range? */
879 if (last
+ 1 == c
&& ! in_range
)
884 /* Have we broken a range? */
885 else if (last
+ 1 != c
&& in_range
)
915 case on_failure_jump
:
916 PREFIX(extract_number_and_incr
) (&mcnt
, &p
);
918 printf ("/on_failure_jump to %td", p
+ mcnt
- start
);
920 printf ("/on_failure_jump to %ld", (long int) (p
+ mcnt
- start
));
924 case on_failure_keep_string_jump
:
925 PREFIX(extract_number_and_incr
) (&mcnt
, &p
);
927 printf ("/on_failure_keep_string_jump to %td", p
+ mcnt
- start
);
929 printf ("/on_failure_keep_string_jump to %ld",
930 (long int) (p
+ mcnt
- start
));
934 case dummy_failure_jump
:
935 PREFIX(extract_number_and_incr
) (&mcnt
, &p
);
937 printf ("/dummy_failure_jump to %td", p
+ mcnt
- start
);
939 printf ("/dummy_failure_jump to %ld", (long int) (p
+ mcnt
- start
));
943 case push_dummy_failure
:
944 printf ("/push_dummy_failure");
948 PREFIX(extract_number_and_incr
) (&mcnt
, &p
);
950 printf ("/maybe_pop_jump to %td", p
+ mcnt
- start
);
952 printf ("/maybe_pop_jump to %ld", (long int) (p
+ mcnt
- start
));
956 case pop_failure_jump
:
957 PREFIX(extract_number_and_incr
) (&mcnt
, &p
);
959 printf ("/pop_failure_jump to %td", p
+ mcnt
- start
);
961 printf ("/pop_failure_jump to %ld", (long int) (p
+ mcnt
- start
));
966 PREFIX(extract_number_and_incr
) (&mcnt
, &p
);
968 printf ("/jump_past_alt to %td", p
+ mcnt
- start
);
970 printf ("/jump_past_alt to %ld", (long int) (p
+ mcnt
- start
));
975 PREFIX(extract_number_and_incr
) (&mcnt
, &p
);
977 printf ("/jump to %td", p
+ mcnt
- start
);
979 printf ("/jump to %ld", (long int) (p
+ mcnt
- start
));
984 PREFIX(extract_number_and_incr
) (&mcnt
, &p
);
986 PREFIX(extract_number_and_incr
) (&mcnt2
, &p
);
988 printf ("/succeed_n to %td, %d times", p1
- start
, mcnt2
);
990 printf ("/succeed_n to %ld, %d times",
991 (long int) (p1
- start
), mcnt2
);
996 PREFIX(extract_number_and_incr
) (&mcnt
, &p
);
998 PREFIX(extract_number_and_incr
) (&mcnt2
, &p
);
999 printf ("/jump_n to %d, %d times", p1
- start
, mcnt2
);
1003 PREFIX(extract_number_and_incr
) (&mcnt
, &p
);
1005 PREFIX(extract_number_and_incr
) (&mcnt2
, &p
);
1007 printf ("/set_number_at location %td to %d", p1
- start
, mcnt2
);
1009 printf ("/set_number_at location %ld to %d",
1010 (long int) (p1
- start
), mcnt2
);
1015 printf ("/wordbound");
1019 printf ("/notwordbound");
1023 printf ("/wordbeg");
1027 printf ("/wordend");
1032 printf ("/before_dot");
1040 printf ("/after_dot");
1044 printf ("/syntaxspec");
1046 printf ("/%d", mcnt
);
1050 printf ("/notsyntaxspec");
1052 printf ("/%d", mcnt
);
1057 printf ("/wordchar");
1061 printf ("/notwordchar");
1073 printf ("?%ld", (long int) *(p
-1));
1080 printf ("%td:\tend of pattern.\n", p
- start
);
1082 printf ("%ld:\tend of pattern.\n", (long int) (p
- start
));
1088 PREFIX(print_compiled_pattern
) (struct re_pattern_buffer
*bufp
)
1090 UCHAR_T
*buffer
= (UCHAR_T
*) bufp
->buffer
;
1092 PREFIX(print_partial_compiled_pattern
) (buffer
, buffer
1093 + bufp
->used
/ sizeof(UCHAR_T
));
1094 printf ("%ld bytes used/%ld bytes allocated.\n",
1095 bufp
->used
, bufp
->allocated
);
1097 if (bufp
->fastmap_accurate
&& bufp
->fastmap
)
1099 printf ("fastmap: ");
1100 print_fastmap (bufp
->fastmap
);
1104 printf ("re_nsub: %Zd\t", bufp
->re_nsub
);
1106 printf ("re_nsub: %ld\t", (long int) bufp
->re_nsub
);
1108 printf ("regs_alloc: %d\t", bufp
->regs_allocated
);
1109 printf ("can_be_null: %d\t", bufp
->can_be_null
);
1110 printf ("newline_anchor: %d\n", bufp
->newline_anchor
);
1111 printf ("no_sub: %d\t", bufp
->no_sub
);
1112 printf ("not_bol: %d\t", bufp
->not_bol
);
1113 printf ("not_eol: %d\t", bufp
->not_eol
);
1114 printf ("syntax: %lx\n", bufp
->syntax
);
1115 /* Perhaps we should print the translate table? */
1120 PREFIX(print_double_string
) (const CHAR_T
*where
,
1121 const CHAR_T
*string1
,
1122 const CHAR_T
*string2
,
1134 if (FIRST_STRING_P (where
))
1136 for (this_char
= where
- string1
; this_char
< size1
; this_char
++)
1137 PUT_CHAR (string1
[this_char
]);
1143 for (this_char
= where
- string2
; this_char
< size2
; this_char
++)
1145 PUT_CHAR (string2
[this_char
]);
1148 fputs ("...", stdout
);
1155 # ifndef DEFINED_ONCE
1164 # else /* not DEBUG */
1166 # ifndef DEFINED_ONCE
1170 # define DEBUG_STATEMENT(e)
1171 # define DEBUG_PRINT1(x)
1172 # define DEBUG_PRINT2(x1, x2)
1173 # define DEBUG_PRINT3(x1, x2, x3)
1174 # define DEBUG_PRINT4(x1, x2, x3, x4)
1175 # endif /* not DEFINED_ONCE */
1176 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
1177 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
1179 # endif /* not DEBUG */
1184 /* This convert a multibyte string to a wide character string.
1185 And write their correspondances to offset_buffer(see below)
1186 and write whether each wchar_t is binary data to is_binary.
1187 This assume invalid multibyte sequences as binary data.
1188 We assume offset_buffer and is_binary is already allocated
1192 convert_mbs_to_wcs (CHAR_T
*dest
,
1193 const unsigned char* src
,
1195 /* The length of multibyte string. */
1198 /* Correspondences between src(char string) and
1199 dest(wchar_t string) for optimization. E.g.:
1201 dest = {'X', 'Y', 'Z'}
1202 (each "xxx", "y" and "zz" represent one
1203 multibyte character corresponding to 'X',
1205 offset_buffer = {0, 0+3("xxx"), 0+3+1("y"),
1212 wchar_t *pdest
= dest
;
1213 const unsigned char *psrc
= src
;
1214 size_t wc_count
= 0;
1218 size_t mb_remain
= len
;
1219 size_t mb_count
= 0;
1221 /* Initialize the conversion state. */
1222 memset (&mbs
, 0, sizeof (mbstate_t));
1224 offset_buffer
[0] = 0;
1225 for( ; mb_remain
> 0 ; ++wc_count
, ++pdest
, mb_remain
-= consumed
,
1228 consumed
= mbrtowc (pdest
, psrc
, mb_remain
, &mbs
);
1231 /* failed to convert. maybe src contains binary data.
1232 So we consume 1 byte manualy. */
1236 is_binary
[wc_count
] = TRUE
;
1239 is_binary
[wc_count
] = FALSE
;
1240 /* In sjis encoding, we use yen sign as escape character in
1241 place of reverse solidus. So we convert 0x5c(yen sign in
1242 sjis) to not 0xa5(yen sign in UCS2) but 0x5c(reverse
1243 solidus in UCS2). */
1244 if (consumed
== 1 && (int) *psrc
== 0x5c && (int) *pdest
== 0xa5)
1245 *pdest
= (wchar_t) *psrc
;
1247 offset_buffer
[wc_count
+ 1] = mb_count
+= consumed
;
1250 /* Fill remain of the buffer with sentinel. */
1251 for (i
= wc_count
+ 1 ; i
<= len
; i
++)
1252 offset_buffer
[i
] = mb_count
+ 1;
1259 #else /* not INSIDE_RECURSION */
1261 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
1262 also be assigned to arbitrarily: each pattern buffer stores its own
1263 syntax, so it can be changed between regex compilations. */
1264 /* This has no initializer because initialized variables in Emacs
1265 become read-only after dumping. */
1266 reg_syntax_t re_syntax_options
;
1269 /* Specify the precise syntax of regexps for compilation. This provides
1270 for compatibility for various utilities which historically have
1271 different, incompatible syntaxes.
1273 The argument SYNTAX is a bit mask comprised of the various bits
1274 defined in regex.h. We return the old syntax. */
1277 re_set_syntax (reg_syntax_t syntax
)
1279 reg_syntax_t ret
= re_syntax_options
;
1281 re_syntax_options
= syntax
;
1283 if (syntax
& RE_DEBUG
)
1285 else if (debug
) /* was on but now is not */
1291 weak_alias (__re_set_syntax
, re_set_syntax
)
1294 /* This table gives an error message for each of the error codes listed
1295 in regex.h. Obviously the order here has to be same as there.
1296 POSIX doesn't require that we do anything for REG_NOERROR,
1297 but why not be nice? */
1299 static const char re_error_msgid
[] =
1301 # define REG_NOERROR_IDX 0
1302 gettext_noop ("Success") /* REG_NOERROR */
1304 # define REG_NOMATCH_IDX (REG_NOERROR_IDX + sizeof "Success")
1305 gettext_noop ("No match") /* REG_NOMATCH */
1307 # define REG_BADPAT_IDX (REG_NOMATCH_IDX + sizeof "No match")
1308 gettext_noop ("Invalid regular expression") /* REG_BADPAT */
1310 # define REG_ECOLLATE_IDX (REG_BADPAT_IDX + sizeof "Invalid regular expression")
1311 gettext_noop ("Invalid collation character") /* REG_ECOLLATE */
1313 # define REG_ECTYPE_IDX (REG_ECOLLATE_IDX + sizeof "Invalid collation character")
1314 gettext_noop ("Invalid character class name") /* REG_ECTYPE */
1316 # define REG_EESCAPE_IDX (REG_ECTYPE_IDX + sizeof "Invalid character class name")
1317 gettext_noop ("Trailing backslash") /* REG_EESCAPE */
1319 # define REG_ESUBREG_IDX (REG_EESCAPE_IDX + sizeof "Trailing backslash")
1320 gettext_noop ("Invalid back reference") /* REG_ESUBREG */
1322 # define REG_EBRACK_IDX (REG_ESUBREG_IDX + sizeof "Invalid back reference")
1323 gettext_noop ("Unmatched [ or [^") /* REG_EBRACK */
1325 # define REG_EPAREN_IDX (REG_EBRACK_IDX + sizeof "Unmatched [ or [^")
1326 gettext_noop ("Unmatched ( or \\(") /* REG_EPAREN */
1328 # define REG_EBRACE_IDX (REG_EPAREN_IDX + sizeof "Unmatched ( or \\(")
1329 gettext_noop ("Unmatched \\{") /* REG_EBRACE */
1331 # define REG_BADBR_IDX (REG_EBRACE_IDX + sizeof "Unmatched \\{")
1332 gettext_noop ("Invalid content of \\{\\}") /* REG_BADBR */
1334 # define REG_ERANGE_IDX (REG_BADBR_IDX + sizeof "Invalid content of \\{\\}")
1335 gettext_noop ("Invalid range end") /* REG_ERANGE */
1337 # define REG_ESPACE_IDX (REG_ERANGE_IDX + sizeof "Invalid range end")
1338 gettext_noop ("Memory exhausted") /* REG_ESPACE */
1340 # define REG_BADRPT_IDX (REG_ESPACE_IDX + sizeof "Memory exhausted")
1341 gettext_noop ("Invalid preceding regular expression") /* REG_BADRPT */
1343 # define REG_EEND_IDX (REG_BADRPT_IDX + sizeof "Invalid preceding regular expression")
1344 gettext_noop ("Premature end of regular expression") /* REG_EEND */
1346 # define REG_ESIZE_IDX (REG_EEND_IDX + sizeof "Premature end of regular expression")
1347 gettext_noop ("Regular expression too big") /* REG_ESIZE */
1349 # define REG_ERPAREN_IDX (REG_ESIZE_IDX + sizeof "Regular expression too big")
1350 gettext_noop ("Unmatched ) or \\)") /* REG_ERPAREN */
1353 static const size_t re_error_msgid_idx
[] =
1374 #endif /* INSIDE_RECURSION */
1376 #ifndef DEFINED_ONCE
1377 /* Avoiding alloca during matching, to placate r_alloc. */
1379 /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1380 searching and matching functions should not call alloca. On some
1381 systems, alloca is implemented in terms of malloc, and if we're
1382 using the relocating allocator routines, then malloc could cause a
1383 relocation, which might (if the strings being searched are in the
1384 ralloc heap) shift the data out from underneath the regexp
1387 Here's another reason to avoid allocation: Emacs
1388 processes input from X in a signal handler; processing X input may
1389 call malloc; if input arrives while a matching routine is calling
1390 malloc, then we're scrod. But Emacs can't just block input while
1391 calling matching routines; then we don't notice interrupts when
1392 they come in. So, Emacs blocks input around all regexp calls
1393 except the matching calls, which it leaves unprotected, in the
1394 faith that they will not malloc. */
1396 /* Normally, this is fine. */
1397 # define MATCH_MAY_ALLOCATE
1399 /* When using GNU C, we are not REALLY using the C alloca, no matter
1400 what config.h may say. So don't take precautions for it. */
1405 /* The match routines may not allocate if (1) they would do it with malloc
1406 and (2) it's not safe for them to use malloc.
1407 Note that if REL_ALLOC is defined, matching would not use malloc for the
1408 failure stack, but we would still use it for the register vectors;
1409 so REL_ALLOC should not affect this. */
1410 # if (defined C_ALLOCA || defined REGEX_MALLOC) && defined emacs
1411 # undef MATCH_MAY_ALLOCATE
1413 #endif /* not DEFINED_ONCE */
1415 #ifdef INSIDE_RECURSION
1416 /* Failure stack declarations and macros; both re_compile_fastmap and
1417 re_match_2 use a failure stack. These have to be macros because of
1418 REGEX_ALLOCATE_STACK. */
1421 /* Number of failure points for which to initially allocate space
1422 when matching. If this number is exceeded, we allocate more
1423 space, so it is not a hard limit. */
1424 # ifndef INIT_FAILURE_ALLOC
1425 # define INIT_FAILURE_ALLOC 5
1428 /* Roughly the maximum number of failure points on the stack. Would be
1429 exactly that if always used MAX_FAILURE_ITEMS items each time we failed.
1430 This is a variable only so users of regex can assign to it; we never
1431 change it ourselves. */
1433 # ifdef INT_IS_16BIT
1435 # ifndef DEFINED_ONCE
1436 # if defined MATCH_MAY_ALLOCATE
1437 /* 4400 was enough to cause a crash on Alpha OSF/1,
1438 whose default stack limit is 2mb. */
1439 long int re_max_failures
= 4000;
1441 long int re_max_failures
= 2000;
1445 union PREFIX(fail_stack_elt
)
1451 typedef union PREFIX(fail_stack_elt
) PREFIX(fail_stack_elt_t
);
1455 PREFIX(fail_stack_elt_t
) *stack
;
1456 unsigned long int size
;
1457 unsigned long int avail
; /* Offset of next open position. */
1458 } PREFIX(fail_stack_type
);
1460 # else /* not INT_IS_16BIT */
1462 # ifndef DEFINED_ONCE
1463 # if defined MATCH_MAY_ALLOCATE
1464 /* 4400 was enough to cause a crash on Alpha OSF/1,
1465 whose default stack limit is 2mb. */
1466 int re_max_failures
= 4000;
1468 int re_max_failures
= 2000;
1472 union PREFIX(fail_stack_elt
)
1478 typedef union PREFIX(fail_stack_elt
) PREFIX(fail_stack_elt_t
);
1482 PREFIX(fail_stack_elt_t
) *stack
;
1484 unsigned avail
; /* Offset of next open position. */
1485 } PREFIX(fail_stack_type
);
1487 # endif /* INT_IS_16BIT */
1489 # ifndef DEFINED_ONCE
1490 # define FAIL_STACK_EMPTY() (fail_stack.avail == 0)
1491 # define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
1492 # define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1496 /* Define macros to initialize and free the failure stack.
1497 Do `return -2' if the alloc fails. */
1499 # ifdef MATCH_MAY_ALLOCATE
1500 # define INIT_FAIL_STACK() \
1502 fail_stack.stack = (PREFIX(fail_stack_elt_t) *) \
1503 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * sizeof (PREFIX(fail_stack_elt_t))); \
1505 if (fail_stack.stack == NULL) \
1508 fail_stack.size = INIT_FAILURE_ALLOC; \
1509 fail_stack.avail = 0; \
1512 # define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
1514 # define INIT_FAIL_STACK() \
1516 fail_stack.avail = 0; \
1519 # define RESET_FAIL_STACK()
1523 /* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
1525 Return 1 if succeeds, and 0 if either ran out of memory
1526 allocating space for it or it was already too large.
1528 REGEX_REALLOCATE_STACK requires `destination' be declared. */
1530 # define DOUBLE_FAIL_STACK(fail_stack) \
1531 ((fail_stack).size > (unsigned) (re_max_failures * MAX_FAILURE_ITEMS) \
1533 : ((fail_stack).stack = (PREFIX(fail_stack_elt_t) *) \
1534 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1535 (fail_stack).size * sizeof (PREFIX(fail_stack_elt_t)), \
1536 ((fail_stack).size << 1) * sizeof (PREFIX(fail_stack_elt_t))),\
1538 (fail_stack).stack == NULL \
1540 : ((fail_stack).size <<= 1, \
1544 /* Push pointer POINTER on FAIL_STACK.
1545 Return 1 if was able to do so and 0 if ran out of memory allocating
1547 # define PUSH_PATTERN_OP(POINTER, FAIL_STACK) \
1548 ((FAIL_STACK_FULL () \
1549 && !DOUBLE_FAIL_STACK (FAIL_STACK)) \
1551 : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER, \
1554 /* Push a pointer value onto the failure stack.
1555 Assumes the variable `fail_stack'. Probably should only
1556 be called from within `PUSH_FAILURE_POINT'. */
1557 # define PUSH_FAILURE_POINTER(item) \
1558 fail_stack.stack[fail_stack.avail++].pointer = (UCHAR_T *) (item)
1560 /* This pushes an integer-valued item onto the failure stack.
1561 Assumes the variable `fail_stack'. Probably should only
1562 be called from within `PUSH_FAILURE_POINT'. */
1563 # define PUSH_FAILURE_INT(item) \
1564 fail_stack.stack[fail_stack.avail++].integer = (item)
1566 /* Push a fail_stack_elt_t value onto the failure stack.
1567 Assumes the variable `fail_stack'. Probably should only
1568 be called from within `PUSH_FAILURE_POINT'. */
1569 # define PUSH_FAILURE_ELT(item) \
1570 fail_stack.stack[fail_stack.avail++] = (item)
1572 /* These three POP... operations complement the three PUSH... operations.
1573 All assume that `fail_stack' is nonempty. */
1574 # define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1575 # define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1576 # define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1578 /* Used to omit pushing failure point id's when we're not debugging. */
1580 # define DEBUG_PUSH PUSH_FAILURE_INT
1581 # define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_INT ()
1583 # define DEBUG_PUSH(item)
1584 # define DEBUG_POP(item_addr)
1588 /* Push the information about the state we will need
1589 if we ever fail back to it.
1591 Requires variables fail_stack, regstart, regend, reg_info, and
1592 num_regs_pushed be declared. DOUBLE_FAIL_STACK requires `destination'
1595 Does `return FAILURE_CODE' if runs out of memory. */
1597 # define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \
1599 char *destination; \
1600 /* Must be int, so when we don't save any registers, the arithmetic \
1601 of 0 + -1 isn't done as unsigned. */ \
1602 /* Can't be int, since there is not a shred of a guarantee that int \
1603 is wide enough to hold a value of something to which pointer can \
1605 active_reg_t this_reg; \
1607 DEBUG_STATEMENT (failure_id++); \
1608 DEBUG_STATEMENT (nfailure_points_pushed++); \
1609 DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \
1610 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\
1611 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1613 DEBUG_PRINT2 (" slots needed: %ld\n", NUM_FAILURE_ITEMS); \
1614 DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \
1616 /* Ensure we have enough space allocated for what we will push. */ \
1617 while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \
1619 if (!DOUBLE_FAIL_STACK (fail_stack)) \
1620 return failure_code; \
1622 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \
1623 (fail_stack).size); \
1624 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1627 /* Push the info, starting with the registers. */ \
1628 DEBUG_PRINT1 ("\n"); \
1631 for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
1634 DEBUG_PRINT2 (" Pushing reg: %lu\n", this_reg); \
1635 DEBUG_STATEMENT (num_regs_pushed++); \
1637 DEBUG_PRINT2 (" start: %p\n", regstart[this_reg]); \
1638 PUSH_FAILURE_POINTER (regstart[this_reg]); \
1640 DEBUG_PRINT2 (" end: %p\n", regend[this_reg]); \
1641 PUSH_FAILURE_POINTER (regend[this_reg]); \
1643 DEBUG_PRINT2 (" info: %p\n ", \
1644 reg_info[this_reg].word.pointer); \
1645 DEBUG_PRINT2 (" match_null=%d", \
1646 REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \
1647 DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \
1648 DEBUG_PRINT2 (" matched_something=%d", \
1649 MATCHED_SOMETHING (reg_info[this_reg])); \
1650 DEBUG_PRINT2 (" ever_matched=%d", \
1651 EVER_MATCHED_SOMETHING (reg_info[this_reg])); \
1652 DEBUG_PRINT1 ("\n"); \
1653 PUSH_FAILURE_ELT (reg_info[this_reg].word); \
1656 DEBUG_PRINT2 (" Pushing low active reg: %ld\n", lowest_active_reg);\
1657 PUSH_FAILURE_INT (lowest_active_reg); \
1659 DEBUG_PRINT2 (" Pushing high active reg: %ld\n", highest_active_reg);\
1660 PUSH_FAILURE_INT (highest_active_reg); \
1662 DEBUG_PRINT2 (" Pushing pattern %p:\n", pattern_place); \
1663 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \
1664 PUSH_FAILURE_POINTER (pattern_place); \
1666 DEBUG_PRINT2 (" Pushing string %p: `", string_place); \
1667 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \
1669 DEBUG_PRINT1 ("'\n"); \
1670 PUSH_FAILURE_POINTER (string_place); \
1672 DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \
1673 DEBUG_PUSH (failure_id); \
1676 # ifndef DEFINED_ONCE
1677 /* This is the number of items that are pushed and popped on the stack
1678 for each register. */
1679 # define NUM_REG_ITEMS 3
1681 /* Individual items aside from the registers. */
1683 # define NUM_NONREG_ITEMS 5 /* Includes failure point id. */
1685 # define NUM_NONREG_ITEMS 4
1688 /* We push at most this many items on the stack. */
1689 /* We used to use (num_regs - 1), which is the number of registers
1690 this regexp will save; but that was changed to 5
1691 to avoid stack overflow for a regexp with lots of parens. */
1692 # define MAX_FAILURE_ITEMS (5 * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
1694 /* We actually push this many items. */
1695 # define NUM_FAILURE_ITEMS \
1697 ? 0 : highest_active_reg - lowest_active_reg + 1) \
1701 /* How many items can still be added to the stack without overflowing it. */
1702 # define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1703 # endif /* not DEFINED_ONCE */
1706 /* Pops what PUSH_FAIL_STACK pushes.
1708 We restore into the parameters, all of which should be lvalues:
1709 STR -- the saved data position.
1710 PAT -- the saved pattern position.
1711 LOW_REG, HIGH_REG -- the highest and lowest active registers.
1712 REGSTART, REGEND -- arrays of string positions.
1713 REG_INFO -- array of information about each subexpression.
1715 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1716 `pend', `string1', `size1', `string2', and `size2'. */
1717 # define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
1719 DEBUG_STATEMENT (unsigned failure_id;) \
1720 active_reg_t this_reg; \
1721 const UCHAR_T *string_temp; \
1723 assert (!FAIL_STACK_EMPTY ()); \
1725 /* Remove failure points and point to how many regs pushed. */ \
1726 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1727 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
1728 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
1730 assert (fail_stack.avail >= NUM_NONREG_ITEMS); \
1732 DEBUG_POP (&failure_id); \
1733 DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \
1735 /* If the saved string location is NULL, it came from an \
1736 on_failure_keep_string_jump opcode, and we want to throw away the \
1737 saved NULL, thus retaining our current position in the string. */ \
1738 string_temp = POP_FAILURE_POINTER (); \
1739 if (string_temp != NULL) \
1740 str = (const CHAR_T *) string_temp; \
1742 DEBUG_PRINT2 (" Popping string %p: `", str); \
1743 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1744 DEBUG_PRINT1 ("'\n"); \
1746 pat = (UCHAR_T *) POP_FAILURE_POINTER (); \
1747 DEBUG_PRINT2 (" Popping pattern %p:\n", pat); \
1748 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1750 /* Restore register info. */ \
1751 high_reg = (active_reg_t) POP_FAILURE_INT (); \
1752 DEBUG_PRINT2 (" Popping high active reg: %ld\n", high_reg); \
1754 low_reg = (active_reg_t) POP_FAILURE_INT (); \
1755 DEBUG_PRINT2 (" Popping low active reg: %ld\n", low_reg); \
1758 for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \
1760 DEBUG_PRINT2 (" Popping reg: %ld\n", this_reg); \
1762 reg_info[this_reg].word = POP_FAILURE_ELT (); \
1763 DEBUG_PRINT2 (" info: %p\n", \
1764 reg_info[this_reg].word.pointer); \
1766 regend[this_reg] = (const CHAR_T *) POP_FAILURE_POINTER (); \
1767 DEBUG_PRINT2 (" end: %p\n", regend[this_reg]); \
1769 regstart[this_reg] = (const CHAR_T *) POP_FAILURE_POINTER (); \
1770 DEBUG_PRINT2 (" start: %p\n", regstart[this_reg]); \
1774 for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) \
1776 reg_info[this_reg].word.integer = 0; \
1777 regend[this_reg] = 0; \
1778 regstart[this_reg] = 0; \
1780 highest_active_reg = high_reg; \
1783 set_regs_matched_done = 0; \
1784 DEBUG_STATEMENT (nfailure_points_popped++); \
1785 } /* POP_FAILURE_POINT */
1787 /* Structure for per-register (a.k.a. per-group) information.
1788 Other register information, such as the
1789 starting and ending positions (which are addresses), and the list of
1790 inner groups (which is a bits list) are maintained in separate
1793 We are making a (strictly speaking) nonportable assumption here: that
1794 the compiler will pack our bit fields into something that fits into
1795 the type of `word', i.e., is something that fits into one item on the
1799 /* Declarations and macros for re_match_2. */
1803 PREFIX(fail_stack_elt_t
) word
;
1806 /* This field is one if this group can match the empty string,
1807 zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */
1808 # define MATCH_NULL_UNSET_VALUE 3
1809 unsigned match_null_string_p
: 2;
1810 unsigned is_active
: 1;
1811 unsigned matched_something
: 1;
1812 unsigned ever_matched_something
: 1;
1814 } PREFIX(register_info_type
);
1816 # ifndef DEFINED_ONCE
1817 # define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p)
1818 # define IS_ACTIVE(R) ((R).bits.is_active)
1819 # define MATCHED_SOMETHING(R) ((R).bits.matched_something)
1820 # define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something)
1823 /* Call this when have matched a real character; it sets `matched' flags
1824 for the subexpressions which we are currently inside. Also records
1825 that those subexprs have matched. */
1826 # define SET_REGS_MATCHED() \
1829 if (!set_regs_matched_done) \
1832 set_regs_matched_done = 1; \
1833 for (r = lowest_active_reg; r <= highest_active_reg; r++) \
1835 MATCHED_SOMETHING (reg_info[r]) \
1836 = EVER_MATCHED_SOMETHING (reg_info[r]) \
1842 # endif /* not DEFINED_ONCE */
1844 /* Registers are set to a sentinel when they haven't yet matched. */
1845 static CHAR_T
PREFIX(reg_unset_dummy
);
1846 # define REG_UNSET_VALUE (&PREFIX(reg_unset_dummy))
1847 # define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
1849 /* Subroutine declarations and macros for regex_compile. */
1850 static void PREFIX(store_op1
) (re_opcode_t op
, UCHAR_T
*loc
, int arg
);
1851 static void PREFIX(store_op2
) (re_opcode_t op
, UCHAR_T
*loc
,
1852 int arg1
, int arg2
);
1853 static void PREFIX(insert_op1
) (re_opcode_t op
, UCHAR_T
*loc
,
1854 int arg
, UCHAR_T
*end
);
1855 static void PREFIX(insert_op2
) (re_opcode_t op
, UCHAR_T
*loc
,
1856 int arg1
, int arg2
, UCHAR_T
*end
);
1857 static boolean
PREFIX(at_begline_loc_p
) (const CHAR_T
*pattern
,
1859 reg_syntax_t syntax
);
1860 static boolean
PREFIX(at_endline_loc_p
) (const CHAR_T
*p
,
1862 reg_syntax_t syntax
);
1864 static reg_errcode_t
wcs_compile_range (CHAR_T range_start
,
1865 const CHAR_T
**p_ptr
,
1868 reg_syntax_t syntax
,
1871 static void insert_space (int num
, CHAR_T
*loc
, CHAR_T
*end
);
1873 static reg_errcode_t
byte_compile_range (unsigned int range_start
,
1877 reg_syntax_t syntax
,
1881 /* Fetch the next character in the uncompiled pattern---translating it
1882 if necessary. Also cast from a signed character in the constant
1883 string passed to us by the user to an unsigned char that we can use
1884 as an array index (in, e.g., `translate'). */
1885 /* ifdef MBS_SUPPORT, we translate only if character <= 0xff,
1886 because it is impossible to allocate 4GB array for some encodings
1887 which have 4 byte character_set like UCS4. */
1890 # define PATFETCH(c) \
1891 do {if (p == pend) return REG_EEND; \
1892 c = (UCHAR_T) *p++; \
1893 if (translate && (c <= 0xff)) c = (UCHAR_T) translate[c]; \
1896 # define PATFETCH(c) \
1897 do {if (p == pend) return REG_EEND; \
1898 c = (unsigned char) *p++; \
1899 if (translate) c = (unsigned char) translate[c]; \
1904 /* Fetch the next character in the uncompiled pattern, with no
1906 # define PATFETCH_RAW(c) \
1907 do {if (p == pend) return REG_EEND; \
1908 c = (UCHAR_T) *p++; \
1911 /* Go backwards one character in the pattern. */
1912 # define PATUNFETCH p--
1915 /* If `translate' is non-null, return translate[D], else just D. We
1916 cast the subscript to translate because some data is declared as
1917 `char *', to avoid warnings when a string constant is passed. But
1918 when we use a character as a subscript we must make it unsigned. */
1919 /* ifdef MBS_SUPPORT, we translate only if character <= 0xff,
1920 because it is impossible to allocate 4GB array for some encodings
1921 which have 4 byte character_set like UCS4. */
1925 # define TRANSLATE(d) \
1926 ((translate && ((UCHAR_T) (d)) <= 0xff) \
1927 ? (char) translate[(unsigned char) (d)] : (d))
1929 # define TRANSLATE(d) \
1930 (translate ? (char) translate[(unsigned char) (d)] : (d))
1935 /* Macros for outputting the compiled pattern into `buffer'. */
1937 /* If the buffer isn't allocated when it comes in, use this. */
1938 # define INIT_BUF_SIZE (32 * sizeof(UCHAR_T))
1940 /* Make sure we have at least N more bytes of space in buffer. */
1942 # define GET_BUFFER_SPACE(n) \
1943 while (((unsigned long)b - (unsigned long)COMPILED_BUFFER_VAR \
1944 + (n)*sizeof(CHAR_T)) > bufp->allocated) \
1947 # define GET_BUFFER_SPACE(n) \
1948 while ((unsigned long) (b - bufp->buffer + (n)) > bufp->allocated) \
1952 /* Make sure we have one more byte of buffer space and then add C to it. */
1953 # define BUF_PUSH(c) \
1955 GET_BUFFER_SPACE (1); \
1956 *b++ = (UCHAR_T) (c); \
1960 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1961 # define BUF_PUSH_2(c1, c2) \
1963 GET_BUFFER_SPACE (2); \
1964 *b++ = (UCHAR_T) (c1); \
1965 *b++ = (UCHAR_T) (c2); \
1969 /* As with BUF_PUSH_2, except for three bytes. */
1970 # define BUF_PUSH_3(c1, c2, c3) \
1972 GET_BUFFER_SPACE (3); \
1973 *b++ = (UCHAR_T) (c1); \
1974 *b++ = (UCHAR_T) (c2); \
1975 *b++ = (UCHAR_T) (c3); \
1978 /* Store a jump with opcode OP at LOC to location TO. We store a
1979 relative address offset by the three bytes the jump itself occupies. */
1980 # define STORE_JUMP(op, loc, to) \
1981 PREFIX(store_op1) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)))
1983 /* Likewise, for a two-argument jump. */
1984 # define STORE_JUMP2(op, loc, to, arg) \
1985 PREFIX(store_op2) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)), arg)
1987 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
1988 # define INSERT_JUMP(op, loc, to) \
1989 PREFIX(insert_op1) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)), b)
1991 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1992 # define INSERT_JUMP2(op, loc, to, arg) \
1993 PREFIX(insert_op2) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)),\
1996 /* This is not an arbitrary limit: the arguments which represent offsets
1997 into the pattern are two bytes long. So if 2^16 bytes turns out to
1998 be too small, many things would have to change. */
1999 /* Any other compiler which, like MSC, has allocation limit below 2^16
2000 bytes will have to use approach similar to what was done below for
2001 MSC and drop MAX_BUF_SIZE a bit. Otherwise you may end up
2002 reallocating to 0 bytes. Such thing is not going to work too well.
2003 You have been warned!! */
2004 # ifndef DEFINED_ONCE
2005 # if defined _MSC_VER && !defined WIN32
2006 /* Microsoft C 16-bit versions limit malloc to approx 65512 bytes.
2007 The REALLOC define eliminates a flurry of conversion warnings,
2008 but is not required. */
2009 # define MAX_BUF_SIZE 65500L
2010 # define REALLOC(p,s) realloc ((p), (size_t) (s))
2012 # define MAX_BUF_SIZE (1L << 16)
2013 # define REALLOC(p,s) realloc ((p), (s))
2016 /* Extend the buffer by twice its current size via realloc and
2017 reset the pointers that pointed into the old block to point to the
2018 correct places in the new one. If extending the buffer results in it
2019 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
2020 # if __BOUNDED_POINTERS__
2021 # define SET_HIGH_BOUND(P) (__ptrhigh (P) = __ptrlow (P) + bufp->allocated)
2022 # define MOVE_BUFFER_POINTER(P) \
2023 (__ptrlow (P) += incr, SET_HIGH_BOUND (P), __ptrvalue (P) += incr)
2024 # define ELSE_EXTEND_BUFFER_HIGH_BOUND \
2027 SET_HIGH_BOUND (b); \
2028 SET_HIGH_BOUND (begalt); \
2029 if (fixup_alt_jump) \
2030 SET_HIGH_BOUND (fixup_alt_jump); \
2032 SET_HIGH_BOUND (laststart); \
2033 if (pending_exact) \
2034 SET_HIGH_BOUND (pending_exact); \
2037 # define MOVE_BUFFER_POINTER(P) (P) += incr
2038 # define ELSE_EXTEND_BUFFER_HIGH_BOUND
2040 # endif /* not DEFINED_ONCE */
2043 # define EXTEND_BUFFER() \
2045 UCHAR_T *old_buffer = COMPILED_BUFFER_VAR; \
2047 if (bufp->allocated + sizeof(UCHAR_T) > MAX_BUF_SIZE) \
2049 bufp->allocated <<= 1; \
2050 if (bufp->allocated > MAX_BUF_SIZE) \
2051 bufp->allocated = MAX_BUF_SIZE; \
2052 /* How many characters the new buffer can have? */ \
2053 wchar_count = bufp->allocated / sizeof(UCHAR_T); \
2054 if (wchar_count == 0) wchar_count = 1; \
2055 /* Truncate the buffer to CHAR_T align. */ \
2056 bufp->allocated = wchar_count * sizeof(UCHAR_T); \
2057 RETALLOC (COMPILED_BUFFER_VAR, wchar_count, UCHAR_T); \
2058 bufp->buffer = (char*)COMPILED_BUFFER_VAR; \
2059 if (COMPILED_BUFFER_VAR == NULL) \
2060 return REG_ESPACE; \
2061 /* If the buffer moved, move all the pointers into it. */ \
2062 if (old_buffer != COMPILED_BUFFER_VAR) \
2064 int incr = COMPILED_BUFFER_VAR - old_buffer; \
2065 MOVE_BUFFER_POINTER (b); \
2066 MOVE_BUFFER_POINTER (begalt); \
2067 if (fixup_alt_jump) \
2068 MOVE_BUFFER_POINTER (fixup_alt_jump); \
2070 MOVE_BUFFER_POINTER (laststart); \
2071 if (pending_exact) \
2072 MOVE_BUFFER_POINTER (pending_exact); \
2074 ELSE_EXTEND_BUFFER_HIGH_BOUND \
2077 # define EXTEND_BUFFER() \
2079 UCHAR_T *old_buffer = COMPILED_BUFFER_VAR; \
2080 if (bufp->allocated == MAX_BUF_SIZE) \
2082 bufp->allocated <<= 1; \
2083 if (bufp->allocated > MAX_BUF_SIZE) \
2084 bufp->allocated = MAX_BUF_SIZE; \
2085 bufp->buffer = REALLOC (COMPILED_BUFFER_VAR, bufp->allocated); \
2086 if (COMPILED_BUFFER_VAR == NULL) \
2087 return REG_ESPACE; \
2088 /* If the buffer moved, move all the pointers into it. */ \
2089 if (old_buffer != COMPILED_BUFFER_VAR) \
2091 int incr = COMPILED_BUFFER_VAR - old_buffer; \
2092 MOVE_BUFFER_POINTER (b); \
2093 MOVE_BUFFER_POINTER (begalt); \
2094 if (fixup_alt_jump) \
2095 MOVE_BUFFER_POINTER (fixup_alt_jump); \
2097 MOVE_BUFFER_POINTER (laststart); \
2098 if (pending_exact) \
2099 MOVE_BUFFER_POINTER (pending_exact); \
2101 ELSE_EXTEND_BUFFER_HIGH_BOUND \
2105 # ifndef DEFINED_ONCE
2106 /* Since we have one byte reserved for the register number argument to
2107 {start,stop}_memory, the maximum number of groups we can report
2108 things about is what fits in that byte. */
2109 # define MAX_REGNUM 255
2111 /* But patterns can have more than `MAX_REGNUM' registers. We just
2112 ignore the excess. */
2113 typedef unsigned regnum_t
;
2116 /* Macros for the compile stack. */
2118 /* Since offsets can go either forwards or backwards, this type needs to
2119 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
2120 /* int may be not enough when sizeof(int) == 2. */
2121 typedef long pattern_offset_t
;
2125 pattern_offset_t begalt_offset
;
2126 pattern_offset_t fixup_alt_jump
;
2127 pattern_offset_t inner_group_offset
;
2128 pattern_offset_t laststart_offset
;
2130 } compile_stack_elt_t
;
2135 compile_stack_elt_t
*stack
;
2137 unsigned avail
; /* Offset of next open position. */
2138 } compile_stack_type
;
2141 # define INIT_COMPILE_STACK_SIZE 32
2143 # define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
2144 # define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
2146 /* The next available element. */
2147 # define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
2149 # endif /* not DEFINED_ONCE */
2151 /* Set the bit for character C in a list. */
2152 # ifndef DEFINED_ONCE
2153 # define SET_LIST_BIT(c) \
2154 (b[((unsigned char) (c)) / BYTEWIDTH] \
2155 |= 1 << (((unsigned char) c) % BYTEWIDTH))
2156 # endif /* DEFINED_ONCE */
2158 /* Get the next unsigned number in the uncompiled pattern. */
2159 # define GET_UNSIGNED_NUMBER(num) \
2164 if (c < '0' || c > '9') \
2166 if (num <= RE_DUP_MAX) \
2170 num = num * 10 + c - '0'; \
2175 # ifndef DEFINED_ONCE
2176 # if defined _LIBC || WIDE_CHAR_SUPPORT
2177 /* The GNU C library provides support for user-defined character classes
2178 and the functions from ISO C amendement 1. */
2179 # ifdef CHARCLASS_NAME_MAX
2180 # define CHAR_CLASS_MAX_LENGTH CHARCLASS_NAME_MAX
2182 /* This shouldn't happen but some implementation might still have this
2183 problem. Use a reasonable default value. */
2184 # define CHAR_CLASS_MAX_LENGTH 256
2188 # define IS_CHAR_CLASS(string) __wctype (string)
2190 # define IS_CHAR_CLASS(string) wctype (string)
2193 # define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */
2195 # define IS_CHAR_CLASS(string) \
2196 (STREQ (string, "alpha") || STREQ (string, "upper") \
2197 || STREQ (string, "lower") || STREQ (string, "digit") \
2198 || STREQ (string, "alnum") || STREQ (string, "xdigit") \
2199 || STREQ (string, "space") || STREQ (string, "print") \
2200 || STREQ (string, "punct") || STREQ (string, "graph") \
2201 || STREQ (string, "cntrl") || STREQ (string, "blank"))
2203 # endif /* DEFINED_ONCE */
2205 # ifndef MATCH_MAY_ALLOCATE
2207 /* If we cannot allocate large objects within re_match_2_internal,
2208 we make the fail stack and register vectors global.
2209 The fail stack, we grow to the maximum size when a regexp
2211 The register vectors, we adjust in size each time we
2212 compile a regexp, according to the number of registers it needs. */
2214 static PREFIX(fail_stack_type
) fail_stack
;
2216 /* Size with which the following vectors are currently allocated.
2217 That is so we can make them bigger as needed,
2218 but never make them smaller. */
2219 # ifdef DEFINED_ONCE
2220 static int regs_allocated_size
;
2222 static const char ** regstart
, ** regend
;
2223 static const char ** old_regstart
, ** old_regend
;
2224 static const char **best_regstart
, **best_regend
;
2225 static const char **reg_dummy
;
2226 # endif /* DEFINED_ONCE */
2228 static PREFIX(register_info_type
) *PREFIX(reg_info
);
2229 static PREFIX(register_info_type
) *PREFIX(reg_info_dummy
);
2231 /* Make the register vectors big enough for NUM_REGS registers,
2232 but don't make them smaller. */
2235 PREFIX(regex_grow_registers
) (int num_regs
)
2237 if (num_regs
> regs_allocated_size
)
2239 RETALLOC_IF (regstart
, num_regs
, const char *);
2240 RETALLOC_IF (regend
, num_regs
, const char *);
2241 RETALLOC_IF (old_regstart
, num_regs
, const char *);
2242 RETALLOC_IF (old_regend
, num_regs
, const char *);
2243 RETALLOC_IF (best_regstart
, num_regs
, const char *);
2244 RETALLOC_IF (best_regend
, num_regs
, const char *);
2245 RETALLOC_IF (PREFIX(reg_info
), num_regs
, PREFIX(register_info_type
));
2246 RETALLOC_IF (reg_dummy
, num_regs
, const char *);
2247 RETALLOC_IF (PREFIX(reg_info_dummy
), num_regs
, PREFIX(register_info_type
));
2249 regs_allocated_size
= num_regs
;
2253 # endif /* not MATCH_MAY_ALLOCATE */
2255 # ifndef DEFINED_ONCE
2256 static boolean
group_in_compile_stack (compile_stack_type
2259 # endif /* not DEFINED_ONCE */
2261 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
2262 Returns one of error codes defined in `regex.h', or zero for success.
2264 Assumes the `allocated' (and perhaps `buffer') and `translate'
2265 fields are set in BUFP on entry.
2267 If it succeeds, results are put in BUFP (if it returns an error, the
2268 contents of BUFP are undefined):
2269 `buffer' is the compiled pattern;
2270 `syntax' is set to SYNTAX;
2271 `used' is set to the length of the compiled pattern;
2272 `fastmap_accurate' is zero;
2273 `re_nsub' is the number of subexpressions in PATTERN;
2274 `not_bol' and `not_eol' are zero;
2276 The `fastmap' and `newline_anchor' fields are neither
2277 examined nor set. */
2279 /* Return, freeing storage we allocated. */
2281 # define FREE_STACK_RETURN(value) \
2282 return (free(pattern), free(mbs_offset), free(is_binary), free (compile_stack.stack), value)
2284 # define FREE_STACK_RETURN(value) \
2285 return (free (compile_stack.stack), value)
2288 static reg_errcode_t
2289 PREFIX(regex_compile
) (const char *ARG_PREFIX(pattern
),
2290 size_t ARG_PREFIX(size
),
2291 reg_syntax_t syntax
,
2292 struct re_pattern_buffer
*bufp
)
2294 /* We fetch characters from PATTERN here. Even though PATTERN is
2295 `char *' (i.e., signed), we declare these variables as unsigned, so
2296 they can be reliably used as array indices. */
2297 register UCHAR_T c
, c1
;
2300 /* A temporary space to keep wchar_t pattern and compiled pattern. */
2301 CHAR_T
*pattern
, *COMPILED_BUFFER_VAR
;
2303 /* offset buffer for optimization. See convert_mbs_to_wc. */
2304 int *mbs_offset
= NULL
;
2305 /* It hold whether each wchar_t is binary data or not. */
2306 char *is_binary
= NULL
;
2307 /* A flag whether exactn is handling binary data or not. */
2308 char is_exactn_bin
= FALSE
;
2311 /* A random temporary spot in PATTERN. */
2314 /* Points to the end of the buffer, where we should append. */
2315 register UCHAR_T
*b
;
2317 /* Keeps track of unclosed groups. */
2318 compile_stack_type compile_stack
;
2320 /* Points to the current (ending) position in the pattern. */
2325 const CHAR_T
*p
= pattern
;
2326 const CHAR_T
*pend
= pattern
+ size
;
2329 /* How to translate the characters in the pattern. */
2330 RE_TRANSLATE_TYPE translate
= bufp
->translate
;
2332 /* Address of the count-byte of the most recently inserted `exactn'
2333 command. This makes it possible to tell if a new exact-match
2334 character can be added to that command or if the character requires
2335 a new `exactn' command. */
2336 UCHAR_T
*pending_exact
= 0;
2338 /* Address of start of the most recently finished expression.
2339 This tells, e.g., postfix * where to find the start of its
2340 operand. Reset at the beginning of groups and alternatives. */
2341 UCHAR_T
*laststart
= 0;
2343 /* Address of beginning of regexp, or inside of last group. */
2346 /* Address of the place where a forward jump should go to the end of
2347 the containing expression. Each alternative of an `or' -- except the
2348 last -- ends with a forward jump of this sort. */
2349 UCHAR_T
*fixup_alt_jump
= 0;
2351 /* Counts open-groups as they are encountered. Remembered for the
2352 matching close-group on the compile stack, so the same register
2353 number is put in the stop_memory as the start_memory. */
2354 regnum_t regnum
= 0;
2357 /* Initialize the wchar_t PATTERN and offset_buffer. */
2358 p
= pend
= pattern
= TALLOC(csize
+ 1, CHAR_T
);
2359 mbs_offset
= TALLOC(csize
+ 1, int);
2360 is_binary
= TALLOC(csize
+ 1, char);
2361 if (pattern
== NULL
|| mbs_offset
== NULL
|| is_binary
== NULL
)
2368 pattern
[csize
] = L
'\0'; /* sentinel */
2369 size
= convert_mbs_to_wcs(pattern
, cpattern
, csize
, mbs_offset
, is_binary
);
2381 DEBUG_PRINT1 ("\nCompiling pattern: ");
2384 unsigned debug_count
;
2386 for (debug_count
= 0; debug_count
< size
; debug_count
++)
2387 PUT_CHAR (pattern
[debug_count
]);
2392 /* Initialize the compile stack. */
2393 compile_stack
.stack
= TALLOC (INIT_COMPILE_STACK_SIZE
, compile_stack_elt_t
);
2394 if (compile_stack
.stack
== NULL
)
2404 compile_stack
.size
= INIT_COMPILE_STACK_SIZE
;
2405 compile_stack
.avail
= 0;
2407 /* Initialize the pattern buffer. */
2408 bufp
->syntax
= syntax
;
2409 bufp
->fastmap_accurate
= 0;
2410 bufp
->not_bol
= bufp
->not_eol
= 0;
2412 /* Set `used' to zero, so that if we return an error, the pattern
2413 printer (for debugging) will think there's no pattern. We reset it
2417 /* Always count groups, whether or not bufp->no_sub is set. */
2420 #if !defined emacs && !defined SYNTAX_TABLE
2421 /* Initialize the syntax table. */
2422 init_syntax_once ();
2425 if (bufp
->allocated
== 0)
2428 { /* If zero allocated, but buffer is non-null, try to realloc
2429 enough space. This loses if buffer's address is bogus, but
2430 that is the user's responsibility. */
2432 /* Free bufp->buffer and allocate an array for wchar_t pattern
2435 COMPILED_BUFFER_VAR
= TALLOC (INIT_BUF_SIZE
/sizeof(UCHAR_T
),
2438 RETALLOC (COMPILED_BUFFER_VAR
, INIT_BUF_SIZE
, UCHAR_T
);
2442 { /* Caller did not allocate a buffer. Do it for them. */
2443 COMPILED_BUFFER_VAR
= TALLOC (INIT_BUF_SIZE
/ sizeof(UCHAR_T
),
2447 if (!COMPILED_BUFFER_VAR
) FREE_STACK_RETURN (REG_ESPACE
);
2449 bufp
->buffer
= (char*)COMPILED_BUFFER_VAR
;
2451 bufp
->allocated
= INIT_BUF_SIZE
;
2455 COMPILED_BUFFER_VAR
= (UCHAR_T
*) bufp
->buffer
;
2458 begalt
= b
= COMPILED_BUFFER_VAR
;
2460 /* Loop through the uncompiled pattern until we're at the end. */
2469 if ( /* If at start of pattern, it's an operator. */
2471 /* If context independent, it's an operator. */
2472 || syntax
& RE_CONTEXT_INDEP_ANCHORS
2473 /* Otherwise, depends on what's come before. */
2474 || PREFIX(at_begline_loc_p
) (pattern
, p
, syntax
))
2484 if ( /* If at end of pattern, it's an operator. */
2486 /* If context independent, it's an operator. */
2487 || syntax
& RE_CONTEXT_INDEP_ANCHORS
2488 /* Otherwise, depends on what's next. */
2489 || PREFIX(at_endline_loc_p
) (p
, pend
, syntax
))
2499 if ((syntax
& RE_BK_PLUS_QM
)
2500 || (syntax
& RE_LIMITED_OPS
))
2504 /* If there is no previous pattern... */
2507 if (syntax
& RE_CONTEXT_INVALID_OPS
)
2508 FREE_STACK_RETURN (REG_BADRPT
);
2509 else if (!(syntax
& RE_CONTEXT_INDEP_OPS
))
2514 /* Are we optimizing this jump? */
2515 boolean keep_string_p
= false;
2517 /* 1 means zero (many) matches is allowed. */
2518 char zero_times_ok
= 0, many_times_ok
= 0;
2520 /* If there is a sequence of repetition chars, collapse it
2521 down to just one (the right one). We can't combine
2522 interval operators with these because of, e.g., `a{2}*',
2523 which should only match an even number of `a's. */
2527 zero_times_ok
|= c
!= '+';
2528 many_times_ok
|= c
!= '?';
2536 || (!(syntax
& RE_BK_PLUS_QM
) && (c
== '+' || c
== '?')))
2539 else if (syntax
& RE_BK_PLUS_QM
&& c
== '\\')
2541 if (p
== pend
) FREE_STACK_RETURN (REG_EESCAPE
);
2544 if (!(c1
== '+' || c1
== '?'))
2559 /* If we get here, we found another repeat character. */
2562 /* Star, etc. applied to an empty pattern is equivalent
2563 to an empty pattern. */
2567 /* Now we know whether or not zero matches is allowed
2568 and also whether or not two or more matches is allowed. */
2570 { /* More than one repetition is allowed, so put in at the
2571 end a backward relative jump from `b' to before the next
2572 jump we're going to put in below (which jumps from
2573 laststart to after this jump).
2575 But if we are at the `*' in the exact sequence `.*\n',
2576 insert an unconditional jump backwards to the .,
2577 instead of the beginning of the loop. This way we only
2578 push a failure point once, instead of every time
2579 through the loop. */
2580 assert (p
- 1 > pattern
);
2582 /* Allocate the space for the jump. */
2583 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE
);
2585 /* We know we are not at the first character of the pattern,
2586 because laststart was nonzero. And we've already
2587 incremented `p', by the way, to be the character after
2588 the `*'. Do we have to do something analogous here
2589 for null bytes, because of RE_DOT_NOT_NULL? */
2590 if (TRANSLATE (*(p
- 2)) == TRANSLATE ('.')
2592 && p
< pend
&& TRANSLATE (*p
) == TRANSLATE ('\n')
2593 && !(syntax
& RE_DOT_NEWLINE
))
2594 { /* We have .*\n. */
2595 STORE_JUMP (jump
, b
, laststart
);
2596 keep_string_p
= true;
2599 /* Anything else. */
2600 STORE_JUMP (maybe_pop_jump
, b
, laststart
-
2601 (1 + OFFSET_ADDRESS_SIZE
));
2603 /* We've added more stuff to the buffer. */
2604 b
+= 1 + OFFSET_ADDRESS_SIZE
;
2607 /* On failure, jump from laststart to b + 3, which will be the
2608 end of the buffer after this jump is inserted. */
2609 /* ifdef WCHAR, 'b + 1 + OFFSET_ADDRESS_SIZE' instead of
2611 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE
);
2612 INSERT_JUMP (keep_string_p
? on_failure_keep_string_jump
2614 laststart
, b
+ 1 + OFFSET_ADDRESS_SIZE
);
2616 b
+= 1 + OFFSET_ADDRESS_SIZE
;
2620 /* At least one repetition is required, so insert a
2621 `dummy_failure_jump' before the initial
2622 `on_failure_jump' instruction of the loop. This
2623 effects a skip over that instruction the first time
2624 we hit that loop. */
2625 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE
);
2626 INSERT_JUMP (dummy_failure_jump
, laststart
, laststart
+
2627 2 + 2 * OFFSET_ADDRESS_SIZE
);
2628 b
+= 1 + OFFSET_ADDRESS_SIZE
;
2642 boolean had_char_class
= false;
2644 CHAR_T range_start
= 0xffffffff;
2646 unsigned int range_start
= 0xffffffff;
2648 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2651 /* We assume a charset(_not) structure as a wchar_t array.
2652 charset[0] = (re_opcode_t) charset(_not)
2653 charset[1] = l (= length of char_classes)
2654 charset[2] = m (= length of collating_symbols)
2655 charset[3] = n (= length of equivalence_classes)
2656 charset[4] = o (= length of char_ranges)
2657 charset[5] = p (= length of chars)
2659 charset[6] = char_class (wctype_t)
2660 charset[6+CHAR_CLASS_SIZE] = char_class (wctype_t)
2662 charset[l+5] = char_class (wctype_t)
2664 charset[l+6] = collating_symbol (wchar_t)
2666 charset[l+m+5] = collating_symbol (wchar_t)
2667 ifdef _LIBC we use the index if
2668 _NL_COLLATE_SYMB_EXTRAMB instead of
2671 charset[l+m+6] = equivalence_classes (wchar_t)
2673 charset[l+m+n+5] = equivalence_classes (wchar_t)
2674 ifdef _LIBC we use the index in
2675 _NL_COLLATE_WEIGHT instead of
2678 charset[l+m+n+6] = range_start
2679 charset[l+m+n+7] = range_end
2681 charset[l+m+n+2o+4] = range_start
2682 charset[l+m+n+2o+5] = range_end
2683 ifdef _LIBC we use the value looked up
2684 in _NL_COLLATE_COLLSEQ instead of
2687 charset[l+m+n+2o+6] = char
2689 charset[l+m+n+2o+p+5] = char
2693 /* We need at least 6 spaces: the opcode, the length of
2694 char_classes, the length of collating_symbols, the length of
2695 equivalence_classes, the length of char_ranges, the length of
2697 GET_BUFFER_SPACE (6);
2699 /* Save b as laststart. And We use laststart as the pointer
2700 to the first element of the charset here.
2701 In other words, laststart[i] indicates charset[i]. */
2704 /* We test `*p == '^' twice, instead of using an if
2705 statement, so we only need one BUF_PUSH. */
2706 BUF_PUSH (*p
== '^' ? charset_not
: charset
);
2710 /* Push the length of char_classes, the length of
2711 collating_symbols, the length of equivalence_classes, the
2712 length of char_ranges and the length of chars. */
2713 BUF_PUSH_3 (0, 0, 0);
2716 /* Remember the first position in the bracket expression. */
2719 /* charset_not matches newline according to a syntax bit. */
2720 if ((re_opcode_t
) b
[-6] == charset_not
2721 && (syntax
& RE_HAT_LISTS_NOT_NEWLINE
))
2724 laststart
[5]++; /* Update the length of characters */
2727 /* Read in characters and ranges, setting map bits. */
2730 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2734 /* \ might escape characters inside [...] and [^...]. */
2735 if ((syntax
& RE_BACKSLASH_ESCAPE_IN_LISTS
) && c
== '\\')
2737 if (p
== pend
) FREE_STACK_RETURN (REG_EESCAPE
);
2741 laststart
[5]++; /* Update the length of chars */
2746 /* Could be the end of the bracket expression. If it's
2747 not (i.e., when the bracket expression is `[]' so
2748 far), the ']' character bit gets set way below. */
2749 if (c
== ']' && p
!= p1
+ 1)
2752 /* Look ahead to see if it's a range when the last thing
2753 was a character class. */
2754 if (had_char_class
&& c
== '-' && *p
!= ']')
2755 FREE_STACK_RETURN (REG_ERANGE
);
2757 /* Look ahead to see if it's a range when the last thing
2758 was a character: if this is a hyphen not at the
2759 beginning or the end of a list, then it's the range
2762 && !(p
- 2 >= pattern
&& p
[-2] == '[')
2763 && !(p
- 3 >= pattern
&& p
[-3] == '[' && p
[-2] == '^')
2767 /* Allocate the space for range_start and range_end. */
2768 GET_BUFFER_SPACE (2);
2769 /* Update the pointer to indicate end of buffer. */
2771 ret
= wcs_compile_range (range_start
, &p
, pend
, translate
,
2772 syntax
, b
, laststart
);
2773 if (ret
!= REG_NOERROR
) FREE_STACK_RETURN (ret
);
2774 range_start
= 0xffffffff;
2776 else if (p
[0] == '-' && p
[1] != ']')
2777 { /* This handles ranges made up of characters only. */
2780 /* Move past the `-'. */
2782 /* Allocate the space for range_start and range_end. */
2783 GET_BUFFER_SPACE (2);
2784 /* Update the pointer to indicate end of buffer. */
2786 ret
= wcs_compile_range (c
, &p
, pend
, translate
, syntax
, b
,
2788 if (ret
!= REG_NOERROR
) FREE_STACK_RETURN (ret
);
2789 range_start
= 0xffffffff;
2792 /* See if we're at the beginning of a possible character
2794 else if (syntax
& RE_CHAR_CLASSES
&& c
== '[' && *p
== ':')
2795 { /* Leave room for the null. */
2796 char str
[CHAR_CLASS_MAX_LENGTH
+ 1];
2801 /* If pattern is `[[:'. */
2802 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2807 if ((c
== ':' && *p
== ']') || p
== pend
)
2809 if (c1
< CHAR_CLASS_MAX_LENGTH
)
2812 /* This is in any case an invalid class name. */
2817 /* If isn't a word bracketed by `[:' and `:]':
2818 undo the ending character, the letters, and leave
2819 the leading `:' and `[' (but store them as character). */
2820 if (c
== ':' && *p
== ']')
2825 /* Query the character class as wctype_t. */
2826 wt
= IS_CHAR_CLASS (str
);
2828 FREE_STACK_RETURN (REG_ECTYPE
);
2830 /* Throw away the ] at the end of the character
2834 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2836 /* Allocate the space for character class. */
2837 GET_BUFFER_SPACE(CHAR_CLASS_SIZE
);
2838 /* Update the pointer to indicate end of buffer. */
2839 b
+= CHAR_CLASS_SIZE
;
2840 /* Move data which follow character classes
2841 not to violate the data. */
2842 insert_space(CHAR_CLASS_SIZE
,
2843 laststart
+ 6 + laststart
[1],
2845 alignedp
= ((uintptr_t)(laststart
+ 6 + laststart
[1])
2846 + __alignof__(wctype_t) - 1)
2847 & ~(uintptr_t)(__alignof__(wctype_t) - 1);
2848 /* Store the character class. */
2849 *((wctype_t*)alignedp
) = wt
;
2850 /* Update length of char_classes */
2851 laststart
[1] += CHAR_CLASS_SIZE
;
2853 had_char_class
= true;
2862 laststart
[5] += 2; /* Update the length of characters */
2864 had_char_class
= false;
2867 else if (syntax
& RE_CHAR_CLASSES
&& c
== '[' && (*p
== '='
2870 CHAR_T str
[128]; /* Should be large enough. */
2871 CHAR_T delim
= *p
; /* '=' or '.' */
2874 _NL_CURRENT_WORD (LC_COLLATE
, _NL_COLLATE_NRULES
);
2879 /* If pattern is `[[=' or '[[.'. */
2880 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2885 if ((c
== delim
&& *p
== ']') || p
== pend
)
2887 if (c1
< sizeof (str
) - 1)
2890 /* This is in any case an invalid class name. */
2895 if (c
== delim
&& *p
== ']' && str
[0] != '\0')
2897 unsigned int i
, offset
;
2898 /* If we have no collation data we use the default
2899 collation in which each character is in a class
2900 by itself. It also means that ASCII is the
2901 character set and therefore we cannot have character
2902 with more than one byte in the multibyte
2905 /* If not defined _LIBC, we push the name and
2906 `\0' for the sake of matching performance. */
2907 int datasize
= c1
+ 1;
2915 FREE_STACK_RETURN (REG_ECOLLATE
);
2920 const int32_t *table
;
2921 const int32_t *weights
;
2922 const int32_t *extra
;
2923 const int32_t *indirect
;
2926 /* This #include defines a local function! */
2927 # include <locale/weightwc.h>
2931 /* We push the index for equivalence class. */
2934 table
= (const int32_t *)
2935 _NL_CURRENT (LC_COLLATE
,
2936 _NL_COLLATE_TABLEWC
);
2937 weights
= (const int32_t *)
2938 _NL_CURRENT (LC_COLLATE
,
2939 _NL_COLLATE_WEIGHTWC
);
2940 extra
= (const int32_t *)
2941 _NL_CURRENT (LC_COLLATE
,
2942 _NL_COLLATE_EXTRAWC
);
2943 indirect
= (const int32_t *)
2944 _NL_CURRENT (LC_COLLATE
,
2945 _NL_COLLATE_INDIRECTWC
);
2947 idx
= findidx ((const wint_t**)&cp
);
2948 if (idx
== 0 || cp
< (wint_t*) str
+ c1
)
2949 /* This is no valid character. */
2950 FREE_STACK_RETURN (REG_ECOLLATE
);
2952 str
[0] = (wchar_t)idx
;
2954 else /* delim == '.' */
2956 /* We push collation sequence value
2957 for collating symbol. */
2959 const int32_t *symb_table
;
2960 const unsigned char *extra
;
2967 /* We have to convert the name to a single-byte
2968 string. This is possible since the names
2969 consist of ASCII characters and the internal
2970 representation is UCS4. */
2971 for (i
= 0; i
< c1
; ++i
)
2972 char_str
[i
] = str
[i
];
2975 _NL_CURRENT_WORD (LC_COLLATE
,
2976 _NL_COLLATE_SYMB_HASH_SIZEMB
);
2977 symb_table
= (const int32_t *)
2978 _NL_CURRENT (LC_COLLATE
,
2979 _NL_COLLATE_SYMB_TABLEMB
);
2980 extra
= (const unsigned char *)
2981 _NL_CURRENT (LC_COLLATE
,
2982 _NL_COLLATE_SYMB_EXTRAMB
);
2984 /* Locate the character in the hashing table. */
2985 hash
= elem_hash (char_str
, c1
);
2988 elem
= hash
% table_size
;
2989 second
= hash
% (table_size
- 2);
2990 while (symb_table
[2 * elem
] != 0)
2992 /* First compare the hashing value. */
2993 if (symb_table
[2 * elem
] == hash
2994 && c1
== extra
[symb_table
[2 * elem
+ 1]]
2995 && memcmp (char_str
,
2996 &extra
[symb_table
[2 * elem
+ 1]
2999 /* Yep, this is the entry. */
3000 idx
= symb_table
[2 * elem
+ 1];
3001 idx
+= 1 + extra
[idx
];
3009 if (symb_table
[2 * elem
] != 0)
3011 /* Compute the index of the byte sequence
3013 idx
+= 1 + extra
[idx
];
3014 /* Adjust for the alignment. */
3015 idx
= (idx
+ 3) & ~3;
3017 str
[0] = (wchar_t) idx
+ 4;
3019 else if (symb_table
[2 * elem
] == 0 && c1
== 1)
3021 /* No valid character. Match it as a
3022 single byte character. */
3023 had_char_class
= false;
3025 /* Update the length of characters */
3027 range_start
= str
[0];
3029 /* Throw away the ] at the end of the
3030 collating symbol. */
3032 /* exit from the switch block. */
3036 FREE_STACK_RETURN (REG_ECOLLATE
);
3041 /* Throw away the ] at the end of the equivalence
3042 class (or collating symbol). */
3045 /* Allocate the space for the equivalence class
3046 (or collating symbol) (and '\0' if needed). */
3047 GET_BUFFER_SPACE(datasize
);
3048 /* Update the pointer to indicate end of buffer. */
3052 { /* equivalence class */
3053 /* Calculate the offset of char_ranges,
3054 which is next to equivalence_classes. */
3055 offset
= laststart
[1] + laststart
[2]
3058 insert_space(datasize
, laststart
+ offset
, b
- 1);
3060 /* Write the equivalence_class and \0. */
3061 for (i
= 0 ; i
< datasize
; i
++)
3062 laststart
[offset
+ i
] = str
[i
];
3064 /* Update the length of equivalence_classes. */
3065 laststart
[3] += datasize
;
3066 had_char_class
= true;
3068 else /* delim == '.' */
3069 { /* collating symbol */
3070 /* Calculate the offset of the equivalence_classes,
3071 which is next to collating_symbols. */
3072 offset
= laststart
[1] + laststart
[2] + 6;
3073 /* Insert space and write the collationg_symbol
3075 insert_space(datasize
, laststart
+ offset
, b
-1);
3076 for (i
= 0 ; i
< datasize
; i
++)
3077 laststart
[offset
+ i
] = str
[i
];
3079 /* In re_match_2_internal if range_start < -1, we
3080 assume -range_start is the offset of the
3081 collating symbol which is specified as
3082 the character of the range start. So we assign
3083 -(laststart[1] + laststart[2] + 6) to
3085 range_start
= -(laststart
[1] + laststart
[2] + 6);
3086 /* Update the length of collating_symbol. */
3087 laststart
[2] += datasize
;
3088 had_char_class
= false;
3098 laststart
[5] += 2; /* Update the length of characters */
3099 range_start
= delim
;
3100 had_char_class
= false;
3105 had_char_class
= false;
3107 laststart
[5]++; /* Update the length of characters */
3113 /* Ensure that we have enough space to push a charset: the
3114 opcode, the length count, and the bitset; 34 bytes in all. */
3115 GET_BUFFER_SPACE (34);
3119 /* We test `*p == '^' twice, instead of using an if
3120 statement, so we only need one BUF_PUSH. */
3121 BUF_PUSH (*p
== '^' ? charset_not
: charset
);
3125 /* Remember the first position in the bracket expression. */
3128 /* Push the number of bytes in the bitmap. */
3129 BUF_PUSH ((1 << BYTEWIDTH
) / BYTEWIDTH
);
3131 /* Clear the whole map. */
3132 bzero (b
, (1 << BYTEWIDTH
) / BYTEWIDTH
);
3134 /* charset_not matches newline according to a syntax bit. */
3135 if ((re_opcode_t
) b
[-2] == charset_not
3136 && (syntax
& RE_HAT_LISTS_NOT_NEWLINE
))
3137 SET_LIST_BIT ('\n');
3139 /* Read in characters and ranges, setting map bits. */
3142 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
3146 /* \ might escape characters inside [...] and [^...]. */
3147 if ((syntax
& RE_BACKSLASH_ESCAPE_IN_LISTS
) && c
== '\\')
3149 if (p
== pend
) FREE_STACK_RETURN (REG_EESCAPE
);
3157 /* Could be the end of the bracket expression. If it's
3158 not (i.e., when the bracket expression is `[]' so
3159 far), the ']' character bit gets set way below. */
3160 if (c
== ']' && p
!= p1
+ 1)
3163 /* Look ahead to see if it's a range when the last thing
3164 was a character class. */
3165 if (had_char_class
&& c
== '-' && *p
!= ']')
3166 FREE_STACK_RETURN (REG_ERANGE
);
3168 /* Look ahead to see if it's a range when the last thing
3169 was a character: if this is a hyphen not at the
3170 beginning or the end of a list, then it's the range
3173 && !(p
- 2 >= pattern
&& p
[-2] == '[')
3174 && !(p
- 3 >= pattern
&& p
[-3] == '[' && p
[-2] == '^')
3178 = byte_compile_range (range_start
, &p
, pend
, translate
,
3180 if (ret
!= REG_NOERROR
) FREE_STACK_RETURN (ret
);
3181 range_start
= 0xffffffff;
3184 else if (p
[0] == '-' && p
[1] != ']')
3185 { /* This handles ranges made up of characters only. */
3188 /* Move past the `-'. */
3191 ret
= byte_compile_range (c
, &p
, pend
, translate
, syntax
, b
);
3192 if (ret
!= REG_NOERROR
) FREE_STACK_RETURN (ret
);
3193 range_start
= 0xffffffff;
3196 /* See if we're at the beginning of a possible character
3199 else if (syntax
& RE_CHAR_CLASSES
&& c
== '[' && *p
== ':')
3200 { /* Leave room for the null. */
3201 char str
[CHAR_CLASS_MAX_LENGTH
+ 1];
3206 /* If pattern is `[[:'. */
3207 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
3212 if ((c
== ':' && *p
== ']') || p
== pend
)
3214 if (c1
< CHAR_CLASS_MAX_LENGTH
)
3217 /* This is in any case an invalid class name. */
3222 /* If isn't a word bracketed by `[:' and `:]':
3223 undo the ending character, the letters, and leave
3224 the leading `:' and `[' (but set bits for them). */
3225 if (c
== ':' && *p
== ']')
3227 # if defined _LIBC || WIDE_CHAR_SUPPORT
3228 boolean is_lower
= STREQ (str
, "lower");
3229 boolean is_upper
= STREQ (str
, "upper");
3233 wt
= IS_CHAR_CLASS (str
);
3235 FREE_STACK_RETURN (REG_ECTYPE
);
3237 /* Throw away the ] at the end of the character
3241 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
3243 for (ch
= 0; ch
< 1 << BYTEWIDTH
; ++ch
)
3245 if (iswctype (btowc (ch
), wt
))
3248 if (translate
&& (is_upper
|| is_lower
)
3249 && (ISUPPER (ch
) || ISLOWER (ch
)))
3253 had_char_class
= true;
3256 boolean is_alnum
= STREQ (str
, "alnum");
3257 boolean is_alpha
= STREQ (str
, "alpha");
3258 boolean is_blank
= STREQ (str
, "blank");
3259 boolean is_cntrl
= STREQ (str
, "cntrl");
3260 boolean is_digit
= STREQ (str
, "digit");
3261 boolean is_graph
= STREQ (str
, "graph");
3262 boolean is_lower
= STREQ (str
, "lower");
3263 boolean is_print
= STREQ (str
, "print");
3264 boolean is_punct
= STREQ (str
, "punct");
3265 boolean is_space
= STREQ (str
, "space");
3266 boolean is_upper
= STREQ (str
, "upper");
3267 boolean is_xdigit
= STREQ (str
, "xdigit");
3269 if (!IS_CHAR_CLASS (str
))
3270 FREE_STACK_RETURN (REG_ECTYPE
);
3272 /* Throw away the ] at the end of the character
3276 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
3278 for (ch
= 0; ch
< 1 << BYTEWIDTH
; ch
++)
3280 /* This was split into 3 if's to
3281 avoid an arbitrary limit in some compiler. */
3282 if ( (is_alnum
&& ISALNUM (ch
))
3283 || (is_alpha
&& ISALPHA (ch
))
3284 || (is_blank
&& ISBLANK (ch
))
3285 || (is_cntrl
&& ISCNTRL (ch
)))
3287 if ( (is_digit
&& ISDIGIT (ch
))
3288 || (is_graph
&& ISGRAPH (ch
))
3289 || (is_lower
&& ISLOWER (ch
))
3290 || (is_print
&& ISPRINT (ch
)))
3292 if ( (is_punct
&& ISPUNCT (ch
))
3293 || (is_space
&& ISSPACE (ch
))
3294 || (is_upper
&& ISUPPER (ch
))
3295 || (is_xdigit
&& ISXDIGIT (ch
)))
3297 if ( translate
&& (is_upper
|| is_lower
)
3298 && (ISUPPER (ch
) || ISLOWER (ch
)))
3301 had_char_class
= true;
3302 # endif /* libc || wctype.h */
3312 had_char_class
= false;
3315 else if (syntax
& RE_CHAR_CLASSES
&& c
== '[' && *p
== '=')
3317 unsigned char str
[MB_LEN_MAX
+ 1];
3320 _NL_CURRENT_WORD (LC_COLLATE
, _NL_COLLATE_NRULES
);
3326 /* If pattern is `[[='. */
3327 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
3332 if ((c
== '=' && *p
== ']') || p
== pend
)
3334 if (c1
< MB_LEN_MAX
)
3337 /* This is in any case an invalid class name. */
3342 if (c
== '=' && *p
== ']' && str
[0] != '\0')
3344 /* If we have no collation data we use the default
3345 collation in which each character is in a class
3346 by itself. It also means that ASCII is the
3347 character set and therefore we cannot have character
3348 with more than one byte in the multibyte
3355 FREE_STACK_RETURN (REG_ECOLLATE
);
3357 /* Throw away the ] at the end of the equivalence
3361 /* Set the bit for the character. */
3362 SET_LIST_BIT (str
[0]);
3367 /* Try to match the byte sequence in `str' against
3368 those known to the collate implementation.
3369 First find out whether the bytes in `str' are
3370 actually from exactly one character. */
3371 const int32_t *table
;
3372 const unsigned char *weights
;
3373 const unsigned char *extra
;
3374 const int32_t *indirect
;
3376 const unsigned char *cp
= str
;
3379 /* This #include defines a local function! */
3380 # include <locale/weight.h>
3382 table
= (const int32_t *)
3383 _NL_CURRENT (LC_COLLATE
, _NL_COLLATE_TABLEMB
);
3384 weights
= (const unsigned char *)
3385 _NL_CURRENT (LC_COLLATE
, _NL_COLLATE_WEIGHTMB
);
3386 extra
= (const unsigned char *)
3387 _NL_CURRENT (LC_COLLATE
, _NL_COLLATE_EXTRAMB
);
3388 indirect
= (const int32_t *)
3389 _NL_CURRENT (LC_COLLATE
, _NL_COLLATE_INDIRECTMB
);
3391 idx
= findidx (&cp
);
3392 if (idx
== 0 || cp
< str
+ c1
)
3393 /* This is no valid character. */
3394 FREE_STACK_RETURN (REG_ECOLLATE
);
3396 /* Throw away the ] at the end of the equivalence
3400 /* Now we have to go throught the whole table
3401 and find all characters which have the same
3404 XXX Note that this is not entirely correct.
3405 we would have to match multibyte sequences
3406 but this is not possible with the current
3408 for (ch
= 1; ch
< 256; ++ch
)
3409 /* XXX This test would have to be changed if we
3410 would allow matching multibyte sequences. */
3413 int32_t idx2
= table
[ch
];
3414 size_t len
= weights
[idx2
];
3416 /* Test whether the lenghts match. */
3417 if (weights
[idx
] == len
)
3419 /* They do. New compare the bytes of
3424 && (weights
[idx
+ 1 + cnt
]
3425 == weights
[idx2
+ 1 + cnt
]))
3429 /* They match. Mark the character as
3436 had_char_class
= true;
3446 had_char_class
= false;
3449 else if (syntax
& RE_CHAR_CLASSES
&& c
== '[' && *p
== '.')
3451 unsigned char str
[128]; /* Should be large enough. */
3454 _NL_CURRENT_WORD (LC_COLLATE
, _NL_COLLATE_NRULES
);
3460 /* If pattern is `[[.'. */
3461 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
3466 if ((c
== '.' && *p
== ']') || p
== pend
)
3468 if (c1
< sizeof (str
))
3471 /* This is in any case an invalid class name. */
3476 if (c
== '.' && *p
== ']' && str
[0] != '\0')
3478 /* If we have no collation data we use the default
3479 collation in which each character is the name
3480 for its own class which contains only the one
3481 character. It also means that ASCII is the
3482 character set and therefore we cannot have character
3483 with more than one byte in the multibyte
3490 FREE_STACK_RETURN (REG_ECOLLATE
);
3492 /* Throw away the ] at the end of the equivalence
3496 /* Set the bit for the character. */
3497 SET_LIST_BIT (str
[0]);
3498 range_start
= ((const unsigned char *) str
)[0];
3503 /* Try to match the byte sequence in `str' against
3504 those known to the collate implementation.
3505 First find out whether the bytes in `str' are
3506 actually from exactly one character. */
3508 const int32_t *symb_table
;
3509 const unsigned char *extra
;
3516 _NL_CURRENT_WORD (LC_COLLATE
,
3517 _NL_COLLATE_SYMB_HASH_SIZEMB
);
3518 symb_table
= (const int32_t *)
3519 _NL_CURRENT (LC_COLLATE
,
3520 _NL_COLLATE_SYMB_TABLEMB
);
3521 extra
= (const unsigned char *)
3522 _NL_CURRENT (LC_COLLATE
,
3523 _NL_COLLATE_SYMB_EXTRAMB
);
3525 /* Locate the character in the hashing table. */
3526 hash
= elem_hash (str
, c1
);
3529 elem
= hash
% table_size
;
3530 second
= hash
% (table_size
- 2);
3531 while (symb_table
[2 * elem
] != 0)
3533 /* First compare the hashing value. */
3534 if (symb_table
[2 * elem
] == hash
3535 && c1
== extra
[symb_table
[2 * elem
+ 1]]
3537 &extra
[symb_table
[2 * elem
+ 1]
3541 /* Yep, this is the entry. */
3542 idx
= symb_table
[2 * elem
+ 1];
3543 idx
+= 1 + extra
[idx
];
3551 if (symb_table
[2 * elem
] == 0)
3552 /* This is no valid character. */
3553 FREE_STACK_RETURN (REG_ECOLLATE
);
3555 /* Throw away the ] at the end of the equivalence
3559 /* Now add the multibyte character(s) we found
3562 XXX Note that this is not entirely correct.
3563 we would have to match multibyte sequences
3564 but this is not possible with the current
3565 implementation. Also, we have to match
3566 collating symbols, which expand to more than
3567 one file, as a whole and not allow the
3568 individual bytes. */
3571 range_start
= extra
[idx
];
3574 SET_LIST_BIT (extra
[idx
]);
3579 had_char_class
= false;
3589 had_char_class
= false;
3594 had_char_class
= false;
3600 /* Discard any (non)matching list bytes that are all 0 at the
3601 end of the map. Decrease the map-length byte too. */
3602 while ((int) b
[-1] > 0 && b
[b
[-1] - 1] == 0)
3611 if (syntax
& RE_NO_BK_PARENS
)
3618 if (syntax
& RE_NO_BK_PARENS
)
3625 if (syntax
& RE_NEWLINE_ALT
)
3632 if (syntax
& RE_NO_BK_VBAR
)
3639 if (syntax
& RE_INTERVALS
&& syntax
& RE_NO_BK_BRACES
)
3640 goto handle_interval
;
3646 if (p
== pend
) FREE_STACK_RETURN (REG_EESCAPE
);
3648 /* Do not translate the character after the \, so that we can
3649 distinguish, e.g., \B from \b, even if we normally would
3650 translate, e.g., B to b. */
3656 if (syntax
& RE_NO_BK_PARENS
)
3657 goto normal_backslash
;
3663 if (COMPILE_STACK_FULL
)
3665 RETALLOC (compile_stack
.stack
, compile_stack
.size
<< 1,
3666 compile_stack_elt_t
);
3667 if (compile_stack
.stack
== NULL
) return REG_ESPACE
;
3669 compile_stack
.size
<<= 1;
3672 /* These are the values to restore when we hit end of this
3673 group. They are all relative offsets, so that if the
3674 whole pattern moves because of realloc, they will still
3676 COMPILE_STACK_TOP
.begalt_offset
= begalt
- COMPILED_BUFFER_VAR
;
3677 COMPILE_STACK_TOP
.fixup_alt_jump
3678 = fixup_alt_jump
? fixup_alt_jump
- COMPILED_BUFFER_VAR
+ 1 : 0;
3679 COMPILE_STACK_TOP
.laststart_offset
= b
- COMPILED_BUFFER_VAR
;
3680 COMPILE_STACK_TOP
.regnum
= regnum
;
3682 /* We will eventually replace the 0 with the number of
3683 groups inner to this one. But do not push a
3684 start_memory for groups beyond the last one we can
3685 represent in the compiled pattern. */
3686 if (regnum
<= MAX_REGNUM
)
3688 COMPILE_STACK_TOP
.inner_group_offset
= b
3689 - COMPILED_BUFFER_VAR
+ 2;
3690 BUF_PUSH_3 (start_memory
, regnum
, 0);
3693 compile_stack
.avail
++;
3698 /* If we've reached MAX_REGNUM groups, then this open
3699 won't actually generate any code, so we'll have to
3700 clear pending_exact explicitly. */
3706 if (syntax
& RE_NO_BK_PARENS
) goto normal_backslash
;
3708 if (COMPILE_STACK_EMPTY
)
3710 if (syntax
& RE_UNMATCHED_RIGHT_PAREN_ORD
)
3711 goto normal_backslash
;
3713 FREE_STACK_RETURN (REG_ERPAREN
);
3718 { /* Push a dummy failure point at the end of the
3719 alternative for a possible future
3720 `pop_failure_jump' to pop. See comments at
3721 `push_dummy_failure' in `re_match_2'. */
3722 BUF_PUSH (push_dummy_failure
);
3724 /* We allocated space for this jump when we assigned
3725 to `fixup_alt_jump', in the `handle_alt' case below. */
3726 STORE_JUMP (jump_past_alt
, fixup_alt_jump
, b
- 1);
3729 /* See similar code for backslashed left paren above. */
3730 if (COMPILE_STACK_EMPTY
)
3732 if (syntax
& RE_UNMATCHED_RIGHT_PAREN_ORD
)
3735 FREE_STACK_RETURN (REG_ERPAREN
);
3738 /* Since we just checked for an empty stack above, this
3739 ``can't happen''. */
3740 assert (compile_stack
.avail
!= 0);
3742 /* We don't just want to restore into `regnum', because
3743 later groups should continue to be numbered higher,
3744 as in `(ab)c(de)' -- the second group is #2. */
3745 regnum_t this_group_regnum
;
3747 compile_stack
.avail
--;
3748 begalt
= COMPILED_BUFFER_VAR
+ COMPILE_STACK_TOP
.begalt_offset
;
3750 = COMPILE_STACK_TOP
.fixup_alt_jump
3751 ? COMPILED_BUFFER_VAR
+ COMPILE_STACK_TOP
.fixup_alt_jump
- 1
3753 laststart
= COMPILED_BUFFER_VAR
+ COMPILE_STACK_TOP
.laststart_offset
;
3754 this_group_regnum
= COMPILE_STACK_TOP
.regnum
;
3755 /* If we've reached MAX_REGNUM groups, then this open
3756 won't actually generate any code, so we'll have to
3757 clear pending_exact explicitly. */
3760 /* We're at the end of the group, so now we know how many
3761 groups were inside this one. */
3762 if (this_group_regnum
<= MAX_REGNUM
)
3764 UCHAR_T
*inner_group_loc
3765 = COMPILED_BUFFER_VAR
+ COMPILE_STACK_TOP
.inner_group_offset
;
3767 *inner_group_loc
= regnum
- this_group_regnum
;
3768 BUF_PUSH_3 (stop_memory
, this_group_regnum
,
3769 regnum
- this_group_regnum
);
3775 case '|': /* `\|'. */
3776 if (syntax
& RE_LIMITED_OPS
|| syntax
& RE_NO_BK_VBAR
)
3777 goto normal_backslash
;
3779 if (syntax
& RE_LIMITED_OPS
)
3782 /* Insert before the previous alternative a jump which
3783 jumps to this alternative if the former fails. */
3784 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE
);
3785 INSERT_JUMP (on_failure_jump
, begalt
,
3786 b
+ 2 + 2 * OFFSET_ADDRESS_SIZE
);
3788 b
+= 1 + OFFSET_ADDRESS_SIZE
;
3790 /* The alternative before this one has a jump after it
3791 which gets executed if it gets matched. Adjust that
3792 jump so it will jump to this alternative's analogous
3793 jump (put in below, which in turn will jump to the next
3794 (if any) alternative's such jump, etc.). The last such
3795 jump jumps to the correct final destination. A picture:
3801 If we are at `b', then fixup_alt_jump right now points to a
3802 three-byte space after `a'. We'll put in the jump, set
3803 fixup_alt_jump to right after `b', and leave behind three
3804 bytes which we'll fill in when we get to after `c'. */
3807 STORE_JUMP (jump_past_alt
, fixup_alt_jump
, b
);
3809 /* Mark and leave space for a jump after this alternative,
3810 to be filled in later either by next alternative or
3811 when know we're at the end of a series of alternatives. */
3813 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE
);
3814 b
+= 1 + OFFSET_ADDRESS_SIZE
;
3822 /* If \{ is a literal. */
3823 if (!(syntax
& RE_INTERVALS
)
3824 /* If we're at `\{' and it's not the open-interval
3826 || (syntax
& RE_NO_BK_BRACES
))
3827 goto normal_backslash
;
3831 /* If got here, then the syntax allows intervals. */
3833 /* At least (most) this many matches must be made. */
3834 int lower_bound
= -1, upper_bound
= -1;
3836 /* Place in the uncompiled pattern (i.e., just after
3837 the '{') to go back to if the interval is invalid. */
3838 const CHAR_T
*beg_interval
= p
;
3841 goto invalid_interval
;
3843 GET_UNSIGNED_NUMBER (lower_bound
);
3847 GET_UNSIGNED_NUMBER (upper_bound
);
3848 if (upper_bound
< 0)
3849 upper_bound
= RE_DUP_MAX
;
3852 /* Interval such as `{1}' => match exactly once. */
3853 upper_bound
= lower_bound
;
3855 if (! (0 <= lower_bound
&& lower_bound
<= upper_bound
))
3856 goto invalid_interval
;
3858 if (!(syntax
& RE_NO_BK_BRACES
))
3860 if (c
!= '\\' || p
== pend
)
3861 goto invalid_interval
;
3866 goto invalid_interval
;
3868 /* If it's invalid to have no preceding re. */
3871 if (syntax
& RE_CONTEXT_INVALID_OPS
3872 && !(syntax
& RE_INVALID_INTERVAL_ORD
))
3873 FREE_STACK_RETURN (REG_BADRPT
);
3874 else if (syntax
& RE_CONTEXT_INDEP_OPS
)
3877 goto unfetch_interval
;
3880 /* We just parsed a valid interval. */
3882 if (RE_DUP_MAX
< upper_bound
)
3883 FREE_STACK_RETURN (REG_BADBR
);
3885 /* If the upper bound is zero, don't want to succeed at
3886 all; jump from `laststart' to `b + 3', which will be
3887 the end of the buffer after we insert the jump. */
3888 /* ifdef WCHAR, 'b + 1 + OFFSET_ADDRESS_SIZE'
3889 instead of 'b + 3'. */
3890 if (upper_bound
== 0)
3892 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE
);
3893 INSERT_JUMP (jump
, laststart
, b
+ 1
3894 + OFFSET_ADDRESS_SIZE
);
3895 b
+= 1 + OFFSET_ADDRESS_SIZE
;
3898 /* Otherwise, we have a nontrivial interval. When
3899 we're all done, the pattern will look like:
3900 set_number_at <jump count> <upper bound>
3901 set_number_at <succeed_n count> <lower bound>
3902 succeed_n <after jump addr> <succeed_n count>
3904 jump_n <succeed_n addr> <jump count>
3905 (The upper bound and `jump_n' are omitted if
3906 `upper_bound' is 1, though.) */
3908 { /* If the upper bound is > 1, we need to insert
3909 more at the end of the loop. */
3910 unsigned nbytes
= 2 + 4 * OFFSET_ADDRESS_SIZE
+
3911 (upper_bound
> 1) * (2 + 4 * OFFSET_ADDRESS_SIZE
);
3913 GET_BUFFER_SPACE (nbytes
);
3915 /* Initialize lower bound of the `succeed_n', even
3916 though it will be set during matching by its
3917 attendant `set_number_at' (inserted next),
3918 because `re_compile_fastmap' needs to know.
3919 Jump to the `jump_n' we might insert below. */
3920 INSERT_JUMP2 (succeed_n
, laststart
,
3921 b
+ 1 + 2 * OFFSET_ADDRESS_SIZE
3922 + (upper_bound
> 1) * (1 + 2 * OFFSET_ADDRESS_SIZE
)
3924 b
+= 1 + 2 * OFFSET_ADDRESS_SIZE
;
3926 /* Code to initialize the lower bound. Insert
3927 before the `succeed_n'. The `5' is the last two
3928 bytes of this `set_number_at', plus 3 bytes of
3929 the following `succeed_n'. */
3930 /* ifdef WCHAR, The '1+2*OFFSET_ADDRESS_SIZE'
3931 is the 'set_number_at', plus '1+OFFSET_ADDRESS_SIZE'
3932 of the following `succeed_n'. */
3933 PREFIX(insert_op2
) (set_number_at
, laststart
, 1
3934 + 2 * OFFSET_ADDRESS_SIZE
, lower_bound
, b
);
3935 b
+= 1 + 2 * OFFSET_ADDRESS_SIZE
;
3937 if (upper_bound
> 1)
3938 { /* More than one repetition is allowed, so
3939 append a backward jump to the `succeed_n'
3940 that starts this interval.
3942 When we've reached this during matching,
3943 we'll have matched the interval once, so
3944 jump back only `upper_bound - 1' times. */
3945 STORE_JUMP2 (jump_n
, b
, laststart
3946 + 2 * OFFSET_ADDRESS_SIZE
+ 1,
3948 b
+= 1 + 2 * OFFSET_ADDRESS_SIZE
;
3950 /* The location we want to set is the second
3951 parameter of the `jump_n'; that is `b-2' as
3952 an absolute address. `laststart' will be
3953 the `set_number_at' we're about to insert;
3954 `laststart+3' the number to set, the source
3955 for the relative address. But we are
3956 inserting into the middle of the pattern --
3957 so everything is getting moved up by 5.
3958 Conclusion: (b - 2) - (laststart + 3) + 5,
3959 i.e., b - laststart.
3961 We insert this at the beginning of the loop
3962 so that if we fail during matching, we'll
3963 reinitialize the bounds. */
3964 PREFIX(insert_op2
) (set_number_at
, laststart
,
3966 upper_bound
- 1, b
);
3967 b
+= 1 + 2 * OFFSET_ADDRESS_SIZE
;
3974 if (!(syntax
& RE_INVALID_INTERVAL_ORD
))
3975 FREE_STACK_RETURN (p
== pend
? REG_EBRACE
: REG_BADBR
);
3977 /* Match the characters as literals. */
3980 if (syntax
& RE_NO_BK_BRACES
)
3983 goto normal_backslash
;
3987 /* There is no way to specify the before_dot and after_dot
3988 operators. rms says this is ok. --karl */
3996 BUF_PUSH_2 (syntaxspec
, syntax_spec_code
[c
]);
4002 BUF_PUSH_2 (notsyntaxspec
, syntax_spec_code
[c
]);
4008 if (syntax
& RE_NO_GNU_OPS
)
4011 BUF_PUSH (wordchar
);
4016 if (syntax
& RE_NO_GNU_OPS
)
4019 BUF_PUSH (notwordchar
);
4024 if (syntax
& RE_NO_GNU_OPS
)
4030 if (syntax
& RE_NO_GNU_OPS
)
4036 if (syntax
& RE_NO_GNU_OPS
)
4038 BUF_PUSH (wordbound
);
4042 if (syntax
& RE_NO_GNU_OPS
)
4044 BUF_PUSH (notwordbound
);
4048 if (syntax
& RE_NO_GNU_OPS
)
4054 if (syntax
& RE_NO_GNU_OPS
)
4059 case '1': case '2': case '3': case '4': case '5':
4060 case '6': case '7': case '8': case '9':
4061 if (syntax
& RE_NO_BK_REFS
)
4067 FREE_STACK_RETURN (REG_ESUBREG
);
4069 /* Can't back reference to a subexpression if inside of it. */
4070 if (group_in_compile_stack (compile_stack
, (regnum_t
) c1
))
4074 BUF_PUSH_2 (duplicate
, c1
);
4080 if (syntax
& RE_BK_PLUS_QM
)
4083 goto normal_backslash
;
4087 /* You might think it would be useful for \ to mean
4088 not to translate; but if we don't translate it
4089 it will never match anything. */
4097 /* Expects the character in `c'. */
4099 /* If no exactn currently being built. */
4102 /* If last exactn handle binary(or character) and
4103 new exactn handle character(or binary). */
4104 || is_exactn_bin
!= is_binary
[p
- 1 - pattern
]
4107 /* If last exactn not at current position. */
4108 || pending_exact
+ *pending_exact
+ 1 != b
4110 /* We have only one byte following the exactn for the count. */
4111 || *pending_exact
== (1 << BYTEWIDTH
) - 1
4113 /* If followed by a repetition operator. */
4114 || *p
== '*' || *p
== '^'
4115 || ((syntax
& RE_BK_PLUS_QM
)
4116 ? *p
== '\\' && (p
[1] == '+' || p
[1] == '?')
4117 : (*p
== '+' || *p
== '?'))
4118 || ((syntax
& RE_INTERVALS
)
4119 && ((syntax
& RE_NO_BK_BRACES
)
4121 : (p
[0] == '\\' && p
[1] == '{'))))
4123 /* Start building a new exactn. */
4128 /* Is this exactn binary data or character? */
4129 is_exactn_bin
= is_binary
[p
- 1 - pattern
];
4131 BUF_PUSH_2 (exactn_bin
, 0);
4133 BUF_PUSH_2 (exactn
, 0);
4135 BUF_PUSH_2 (exactn
, 0);
4137 pending_exact
= b
- 1;
4144 } /* while p != pend */
4147 /* Through the pattern now. */
4150 STORE_JUMP (jump_past_alt
, fixup_alt_jump
, b
);
4152 if (!COMPILE_STACK_EMPTY
)
4153 FREE_STACK_RETURN (REG_EPAREN
);
4155 /* If we don't want backtracking, force success
4156 the first time we reach the end of the compiled pattern. */
4157 if (syntax
& RE_NO_POSIX_BACKTRACKING
)
4165 free (compile_stack
.stack
);
4167 /* We have succeeded; set the length of the buffer. */
4169 bufp
->used
= (uintptr_t) b
- (uintptr_t) COMPILED_BUFFER_VAR
;
4171 bufp
->used
= b
- bufp
->buffer
;
4177 DEBUG_PRINT1 ("\nCompiled pattern: \n");
4178 PREFIX(print_compiled_pattern
) (bufp
);
4182 #ifndef MATCH_MAY_ALLOCATE
4183 /* Initialize the failure stack to the largest possible stack. This
4184 isn't necessary unless we're trying to avoid calling alloca in
4185 the search and match routines. */
4187 int num_regs
= bufp
->re_nsub
+ 1;
4189 /* Since DOUBLE_FAIL_STACK refuses to double only if the current size
4190 is strictly greater than re_max_failures, the largest possible stack
4191 is 2 * re_max_failures failure points. */
4192 if (fail_stack
.size
< (2 * re_max_failures
* MAX_FAILURE_ITEMS
))
4194 fail_stack
.size
= (2 * re_max_failures
* MAX_FAILURE_ITEMS
);
4197 if (! fail_stack
.stack
)
4199 = (PREFIX(fail_stack_elt_t
) *) xmalloc (fail_stack
.size
4200 * sizeof (PREFIX(fail_stack_elt_t
)));
4203 = (PREFIX(fail_stack_elt_t
) *) xrealloc (fail_stack
.stack
,
4205 * sizeof (PREFIX(fail_stack_elt_t
))));
4206 # else /* not emacs */
4207 if (! fail_stack
.stack
)
4209 = malloc (fail_stack
.size
* sizeof (PREFIX(fail_stack_elt_t
)));
4212 = realloc (fail_stack
.stack
,
4213 fail_stack
.size
* sizeof (PREFIX(fail_stack_elt_t
)));
4214 # endif /* not emacs */
4217 PREFIX(regex_grow_registers
) (num_regs
);
4219 #endif /* not MATCH_MAY_ALLOCATE */
4222 } /* regex_compile */
4224 /* Subroutines for `regex_compile'. */
4226 /* Store OP at LOC followed by two-byte integer parameter ARG. */
4227 /* ifdef WCHAR, integer parameter is 1 wchar_t. */
4230 PREFIX(store_op1
) (re_opcode_t op
, UCHAR_T
*loc
, int arg
)
4232 *loc
= (UCHAR_T
) op
;
4233 STORE_NUMBER (loc
+ 1, arg
);
4237 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
4238 /* ifdef WCHAR, integer parameter is 1 wchar_t. */
4241 PREFIX(store_op2
) (re_opcode_t op
, UCHAR_T
*loc
, int arg1
, int arg2
)
4243 *loc
= (UCHAR_T
) op
;
4244 STORE_NUMBER (loc
+ 1, arg1
);
4245 STORE_NUMBER (loc
+ 1 + OFFSET_ADDRESS_SIZE
, arg2
);
4249 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
4250 for OP followed by two-byte integer parameter ARG. */
4251 /* ifdef WCHAR, integer parameter is 1 wchar_t. */
4254 PREFIX(insert_op1
) (re_opcode_t op
, UCHAR_T
*loc
, int arg
, UCHAR_T
*end
)
4256 register UCHAR_T
*pfrom
= end
;
4257 register UCHAR_T
*pto
= end
+ 1 + OFFSET_ADDRESS_SIZE
;
4259 while (pfrom
!= loc
)
4262 PREFIX(store_op1
) (op
, loc
, arg
);
4266 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
4267 /* ifdef WCHAR, integer parameter is 1 wchar_t. */
4270 PREFIX(insert_op2
) (re_opcode_t op
, UCHAR_T
*loc
, int arg1
, int arg2
,
4273 register UCHAR_T
*pfrom
= end
;
4274 register UCHAR_T
*pto
= end
+ 1 + 2 * OFFSET_ADDRESS_SIZE
;
4276 while (pfrom
!= loc
)
4279 PREFIX(store_op2
) (op
, loc
, arg1
, arg2
);
4283 /* P points to just after a ^ in PATTERN. Return true if that ^ comes
4284 after an alternative or a begin-subexpression. We assume there is at
4285 least one character before the ^. */
4288 PREFIX(at_begline_loc_p
) (const CHAR_T
*pattern
, const CHAR_T
*p
,
4289 reg_syntax_t syntax
)
4291 const CHAR_T
*prev
= p
- 2;
4292 boolean prev_prev_backslash
= prev
> pattern
&& prev
[-1] == '\\';
4295 /* After a subexpression? */
4296 (*prev
== '(' && (syntax
& RE_NO_BK_PARENS
|| prev_prev_backslash
))
4297 /* After an alternative? */
4298 || (*prev
== '|' && (syntax
& RE_NO_BK_VBAR
|| prev_prev_backslash
));
4302 /* The dual of at_begline_loc_p. This one is for $. We assume there is
4303 at least one character after the $, i.e., `P < PEND'. */
4306 PREFIX(at_endline_loc_p
) (const CHAR_T
*p
, const CHAR_T
*pend
,
4307 reg_syntax_t syntax
)
4309 const CHAR_T
*next
= p
;
4310 boolean next_backslash
= *next
== '\\';
4311 const CHAR_T
*next_next
= p
+ 1 < pend
? p
+ 1 : 0;
4314 /* Before a subexpression? */
4315 (syntax
& RE_NO_BK_PARENS
? *next
== ')'
4316 : next_backslash
&& next_next
&& *next_next
== ')')
4317 /* Before an alternative? */
4318 || (syntax
& RE_NO_BK_VBAR
? *next
== '|'
4319 : next_backslash
&& next_next
&& *next_next
== '|');
4322 #else /* not INSIDE_RECURSION */
4324 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
4325 false if it's not. */
4328 group_in_compile_stack (compile_stack_type compile_stack
,
4333 for (this_element
= compile_stack
.avail
- 1;
4336 if (compile_stack
.stack
[this_element
].regnum
== regnum
)
4341 #endif /* not INSIDE_RECURSION */
4343 #ifdef INSIDE_RECURSION
4346 /* This insert space, which size is "num", into the pattern at "loc".
4347 "end" must point the end of the allocated buffer. */
4349 insert_space (int num
, CHAR_T
*loc
, CHAR_T
*end
)
4351 register CHAR_T
*pto
= end
;
4352 register CHAR_T
*pfrom
= end
- num
;
4354 while (pfrom
>= loc
)
4360 static reg_errcode_t
4361 wcs_compile_range (CHAR_T range_start_char
,
4362 const CHAR_T
**p_ptr
, const CHAR_T
*pend
,
4363 RE_TRANSLATE_TYPE translate
, reg_syntax_t syntax
,
4364 CHAR_T
*b
, CHAR_T
*char_set
)
4366 const CHAR_T
*p
= *p_ptr
;
4367 CHAR_T range_start
, range_end
;
4371 uint32_t start_val
, end_val
;
4377 nrules
= _NL_CURRENT_WORD (LC_COLLATE
, _NL_COLLATE_NRULES
);
4380 const char *collseq
= (const char *) _NL_CURRENT(LC_COLLATE
,
4381 _NL_COLLATE_COLLSEQWC
);
4382 const unsigned char *extra
= (const unsigned char *)
4383 _NL_CURRENT (LC_COLLATE
, _NL_COLLATE_SYMB_EXTRAMB
);
4385 if (range_start_char
< -1)
4387 /* range_start is a collating symbol. */
4389 /* Retreive the index and get collation sequence value. */
4390 wextra
= (int32_t*)(extra
+ char_set
[-range_start_char
]);
4391 start_val
= wextra
[1 + *wextra
];
4394 start_val
= collseq_table_lookup(collseq
, TRANSLATE(range_start_char
));
4396 end_val
= collseq_table_lookup (collseq
, TRANSLATE (p
[0]));
4398 /* Report an error if the range is empty and the syntax prohibits
4400 ret
= ((syntax
& RE_NO_EMPTY_RANGES
)
4401 && (start_val
> end_val
))? REG_ERANGE
: REG_NOERROR
;
4403 /* Insert space to the end of the char_ranges. */
4404 insert_space(2, b
- char_set
[5] - 2, b
- 1);
4405 *(b
- char_set
[5] - 2) = (wchar_t)start_val
;
4406 *(b
- char_set
[5] - 1) = (wchar_t)end_val
;
4407 char_set
[4]++; /* ranges_index */
4412 range_start
= (range_start_char
>= 0)? TRANSLATE (range_start_char
):
4414 range_end
= TRANSLATE (p
[0]);
4415 /* Report an error if the range is empty and the syntax prohibits
4417 ret
= ((syntax
& RE_NO_EMPTY_RANGES
)
4418 && (range_start
> range_end
))? REG_ERANGE
: REG_NOERROR
;
4420 /* Insert space to the end of the char_ranges. */
4421 insert_space(2, b
- char_set
[5] - 2, b
- 1);
4422 *(b
- char_set
[5] - 2) = range_start
;
4423 *(b
- char_set
[5] - 1) = range_end
;
4424 char_set
[4]++; /* ranges_index */
4426 /* Have to increment the pointer into the pattern string, so the
4427 caller isn't still at the ending character. */
4433 /* Read the ending character of a range (in a bracket expression) from the
4434 uncompiled pattern *P_PTR (which ends at PEND). We assume the
4435 starting character is in `P[-2]'. (`P[-1]' is the character `-'.)
4436 Then we set the translation of all bits between the starting and
4437 ending characters (inclusive) in the compiled pattern B.
4439 Return an error code.
4441 We use these short variable names so we can use the same macros as
4442 `regex_compile' itself. */
4444 static reg_errcode_t
4445 byte_compile_range (unsigned int range_start_char
,
4446 const char **p_ptr
, const char *pend
,
4447 RE_TRANSLATE_TYPE translate
, reg_syntax_t syntax
,
4451 const char *p
= *p_ptr
;
4454 const unsigned char *collseq
;
4455 unsigned int start_colseq
;
4456 unsigned int end_colseq
;
4464 /* Have to increment the pointer into the pattern string, so the
4465 caller isn't still at the ending character. */
4468 /* Report an error if the range is empty and the syntax prohibits this. */
4469 ret
= syntax
& RE_NO_EMPTY_RANGES
? REG_ERANGE
: REG_NOERROR
;
4472 collseq
= (const unsigned char *) _NL_CURRENT (LC_COLLATE
,
4473 _NL_COLLATE_COLLSEQMB
);
4475 start_colseq
= collseq
[(unsigned char) TRANSLATE (range_start_char
)];
4476 end_colseq
= collseq
[(unsigned char) TRANSLATE (p
[0])];
4477 for (this_char
= 0; this_char
<= (unsigned char) -1; ++this_char
)
4479 unsigned int this_colseq
= collseq
[(unsigned char) TRANSLATE (this_char
)];
4481 if (start_colseq
<= this_colseq
&& this_colseq
<= end_colseq
)
4483 SET_LIST_BIT (TRANSLATE (this_char
));
4488 /* Here we see why `this_char' has to be larger than an `unsigned
4489 char' -- we would otherwise go into an infinite loop, since all
4490 characters <= 0xff. */
4491 range_start_char
= TRANSLATE (range_start_char
);
4492 /* TRANSLATE(p[0]) is casted to char (not unsigned char) in TRANSLATE,
4493 and some compilers cast it to int implicitly, so following for_loop
4494 may fall to (almost) infinite loop.
4495 e.g. If translate[p[0]] = 0xff, end_char may equals to 0xffffffff.
4496 To avoid this, we cast p[0] to unsigned int and truncate it. */
4497 end_char
= ((unsigned)TRANSLATE(p
[0]) & ((1 << BYTEWIDTH
) - 1));
4499 for (this_char
= range_start_char
; this_char
<= end_char
; ++this_char
)
4501 SET_LIST_BIT (TRANSLATE (this_char
));
4510 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
4511 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
4512 characters can start a string that matches the pattern. This fastmap
4513 is used by re_search to skip quickly over impossible starting points.
4515 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
4516 area as BUFP->fastmap.
4518 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
4521 Returns 0 if we succeed, -2 if an internal error. */
4524 /* local function for re_compile_fastmap.
4525 truncate wchar_t character to char. */
4527 static unsigned char
4528 truncate_wchar (CHAR_T c
)
4530 unsigned char buf
[MB_CUR_MAX
];
4533 memset (&state
, '\0', sizeof (state
));
4534 retval
= wcrtomb (buf
, c
, &state
);
4535 return retval
> 0 ? buf
[0] : (unsigned char) c
;
4540 PREFIX(re_compile_fastmap
) (struct re_pattern_buffer
*bufp
)
4543 #ifdef MATCH_MAY_ALLOCATE
4544 PREFIX(fail_stack_type
) fail_stack
;
4546 #ifndef REGEX_MALLOC
4550 register char *fastmap
= bufp
->fastmap
;
4553 /* We need to cast pattern to (wchar_t*), because we casted this compiled
4554 pattern to (char*) in regex_compile. */
4555 UCHAR_T
*pattern
= (UCHAR_T
*)bufp
->buffer
;
4556 register UCHAR_T
*pend
= (UCHAR_T
*) (bufp
->buffer
+ bufp
->used
);
4558 UCHAR_T
*pattern
= bufp
->buffer
;
4559 register UCHAR_T
*pend
= pattern
+ bufp
->used
;
4561 UCHAR_T
*p
= pattern
;
4564 /* This holds the pointer to the failure stack, when
4565 it is allocated relocatably. */
4566 fail_stack_elt_t
*failure_stack_ptr
;
4569 /* Assume that each path through the pattern can be null until
4570 proven otherwise. We set this false at the bottom of switch
4571 statement, to which we get only if a particular path doesn't
4572 match the empty string. */
4573 boolean path_can_be_null
= true;
4575 /* We aren't doing a `succeed_n' to begin with. */
4576 boolean succeed_n_p
= false;
4578 assert (fastmap
!= NULL
&& p
!= NULL
);
4581 bzero (fastmap
, 1 << BYTEWIDTH
); /* Assume nothing's valid. */
4582 bufp
->fastmap_accurate
= 1; /* It will be when we're done. */
4583 bufp
->can_be_null
= 0;
4587 if (p
== pend
|| *p
== succeed
)
4589 /* We have reached the (effective) end of pattern. */
4590 if (!FAIL_STACK_EMPTY ())
4592 bufp
->can_be_null
|= path_can_be_null
;
4594 /* Reset for next path. */
4595 path_can_be_null
= true;
4597 p
= fail_stack
.stack
[--fail_stack
.avail
].pointer
;
4605 /* We should never be about to go beyond the end of the pattern. */
4608 switch (SWITCH_ENUM_CAST ((re_opcode_t
) *p
++))
4611 /* I guess the idea here is to simply not bother with a fastmap
4612 if a backreference is used, since it's too hard to figure out
4613 the fastmap for the corresponding group. Setting
4614 `can_be_null' stops `re_search_2' from using the fastmap, so
4615 that is all we do. */
4617 bufp
->can_be_null
= 1;
4621 /* Following are the cases which match a character. These end
4626 fastmap
[truncate_wchar(p
[1])] = 1;
4640 /* It is hard to distinguish fastmap from (multi byte) characters
4641 which depends on current locale. */
4646 bufp
->can_be_null
= 1;
4650 for (j
= *p
++ * BYTEWIDTH
- 1; j
>= 0; j
--)
4651 if (p
[j
/ BYTEWIDTH
] & (1 << (j
% BYTEWIDTH
)))
4657 /* Chars beyond end of map must be allowed. */
4658 for (j
= *p
* BYTEWIDTH
; j
< (1 << BYTEWIDTH
); j
++)
4661 for (j
= *p
++ * BYTEWIDTH
- 1; j
>= 0; j
--)
4662 if (!(p
[j
/ BYTEWIDTH
] & (1 << (j
% BYTEWIDTH
))))
4668 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
4669 if (SYNTAX (j
) == Sword
)
4675 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
4676 if (SYNTAX (j
) != Sword
)
4683 int fastmap_newline
= fastmap
['\n'];
4685 /* `.' matches anything ... */
4686 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
4689 /* ... except perhaps newline. */
4690 if (!(bufp
->syntax
& RE_DOT_NEWLINE
))
4691 fastmap
['\n'] = fastmap_newline
;
4693 /* Return if we have already set `can_be_null'; if we have,
4694 then the fastmap is irrelevant. Something's wrong here. */
4695 else if (bufp
->can_be_null
)
4698 /* Otherwise, have to check alternative paths. */
4705 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
4706 if (SYNTAX (j
) == (enum syntaxcode
) k
)
4713 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
4714 if (SYNTAX (j
) != (enum syntaxcode
) k
)
4719 /* All cases after this match the empty string. These end with
4739 case push_dummy_failure
:
4744 case pop_failure_jump
:
4745 case maybe_pop_jump
:
4748 case dummy_failure_jump
:
4749 EXTRACT_NUMBER_AND_INCR (j
, p
);
4754 /* Jump backward implies we just went through the body of a
4755 loop and matched nothing. Opcode jumped to should be
4756 `on_failure_jump' or `succeed_n'. Just treat it like an
4757 ordinary jump. For a * loop, it has pushed its failure
4758 point already; if so, discard that as redundant. */
4759 if ((re_opcode_t
) *p
!= on_failure_jump
4760 && (re_opcode_t
) *p
!= succeed_n
)
4764 EXTRACT_NUMBER_AND_INCR (j
, p
);
4767 /* If what's on the stack is where we are now, pop it. */
4768 if (!FAIL_STACK_EMPTY ()
4769 && fail_stack
.stack
[fail_stack
.avail
- 1].pointer
== p
)
4775 case on_failure_jump
:
4776 case on_failure_keep_string_jump
:
4777 handle_on_failure_jump
:
4778 EXTRACT_NUMBER_AND_INCR (j
, p
);
4780 /* For some patterns, e.g., `(a?)?', `p+j' here points to the
4781 end of the pattern. We don't want to push such a point,
4782 since when we restore it above, entering the switch will
4783 increment `p' past the end of the pattern. We don't need
4784 to push such a point since we obviously won't find any more
4785 fastmap entries beyond `pend'. Such a pattern can match
4786 the null string, though. */
4789 if (!PUSH_PATTERN_OP (p
+ j
, fail_stack
))
4791 RESET_FAIL_STACK ();
4796 bufp
->can_be_null
= 1;
4800 EXTRACT_NUMBER_AND_INCR (k
, p
); /* Skip the n. */
4801 succeed_n_p
= false;
4808 /* Get to the number of times to succeed. */
4809 p
+= OFFSET_ADDRESS_SIZE
;
4811 /* Increment p past the n for when k != 0. */
4812 EXTRACT_NUMBER_AND_INCR (k
, p
);
4815 p
-= 2 * OFFSET_ADDRESS_SIZE
;
4816 succeed_n_p
= true; /* Spaghetti code alert. */
4817 goto handle_on_failure_jump
;
4823 p
+= 2 * OFFSET_ADDRESS_SIZE
;
4834 abort (); /* We have listed all the cases. */
4837 /* Getting here means we have found the possible starting
4838 characters for one path of the pattern -- and that the empty
4839 string does not match. We need not follow this path further.
4840 Instead, look at the next alternative (remembered on the
4841 stack), or quit if no more. The test at the top of the loop
4842 does these things. */
4843 path_can_be_null
= false;
4847 /* Set `can_be_null' for the last path (also the first path, if the
4848 pattern is empty). */
4849 bufp
->can_be_null
|= path_can_be_null
;
4852 RESET_FAIL_STACK ();
4856 #else /* not INSIDE_RECURSION */
4859 re_compile_fastmap (struct re_pattern_buffer
*bufp
)
4862 if (MB_CUR_MAX
!= 1)
4863 return wcs_re_compile_fastmap(bufp
);
4866 return byte_re_compile_fastmap(bufp
);
4867 } /* re_compile_fastmap */
4869 weak_alias (__re_compile_fastmap
, re_compile_fastmap
)
4873 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
4874 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
4875 this memory for recording register information. STARTS and ENDS
4876 must be allocated using the malloc library routine, and must each
4877 be at least NUM_REGS * sizeof (regoff_t) bytes long.
4879 If NUM_REGS == 0, then subsequent matches should allocate their own
4882 Unless this function is called, the first search or match using
4883 PATTERN_BUFFER will allocate its own register data, without
4884 freeing the old data. */
4887 re_set_registers (struct re_pattern_buffer
*bufp
,
4888 struct re_registers
*regs
,
4889 unsigned int num_regs
,
4890 regoff_t
*starts
, regoff_t
*ends
)
4894 bufp
->regs_allocated
= REGS_REALLOCATE
;
4895 regs
->num_regs
= num_regs
;
4896 regs
->start
= starts
;
4901 bufp
->regs_allocated
= REGS_UNALLOCATED
;
4903 regs
->start
= regs
->end
= (regoff_t
*) 0;
4907 weak_alias (__re_set_registers
, re_set_registers
)
4910 /* Searching routines. */
4912 /* Like re_search_2, below, but only one string is specified, and
4913 doesn't let you say where to stop matching. */
4916 re_search (struct re_pattern_buffer
*bufp
,
4918 int size
, int startpos
, int range
,
4919 struct re_registers
*regs
)
4921 return re_search_2 (bufp
, NULL
, 0, string
, size
, startpos
, range
,
4925 weak_alias (__re_search
, re_search
)
4929 /* Using the compiled pattern in BUFP->buffer, first tries to match the
4930 virtual concatenation of STRING1 and STRING2, starting first at index
4931 STARTPOS, then at STARTPOS + 1, and so on.
4933 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
4935 RANGE is how far to scan while trying to match. RANGE = 0 means try
4936 only at STARTPOS; in general, the last start tried is STARTPOS +
4939 In REGS, return the indices of the virtual concatenation of STRING1
4940 and STRING2 that matched the entire BUFP->buffer and its contained
4943 Do not consider matching one past the index STOP in the virtual
4944 concatenation of STRING1 and STRING2.
4946 We return either the position in the strings at which the match was
4947 found, -1 if no match, or -2 if error (such as failure
4951 re_search_2 (struct re_pattern_buffer
*bufp
,
4952 const char *string1
, int size1
,
4953 const char *string2
, int size2
,
4954 int startpos
, int range
,
4955 struct re_registers
*regs
,
4959 if (MB_CUR_MAX
!= 1)
4960 return wcs_re_search_2 (bufp
, string1
, size1
, string2
, size2
, startpos
,
4964 return byte_re_search_2 (bufp
, string1
, size1
, string2
, size2
, startpos
,
4968 weak_alias (__re_search_2
, re_search_2
)
4971 #endif /* not INSIDE_RECURSION */
4973 #ifdef INSIDE_RECURSION
4975 #ifdef MATCH_MAY_ALLOCATE
4976 # define FREE_VAR(var) if (var) REGEX_FREE (var); var = NULL
4978 # define FREE_VAR(var) if (var) free (var); var = NULL
4982 # define MAX_ALLOCA_SIZE 2000
4984 # define FREE_WCS_BUFFERS() \
4986 if (size1 > MAX_ALLOCA_SIZE) \
4988 free (wcs_string1); \
4989 free (mbs_offset1); \
4993 FREE_VAR (wcs_string1); \
4994 FREE_VAR (mbs_offset1); \
4996 if (size2 > MAX_ALLOCA_SIZE) \
4998 free (wcs_string2); \
4999 free (mbs_offset2); \
5003 FREE_VAR (wcs_string2); \
5004 FREE_VAR (mbs_offset2); \
5012 PREFIX(re_search_2
) (struct re_pattern_buffer
*bufp
,
5013 const char *string1
, int size1
,
5014 const char *string2
, int size2
,
5015 int startpos
, int range
,
5016 struct re_registers
*regs
,
5020 register char *fastmap
= bufp
->fastmap
;
5021 register RE_TRANSLATE_TYPE translate
= bufp
->translate
;
5022 int total_size
= size1
+ size2
;
5023 int endpos
= startpos
+ range
;
5025 /* We need wchar_t* buffers correspond to cstring1, cstring2. */
5026 wchar_t *wcs_string1
= NULL
, *wcs_string2
= NULL
;
5027 /* We need the size of wchar_t buffers correspond to csize1, csize2. */
5028 int wcs_size1
= 0, wcs_size2
= 0;
5029 /* offset buffer for optimizatoin. See convert_mbs_to_wc. */
5030 int *mbs_offset1
= NULL
, *mbs_offset2
= NULL
;
5031 /* They hold whether each wchar_t is binary data or not. */
5032 char *is_binary
= NULL
;
5035 /* Check for out-of-range STARTPOS. */
5036 if (startpos
< 0 || startpos
> total_size
)
5039 /* Fix up RANGE if it might eventually take us outside
5040 the virtual concatenation of STRING1 and STRING2.
5041 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
5043 range
= 0 - startpos
;
5044 else if (endpos
> total_size
)
5045 range
= total_size
- startpos
;
5047 /* If the search isn't to be a backwards one, don't waste time in a
5048 search for a pattern that must be anchored. */
5049 if (bufp
->used
> 0 && range
> 0
5050 && ((re_opcode_t
) bufp
->buffer
[0] == begbuf
5051 /* `begline' is like `begbuf' if it cannot match at newlines. */
5052 || ((re_opcode_t
) bufp
->buffer
[0] == begline
5053 && !bufp
->newline_anchor
)))
5062 /* In a forward search for something that starts with \=.
5063 don't keep searching past point. */
5064 if (bufp
->used
> 0 && (re_opcode_t
) bufp
->buffer
[0] == at_dot
&& range
> 0)
5066 range
= PT
- startpos
;
5072 /* Update the fastmap now if not correct already. */
5073 if (fastmap
&& !bufp
->fastmap_accurate
)
5074 if (re_compile_fastmap (bufp
) == -2)
5078 /* Allocate wchar_t array for wcs_string1 and wcs_string2 and
5079 fill them with converted string. */
5082 if (size1
> MAX_ALLOCA_SIZE
)
5084 wcs_string1
= TALLOC (size1
+ 1, CHAR_T
);
5085 mbs_offset1
= TALLOC (size1
+ 1, int);
5086 is_binary
= TALLOC (size1
+ 1, char);
5090 wcs_string1
= REGEX_TALLOC (size1
+ 1, CHAR_T
);
5091 mbs_offset1
= REGEX_TALLOC (size1
+ 1, int);
5092 is_binary
= REGEX_TALLOC (size1
+ 1, char);
5094 if (!wcs_string1
|| !mbs_offset1
|| !is_binary
)
5096 if (size1
> MAX_ALLOCA_SIZE
)
5104 FREE_VAR (wcs_string1
);
5105 FREE_VAR (mbs_offset1
);
5106 FREE_VAR (is_binary
);
5110 wcs_size1
= convert_mbs_to_wcs(wcs_string1
, string1
, size1
,
5111 mbs_offset1
, is_binary
);
5112 wcs_string1
[wcs_size1
] = L
'\0'; /* for a sentinel */
5113 if (size1
> MAX_ALLOCA_SIZE
)
5116 FREE_VAR (is_binary
);
5120 if (size2
> MAX_ALLOCA_SIZE
)
5122 wcs_string2
= TALLOC (size2
+ 1, CHAR_T
);
5123 mbs_offset2
= TALLOC (size2
+ 1, int);
5124 is_binary
= TALLOC (size2
+ 1, char);
5128 wcs_string2
= REGEX_TALLOC (size2
+ 1, CHAR_T
);
5129 mbs_offset2
= REGEX_TALLOC (size2
+ 1, int);
5130 is_binary
= REGEX_TALLOC (size2
+ 1, char);
5132 if (!wcs_string2
|| !mbs_offset2
|| !is_binary
)
5134 FREE_WCS_BUFFERS ();
5135 if (size2
> MAX_ALLOCA_SIZE
)
5138 FREE_VAR (is_binary
);
5141 wcs_size2
= convert_mbs_to_wcs(wcs_string2
, string2
, size2
,
5142 mbs_offset2
, is_binary
);
5143 wcs_string2
[wcs_size2
] = L
'\0'; /* for a sentinel */
5144 if (size2
> MAX_ALLOCA_SIZE
)
5147 FREE_VAR (is_binary
);
5152 /* Loop through the string, looking for a place to start matching. */
5155 /* If a fastmap is supplied, skip quickly over characters that
5156 cannot be the start of a match. If the pattern can match the
5157 null string, however, we don't need to skip characters; we want
5158 the first null string. */
5159 if (fastmap
&& startpos
< total_size
&& !bufp
->can_be_null
)
5161 if (range
> 0) /* Searching forwards. */
5163 register const char *d
;
5164 register int lim
= 0;
5167 if (startpos
< size1
&& startpos
+ range
>= size1
)
5168 lim
= range
- (size1
- startpos
);
5170 d
= (startpos
>= size1
? string2
- size1
: string1
) + startpos
;
5172 /* Written out as an if-else to avoid testing `translate'
5176 && !fastmap
[(unsigned char)
5177 translate
[(unsigned char) *d
++]])
5180 while (range
> lim
&& !fastmap
[(unsigned char) *d
++])
5183 startpos
+= irange
- range
;
5185 else /* Searching backwards. */
5187 register CHAR_T c
= (size1
== 0 || startpos
>= size1
5188 ? string2
[startpos
- size1
]
5189 : string1
[startpos
]);
5191 if (!fastmap
[(unsigned char) TRANSLATE (c
)])
5196 /* If can't match the null string, and that's all we have left, fail. */
5197 if (range
>= 0 && startpos
== total_size
&& fastmap
5198 && !bufp
->can_be_null
)
5201 FREE_WCS_BUFFERS ();
5207 val
= wcs_re_match_2_internal (bufp
, string1
, size1
, string2
,
5208 size2
, startpos
, regs
, stop
,
5209 wcs_string1
, wcs_size1
,
5210 wcs_string2
, wcs_size2
,
5211 mbs_offset1
, mbs_offset2
);
5213 val
= byte_re_match_2_internal (bufp
, string1
, size1
, string2
,
5214 size2
, startpos
, regs
, stop
);
5217 #ifndef REGEX_MALLOC
5226 FREE_WCS_BUFFERS ();
5234 FREE_WCS_BUFFERS ();
5254 FREE_WCS_BUFFERS ();
5260 /* This converts PTR, a pointer into one of the search wchar_t strings
5261 `string1' and `string2' into an multibyte string offset from the
5262 beginning of that string. We use mbs_offset to optimize.
5263 See convert_mbs_to_wcs. */
5264 # define POINTER_TO_OFFSET(ptr) \
5265 (FIRST_STRING_P (ptr) \
5266 ? ((regoff_t)(mbs_offset1 != NULL? mbs_offset1[(ptr)-string1] : 0)) \
5267 : ((regoff_t)((mbs_offset2 != NULL? mbs_offset2[(ptr)-string2] : 0) \
5270 /* This converts PTR, a pointer into one of the search strings `string1'
5271 and `string2' into an offset from the beginning of that string. */
5272 # define POINTER_TO_OFFSET(ptr) \
5273 (FIRST_STRING_P (ptr) \
5274 ? ((regoff_t) ((ptr) - string1)) \
5275 : ((regoff_t) ((ptr) - string2 + size1)))
5278 /* Macros for dealing with the split strings in re_match_2. */
5280 #define MATCHING_IN_FIRST_STRING (dend == end_match_1)
5282 /* Call before fetching a character with *d. This switches over to
5283 string2 if necessary. */
5284 #define PREFETCH() \
5287 /* End of string2 => fail. */ \
5288 if (dend == end_match_2) \
5290 /* End of string1 => advance to string2. */ \
5292 dend = end_match_2; \
5295 /* Test if at very beginning or at very end of the virtual concatenation
5296 of `string1' and `string2'. If only one string, it's `string2'. */
5297 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
5298 #define AT_STRINGS_END(d) ((d) == end2)
5301 /* Test if D points to a character which is word-constituent. We have
5302 two special cases to check for: if past the end of string1, look at
5303 the first character in string2; and if before the beginning of
5304 string2, look at the last character in string1. */
5306 /* Use internationalized API instead of SYNTAX. */
5307 # define WORDCHAR_P(d) \
5308 (iswalnum ((wint_t)((d) == end1 ? *string2 \
5309 : (d) == string2 - 1 ? *(end1 - 1) : *(d))) != 0 \
5310 || ((d) == end1 ? *string2 \
5311 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) == L'_')
5313 # define WORDCHAR_P(d) \
5314 (SYNTAX ((d) == end1 ? *string2 \
5315 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
5319 /* Disabled due to a compiler bug -- see comment at case wordbound */
5321 /* Test if the character before D and the one at D differ with respect
5322 to being word-constituent. */
5323 #define AT_WORD_BOUNDARY(d) \
5324 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
5325 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
5328 /* Free everything we malloc. */
5329 #ifdef MATCH_MAY_ALLOCATE
5331 # define FREE_VARIABLES() \
5333 REGEX_FREE_STACK (fail_stack.stack); \
5334 FREE_VAR (regstart); \
5335 FREE_VAR (regend); \
5336 FREE_VAR (old_regstart); \
5337 FREE_VAR (old_regend); \
5338 FREE_VAR (best_regstart); \
5339 FREE_VAR (best_regend); \
5340 FREE_VAR (reg_info); \
5341 FREE_VAR (reg_dummy); \
5342 FREE_VAR (reg_info_dummy); \
5343 if (!cant_free_wcs_buf) \
5345 FREE_VAR (string1); \
5346 FREE_VAR (string2); \
5347 FREE_VAR (mbs_offset1); \
5348 FREE_VAR (mbs_offset2); \
5352 # define FREE_VARIABLES() \
5354 REGEX_FREE_STACK (fail_stack.stack); \
5355 FREE_VAR (regstart); \
5356 FREE_VAR (regend); \
5357 FREE_VAR (old_regstart); \
5358 FREE_VAR (old_regend); \
5359 FREE_VAR (best_regstart); \
5360 FREE_VAR (best_regend); \
5361 FREE_VAR (reg_info); \
5362 FREE_VAR (reg_dummy); \
5363 FREE_VAR (reg_info_dummy); \
5368 # define FREE_VARIABLES() \
5370 if (!cant_free_wcs_buf) \
5372 FREE_VAR (string1); \
5373 FREE_VAR (string2); \
5374 FREE_VAR (mbs_offset1); \
5375 FREE_VAR (mbs_offset2); \
5379 # define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
5381 #endif /* not MATCH_MAY_ALLOCATE */
5383 /* These values must meet several constraints. They must not be valid
5384 register values; since we have a limit of 255 registers (because
5385 we use only one byte in the pattern for the register number), we can
5386 use numbers larger than 255. They must differ by 1, because of
5387 NUM_FAILURE_ITEMS above. And the value for the lowest register must
5388 be larger than the value for the highest register, so we do not try
5389 to actually save any registers when none are active. */
5390 #define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
5391 #define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
5393 #else /* not INSIDE_RECURSION */
5394 /* Matching routines. */
5396 #ifndef emacs /* Emacs never uses this. */
5397 /* re_match is like re_match_2 except it takes only a single string. */
5400 re_match (struct re_pattern_buffer
*bufp
,
5403 struct re_registers
*regs
)
5407 if (MB_CUR_MAX
!= 1)
5408 result
= wcs_re_match_2_internal (bufp
, NULL
, 0, string
, size
,
5410 NULL
, 0, NULL
, 0, NULL
, NULL
);
5413 result
= byte_re_match_2_internal (bufp
, NULL
, 0, string
, size
,
5415 # ifndef REGEX_MALLOC
5423 weak_alias (__re_match
, re_match
)
5425 #endif /* not emacs */
5427 #endif /* not INSIDE_RECURSION */
5429 #ifdef INSIDE_RECURSION
5430 static boolean
PREFIX(group_match_null_string_p
) (UCHAR_T
**p
,
5432 PREFIX(register_info_type
) *reg_info
);
5433 static boolean
PREFIX(alt_match_null_string_p
) (UCHAR_T
*p
,
5435 PREFIX(register_info_type
) *reg_info
);
5436 static boolean
PREFIX(common_op_match_null_string_p
) (UCHAR_T
**p
,
5438 PREFIX(register_info_type
) *reg_info
);
5439 static int PREFIX(bcmp_translate
) (const CHAR_T
*s1
, const CHAR_T
*s2
,
5440 int len
, char *translate
);
5441 #else /* not INSIDE_RECURSION */
5443 /* re_match_2 matches the compiled pattern in BUFP against the
5444 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
5445 and SIZE2, respectively). We start matching at POS, and stop
5448 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
5449 store offsets for the substring each group matched in REGS. See the
5450 documentation for exactly how many groups we fill.
5452 We return -1 if no match, -2 if an internal error (such as the
5453 failure stack overflowing). Otherwise, we return the length of the
5454 matched substring. */
5457 re_match_2 (struct re_pattern_buffer
*bufp
,
5458 const char *string1
, int size1
,
5459 const char *string2
, int size2
,
5460 int pos
, struct re_registers
*regs
,
5465 if (MB_CUR_MAX
!= 1)
5466 result
= wcs_re_match_2_internal (bufp
, string1
, size1
, string2
, size2
,
5468 NULL
, 0, NULL
, 0, NULL
, NULL
);
5471 result
= byte_re_match_2_internal (bufp
, string1
, size1
, string2
, size2
,
5474 #ifndef REGEX_MALLOC
5482 weak_alias (__re_match_2
, re_match_2
)
5485 #endif /* not INSIDE_RECURSION */
5487 #ifdef INSIDE_RECURSION
5491 /* This check the substring (from 0, to length) of the multibyte string,
5492 to which offset_buffer correspond. And count how many wchar_t_characters
5493 the substring occupy. We use offset_buffer to optimization.
5494 See convert_mbs_to_wcs. */
5497 count_mbs_length (int *offset_buffer
, int length
)
5501 /* Check whether the size is valid. */
5505 if (offset_buffer
== NULL
)
5508 /* If there are no multibyte character, offset_buffer[i] == i.
5509 Optmize for this case. */
5510 if (offset_buffer
[length
] == length
)
5513 /* Set up upper with length. (because for all i, offset_buffer[i] >= i) */
5519 int middle
= (lower
+ upper
) / 2;
5520 if (middle
== lower
|| middle
== upper
)
5522 if (offset_buffer
[middle
] > length
)
5524 else if (offset_buffer
[middle
] < length
)
5534 /* This is a separate function so that we can force an alloca cleanup
5538 wcs_re_match_2_internal (struct re_pattern_buffer
*bufp
,
5539 const char *cstring1
, int csize1
,
5540 const char *cstring2
, int csize2
,
5542 struct re_registers
*regs
,
5544 /* string1 == string2 == NULL means
5545 string1/2, size1/2 and mbs_offset1/2 need
5546 setting up in this function. */
5547 /* We need wchar_t * buffers corresponding to
5548 cstring1, cstring2. */
5549 wchar_t *string1
, int size1
,
5550 wchar_t *string2
, int size2
,
5551 /* Offset buffer for optimization. See
5552 convert_mbs_to_wc. */
5557 byte_re_match_2_internal (struct re_pattern_buffer
*bufp
,
5558 const char *string1
, int size1
,
5559 const char *string2
, int size2
,
5561 struct re_registers
*regs
,
5565 /* General temporaries. */
5569 /* They hold whether each wchar_t is binary data or not. */
5570 char *is_binary
= NULL
;
5571 /* If true, we can't free string1/2, mbs_offset1/2. */
5572 int cant_free_wcs_buf
= 1;
5575 /* Just past the end of the corresponding string. */
5576 const CHAR_T
*end1
, *end2
;
5578 /* Pointers into string1 and string2, just past the last characters in
5579 each to consider matching. */
5580 const CHAR_T
*end_match_1
, *end_match_2
;
5582 /* Where we are in the data, and the end of the current string. */
5583 const CHAR_T
*d
, *dend
;
5585 /* Where we are in the pattern, and the end of the pattern. */
5587 UCHAR_T
*pattern
, *p
;
5588 register UCHAR_T
*pend
;
5590 UCHAR_T
*p
= bufp
->buffer
;
5591 register UCHAR_T
*pend
= p
+ bufp
->used
;
5594 /* Mark the opcode just after a start_memory, so we can test for an
5595 empty subpattern when we get to the stop_memory. */
5596 UCHAR_T
*just_past_start_mem
= 0;
5598 /* We use this to map every character in the string. */
5599 RE_TRANSLATE_TYPE translate
= bufp
->translate
;
5601 /* Failure point stack. Each place that can handle a failure further
5602 down the line pushes a failure point on this stack. It consists of
5603 restart, regend, and reg_info for all registers corresponding to
5604 the subexpressions we're currently inside, plus the number of such
5605 registers, and, finally, two char *'s. The first char * is where
5606 to resume scanning the pattern; the second one is where to resume
5607 scanning the strings. If the latter is zero, the failure point is
5608 a ``dummy''; if a failure happens and the failure point is a dummy,
5609 it gets discarded and the next next one is tried. */
5610 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
5611 PREFIX(fail_stack_type
) fail_stack
;
5614 static unsigned failure_id
;
5615 unsigned nfailure_points_pushed
= 0, nfailure_points_popped
= 0;
5619 /* This holds the pointer to the failure stack, when
5620 it is allocated relocatably. */
5621 fail_stack_elt_t
*failure_stack_ptr
;
5624 /* We fill all the registers internally, independent of what we
5625 return, for use in backreferences. The number here includes
5626 an element for register zero. */
5627 size_t num_regs
= bufp
->re_nsub
+ 1;
5629 /* The currently active registers. */
5630 active_reg_t lowest_active_reg
= NO_LOWEST_ACTIVE_REG
;
5631 active_reg_t highest_active_reg
= NO_HIGHEST_ACTIVE_REG
;
5633 /* Information on the contents of registers. These are pointers into
5634 the input strings; they record just what was matched (on this
5635 attempt) by a subexpression part of the pattern, that is, the
5636 regnum-th regstart pointer points to where in the pattern we began
5637 matching and the regnum-th regend points to right after where we
5638 stopped matching the regnum-th subexpression. (The zeroth register
5639 keeps track of what the whole pattern matches.) */
5640 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5641 const CHAR_T
**regstart
, **regend
;
5644 /* If a group that's operated upon by a repetition operator fails to
5645 match anything, then the register for its start will need to be
5646 restored because it will have been set to wherever in the string we
5647 are when we last see its open-group operator. Similarly for a
5649 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5650 const CHAR_T
**old_regstart
, **old_regend
;
5653 /* The is_active field of reg_info helps us keep track of which (possibly
5654 nested) subexpressions we are currently in. The matched_something
5655 field of reg_info[reg_num] helps us tell whether or not we have
5656 matched any of the pattern so far this time through the reg_num-th
5657 subexpression. These two fields get reset each time through any
5658 loop their register is in. */
5659 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
5660 PREFIX(register_info_type
) *reg_info
;
5663 /* The following record the register info as found in the above
5664 variables when we find a match better than any we've seen before.
5665 This happens as we backtrack through the failure points, which in
5666 turn happens only if we have not yet matched the entire string. */
5667 unsigned best_regs_set
= false;
5668 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5669 const CHAR_T
**best_regstart
, **best_regend
;
5672 /* Logically, this is `best_regend[0]'. But we don't want to have to
5673 allocate space for that if we're not allocating space for anything
5674 else (see below). Also, we never need info about register 0 for
5675 any of the other register vectors, and it seems rather a kludge to
5676 treat `best_regend' differently than the rest. So we keep track of
5677 the end of the best match so far in a separate variable. We
5678 initialize this to NULL so that when we backtrack the first time
5679 and need to test it, it's not garbage. */
5680 const CHAR_T
*match_end
= NULL
;
5682 /* This helps SET_REGS_MATCHED avoid doing redundant work. */
5683 int set_regs_matched_done
= 0;
5685 /* Used when we pop values we don't care about. */
5686 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5687 const CHAR_T
**reg_dummy
;
5688 PREFIX(register_info_type
) *reg_info_dummy
;
5692 /* Counts the total number of registers pushed. */
5693 unsigned num_regs_pushed
= 0;
5696 /* Definitions for state transitions. More efficiently for gcc. */
5698 # if defined HAVE_SUBTRACT_LOCAL_LABELS && defined SHARED
5703 const void *__unbounded ptr; \
5704 offset = (p == pend \
5705 ? 0 : jmptable[SWITCH_ENUM_CAST ((re_opcode_t) *p++)]); \
5706 ptr = &&end_of_pattern + offset; \
5711 &&label_##x - &&end_of_pattern
5712 # define JUMP_TABLE_TYPE const int
5717 const void *__unbounded ptr; \
5718 ptr = (p == pend ? &&end_of_pattern \
5719 : jmptable[SWITCH_ENUM_CAST ((re_opcode_t) *p++)]); \
5725 # define JUMP_TABLE_TYPE const void *const
5727 # define CASE(x) label_##x
5728 static JUMP_TABLE_TYPE jmptable
[] =
5747 REF (jump_past_alt
),
5748 REF (on_failure_jump
),
5749 REF (on_failure_keep_string_jump
),
5750 REF (pop_failure_jump
),
5751 REF (maybe_pop_jump
),
5752 REF (dummy_failure_jump
),
5753 REF (push_dummy_failure
),
5756 REF (set_number_at
),
5778 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
5782 #ifdef MATCH_MAY_ALLOCATE
5783 /* Do not bother to initialize all the register variables if there are
5784 no groups in the pattern, as it takes a fair amount of time. If
5785 there are groups, we include space for register 0 (the whole
5786 pattern), even though we never use it, since it simplifies the
5787 array indexing. We should fix this. */
5790 regstart
= REGEX_TALLOC (num_regs
, const CHAR_T
*);
5791 regend
= REGEX_TALLOC (num_regs
, const CHAR_T
*);
5792 old_regstart
= REGEX_TALLOC (num_regs
, const CHAR_T
*);
5793 old_regend
= REGEX_TALLOC (num_regs
, const CHAR_T
*);
5794 best_regstart
= REGEX_TALLOC (num_regs
, const CHAR_T
*);
5795 best_regend
= REGEX_TALLOC (num_regs
, const CHAR_T
*);
5796 reg_info
= REGEX_TALLOC (num_regs
, PREFIX(register_info_type
));
5797 reg_dummy
= REGEX_TALLOC (num_regs
, const CHAR_T
*);
5798 reg_info_dummy
= REGEX_TALLOC (num_regs
, PREFIX(register_info_type
));
5800 if (!(regstart
&& regend
&& old_regstart
&& old_regend
&& reg_info
5801 && best_regstart
&& best_regend
&& reg_dummy
&& reg_info_dummy
))
5809 /* We must initialize all our variables to NULL, so that
5810 `FREE_VARIABLES' doesn't try to free them. */
5811 regstart
= regend
= old_regstart
= old_regend
= best_regstart
5812 = best_regend
= reg_dummy
= NULL
;
5813 reg_info
= reg_info_dummy
= (PREFIX(register_info_type
) *) NULL
;
5815 #endif /* MATCH_MAY_ALLOCATE */
5817 /* The starting position is bogus. */
5819 if (pos
< 0 || pos
> csize1
+ csize2
)
5821 if (pos
< 0 || pos
> size1
+ size2
)
5829 /* Allocate wchar_t array for string1 and string2 and
5830 fill them with converted string. */
5831 if (string1
== NULL
&& string2
== NULL
)
5833 /* We need seting up buffers here. */
5835 /* We must free wcs buffers in this function. */
5836 cant_free_wcs_buf
= 0;
5840 string1
= REGEX_TALLOC (csize1
+ 1, CHAR_T
);
5841 mbs_offset1
= REGEX_TALLOC (csize1
+ 1, int);
5842 is_binary
= REGEX_TALLOC (csize1
+ 1, char);
5843 if (!string1
|| !mbs_offset1
|| !is_binary
)
5846 FREE_VAR (mbs_offset1
);
5847 FREE_VAR (is_binary
);
5853 string2
= REGEX_TALLOC (csize2
+ 1, CHAR_T
);
5854 mbs_offset2
= REGEX_TALLOC (csize2
+ 1, int);
5855 is_binary
= REGEX_TALLOC (csize2
+ 1, char);
5856 if (!string2
|| !mbs_offset2
|| !is_binary
)
5859 FREE_VAR (mbs_offset1
);
5861 FREE_VAR (mbs_offset2
);
5862 FREE_VAR (is_binary
);
5865 size2
= convert_mbs_to_wcs(string2
, cstring2
, csize2
,
5866 mbs_offset2
, is_binary
);
5867 string2
[size2
] = L
'\0'; /* for a sentinel */
5868 FREE_VAR (is_binary
);
5872 /* We need to cast pattern to (wchar_t*), because we casted this compiled
5873 pattern to (char*) in regex_compile. */
5874 p
= pattern
= (CHAR_T
*)bufp
->buffer
;
5875 pend
= (CHAR_T
*)(bufp
->buffer
+ bufp
->used
);
5879 /* Initialize subexpression text positions to -1 to mark ones that no
5880 start_memory/stop_memory has been seen for. Also initialize the
5881 register information struct. */
5882 for (mcnt
= 1; (unsigned) mcnt
< num_regs
; mcnt
++)
5884 regstart
[mcnt
] = regend
[mcnt
]
5885 = old_regstart
[mcnt
] = old_regend
[mcnt
] = REG_UNSET_VALUE
;
5887 REG_MATCH_NULL_STRING_P (reg_info
[mcnt
]) = MATCH_NULL_UNSET_VALUE
;
5888 IS_ACTIVE (reg_info
[mcnt
]) = 0;
5889 MATCHED_SOMETHING (reg_info
[mcnt
]) = 0;
5890 EVER_MATCHED_SOMETHING (reg_info
[mcnt
]) = 0;
5893 /* We move `string1' into `string2' if the latter's empty -- but not if
5894 `string1' is null. */
5895 if (size2
== 0 && string1
!= NULL
)
5902 mbs_offset2
= mbs_offset1
;
5908 end1
= string1
+ size1
;
5909 end2
= string2
+ size2
;
5911 /* Compute where to stop matching, within the two strings. */
5915 mcnt
= count_mbs_length(mbs_offset1
, stop
);
5916 end_match_1
= string1
+ mcnt
;
5917 end_match_2
= string2
;
5921 if (stop
> csize1
+ csize2
)
5922 stop
= csize1
+ csize2
;
5924 mcnt
= count_mbs_length(mbs_offset2
, stop
-csize1
);
5925 end_match_2
= string2
+ mcnt
;
5928 { /* count_mbs_length return error. */
5935 end_match_1
= string1
+ stop
;
5936 end_match_2
= string2
;
5941 end_match_2
= string2
+ stop
- size1
;
5945 /* `p' scans through the pattern as `d' scans through the data.
5946 `dend' is the end of the input string that `d' points within. `d'
5947 is advanced into the following input string whenever necessary, but
5948 this happens before fetching; therefore, at the beginning of the
5949 loop, `d' can be pointing at the end of a string, but it cannot
5952 if (size1
> 0 && pos
<= csize1
)
5954 mcnt
= count_mbs_length(mbs_offset1
, pos
);
5960 mcnt
= count_mbs_length(mbs_offset2
, pos
-csize1
);
5966 { /* count_mbs_length return error. */
5971 if (size1
> 0 && pos
<= size1
)
5978 d
= string2
+ pos
- size1
;
5983 DEBUG_PRINT1 ("The compiled pattern is:\n");
5984 DEBUG_PRINT_COMPILED_PATTERN (bufp
, p
, pend
);
5985 DEBUG_PRINT1 ("The string to match is: `");
5986 DEBUG_PRINT_DOUBLE_STRING (d
, string1
, size1
, string2
, size2
);
5987 DEBUG_PRINT1 ("'\n");
5989 /* This loops over pattern commands. It exits by returning from the
5990 function if the match is complete, or it drops through if the match
5991 fails at this starting point in the input data. */
5995 DEBUG_PRINT2 ("\n%p: ", p
);
5997 DEBUG_PRINT2 ("\n0x%x: ", p
);
6009 /* End of pattern means we might have succeeded. */
6010 DEBUG_PRINT1 ("end of pattern ... ");
6012 /* If we haven't matched the entire string, and we want the
6013 longest match, try backtracking. */
6014 if (d
!= end_match_2
)
6016 /* 1 if this match ends in the same string (string1 or string2)
6017 as the best previous match. */
6018 boolean same_str_p
= (FIRST_STRING_P (match_end
)
6019 == MATCHING_IN_FIRST_STRING
);
6020 /* 1 if this match is the best seen so far. */
6021 boolean best_match_p
;
6023 /* AIX compiler got confused when this was combined
6024 with the previous declaration. */
6026 best_match_p
= d
> match_end
;
6028 best_match_p
= !MATCHING_IN_FIRST_STRING
;
6030 DEBUG_PRINT1 ("backtracking.\n");
6032 if (!FAIL_STACK_EMPTY ())
6033 { /* More failure points to try. */
6035 /* If exceeds best match so far, save it. */
6036 if (!best_regs_set
|| best_match_p
)
6038 best_regs_set
= true;
6041 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
6043 for (mcnt
= 1; (unsigned) mcnt
< num_regs
; mcnt
++)
6045 best_regstart
[mcnt
] = regstart
[mcnt
];
6046 best_regend
[mcnt
] = regend
[mcnt
];
6052 /* If no failure points, don't restore garbage. And if
6053 last match is real best match, don't restore second
6055 else if (best_regs_set
&& !best_match_p
)
6058 /* Restore best match. It may happen that `dend ==
6059 end_match_1' while the restored d is in string2.
6060 For example, the pattern `x.*y.*z' against the
6061 strings `x-' and `y-z-', if the two strings are
6062 not consecutive in memory. */
6063 DEBUG_PRINT1 ("Restoring best registers.\n");
6066 dend
= ((d
>= string1
&& d
<= end1
)
6067 ? end_match_1
: end_match_2
);
6069 for (mcnt
= 1; (unsigned) mcnt
< num_regs
; mcnt
++)
6071 regstart
[mcnt
] = best_regstart
[mcnt
];
6072 regend
[mcnt
] = best_regend
[mcnt
];
6075 } /* d != end_match_2 */
6078 DEBUG_PRINT1 ("Accepting match.\n");
6079 /* If caller wants register contents data back, do it. */
6080 if (regs
&& !bufp
->no_sub
)
6082 /* Have the register data arrays been allocated? */
6083 if (bufp
->regs_allocated
== REGS_UNALLOCATED
)
6084 { /* No. So allocate them with malloc. We need one
6085 extra element beyond `num_regs' for the `-1' marker
6087 regs
->num_regs
= MAX (RE_NREGS
, num_regs
+ 1);
6088 regs
->start
= TALLOC (regs
->num_regs
, regoff_t
);
6089 regs
->end
= TALLOC (regs
->num_regs
, regoff_t
);
6090 if (regs
->start
== NULL
|| regs
->end
== NULL
)
6095 bufp
->regs_allocated
= REGS_REALLOCATE
;
6097 else if (bufp
->regs_allocated
== REGS_REALLOCATE
)
6098 { /* Yes. If we need more elements than were already
6099 allocated, reallocate them. If we need fewer, just
6101 if (regs
->num_regs
< num_regs
+ 1)
6103 regs
->num_regs
= num_regs
+ 1;
6104 RETALLOC (regs
->start
, regs
->num_regs
, regoff_t
);
6105 RETALLOC (regs
->end
, regs
->num_regs
, regoff_t
);
6106 if (regs
->start
== NULL
|| regs
->end
== NULL
)
6115 /* These braces fend off a "empty body in an else-statement"
6116 warning under GCC when assert expands to nothing. */
6117 assert (bufp
->regs_allocated
== REGS_FIXED
);
6120 /* Convert the pointer data in `regstart' and `regend' to
6121 indices. Register zero has to be set differently,
6122 since we haven't kept track of any info for it. */
6123 if (regs
->num_regs
> 0)
6125 regs
->start
[0] = pos
;
6127 if (MATCHING_IN_FIRST_STRING
)
6128 regs
->end
[0] = (mbs_offset1
!= NULL
?
6129 mbs_offset1
[d
-string1
] : 0);
6131 regs
->end
[0] = csize1
+ (mbs_offset2
!= NULL
6132 ? mbs_offset2
[d
-string2
] : 0);
6134 regs
->end
[0] = (MATCHING_IN_FIRST_STRING
6135 ? ((regoff_t
) (d
- string1
))
6136 : ((regoff_t
) (d
- string2
+ size1
)));
6140 /* Go through the first `min (num_regs, regs->num_regs)'
6141 registers, since that is all we initialized. */
6142 for (mcnt
= 1; (unsigned) mcnt
< MIN (num_regs
, regs
->num_regs
);
6145 if (REG_UNSET (regstart
[mcnt
]) || REG_UNSET (regend
[mcnt
]))
6146 regs
->start
[mcnt
] = regs
->end
[mcnt
] = -1;
6150 = (regoff_t
) POINTER_TO_OFFSET (regstart
[mcnt
]);
6152 = (regoff_t
) POINTER_TO_OFFSET (regend
[mcnt
]);
6156 /* If the regs structure we return has more elements than
6157 were in the pattern, set the extra elements to -1. If
6158 we (re)allocated the registers, this is the case,
6159 because we always allocate enough to have at least one
6161 for (mcnt
= num_regs
; (unsigned) mcnt
< regs
->num_regs
; mcnt
++)
6162 regs
->start
[mcnt
] = regs
->end
[mcnt
] = -1;
6163 } /* regs && !bufp->no_sub */
6165 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
6166 nfailure_points_pushed
, nfailure_points_popped
,
6167 nfailure_points_pushed
- nfailure_points_popped
);
6168 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed
);
6171 if (MATCHING_IN_FIRST_STRING
)
6172 mcnt
= mbs_offset1
!= NULL
? mbs_offset1
[d
-string1
] : 0;
6174 mcnt
= (mbs_offset2
!= NULL
? mbs_offset2
[d
-string2
] : 0) +
6178 mcnt
= d
- pos
- (MATCHING_IN_FIRST_STRING
6179 ? string1
: string2
- size1
);
6182 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt
);
6189 /* Otherwise match next pattern command. */
6190 switch (SWITCH_ENUM_CAST ((re_opcode_t
) *p
++))
6193 /* Ignore these. Used to ignore the n of succeed_n's which
6194 currently have n == 0. */
6196 DEBUG_PRINT1 ("EXECUTING no_op.\n");
6200 DEBUG_PRINT1 ("EXECUTING succeed.\n");
6203 /* Match the next n pattern characters exactly. The following
6204 byte in the pattern defines n, and the n bytes after that
6205 are the characters to match. */
6211 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt
);
6213 /* This is written out as an if-else so we don't waste time
6214 testing `translate' inside the loop. */
6223 if ((UCHAR_T
) translate
[(unsigned char) *d
++]
6229 if (*d
++ != (CHAR_T
) *p
++)
6233 if ((UCHAR_T
) translate
[(unsigned char) *d
++]
6245 if (*d
++ != (CHAR_T
) *p
++) goto fail
;
6249 SET_REGS_MATCHED ();
6253 /* Match any character except possibly a newline or a null. */
6255 DEBUG_PRINT1 ("EXECUTING anychar.\n");
6259 if ((!(bufp
->syntax
& RE_DOT_NEWLINE
) && TRANSLATE (*d
) == '\n')
6260 || (bufp
->syntax
& RE_DOT_NOT_NULL
&& TRANSLATE (*d
) == '\000'))
6263 SET_REGS_MATCHED ();
6264 DEBUG_PRINT2 (" Matched `%ld'.\n", (long int) *d
);
6274 unsigned int i
, char_class_length
, coll_symbol_length
,
6275 equiv_class_length
, ranges_length
, chars_length
, length
;
6276 CHAR_T
*workp
, *workp2
, *charset_top
;
6277 #define WORK_BUFFER_SIZE 128
6278 CHAR_T str_buf
[WORK_BUFFER_SIZE
];
6283 boolean
not = (re_opcode_t
) *(p
- 1) == charset_not
;
6285 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
6287 c
= TRANSLATE (*d
); /* The character to match. */
6290 nrules
= _NL_CURRENT_WORD (LC_COLLATE
, _NL_COLLATE_NRULES
);
6292 charset_top
= p
- 1;
6293 char_class_length
= *p
++;
6294 coll_symbol_length
= *p
++;
6295 equiv_class_length
= *p
++;
6296 ranges_length
= *p
++;
6297 chars_length
= *p
++;
6298 /* p points charset[6], so the address of the next instruction
6299 (charset[l+m+n+2o+k+p']) equals p[l+m+n+2*o+p'],
6300 where l=length of char_classes, m=length of collating_symbol,
6301 n=equivalence_class, o=length of char_range,
6302 p'=length of character. */
6304 /* Update p to indicate the next instruction. */
6305 p
+= char_class_length
+ coll_symbol_length
+ equiv_class_length
+
6306 2*ranges_length
+ chars_length
;
6308 /* match with char_class? */
6309 for (i
= 0; i
< char_class_length
; i
+= CHAR_CLASS_SIZE
)
6312 uintptr_t alignedp
= ((uintptr_t)workp
6313 + __alignof__(wctype_t) - 1)
6314 & ~(uintptr_t)(__alignof__(wctype_t) - 1);
6315 wctype
= *((wctype_t*)alignedp
);
6316 workp
+= CHAR_CLASS_SIZE
;
6317 if (iswctype((wint_t)c
, wctype
))
6318 goto char_set_matched
;
6321 /* match with collating_symbol? */
6325 const unsigned char *extra
= (const unsigned char *)
6326 _NL_CURRENT (LC_COLLATE
, _NL_COLLATE_SYMB_EXTRAMB
);
6328 for (workp2
= workp
+ coll_symbol_length
; workp
< workp2
;
6332 wextra
= (int32_t*)(extra
+ *workp
++);
6333 for (i
= 0; i
< *wextra
; ++i
)
6334 if (TRANSLATE(d
[i
]) != wextra
[1 + i
])
6339 /* Update d, however d will be incremented at
6340 char_set_matched:, we decrement d here. */
6342 goto char_set_matched
;
6346 else /* (nrules == 0) */
6348 /* If we can't look up collation data, we use wcscoll
6351 for (workp2
= workp
+ coll_symbol_length
; workp
< workp2
;)
6353 const CHAR_T
*backup_d
= d
, *backup_dend
= dend
;
6354 length
= wcslen (workp
);
6356 /* If wcscoll(the collating symbol, whole string) > 0,
6357 any substring of the string never match with the
6358 collating symbol. */
6359 if (wcscoll (workp
, d
) > 0)
6361 workp
+= length
+ 1;
6365 /* First, we compare the collating symbol with
6366 the first character of the string.
6367 If it don't match, we add the next character to
6368 the compare buffer in turn. */
6369 for (i
= 0 ; i
< WORK_BUFFER_SIZE
-1 ; i
++, d
++)
6374 if (dend
== end_match_2
)
6380 /* add next character to the compare buffer. */
6381 str_buf
[i
] = TRANSLATE(*d
);
6382 str_buf
[i
+1] = '\0';
6384 match
= wcscoll (workp
, str_buf
);
6386 goto char_set_matched
;
6389 /* (str_buf > workp) indicate (str_buf + X > workp),
6390 because for all X (str_buf + X > str_buf).
6391 So we don't need continue this loop. */
6394 /* Otherwise(str_buf < workp),
6395 (str_buf+next_character) may equals (workp).
6396 So we continue this loop. */
6401 workp
+= length
+ 1;
6404 /* match with equivalence_class? */
6408 const CHAR_T
*backup_d
= d
, *backup_dend
= dend
;
6409 /* Try to match the equivalence class against
6410 those known to the collate implementation. */
6411 const int32_t *table
;
6412 const int32_t *weights
;
6413 const int32_t *extra
;
6414 const int32_t *indirect
;
6419 /* This #include defines a local function! */
6420 # include <locale/weightwc.h>
6422 table
= (const int32_t *)
6423 _NL_CURRENT (LC_COLLATE
, _NL_COLLATE_TABLEWC
);
6424 weights
= (const wint_t *)
6425 _NL_CURRENT (LC_COLLATE
, _NL_COLLATE_WEIGHTWC
);
6426 extra
= (const wint_t *)
6427 _NL_CURRENT (LC_COLLATE
, _NL_COLLATE_EXTRAWC
);
6428 indirect
= (const int32_t *)
6429 _NL_CURRENT (LC_COLLATE
, _NL_COLLATE_INDIRECTWC
);
6431 /* Write 1 collating element to str_buf, and
6435 for (i
= 0 ; idx2
== 0 && i
< WORK_BUFFER_SIZE
- 1; i
++)
6437 cp
= (wint_t*)str_buf
;
6440 if (dend
== end_match_2
)
6445 str_buf
[i
] = TRANSLATE(*(d
+i
));
6446 str_buf
[i
+1] = '\0'; /* sentinel */
6447 idx2
= findidx ((const wint_t**)&cp
);
6450 /* Update d, however d will be incremented at
6451 char_set_matched:, we decrement d here. */
6452 d
= backup_d
+ ((wchar_t*)cp
- (wchar_t*)str_buf
- 1);
6455 if (dend
== end_match_2
)
6464 len
= weights
[idx2
];
6466 for (workp2
= workp
+ equiv_class_length
; workp
< workp2
;
6469 idx
= (int32_t)*workp
;
6470 /* We already checked idx != 0 in regex_compile. */
6472 if (idx2
!= 0 && len
== weights
[idx
])
6475 while (cnt
< len
&& (weights
[idx
+ 1 + cnt
]
6476 == weights
[idx2
+ 1 + cnt
]))
6480 goto char_set_matched
;
6487 else /* (nrules == 0) */
6489 /* If we can't look up collation data, we use wcscoll
6492 for (workp2
= workp
+ equiv_class_length
; workp
< workp2
;)
6494 const CHAR_T
*backup_d
= d
, *backup_dend
= dend
;
6495 length
= wcslen (workp
);
6497 /* If wcscoll(the collating symbol, whole string) > 0,
6498 any substring of the string never match with the
6499 collating symbol. */
6500 if (wcscoll (workp
, d
) > 0)
6502 workp
+= length
+ 1;
6506 /* First, we compare the equivalence class with
6507 the first character of the string.
6508 If it don't match, we add the next character to
6509 the compare buffer in turn. */
6510 for (i
= 0 ; i
< WORK_BUFFER_SIZE
- 1 ; i
++, d
++)
6515 if (dend
== end_match_2
)
6521 /* add next character to the compare buffer. */
6522 str_buf
[i
] = TRANSLATE(*d
);
6523 str_buf
[i
+1] = '\0';
6525 match
= wcscoll (workp
, str_buf
);
6528 goto char_set_matched
;
6531 /* (str_buf > workp) indicate (str_buf + X > workp),
6532 because for all X (str_buf + X > str_buf).
6533 So we don't need continue this loop. */
6536 /* Otherwise(str_buf < workp),
6537 (str_buf+next_character) may equals (workp).
6538 So we continue this loop. */
6543 workp
+= length
+ 1;
6547 /* match with char_range? */
6551 uint32_t collseqval
;
6552 const char *collseq
= (const char *)
6553 _NL_CURRENT(LC_COLLATE
, _NL_COLLATE_COLLSEQWC
);
6555 collseqval
= collseq_table_lookup (collseq
, c
);
6557 for (; workp
< p
- chars_length
;)
6559 uint32_t start_val
, end_val
;
6561 /* We already compute the collation sequence value
6562 of the characters (or collating symbols). */
6563 start_val
= (uint32_t) *workp
++; /* range_start */
6564 end_val
= (uint32_t) *workp
++; /* range_end */
6566 if (start_val
<= collseqval
&& collseqval
<= end_val
)
6567 goto char_set_matched
;
6573 /* We set range_start_char at str_buf[0], range_end_char
6574 at str_buf[4], and compared char at str_buf[2]. */
6579 for (; workp
< p
- chars_length
;)
6581 wchar_t *range_start_char
, *range_end_char
;
6583 /* match if (range_start_char <= c <= range_end_char). */
6585 /* If range_start(or end) < 0, we assume -range_start(end)
6586 is the offset of the collating symbol which is specified
6587 as the character of the range start(end). */
6591 range_start_char
= charset_top
- (*workp
++);
6594 str_buf
[0] = *workp
++;
6595 range_start_char
= str_buf
;
6600 range_end_char
= charset_top
- (*workp
++);
6603 str_buf
[4] = *workp
++;
6604 range_end_char
= str_buf
+ 4;
6607 if (wcscoll (range_start_char
, str_buf
+2) <= 0
6608 && wcscoll (str_buf
+2, range_end_char
) <= 0)
6609 goto char_set_matched
;
6613 /* match with char? */
6614 for (; workp
< p
; workp
++)
6616 goto char_set_matched
;
6623 /* Cast to `unsigned' instead of `unsigned char' in case the
6624 bit list is a full 32 bytes long. */
6625 if (c
< (unsigned) (*p
* BYTEWIDTH
)
6626 && p
[1 + c
/ BYTEWIDTH
] & (1 << (c
% BYTEWIDTH
)))
6631 if (!not) goto fail
;
6632 #undef WORK_BUFFER_SIZE
6634 SET_REGS_MATCHED ();
6640 /* The beginning of a group is represented by start_memory.
6641 The arguments are the register number in the next byte, and the
6642 number of groups inner to this one in the next. The text
6643 matched within the group is recorded (in the internal
6644 registers data structure) under the register number. */
6645 CASE (start_memory
):
6646 DEBUG_PRINT3 ("EXECUTING start_memory %ld (%ld):\n",
6647 (long int) *p
, (long int) p
[1]);
6649 /* Find out if this group can match the empty string. */
6650 p1
= p
; /* To send to group_match_null_string_p. */
6652 if (REG_MATCH_NULL_STRING_P (reg_info
[*p
]) == MATCH_NULL_UNSET_VALUE
)
6653 REG_MATCH_NULL_STRING_P (reg_info
[*p
])
6654 = PREFIX(group_match_null_string_p
) (&p1
, pend
, reg_info
);
6656 /* Save the position in the string where we were the last time
6657 we were at this open-group operator in case the group is
6658 operated upon by a repetition operator, e.g., with `(a*)*b'
6659 against `ab'; then we want to ignore where we are now in
6660 the string in case this attempt to match fails. */
6661 old_regstart
[*p
] = REG_MATCH_NULL_STRING_P (reg_info
[*p
])
6662 ? REG_UNSET (regstart
[*p
]) ? d
: regstart
[*p
]
6664 DEBUG_PRINT2 (" old_regstart: %d\n",
6665 POINTER_TO_OFFSET (old_regstart
[*p
]));
6668 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart
[*p
]));
6670 IS_ACTIVE (reg_info
[*p
]) = 1;
6671 MATCHED_SOMETHING (reg_info
[*p
]) = 0;
6673 /* Clear this whenever we change the register activity status. */
6674 set_regs_matched_done
= 0;
6676 /* This is the new highest active register. */
6677 highest_active_reg
= *p
;
6679 /* If nothing was active before, this is the new lowest active
6681 if (lowest_active_reg
== NO_LOWEST_ACTIVE_REG
)
6682 lowest_active_reg
= *p
;
6684 /* Move past the register number and inner group count. */
6686 just_past_start_mem
= p
;
6691 /* The stop_memory opcode represents the end of a group. Its
6692 arguments are the same as start_memory's: the register
6693 number, and the number of inner groups. */
6695 DEBUG_PRINT3 ("EXECUTING stop_memory %ld (%ld):\n",
6696 (long int) *p
, (long int) p
[1]);
6698 /* We need to save the string position the last time we were at
6699 this close-group operator in case the group is operated
6700 upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
6701 against `aba'; then we want to ignore where we are now in
6702 the string in case this attempt to match fails. */
6703 old_regend
[*p
] = REG_MATCH_NULL_STRING_P (reg_info
[*p
])
6704 ? REG_UNSET (regend
[*p
]) ? d
: regend
[*p
]
6706 DEBUG_PRINT2 (" old_regend: %d\n",
6707 POINTER_TO_OFFSET (old_regend
[*p
]));
6710 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend
[*p
]));
6712 /* This register isn't active anymore. */
6713 IS_ACTIVE (reg_info
[*p
]) = 0;
6715 /* Clear this whenever we change the register activity status. */
6716 set_regs_matched_done
= 0;
6718 /* If this was the only register active, nothing is active
6720 if (lowest_active_reg
== highest_active_reg
)
6722 lowest_active_reg
= NO_LOWEST_ACTIVE_REG
;
6723 highest_active_reg
= NO_HIGHEST_ACTIVE_REG
;
6726 { /* We must scan for the new highest active register, since
6727 it isn't necessarily one less than now: consider
6728 (a(b)c(d(e)f)g). When group 3 ends, after the f), the
6729 new highest active register is 1. */
6731 while (r
> 0 && !IS_ACTIVE (reg_info
[r
]))
6734 /* If we end up at register zero, that means that we saved
6735 the registers as the result of an `on_failure_jump', not
6736 a `start_memory', and we jumped to past the innermost
6737 `stop_memory'. For example, in ((.)*) we save
6738 registers 1 and 2 as a result of the *, but when we pop
6739 back to the second ), we are at the stop_memory 1.
6740 Thus, nothing is active. */
6743 lowest_active_reg
= NO_LOWEST_ACTIVE_REG
;
6744 highest_active_reg
= NO_HIGHEST_ACTIVE_REG
;
6747 highest_active_reg
= r
;
6750 /* If just failed to match something this time around with a
6751 group that's operated on by a repetition operator, try to
6752 force exit from the ``loop'', and restore the register
6753 information for this group that we had before trying this
6755 if ((!MATCHED_SOMETHING (reg_info
[*p
])
6756 || just_past_start_mem
== p
- 1)
6759 boolean is_a_jump_n
= false;
6763 switch ((re_opcode_t
) *p1
++)
6767 case pop_failure_jump
:
6768 case maybe_pop_jump
:
6770 case dummy_failure_jump
:
6771 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
6773 p1
+= OFFSET_ADDRESS_SIZE
;
6781 /* If the next operation is a jump backwards in the pattern
6782 to an on_failure_jump right before the start_memory
6783 corresponding to this stop_memory, exit from the loop
6784 by forcing a failure after pushing on the stack the
6785 on_failure_jump's jump in the pattern, and d. */
6786 if (mcnt
< 0 && (re_opcode_t
) *p1
== on_failure_jump
6787 && (re_opcode_t
) p1
[1+OFFSET_ADDRESS_SIZE
] == start_memory
6788 && p1
[2+OFFSET_ADDRESS_SIZE
] == *p
)
6790 /* If this group ever matched anything, then restore
6791 what its registers were before trying this last
6792 failed match, e.g., with `(a*)*b' against `ab' for
6793 regstart[1], and, e.g., with `((a*)*(b*)*)*'
6794 against `aba' for regend[3].
6796 Also restore the registers for inner groups for,
6797 e.g., `((a*)(b*))*' against `aba' (register 3 would
6798 otherwise get trashed). */
6800 if (EVER_MATCHED_SOMETHING (reg_info
[*p
]))
6804 EVER_MATCHED_SOMETHING (reg_info
[*p
]) = 0;
6806 /* Restore this and inner groups' (if any) registers. */
6807 for (r
= *p
; r
< (unsigned) *p
+ (unsigned) *(p
+ 1);
6810 regstart
[r
] = old_regstart
[r
];
6812 /* xx why this test? */
6813 if (old_regend
[r
] >= regstart
[r
])
6814 regend
[r
] = old_regend
[r
];
6818 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
6819 PUSH_FAILURE_POINT (p1
+ mcnt
, d
, -2);
6825 /* Move past the register number and the inner group count. */
6830 /* \<digit> has been turned into a `duplicate' command which is
6831 followed by the numeric value of <digit> as the register number. */
6834 register const CHAR_T
*d2
, *dend2
;
6835 int regno
= *p
++; /* Get which register to match against. */
6836 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno
);
6838 /* Can't back reference a group which we've never matched. */
6839 if (REG_UNSET (regstart
[regno
]) || REG_UNSET (regend
[regno
]))
6842 /* Where in input to try to start matching. */
6843 d2
= regstart
[regno
];
6845 /* Where to stop matching; if both the place to start and
6846 the place to stop matching are in the same string, then
6847 set to the place to stop, otherwise, for now have to use
6848 the end of the first string. */
6850 dend2
= ((FIRST_STRING_P (regstart
[regno
])
6851 == FIRST_STRING_P (regend
[regno
]))
6852 ? regend
[regno
] : end_match_1
);
6855 /* If necessary, advance to next segment in register
6859 if (dend2
== end_match_2
) break;
6860 if (dend2
== regend
[regno
]) break;
6862 /* End of string1 => advance to string2. */
6864 dend2
= regend
[regno
];
6866 /* At end of register contents => success */
6867 if (d2
== dend2
) break;
6869 /* If necessary, advance to next segment in data. */
6872 /* How many characters left in this segment to match. */
6875 /* Want how many consecutive characters we can match in
6876 one shot, so, if necessary, adjust the count. */
6877 if (mcnt
> dend2
- d2
)
6880 /* Compare that many; failure if mismatch, else move
6883 ? PREFIX(bcmp_translate
) (d
, d2
, mcnt
, translate
)
6884 : memcmp (d
, d2
, mcnt
*sizeof(UCHAR_T
)))
6886 d
+= mcnt
, d2
+= mcnt
;
6888 /* Do this because we've match some characters. */
6889 SET_REGS_MATCHED ();
6895 /* begline matches the empty string at the beginning of the string
6896 (unless `not_bol' is set in `bufp'), and, if
6897 `newline_anchor' is set, after newlines. */
6899 DEBUG_PRINT1 ("EXECUTING begline.\n");
6901 if (AT_STRINGS_BEG (d
))
6908 else if (d
[-1] == '\n' && bufp
->newline_anchor
)
6912 /* In all other cases, we fail. */
6916 /* endline is the dual of begline. */
6918 DEBUG_PRINT1 ("EXECUTING endline.\n");
6920 if (AT_STRINGS_END (d
))
6928 /* We have to ``prefetch'' the next character. */
6929 else if ((d
== end1
? *string2
: *d
) == '\n'
6930 && bufp
->newline_anchor
)
6937 /* Match at the very beginning of the data. */
6939 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
6940 if (AT_STRINGS_BEG (d
))
6947 /* Match at the very end of the data. */
6949 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
6950 if (AT_STRINGS_END (d
))
6957 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
6958 pushes NULL as the value for the string on the stack. Then
6959 `pop_failure_point' will keep the current value for the
6960 string, instead of restoring it. To see why, consider
6961 matching `foo\nbar' against `.*\n'. The .* matches the foo;
6962 then the . fails against the \n. But the next thing we want
6963 to do is match the \n against the \n; if we restored the
6964 string value, we would be back at the foo.
6966 Because this is used only in specific cases, we don't need to
6967 check all the things that `on_failure_jump' does, to make
6968 sure the right things get saved on the stack. Hence we don't
6969 share its code. The only reason to push anything on the
6970 stack at all is that otherwise we would have to change
6971 `anychar's code to do something besides goto fail in this
6972 case; that seems worse than this. */
6973 CASE (on_failure_keep_string_jump
):
6974 DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
6976 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
6978 DEBUG_PRINT3 (" %d (to %p):\n", mcnt
, p
+ mcnt
);
6980 DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt
, p
+ mcnt
);
6983 PUSH_FAILURE_POINT (p
+ mcnt
, NULL
, -2);
6987 /* Uses of on_failure_jump:
6989 Each alternative starts with an on_failure_jump that points
6990 to the beginning of the next alternative. Each alternative
6991 except the last ends with a jump that in effect jumps past
6992 the rest of the alternatives. (They really jump to the
6993 ending jump of the following alternative, because tensioning
6994 these jumps is a hassle.)
6996 Repeats start with an on_failure_jump that points past both
6997 the repetition text and either the following jump or
6998 pop_failure_jump back to this on_failure_jump. */
6999 CASE (on_failure_jump
):
7001 DEBUG_PRINT1 ("EXECUTING on_failure_jump");
7003 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
7005 DEBUG_PRINT3 (" %d (to %p)", mcnt
, p
+ mcnt
);
7007 DEBUG_PRINT3 (" %d (to 0x%x)", mcnt
, p
+ mcnt
);
7010 /* If this on_failure_jump comes right before a group (i.e.,
7011 the original * applied to a group), save the information
7012 for that group and all inner ones, so that if we fail back
7013 to this point, the group's information will be correct.
7014 For example, in \(a*\)*\1, we need the preceding group,
7015 and in \(zz\(a*\)b*\)\2, we need the inner group. */
7017 /* We can't use `p' to check ahead because we push
7018 a failure point to `p + mcnt' after we do this. */
7021 /* We need to skip no_op's before we look for the
7022 start_memory in case this on_failure_jump is happening as
7023 the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
7025 while (p1
< pend
&& (re_opcode_t
) *p1
== no_op
)
7028 if (p1
< pend
&& (re_opcode_t
) *p1
== start_memory
)
7030 /* We have a new highest active register now. This will
7031 get reset at the start_memory we are about to get to,
7032 but we will have saved all the registers relevant to
7033 this repetition op, as described above. */
7034 highest_active_reg
= *(p1
+ 1) + *(p1
+ 2);
7035 if (lowest_active_reg
== NO_LOWEST_ACTIVE_REG
)
7036 lowest_active_reg
= *(p1
+ 1);
7039 DEBUG_PRINT1 (":\n");
7040 PUSH_FAILURE_POINT (p
+ mcnt
, d
, -2);
7044 /* A smart repeat ends with `maybe_pop_jump'.
7045 We change it to either `pop_failure_jump' or `jump'. */
7046 CASE (maybe_pop_jump
):
7047 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
7048 DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt
);
7050 register UCHAR_T
*p2
= p
;
7052 /* Compare the beginning of the repeat with what in the
7053 pattern follows its end. If we can establish that there
7054 is nothing that they would both match, i.e., that we
7055 would have to backtrack because of (as in, e.g., `a*a')
7056 then we can change to pop_failure_jump, because we'll
7057 never have to backtrack.
7059 This is not true in the case of alternatives: in
7060 `(a|ab)*' we do need to backtrack to the `ab' alternative
7061 (e.g., if the string was `ab'). But instead of trying to
7062 detect that here, the alternative has put on a dummy
7063 failure point which is what we will end up popping. */
7065 /* Skip over open/close-group commands.
7066 If what follows this loop is a ...+ construct,
7067 look at what begins its body, since we will have to
7068 match at least one of that. */
7072 && ((re_opcode_t
) *p2
== stop_memory
7073 || (re_opcode_t
) *p2
== start_memory
))
7075 else if (p2
+ 2 + 2 * OFFSET_ADDRESS_SIZE
< pend
7076 && (re_opcode_t
) *p2
== dummy_failure_jump
)
7077 p2
+= 2 + 2 * OFFSET_ADDRESS_SIZE
;
7083 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
7084 to the `maybe_finalize_jump' of this case. Examine what
7087 /* If we're at the end of the pattern, we can change. */
7090 /* Consider what happens when matching ":\(.*\)"
7091 against ":/". I don't really understand this code
7093 p
[-(1+OFFSET_ADDRESS_SIZE
)] = (UCHAR_T
)
7096 (" End of pattern: change to `pop_failure_jump'.\n");
7099 else if ((re_opcode_t
) *p2
== exactn
7101 || (re_opcode_t
) *p2
== exactn_bin
7103 || (bufp
->newline_anchor
&& (re_opcode_t
) *p2
== endline
))
7106 = *p2
== (UCHAR_T
) endline
? '\n' : p2
[2];
7108 if (((re_opcode_t
) p1
[1+OFFSET_ADDRESS_SIZE
] == exactn
7110 || (re_opcode_t
) p1
[1+OFFSET_ADDRESS_SIZE
] == exactn_bin
7112 ) && p1
[3+OFFSET_ADDRESS_SIZE
] != c
)
7114 p
[-(1+OFFSET_ADDRESS_SIZE
)] = (UCHAR_T
)
7117 DEBUG_PRINT3 (" %C != %C => pop_failure_jump.\n",
7119 (wint_t) p1
[3+OFFSET_ADDRESS_SIZE
]);
7121 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
7123 (char) p1
[3+OFFSET_ADDRESS_SIZE
]);
7128 else if ((re_opcode_t
) p1
[3] == charset
7129 || (re_opcode_t
) p1
[3] == charset_not
)
7131 int not = (re_opcode_t
) p1
[3] == charset_not
;
7133 if (c
< (unsigned) (p1
[4] * BYTEWIDTH
)
7134 && p1
[5 + c
/ BYTEWIDTH
] & (1 << (c
% BYTEWIDTH
)))
7137 /* `not' is equal to 1 if c would match, which means
7138 that we can't change to pop_failure_jump. */
7141 p
[-3] = (unsigned char) pop_failure_jump
;
7142 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
7145 #endif /* not WCHAR */
7148 else if ((re_opcode_t
) *p2
== charset
)
7150 /* We win if the first character of the loop is not part
7152 if ((re_opcode_t
) p1
[3] == exactn
7153 && ! ((int) p2
[1] * BYTEWIDTH
> (int) p1
[5]
7154 && (p2
[2 + p1
[5] / BYTEWIDTH
]
7155 & (1 << (p1
[5] % BYTEWIDTH
)))))
7157 p
[-3] = (unsigned char) pop_failure_jump
;
7158 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
7161 else if ((re_opcode_t
) p1
[3] == charset_not
)
7164 /* We win if the charset_not inside the loop
7165 lists every character listed in the charset after. */
7166 for (idx
= 0; idx
< (int) p2
[1]; idx
++)
7167 if (! (p2
[2 + idx
] == 0
7168 || (idx
< (int) p1
[4]
7169 && ((p2
[2 + idx
] & ~ p1
[5 + idx
]) == 0))))
7174 p
[-3] = (unsigned char) pop_failure_jump
;
7175 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
7178 else if ((re_opcode_t
) p1
[3] == charset
)
7181 /* We win if the charset inside the loop
7182 has no overlap with the one after the loop. */
7184 idx
< (int) p2
[1] && idx
< (int) p1
[4];
7186 if ((p2
[2 + idx
] & p1
[5 + idx
]) != 0)
7189 if (idx
== p2
[1] || idx
== p1
[4])
7191 p
[-3] = (unsigned char) pop_failure_jump
;
7192 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
7196 #endif /* not WCHAR */
7198 p
-= OFFSET_ADDRESS_SIZE
; /* Point at relative address again. */
7199 if ((re_opcode_t
) p
[-1] != pop_failure_jump
)
7201 p
[-1] = (UCHAR_T
) jump
;
7202 DEBUG_PRINT1 (" Match => jump.\n");
7203 goto unconditional_jump
;
7205 /* Note fall through. */
7208 /* The end of a simple repeat has a pop_failure_jump back to
7209 its matching on_failure_jump, where the latter will push a
7210 failure point. The pop_failure_jump takes off failure
7211 points put on by this pop_failure_jump's matching
7212 on_failure_jump; we got through the pattern to here from the
7213 matching on_failure_jump, so didn't fail. */
7214 CASE (pop_failure_jump
):
7216 /* We need to pass separate storage for the lowest and
7217 highest registers, even though we don't care about the
7218 actual values. Otherwise, we will restore only one
7219 register from the stack, since lowest will == highest in
7220 `pop_failure_point'. */
7221 active_reg_t dummy_low_reg
, dummy_high_reg
;
7222 UCHAR_T
*pdummy
= NULL
;
7223 const CHAR_T
*sdummy
= NULL
;
7225 DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
7226 POP_FAILURE_POINT (sdummy
, pdummy
,
7227 dummy_low_reg
, dummy_high_reg
,
7228 reg_dummy
, reg_dummy
, reg_info_dummy
);
7230 /* Note fall through. */
7234 DEBUG_PRINT2 ("\n%p: ", p
);
7236 DEBUG_PRINT2 ("\n0x%x: ", p
);
7238 /* Note fall through. */
7240 /* Unconditionally jump (without popping any failure points). */
7242 EXTRACT_NUMBER_AND_INCR (mcnt
, p
); /* Get the amount to jump. */
7243 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt
);
7244 p
+= mcnt
; /* Do the jump. */
7246 DEBUG_PRINT2 ("(to %p).\n", p
);
7248 DEBUG_PRINT2 ("(to 0x%x).\n", p
);
7253 /* We need this opcode so we can detect where alternatives end
7254 in `group_match_null_string_p' et al. */
7255 CASE (jump_past_alt
):
7256 DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
7257 goto unconditional_jump
;
7260 /* Normally, the on_failure_jump pushes a failure point, which
7261 then gets popped at pop_failure_jump. We will end up at
7262 pop_failure_jump, also, and with a pattern of, say, `a+', we
7263 are skipping over the on_failure_jump, so we have to push
7264 something meaningless for pop_failure_jump to pop. */
7265 CASE (dummy_failure_jump
):
7266 DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
7267 /* It doesn't matter what we push for the string here. What
7268 the code at `fail' tests is the value for the pattern. */
7269 PUSH_FAILURE_POINT (NULL
, NULL
, -2);
7270 goto unconditional_jump
;
7273 /* At the end of an alternative, we need to push a dummy failure
7274 point in case we are followed by a `pop_failure_jump', because
7275 we don't want the failure point for the alternative to be
7276 popped. For example, matching `(a|ab)*' against `aab'
7277 requires that we match the `ab' alternative. */
7278 CASE (push_dummy_failure
):
7279 DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
7280 /* See comments just above at `dummy_failure_jump' about the
7282 PUSH_FAILURE_POINT (NULL
, NULL
, -2);
7285 /* Have to succeed matching what follows at least n times.
7286 After that, handle like `on_failure_jump'. */
7288 EXTRACT_NUMBER (mcnt
, p
+ OFFSET_ADDRESS_SIZE
);
7289 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt
);
7292 /* Originally, this is how many times we HAVE to succeed. */
7296 p
+= OFFSET_ADDRESS_SIZE
;
7297 STORE_NUMBER_AND_INCR (p
, mcnt
);
7299 DEBUG_PRINT3 (" Setting %p to %d.\n", p
- OFFSET_ADDRESS_SIZE
7302 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p
- OFFSET_ADDRESS_SIZE
7309 DEBUG_PRINT2 (" Setting two bytes from %p to no_op.\n",
7310 p
+ OFFSET_ADDRESS_SIZE
);
7312 DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n",
7313 p
+ OFFSET_ADDRESS_SIZE
);
7317 p
[1] = (UCHAR_T
) no_op
;
7319 p
[2] = (UCHAR_T
) no_op
;
7320 p
[3] = (UCHAR_T
) no_op
;
7327 EXTRACT_NUMBER (mcnt
, p
+ OFFSET_ADDRESS_SIZE
);
7328 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt
);
7330 /* Originally, this is how many times we CAN jump. */
7334 STORE_NUMBER (p
+ OFFSET_ADDRESS_SIZE
, mcnt
);
7337 DEBUG_PRINT3 (" Setting %p to %d.\n", p
+ OFFSET_ADDRESS_SIZE
,
7340 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p
+ OFFSET_ADDRESS_SIZE
,
7343 goto unconditional_jump
;
7345 /* If don't have to jump any more, skip over the rest of command. */
7347 p
+= 2 * OFFSET_ADDRESS_SIZE
;
7350 CASE (set_number_at
):
7352 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
7354 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
7356 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
7358 DEBUG_PRINT3 (" Setting %p to %d.\n", p1
, mcnt
);
7360 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1
, mcnt
);
7362 STORE_NUMBER (p1
, mcnt
);
7367 /* The DEC Alpha C compiler 3.x generates incorrect code for the
7368 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
7369 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
7370 macro and introducing temporary variables works around the bug. */
7373 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
7374 if (AT_WORD_BOUNDARY (d
))
7380 CASE (notwordbound
):
7381 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
7382 if (AT_WORD_BOUNDARY (d
))
7388 boolean prevchar
, thischar
;
7390 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
7391 if (AT_STRINGS_BEG (d
) || AT_STRINGS_END (d
))
7396 prevchar
= WORDCHAR_P (d
- 1);
7397 thischar
= WORDCHAR_P (d
);
7398 if (prevchar
!= thischar
)
7405 CASE (notwordbound
):
7407 boolean prevchar
, thischar
;
7409 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
7410 if (AT_STRINGS_BEG (d
) || AT_STRINGS_END (d
))
7413 prevchar
= WORDCHAR_P (d
- 1);
7414 thischar
= WORDCHAR_P (d
);
7415 if (prevchar
!= thischar
)
7422 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
7423 if (!AT_STRINGS_END (d
) && WORDCHAR_P (d
)
7424 && (AT_STRINGS_BEG (d
) || !WORDCHAR_P (d
- 1)))
7431 DEBUG_PRINT1 ("EXECUTING wordend.\n");
7432 if (!AT_STRINGS_BEG (d
) && WORDCHAR_P (d
- 1)
7433 && (AT_STRINGS_END (d
) || !WORDCHAR_P (d
)))
7441 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
7442 if (PTR_CHAR_POS ((unsigned char *) d
) >= point
)
7447 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
7448 if (PTR_CHAR_POS ((unsigned char *) d
) != point
)
7453 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
7454 if (PTR_CHAR_POS ((unsigned char *) d
) <= point
)
7459 DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt
);
7464 DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
7468 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
7470 if (SYNTAX (d
[-1]) != (enum syntaxcode
) mcnt
)
7472 SET_REGS_MATCHED ();
7475 CASE (notsyntaxspec
):
7476 DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt
);
7478 goto matchnotsyntax
;
7481 DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
7485 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
7487 if (SYNTAX (d
[-1]) == (enum syntaxcode
) mcnt
)
7489 SET_REGS_MATCHED ();
7492 #else /* not emacs */
7494 DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
7496 if (!WORDCHAR_P (d
))
7498 SET_REGS_MATCHED ();
7503 DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
7507 SET_REGS_MATCHED ();
7510 #endif /* not emacs */
7516 continue; /* Successfully executed one pattern command; keep going. */
7520 /* We goto here if a matching operation fails. */
7522 if (!FAIL_STACK_EMPTY ())
7523 { /* A restart point is known. Restore to that state. */
7524 DEBUG_PRINT1 ("\nFAIL:\n");
7525 POP_FAILURE_POINT (d
, p
,
7526 lowest_active_reg
, highest_active_reg
,
7527 regstart
, regend
, reg_info
);
7529 /* If this failure point is a dummy, try the next one. */
7533 /* If we failed to the end of the pattern, don't examine *p. */
7537 boolean is_a_jump_n
= false;
7539 /* If failed to a backwards jump that's part of a repetition
7540 loop, need to pop this failure point and use the next one. */
7541 switch ((re_opcode_t
) *p
)
7545 case maybe_pop_jump
:
7546 case pop_failure_jump
:
7549 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
7552 if ((is_a_jump_n
&& (re_opcode_t
) *p1
== succeed_n
)
7554 && (re_opcode_t
) *p1
== on_failure_jump
))
7562 if (d
>= string1
&& d
<= end1
)
7566 break; /* Matching at this starting point really fails. */
7570 goto restore_best_regs
;
7574 return -1; /* Failure to match. */
7577 /* Subroutine definitions for re_match_2. */
7580 /* We are passed P pointing to a register number after a start_memory.
7582 Return true if the pattern up to the corresponding stop_memory can
7583 match the empty string, and false otherwise.
7585 If we find the matching stop_memory, sets P to point to one past its number.
7586 Otherwise, sets P to an undefined byte less than or equal to END.
7588 We don't handle duplicates properly (yet). */
7591 PREFIX(group_match_null_string_p
) (UCHAR_T
**p
, UCHAR_T
*end
,
7592 PREFIX(register_info_type
) *reg_info
)
7595 /* Point to after the args to the start_memory. */
7596 UCHAR_T
*p1
= *p
+ 2;
7600 /* Skip over opcodes that can match nothing, and return true or
7601 false, as appropriate, when we get to one that can't, or to the
7602 matching stop_memory. */
7604 switch ((re_opcode_t
) *p1
)
7606 /* Could be either a loop or a series of alternatives. */
7607 case on_failure_jump
:
7609 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
7611 /* If the next operation is not a jump backwards in the
7616 /* Go through the on_failure_jumps of the alternatives,
7617 seeing if any of the alternatives cannot match nothing.
7618 The last alternative starts with only a jump,
7619 whereas the rest start with on_failure_jump and end
7620 with a jump, e.g., here is the pattern for `a|b|c':
7622 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
7623 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
7626 So, we have to first go through the first (n-1)
7627 alternatives and then deal with the last one separately. */
7630 /* Deal with the first (n-1) alternatives, which start
7631 with an on_failure_jump (see above) that jumps to right
7632 past a jump_past_alt. */
7634 while ((re_opcode_t
) p1
[mcnt
-(1+OFFSET_ADDRESS_SIZE
)] ==
7637 /* `mcnt' holds how many bytes long the alternative
7638 is, including the ending `jump_past_alt' and
7641 if (!PREFIX(alt_match_null_string_p
) (p1
, p1
+ mcnt
-
7642 (1 + OFFSET_ADDRESS_SIZE
),
7646 /* Move to right after this alternative, including the
7650 /* Break if it's the beginning of an n-th alternative
7651 that doesn't begin with an on_failure_jump. */
7652 if ((re_opcode_t
) *p1
!= on_failure_jump
)
7655 /* Still have to check that it's not an n-th
7656 alternative that starts with an on_failure_jump. */
7658 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
7659 if ((re_opcode_t
) p1
[mcnt
-(1+OFFSET_ADDRESS_SIZE
)] !=
7662 /* Get to the beginning of the n-th alternative. */
7663 p1
-= 1 + OFFSET_ADDRESS_SIZE
;
7668 /* Deal with the last alternative: go back and get number
7669 of the `jump_past_alt' just before it. `mcnt' contains
7670 the length of the alternative. */
7671 EXTRACT_NUMBER (mcnt
, p1
- OFFSET_ADDRESS_SIZE
);
7673 if (!PREFIX(alt_match_null_string_p
) (p1
, p1
+ mcnt
, reg_info
))
7676 p1
+= mcnt
; /* Get past the n-th alternative. */
7682 assert (p1
[1] == **p
);
7688 if (!PREFIX(common_op_match_null_string_p
) (&p1
, end
, reg_info
))
7691 } /* while p1 < end */
7694 } /* group_match_null_string_p */
7697 /* Similar to group_match_null_string_p, but doesn't deal with alternatives:
7698 It expects P to be the first byte of a single alternative and END one
7699 byte past the last. The alternative can contain groups. */
7702 PREFIX(alt_match_null_string_p
) (UCHAR_T
*p
, UCHAR_T
*end
,
7703 PREFIX(register_info_type
) *reg_info
)
7710 /* Skip over opcodes that can match nothing, and break when we get
7711 to one that can't. */
7713 switch ((re_opcode_t
) *p1
)
7716 case on_failure_jump
:
7718 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
7723 if (!PREFIX(common_op_match_null_string_p
) (&p1
, end
, reg_info
))
7726 } /* while p1 < end */
7729 } /* alt_match_null_string_p */
7732 /* Deals with the ops common to group_match_null_string_p and
7733 alt_match_null_string_p.
7735 Sets P to one after the op and its arguments, if any. */
7738 PREFIX(common_op_match_null_string_p
) (UCHAR_T
**p
, UCHAR_T
*end
,
7739 PREFIX(register_info_type
) *reg_info
)
7746 switch ((re_opcode_t
) *p1
++)
7766 assert (reg_no
> 0 && reg_no
<= MAX_REGNUM
);
7767 ret
= PREFIX(group_match_null_string_p
) (&p1
, end
, reg_info
);
7769 /* Have to set this here in case we're checking a group which
7770 contains a group and a back reference to it. */
7772 if (REG_MATCH_NULL_STRING_P (reg_info
[reg_no
]) == MATCH_NULL_UNSET_VALUE
)
7773 REG_MATCH_NULL_STRING_P (reg_info
[reg_no
]) = ret
;
7779 /* If this is an optimized succeed_n for zero times, make the jump. */
7781 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
7789 /* Get to the number of times to succeed. */
7790 p1
+= OFFSET_ADDRESS_SIZE
;
7791 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
7795 p1
-= 2 * OFFSET_ADDRESS_SIZE
;
7796 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
7804 if (!REG_MATCH_NULL_STRING_P (reg_info
[*p1
]))
7809 p1
+= 2 * OFFSET_ADDRESS_SIZE
;
7812 /* All other opcodes mean we cannot match the empty string. */
7818 } /* common_op_match_null_string_p */
7821 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
7822 bytes; nonzero otherwise. */
7825 PREFIX(bcmp_translate
) (const CHAR_T
*s1
, const CHAR_T
*s2
,
7827 RE_TRANSLATE_TYPE translate
)
7829 register const UCHAR_T
*p1
= (const UCHAR_T
*) s1
;
7830 register const UCHAR_T
*p2
= (const UCHAR_T
*) s2
;
7834 if (((*p1
<=0xff)?translate
[*p1
++]:*p1
++)
7835 != ((*p2
<=0xff)?translate
[*p2
++]:*p2
++))
7838 if (translate
[*p1
++] != translate
[*p2
++]) return 1;
7846 #else /* not INSIDE_RECURSION */
7848 /* Entry points for GNU code. */
7850 /* re_compile_pattern is the GNU regular expression compiler: it
7851 compiles PATTERN (of length SIZE) and puts the result in BUFP.
7852 Returns 0 if the pattern was valid, otherwise an error string.
7854 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
7855 are set in BUFP on entry.
7857 We call regex_compile to do the actual compilation. */
7860 re_compile_pattern (const char *pattern
,
7862 struct re_pattern_buffer
*bufp
)
7866 /* GNU code is written to assume at least RE_NREGS registers will be set
7867 (and at least one extra will be -1). */
7868 bufp
->regs_allocated
= REGS_UNALLOCATED
;
7870 /* And GNU code determines whether or not to get register information
7871 by passing null for the REGS argument to re_match, etc., not by
7875 /* Match anchors at newline. */
7876 bufp
->newline_anchor
= 1;
7879 if (MB_CUR_MAX
!= 1)
7880 ret
= wcs_regex_compile (pattern
, length
, re_syntax_options
, bufp
);
7883 ret
= byte_regex_compile (pattern
, length
, re_syntax_options
, bufp
);
7887 return gettext (re_error_msgid
+ re_error_msgid_idx
[(int) ret
]);
7890 weak_alias (__re_compile_pattern
, re_compile_pattern
)
7893 /* Entry points compatible with 4.2 BSD regex library. We don't define
7894 them unless specifically requested. */
7896 #if defined _REGEX_RE_COMP || defined _LIBC
7898 /* BSD has one and only one pattern buffer. */
7899 static struct re_pattern_buffer re_comp_buf
;
7903 /* Make these definitions weak in libc, so POSIX programs can redefine
7904 these names if they don't use our functions, and still use
7905 regcomp/regexec below without link errors. */
7908 re_comp (const char *s
)
7914 if (!re_comp_buf
.buffer
)
7915 return gettext ("No previous regular expression");
7919 if (!re_comp_buf
.buffer
)
7921 re_comp_buf
.buffer
= malloc (200);
7922 if (re_comp_buf
.buffer
== NULL
)
7923 return (char *) gettext (re_error_msgid
7924 + re_error_msgid_idx
[(int) REG_ESPACE
]);
7925 re_comp_buf
.allocated
= 200;
7927 re_comp_buf
.fastmap
= malloc (1 << BYTEWIDTH
);
7928 if (re_comp_buf
.fastmap
== NULL
)
7929 return (char *) gettext (re_error_msgid
7930 + re_error_msgid_idx
[(int) REG_ESPACE
]);
7933 /* Since `re_exec' always passes NULL for the `regs' argument, we
7934 don't need to initialize the pattern buffer fields which affect it. */
7936 /* Match anchors at newlines. */
7937 re_comp_buf
.newline_anchor
= 1;
7940 if (MB_CUR_MAX
!= 1)
7941 ret
= wcs_regex_compile (s
, strlen (s
), re_syntax_options
, &re_comp_buf
);
7944 ret
= byte_regex_compile (s
, strlen (s
), re_syntax_options
, &re_comp_buf
);
7949 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
7950 return (char *) gettext (re_error_msgid
+ re_error_msgid_idx
[(int) ret
]);
7958 re_exec (const char *s
)
7960 const int len
= strlen (s
);
7962 0 <= re_search (&re_comp_buf
, s
, len
, 0, len
, 0);
7965 #endif /* _REGEX_RE_COMP */
7967 /* POSIX.2 functions. Don't define these for Emacs. */
7971 /* regcomp takes a regular expression as a string and compiles it.
7973 PREG is a regex_t *. We do not expect any fields to be initialized,
7974 since POSIX says we shouldn't. Thus, we set
7976 `buffer' to the compiled pattern;
7977 `used' to the length of the compiled pattern;
7978 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
7979 REG_EXTENDED bit in CFLAGS is set; otherwise, to
7980 RE_SYNTAX_POSIX_BASIC;
7981 `newline_anchor' to REG_NEWLINE being set in CFLAGS;
7982 `fastmap' to an allocated space for the fastmap;
7983 `fastmap_accurate' to zero;
7984 `re_nsub' to the number of subexpressions in PATTERN.
7986 PATTERN is the address of the pattern string.
7988 CFLAGS is a series of bits which affect compilation.
7990 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
7991 use POSIX basic syntax.
7993 If REG_NEWLINE is set, then . and [^...] don't match newline.
7994 Also, regexec will try a match beginning after every newline.
7996 If REG_ICASE is set, then we considers upper- and lowercase
7997 versions of letters to be equivalent when matching.
7999 If REG_NOSUB is set, then when PREG is passed to regexec, that
8000 routine will report only success or failure, and nothing about the
8003 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
8004 the return codes and their meanings.) */
8007 regcomp (regex_t
*preg
, const char *pattern
, int cflags
)
8011 = (cflags
& REG_EXTENDED
) ?
8012 RE_SYNTAX_POSIX_EXTENDED
: RE_SYNTAX_POSIX_BASIC
;
8014 /* regex_compile will allocate the space for the compiled pattern. */
8016 preg
->allocated
= 0;
8019 /* Try to allocate space for the fastmap. */
8020 preg
->fastmap
= malloc (1 << BYTEWIDTH
);
8022 if (cflags
& REG_ICASE
)
8026 preg
->translate
= malloc (CHAR_SET_SIZE
8027 * sizeof (*(RE_TRANSLATE_TYPE
)0));
8028 if (preg
->translate
== NULL
)
8029 return (int) REG_ESPACE
;
8031 /* Map uppercase characters to corresponding lowercase ones. */
8032 for (i
= 0; i
< CHAR_SET_SIZE
; i
++)
8033 preg
->translate
[i
] = ISUPPER (i
) ? TOLOWER (i
) : i
;
8036 preg
->translate
= NULL
;
8038 /* If REG_NEWLINE is set, newlines are treated differently. */
8039 if (cflags
& REG_NEWLINE
)
8040 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
8041 syntax
&= ~RE_DOT_NEWLINE
;
8042 syntax
|= RE_HAT_LISTS_NOT_NEWLINE
;
8043 /* It also changes the matching behavior. */
8044 preg
->newline_anchor
= 1;
8047 preg
->newline_anchor
= 0;
8049 preg
->no_sub
= !!(cflags
& REG_NOSUB
);
8051 /* POSIX says a null character in the pattern terminates it, so we
8052 can use strlen here in compiling the pattern. */
8054 if (MB_CUR_MAX
!= 1)
8055 ret
= wcs_regex_compile (pattern
, strlen (pattern
), syntax
, preg
);
8058 ret
= byte_regex_compile (pattern
, strlen (pattern
), syntax
, preg
);
8060 /* POSIX doesn't distinguish between an unmatched open-group and an
8061 unmatched close-group: both are REG_EPAREN. */
8062 if (ret
== REG_ERPAREN
) ret
= REG_EPAREN
;
8064 if (ret
== REG_NOERROR
&& preg
->fastmap
)
8066 /* Compute the fastmap now, since regexec cannot modify the pattern
8068 if (re_compile_fastmap (preg
) == -2)
8070 /* Some error occurred while computing the fastmap, just forget
8072 free (preg
->fastmap
);
8073 preg
->fastmap
= NULL
;
8080 weak_alias (__regcomp
, regcomp
)
8084 /* regexec searches for a given pattern, specified by PREG, in the
8087 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
8088 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
8089 least NMATCH elements, and we set them to the offsets of the
8090 corresponding matched substrings.
8092 EFLAGS specifies `execution flags' which affect matching: if
8093 REG_NOTBOL is set, then ^ does not match at the beginning of the
8094 string; if REG_NOTEOL is set, then $ does not match at the end.
8096 We return 0 if we find a match and REG_NOMATCH if not. */
8099 regexec (const regex_t
*preg
, const char *string
,
8100 size_t nmatch
, regmatch_t pmatch
[], int eflags
)
8103 struct re_registers regs
;
8104 regex_t private_preg
;
8105 int len
= strlen (string
);
8106 boolean want_reg_info
= !preg
->no_sub
&& nmatch
> 0;
8108 private_preg
= *preg
;
8110 private_preg
.not_bol
= !!(eflags
& REG_NOTBOL
);
8111 private_preg
.not_eol
= !!(eflags
& REG_NOTEOL
);
8113 /* The user has told us exactly how many registers to return
8114 information about, via `nmatch'. We have to pass that on to the
8115 matching routines. */
8116 private_preg
.regs_allocated
= REGS_FIXED
;
8120 regs
.num_regs
= nmatch
;
8121 regs
.start
= TALLOC (nmatch
* 2, regoff_t
);
8122 if (regs
.start
== NULL
)
8123 return (int) REG_NOMATCH
;
8124 regs
.end
= regs
.start
+ nmatch
;
8127 /* Perform the searching operation. */
8128 ret
= re_search (&private_preg
, string
, len
,
8129 /* start: */ 0, /* range: */ len
,
8130 want_reg_info
? ®s
: 0);
8132 /* Copy the register information to the POSIX structure. */
8139 for (r
= 0; r
< nmatch
; r
++)
8141 pmatch
[r
].rm_so
= regs
.start
[r
];
8142 pmatch
[r
].rm_eo
= regs
.end
[r
];
8146 /* If we needed the temporary register info, free the space now. */
8150 /* We want zero return to mean success, unlike `re_search'. */
8151 return ret
>= 0 ? (int) REG_NOERROR
: (int) REG_NOMATCH
;
8154 weak_alias (__regexec
, regexec
)
8158 /* Returns a message corresponding to an error code, ERRCODE, returned
8159 from either regcomp or regexec. We don't use PREG here. */
8162 regerror (int errcode
, const regex_t
*preg
, char *errbuf
, size_t errbuf_size
)
8168 || errcode
>= (int) (sizeof (re_error_msgid_idx
)
8169 / sizeof (re_error_msgid_idx
[0])))
8170 /* Only error codes returned by the rest of the code should be passed
8171 to this routine. If we are given anything else, or if other regex
8172 code generates an invalid error code, then the program has a bug.
8173 Dump core so we can fix it. */
8176 msg
= gettext (re_error_msgid
+ re_error_msgid_idx
[errcode
]);
8178 msg_size
= strlen (msg
) + 1; /* Includes the null. */
8180 if (errbuf_size
!= 0)
8182 if (msg_size
> errbuf_size
)
8184 #if defined HAVE_MEMPCPY || defined _LIBC
8185 *((char *) __mempcpy (errbuf
, msg
, errbuf_size
- 1)) = '\0';
8187 memcpy (errbuf
, msg
, errbuf_size
- 1);
8188 errbuf
[errbuf_size
- 1] = 0;
8192 memcpy (errbuf
, msg
, msg_size
);
8198 weak_alias (__regerror
, regerror
)
8202 /* Free dynamically allocated space used by PREG. */
8205 regfree (regex_t
*preg
)
8207 if (preg
->buffer
!= NULL
)
8208 free (preg
->buffer
);
8209 preg
->buffer
= NULL
;
8211 preg
->allocated
= 0;
8214 if (preg
->fastmap
!= NULL
)
8215 free (preg
->fastmap
);
8216 preg
->fastmap
= NULL
;
8217 preg
->fastmap_accurate
= 0;
8219 if (preg
->translate
!= NULL
)
8220 free (preg
->translate
);
8221 preg
->translate
= NULL
;
8224 weak_alias (__regfree
, regfree
)
8227 #endif /* not emacs */
8229 #endif /* not INSIDE_RECURSION */
8233 #undef STORE_NUMBER_AND_INCR
8234 #undef EXTRACT_NUMBER
8235 #undef EXTRACT_NUMBER_AND_INCR
8237 #undef DEBUG_PRINT_COMPILED_PATTERN
8238 #undef DEBUG_PRINT_DOUBLE_STRING
8240 #undef INIT_FAIL_STACK
8241 #undef RESET_FAIL_STACK
8242 #undef DOUBLE_FAIL_STACK
8243 #undef PUSH_PATTERN_OP
8244 #undef PUSH_FAILURE_POINTER
8245 #undef PUSH_FAILURE_INT
8246 #undef PUSH_FAILURE_ELT
8247 #undef POP_FAILURE_POINTER
8248 #undef POP_FAILURE_INT
8249 #undef POP_FAILURE_ELT
8252 #undef PUSH_FAILURE_POINT
8253 #undef POP_FAILURE_POINT
8255 #undef REG_UNSET_VALUE
8263 #undef INIT_BUF_SIZE
8264 #undef GET_BUFFER_SPACE
8272 #undef EXTEND_BUFFER
8273 #undef GET_UNSIGNED_NUMBER
8274 #undef FREE_STACK_RETURN
8276 # undef POINTER_TO_OFFSET
8277 # undef MATCHING_IN_FRST_STRING
8279 # undef AT_STRINGS_BEG
8280 # undef AT_STRINGS_END
8283 # undef FREE_VARIABLES
8284 # undef NO_HIGHEST_ACTIVE_REG
8285 # undef NO_LOWEST_ACTIVE_REG
8289 # undef COMPILED_BUFFER_VAR
8290 # undef OFFSET_ADDRESS_SIZE
8291 # undef CHAR_CLASS_SIZE
8298 # define DEFINED_ONCE