1 /* tr -- a filter to translate characters
2 Copyright (C) 1991-2024 Free Software Foundation, Inc.
4 This program is free software: you can redistribute it and/or modify
5 it under the terms of the GNU General Public License as published by
6 the Free Software Foundation, either version 3 of the License, or
7 (at your option) any later version.
9 This program is distributed in the hope that it will be useful,
10 but WITHOUT ANY WARRANTY; without even the implied warranty of
11 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 GNU General Public License for more details.
14 You should have received a copy of the GNU General Public License
15 along with this program. If not, see <https://www.gnu.org/licenses/>. */
17 /* Written by Jim Meyering */
23 #include <sys/types.h>
30 #include "safe-read.h"
31 #include "xbinary-io.h"
34 /* The official name of this program (e.g., no 'g' prefix). */
35 #define PROGRAM_NAME "tr"
37 #define AUTHORS proper_name ("Jim Meyering")
39 enum { N_CHARS
= UCHAR_MAX
+ 1 };
41 /* An unsigned integer type big enough to hold a repeat count or an
42 unsigned character. POSIX requires support for repeat counts as
43 high as 2**31 - 1. Since repeat counts might need to expand to
44 match the length of an argument string, we need at least size_t to
45 avoid arbitrary internal limits. It doesn't cost much to use
47 typedef uintmax_t count
;
49 /* The value for Spec_list->state that indicates to
50 get_next that it should initialize the tail pointer.
51 Its value should be as large as possible to avoid conflict
52 a valid value for the state field -- and that may be as
53 large as any valid repeat_count. */
54 #define BEGIN_STATE (UINTMAX_MAX - 1)
56 /* The value for Spec_list->state that indicates to
57 get_next that the element pointed to by Spec_list->tail is
58 being considered for the first time on this pass through the
59 list -- it indicates that get_next should make any necessary
61 #define NEW_ELEMENT (BEGIN_STATE + 1)
63 /* The maximum possible repeat count. Due to how the states are
64 implemented, it can be as much as BEGIN_STATE. */
65 #define REPEAT_COUNT_MAXIMUM BEGIN_STATE
67 /* The following (but not CC_NO_CLASS) are indices into the array of
68 valid character class strings. */
71 CC_ALNUM
= 0, CC_ALPHA
= 1, CC_BLANK
= 2, CC_CNTRL
= 3,
72 CC_DIGIT
= 4, CC_GRAPH
= 5, CC_LOWER
= 6, CC_PRINT
= 7,
73 CC_PUNCT
= 8, CC_SPACE
= 9, CC_UPPER
= 10, CC_XDIGIT
= 11,
77 /* Character class to which a character (returned by get_next) belonged;
78 but it is set only if the construct from which the character was obtained
79 was one of the character classes [:upper:] or [:lower:]. The value
80 is used only when translating and then, only to make sure that upper
81 and lower class constructs have the same relative positions in string1
83 enum Upper_Lower_class
90 /* The type of a List_element. See build_spec_list for more details. */
91 enum Range_element_type
100 /* One construct in one of tr's argument strings.
101 For example, consider the POSIX version of the classic tr command:
102 tr -cs 'a-zA-Z_' '[\n*]'
103 String1 has 3 constructs, two of which are ranges (a-z and A-Z),
104 and a single normal character, '_'. String2 has one construct. */
107 enum Range_element_type type
;
108 struct List_element
*next
;
111 unsigned char normal_char
;
114 unsigned char first_char
;
115 unsigned char last_char
;
118 enum Char_class char_class
;
119 unsigned char equiv_code
;
122 unsigned char the_repeated_char
;
130 /* Each of tr's argument strings is parsed into a form that is easier
131 to work with: a linked list of constructs (struct List_element).
132 Each Spec_list structure also encapsulates various attributes of
133 the corresponding argument string. The attributes are used mainly
134 to verify that the strings are valid in the context of any options
135 specified (like -s, -d, or -c). The main exception is the member
136 'tail', which is first used to construct the list. After construction,
137 it is used by get_next to save its state when traversing the list.
138 The member 'state' serves a similar function. */
141 /* Points to the head of the list of range elements.
142 The first struct is a dummy; its members are never used. */
143 struct List_element
*head
;
145 /* When appending, points to the last element. When traversing via
146 get_next(), points to the element to process next. Setting
147 Spec_list.state to the value BEGIN_STATE before calling get_next
148 signals get_next to initialize tail to point to head->next. */
149 struct List_element
*tail
;
151 /* Used to save state between calls to get_next. */
154 /* Length, in the sense that length ('a-z[:digit:]123abc')
155 is 42 ( = 26 + 10 + 6). */
158 /* The number of [c*] and [c*0] constructs that appear in this spec. */
159 size_t n_indefinite_repeats
;
161 /* If n_indefinite_repeats is nonzero, this points to the List_element
162 corresponding to the last [c*] or [c*0] construct encountered in
163 this spec. Otherwise it is undefined. */
164 struct List_element
*indefinite_repeat_element
;
166 /* True if this spec contains at least one equivalence
167 class construct e.g. [=c=]. */
168 bool has_equiv_class
;
170 /* True if this spec contains at least one character class
171 construct. E.g. [:digit:]. */
174 /* True if this spec contains at least one of the character class
175 constructs (all but upper and lower) that aren't allowed in s2. */
176 bool has_restricted_char_class
;
179 /* A representation for escaped string1 or string2. As a string is parsed,
180 any backslash-escaped characters (other than octal or \a, \b, \f, \n,
181 etc.) are marked as such in this structure by setting the corresponding
182 entry in the ESCAPED vector. */
190 /* Return nonzero if the Ith character of escaped string ES matches C
191 and is not escaped itself. */
193 es_match (struct E_string
const *es
, size_t i
, char c
)
195 return es
->s
[i
] == c
&& !es
->escaped
[i
];
198 /* When true, each sequence in the input of a repeated character
199 (call it c) is replaced (in the output) by a single occurrence of c
200 for every c in the squeeze set. */
201 static bool squeeze_repeats
= false;
203 /* When true, removes characters in the delete set from input. */
204 static bool delete = false;
206 /* Use the complement of set1 in place of set1. */
207 static bool complement
= false;
209 /* When tr is performing translation and string1 is longer than string2,
210 POSIX says that the result is unspecified. That gives the implementer
211 of a POSIX conforming version of tr two reasonable choices for the
212 semantics of this case.
214 * The BSD tr pads string2 to the length of string1 by
215 repeating the last character in string2.
217 * System V tr ignores characters in string1 that have no
218 corresponding character in string2. That is, string1 is effectively
219 truncated to the length of string2.
221 When nonzero, this flag causes GNU tr to imitate the behavior
222 of System V tr when translating with string1 longer than string2.
223 The default is to emulate BSD tr. This flag is ignored in modes where
224 no translation is performed. Emulating the System V tr
225 in this exceptional case causes the relatively common BSD idiom:
227 tr -cs A-Za-z0-9 '\012'
229 to break (it would convert only zero bytes, rather than all
230 non-alphanumerics, to newlines).
232 WARNING: This switch does not provide general BSD or System V
233 compatibility. For example, it doesn't disable the interpretation
234 of the POSIX constructs [:alpha:], [=c=], and [c*10], so if by
235 some unfortunate coincidence you use such constructs in scripts
236 expecting to use some other version of tr, the scripts will break. */
237 static bool truncate_set1
= false;
239 /* An alias for (!delete && non_option_args == 2).
240 It is set in main and used there and in validate(). */
241 static bool translating
;
243 static char io_buf
[BUFSIZ
];
245 static char const *const char_class_name
[] =
247 "alnum", "alpha", "blank", "cntrl", "digit", "graph",
248 "lower", "print", "punct", "space", "upper", "xdigit"
251 /* Array of boolean values. A character 'c' is a member of the
252 squeeze set if and only if in_squeeze_set[c] is true. The squeeze
253 set is defined by the last (possibly, the only) string argument
254 on the command line when the squeeze option is given. */
255 static bool in_squeeze_set
[N_CHARS
];
257 /* Array of boolean values. A character 'c' is a member of the
258 delete set if and only if in_delete_set[c] is true. The delete
259 set is defined by the first (or only) string argument on the
260 command line when the delete option is given. */
261 static bool in_delete_set
[N_CHARS
];
263 /* Array of character values defining the translation (if any) that
264 tr is to perform. Translation is performed only when there are
265 two specification strings and the delete switch is not given. */
266 static char xlate
[N_CHARS
];
268 static struct option
const long_options
[] =
270 {"complement", no_argument
, nullptr, 'c'},
271 {"delete", no_argument
, nullptr, 'd'},
272 {"squeeze-repeats", no_argument
, nullptr, 's'},
273 {"truncate-set1", no_argument
, nullptr, 't'},
274 {GETOPT_HELP_OPTION_DECL
},
275 {GETOPT_VERSION_OPTION_DECL
},
276 {nullptr, 0, nullptr, 0}
282 if (status
!= EXIT_SUCCESS
)
287 Usage: %s [OPTION]... STRING1 [STRING2]\n\
291 Translate, squeeze, and/or delete characters from standard input,\n\
292 writing to standard output. STRING1 and STRING2 specify arrays of\n\
293 characters ARRAY1 and ARRAY2 that control the action.\n\
295 -c, -C, --complement use the complement of ARRAY1\n\
296 -d, --delete delete characters in ARRAY1, do not translate\n\
297 -s, --squeeze-repeats replace each sequence of a repeated character\n\
298 that is listed in the last specified ARRAY,\n\
299 with a single occurrence of that character\n\
300 -t, --truncate-set1 first truncate ARRAY1 to length of ARRAY2\n\
302 fputs (HELP_OPTION_DESCRIPTION
, stdout
);
303 fputs (VERSION_OPTION_DESCRIPTION
, stdout
);
306 ARRAYs are specified as strings of characters. Most represent themselves.\n\
307 Interpreted sequences are:\n\
309 \\NNN character with octal value NNN (1 to 3 octal digits)\n\
316 \\t horizontal tab\n\
320 CHAR1-CHAR2 all characters from CHAR1 to CHAR2 in ascending order\n\
321 [CHAR*] in ARRAY2, copies of CHAR until length of ARRAY1\n\
322 [CHAR*REPEAT] REPEAT copies of CHAR, REPEAT octal if starting with 0\n\
323 [:alnum:] all letters and digits\n\
324 [:alpha:] all letters\n\
325 [:blank:] all horizontal whitespace\n\
326 [:cntrl:] all control characters\n\
327 [:digit:] all digits\n\
330 [:graph:] all printable characters, not including space\n\
331 [:lower:] all lower case letters\n\
332 [:print:] all printable characters, including space\n\
333 [:punct:] all punctuation characters\n\
334 [:space:] all horizontal or vertical whitespace\n\
335 [:upper:] all upper case letters\n\
336 [:xdigit:] all hexadecimal digits\n\
337 [=CHAR=] all characters which are equivalent to CHAR\n\
341 Translation occurs if -d is not given and both STRING1 and STRING2 appear.\n\
342 -t is only significant when translating. ARRAY2 is extended to length of\n\
343 ARRAY1 by repeating its last character as necessary. Excess characters\n\
344 of ARRAY2 are ignored. Character classes expand in unspecified order;\n\
345 while translating, [:lower:] and [:upper:] may be used in pairs to\n\
346 specify case conversion. Squeezing occurs after translation or deletion.\n\
348 emit_ancillary_info (PROGRAM_NAME
);
353 /* Return nonzero if the character C is a member of the
354 equivalence class containing the character EQUIV_CLASS. */
357 is_equiv_class_member (unsigned char equiv_class
, unsigned char c
)
359 return (equiv_class
== c
);
362 /* Return true if the character C is a member of the
363 character class CHAR_CLASS. */
367 is_char_class_member (enum Char_class char_class
, unsigned char c
)
374 result
= isalnum (c
);
377 result
= isalpha (c
);
380 result
= isblank (c
);
383 result
= iscntrl (c
);
386 result
= isdigit (c
);
389 result
= isgraph (c
);
392 result
= islower (c
);
395 result
= isprint (c
);
398 result
= ispunct (c
);
401 result
= isspace (c
);
404 result
= isupper (c
);
407 result
= isxdigit (c
);
417 es_free (struct E_string
*es
)
423 /* Perform the first pass over each range-spec argument S, converting all
424 \c and \ddd escapes to their one-byte representations. If an invalid
425 quote sequence is found print an error message and return false;
426 Otherwise set *ES to the resulting string and return true.
427 The resulting array of characters may contain zero-bytes;
428 however, on input, S is assumed to be null-terminated, and hence
429 cannot contain actual (non-escaped) zero bytes. */
432 unquote (char const *s
, struct E_string
*es
)
434 size_t len
= strlen (s
);
436 es
->s
= xmalloc (len
);
437 es
->escaped
= xcalloc (len
, sizeof es
->escaped
[0]);
440 for (unsigned int i
= 0; s
[i
]; i
++)
448 es
->escaped
[j
] = true;
484 oct_digit
= s
[i
+ 2] - '0';
485 if (0 <= oct_digit
&& oct_digit
<= 7)
487 c
= 8 * c
+ oct_digit
;
489 oct_digit
= s
[i
+ 2] - '0';
490 if (0 <= oct_digit
&& oct_digit
<= 7)
492 if (8 * c
+ oct_digit
< N_CHARS
)
494 c
= 8 * c
+ oct_digit
;
499 /* A 3-digit octal number larger than \377 won't
500 fit in 8 bits. So we stop when adding the
501 next digit would put us over the limit and
502 give a warning about the ambiguity. POSIX
503 isn't clear on this, and we interpret this
504 lack of clarity as meaning the resulting behavior
505 is undefined, which means we're allowed to issue
507 error (0, 0, _("warning: the ambiguous octal escape\
508 \\%c%c%c is being\n\tinterpreted as the 2-byte sequence \\0%c%c, %c"),
509 s
[i
], s
[i
+ 1], s
[i
+ 2],
510 s
[i
], s
[i
+ 1], s
[i
+ 2]);
516 error (0, 0, _("warning: an unescaped backslash "
517 "at end of string is not portable"));
518 /* POSIX is not clear about this. */
519 es
->escaped
[j
] = false;
539 /* If CLASS_STR is a valid character class string, return its index
540 in the global char_class_name array. Otherwise, return CC_NO_CLASS. */
543 static enum Char_class
544 look_up_char_class (char const *class_str
, size_t len
)
548 for (i
= 0; i
< ARRAY_CARDINALITY (char_class_name
); i
++)
549 if (STREQ_LEN (class_str
, char_class_name
[i
], len
)
550 && strlen (char_class_name
[i
]) == len
)
555 /* Return a newly allocated string with a printable version of C.
556 This function is used solely for formatting error messages. */
559 make_printable_char (unsigned char c
)
561 char *buf
= xmalloc (5);
570 sprintf (buf
, "\\%03o", c
);
575 /* Return a newly allocated copy of S which is suitable for printing.
576 LEN is the number of characters in S. Most non-printing
577 (isprint) characters are represented by a backslash followed by
578 3 octal digits. However, the characters represented by \c escapes
579 where c is one of [abfnrtv] are represented by their 2-character \c
580 sequences. This function is used solely for printing error messages. */
583 make_printable_str (char const *s
, size_t len
)
585 /* Worst case is that every character expands to a backslash
586 followed by a 3-character octal escape sequence. */
587 char *printable_buf
= xnmalloc (len
+ 1, 4);
588 char *p
= printable_buf
;
590 for (size_t i
= 0; i
< len
; i
++)
593 char const *tmp
= nullptr;
594 unsigned char c
= s
[i
];
629 sprintf (buf
, "\\%03o", c
);
635 return printable_buf
;
638 /* Append a newly allocated structure representing a
639 character C to the specification list LIST. */
642 append_normal_char (struct Spec_list
*list
, unsigned char c
)
644 struct List_element
*new = xmalloc (sizeof *new);
646 new->type
= RE_NORMAL_CHAR
;
647 new->u
.normal_char
= c
;
648 list
->tail
->next
= new;
652 /* Append a newly allocated structure representing the range
653 of characters from FIRST to LAST to the specification list LIST.
654 Return false if LAST precedes FIRST in the collating sequence,
655 true otherwise. This means that '[c-c]' is acceptable. */
658 append_range (struct Spec_list
*list
, unsigned char first
, unsigned char last
)
662 char *tmp1
= make_printable_char (first
);
663 char *tmp2
= make_printable_char (last
);
666 _("range-endpoints of '%s-%s' are in reverse collating sequence order"),
672 struct List_element
*new = xmalloc (sizeof *new);
674 new->type
= RE_RANGE
;
675 new->u
.range
.first_char
= first
;
676 new->u
.range
.last_char
= last
;
677 list
->tail
->next
= new;
682 /* If CHAR_CLASS_STR is a valid character class string, append a
683 newly allocated structure representing that character class to the end
684 of the specification list LIST and return true. If CHAR_CLASS_STR is not
685 a valid string return false. */
688 append_char_class (struct Spec_list
*list
,
689 char const *char_class_str
, size_t len
)
691 enum Char_class char_class
= look_up_char_class (char_class_str
, len
);
692 if (char_class
== CC_NO_CLASS
)
694 struct List_element
*new = xmalloc (sizeof *new);
696 new->type
= RE_CHAR_CLASS
;
697 new->u
.char_class
= char_class
;
698 list
->tail
->next
= new;
703 /* Append a newly allocated structure representing a [c*n]
704 repeated character construct to the specification list LIST.
705 THE_CHAR is the single character to be repeated, and REPEAT_COUNT
706 is a non-negative repeat count. */
709 append_repeated_char (struct Spec_list
*list
, unsigned char the_char
,
712 struct List_element
*new = xmalloc (sizeof *new);
714 new->type
= RE_REPEATED_CHAR
;
715 new->u
.repeated_char
.the_repeated_char
= the_char
;
716 new->u
.repeated_char
.repeat_count
= repeat_count
;
717 list
->tail
->next
= new;
721 /* Given a string, EQUIV_CLASS_STR, from a [=str=] context and
722 the length of that string, LEN, if LEN is exactly one, append
723 a newly allocated structure representing the specified
724 equivalence class to the specification list, LIST and return true.
725 If LEN is not 1, return false. */
728 append_equiv_class (struct Spec_list
*list
,
729 char const *equiv_class_str
, size_t len
)
734 struct List_element
*new = xmalloc (sizeof *new);
736 new->type
= RE_EQUIV_CLASS
;
737 new->u
.equiv_code
= *equiv_class_str
;
738 list
->tail
->next
= new;
743 /* Search forward starting at START_IDX for the 2-char sequence
744 (PRE_BRACKET_CHAR,']') in the string P of length P_LEN. If such
745 a sequence is found, set *RESULT_IDX to the index of the first
746 character and return true. Otherwise return false. P may contain
750 find_closing_delim (const struct E_string
*es
, size_t start_idx
,
751 char pre_bracket_char
, size_t *result_idx
)
753 for (size_t i
= start_idx
; i
< es
->len
- 1; i
++)
754 if (es
->s
[i
] == pre_bracket_char
&& es
->s
[i
+ 1] == ']'
755 && !es
->escaped
[i
] && !es
->escaped
[i
+ 1])
763 /* Parse the bracketed repeat-char syntax. If the P_LEN characters
764 beginning with P[ START_IDX ] comprise a valid [c*n] construct,
765 then set *CHAR_TO_REPEAT, *REPEAT_COUNT, and *CLOSING_BRACKET_IDX
766 and return zero. If the second character following
767 the opening bracket is not '*' or if no closing bracket can be
768 found, return -1. If a closing bracket is found and the
769 second char is '*', but the string between the '*' and ']' isn't
770 empty, an octal number, or a decimal number, print an error message
774 find_bracketed_repeat (const struct E_string
*es
, size_t start_idx
,
775 unsigned char *char_to_repeat
, count
*repeat_count
,
776 size_t *closing_bracket_idx
)
778 affirm (start_idx
+ 1 < es
->len
);
779 if (!es_match (es
, start_idx
+ 1, '*'))
782 for (size_t i
= start_idx
+ 2; i
< es
->len
&& !es
->escaped
[i
]; i
++)
786 size_t digit_str_len
= i
- start_idx
- 2;
788 *char_to_repeat
= es
->s
[start_idx
];
789 if (digit_str_len
== 0)
791 /* We've matched [c*] -- no explicit repeat count. */
796 /* Here, we have found [c*s] where s should be a string
797 of octal (if it starts with '0') or decimal digits. */
798 char const *digit_str
= &es
->s
[start_idx
+ 2];
800 if ((xstrtoumax (digit_str
, &d_end
, *digit_str
== '0' ? 8 : 10,
801 repeat_count
, nullptr)
803 || REPEAT_COUNT_MAXIMUM
< *repeat_count
804 || digit_str
+ digit_str_len
!= d_end
)
806 char *tmp
= make_printable_str (digit_str
, digit_str_len
);
808 _("invalid repeat count %s in [c*n] construct"),
814 *closing_bracket_idx
= i
;
818 return -1; /* No bracket found. */
821 /* Return true if the string at ES->s[IDX] matches the regular
822 expression '\*[0-9]*]', false otherwise. The string does not
823 match if any of its characters are escaped. */
827 star_digits_closebracket (const struct E_string
*es
, size_t idx
)
829 if (!es_match (es
, idx
, '*'))
832 for (size_t i
= idx
+ 1; i
< es
->len
; i
++)
833 if (!ISDIGIT (to_uchar (es
->s
[i
])) || es
->escaped
[i
])
834 return es_match (es
, i
, ']');
838 /* Convert string UNESCAPED_STRING (which has been preprocessed to
839 convert backslash-escape sequences) of length LEN characters into
840 a linked list of the following 5 types of constructs:
841 - [:str:] Character class where 'str' is one of the 12 valid strings.
842 - [=c=] Equivalence class where 'c' is any single character.
843 - [c*n] Repeat the single character 'c' 'n' times. n may be omitted.
844 However, if 'n' is present, it must be a non-negative octal or
846 - r-s Range of characters from 'r' to 's'. The second endpoint must
847 not precede the first in the current collating sequence.
848 - c Any other character is interpreted as itself. */
851 build_spec_list (const struct E_string
*es
, struct Spec_list
*result
)
853 char const *p
= es
->s
;
855 /* The main for-loop below recognizes the 4 multi-character constructs.
856 A character that matches (in its context) none of the multi-character
857 constructs is classified as 'normal'. Since all multi-character
858 constructs have at least 3 characters, any strings of length 2 or
859 less are composed solely of normal characters. Hence, the index of
860 the outer for-loop runs only as far as LEN-2. */
862 for (i
= 0; i
+ 2 < es
->len
; /* empty */)
864 if (es_match (es
, i
, '['))
866 bool matched_multi_char_construct
;
867 size_t closing_bracket_idx
;
868 unsigned char char_to_repeat
;
872 matched_multi_char_construct
= true;
873 if (es_match (es
, i
+ 1, ':') || es_match (es
, i
+ 1, '='))
875 size_t closing_delim_idx
;
877 if (find_closing_delim (es
, i
+ 2, p
[i
+ 1], &closing_delim_idx
))
879 size_t opnd_str_len
= closing_delim_idx
- 1 - (i
+ 2) + 1;
880 char const *opnd_str
= p
+ i
+ 2;
882 if (opnd_str_len
== 0)
885 error (0, 0, _("missing character class name '[::]'"));
888 _("missing equivalence class character '[==]'"));
894 /* FIXME: big comment. */
895 if (!append_char_class (result
, opnd_str
, opnd_str_len
))
897 if (star_digits_closebracket (es
, i
+ 2))
898 goto try_bracketed_repeat
;
901 char *tmp
= make_printable_str (opnd_str
,
903 error (0, 0, _("invalid character class %s"),
912 /* FIXME: big comment. */
913 if (!append_equiv_class (result
, opnd_str
, opnd_str_len
))
915 if (star_digits_closebracket (es
, i
+ 2))
916 goto try_bracketed_repeat
;
919 char *tmp
= make_printable_str (opnd_str
,
922 _("%s: equivalence class operand must be a single character"),
930 i
= closing_delim_idx
+ 2;
933 /* Else fall through. This could be [:*] or [=*]. */
936 try_bracketed_repeat
:
938 /* Determine whether this is a bracketed repeat range
939 matching the RE \[.\*(dec_or_oct_number)?]. */
940 err
= find_bracketed_repeat (es
, i
+ 1, &char_to_repeat
,
942 &closing_bracket_idx
);
945 append_repeated_char (result
, char_to_repeat
, repeat_count
);
946 i
= closing_bracket_idx
+ 1;
950 matched_multi_char_construct
= false;
954 /* Found a string that looked like [c*n] but the
955 numeric part was invalid. */
959 if (matched_multi_char_construct
)
962 /* We reach this point if P does not match [:str:], [=c=],
963 [c*n], or [c*]. Now, see if P looks like a range '[-c'
964 (from '[' to 'c'). */
967 /* Look ahead one char for ranges like a-z. */
968 if (es_match (es
, i
+ 1, '-'))
970 if (!append_range (result
, p
[i
], p
[i
+ 2]))
976 append_normal_char (result
, p
[i
]);
981 /* Now handle the (2 or fewer) remaining characters p[i]..p[es->len - 1]. */
982 for (; i
< es
->len
; i
++)
983 append_normal_char (result
, p
[i
]);
988 /* Advance past the current construct.
989 S->tail must be non-null. */
991 skip_construct (struct Spec_list
*s
)
993 s
->tail
= s
->tail
->next
;
994 s
->state
= NEW_ELEMENT
;
997 /* Given a Spec_list S (with its saved state implicit in the values
998 of its members 'tail' and 'state'), return the next single character
999 in the expansion of S's constructs. If the last character of S was
1000 returned on the previous call or if S was empty, this function
1001 returns -1. For example, successive calls to get_next where S
1002 represents the spec-string 'a-d[y*3]' will return the sequence
1003 of values a, b, c, d, y, y, y, -1. Finally, if the construct from
1004 which the returned character comes is [:upper:] or [:lower:], the
1005 parameter CLASS is given a value to indicate which it was. Otherwise
1006 CLASS is set to UL_NONE. This value is used only when constructing
1007 the translation table to verify that any occurrences of upper and
1008 lower class constructs in the spec-strings appear in the same relative
1012 get_next (struct Spec_list
*s
, enum Upper_Lower_class
*class)
1014 struct List_element
*p
;
1021 if (s
->state
== BEGIN_STATE
)
1023 s
->tail
= s
->head
->next
;
1024 s
->state
= NEW_ELEMENT
;
1033 case RE_NORMAL_CHAR
:
1034 return_val
= p
->u
.normal_char
;
1035 s
->state
= NEW_ELEMENT
;
1040 if (s
->state
== NEW_ELEMENT
)
1041 s
->state
= p
->u
.range
.first_char
;
1044 return_val
= s
->state
;
1045 if (s
->state
== p
->u
.range
.last_char
)
1048 s
->state
= NEW_ELEMENT
;
1055 switch (p
->u
.char_class
)
1068 if (s
->state
== NEW_ELEMENT
)
1070 for (i
= 0; i
< N_CHARS
; i
++)
1071 if (is_char_class_member (p
->u
.char_class
, i
))
1073 affirm (i
< N_CHARS
);
1076 assure (is_char_class_member (p
->u
.char_class
, s
->state
));
1077 return_val
= s
->state
;
1078 for (i
= s
->state
+ 1; i
< N_CHARS
; i
++)
1079 if (is_char_class_member (p
->u
.char_class
, i
))
1086 s
->state
= NEW_ELEMENT
;
1090 case RE_EQUIV_CLASS
:
1091 /* FIXME: this assumes that each character is alone in its own
1092 equivalence class (which appears to be correct for my
1093 LC_COLLATE. But I don't know of any function that allows
1094 one to determine a character's equivalence class. */
1096 return_val
= p
->u
.equiv_code
;
1097 s
->state
= NEW_ELEMENT
;
1101 case RE_REPEATED_CHAR
:
1102 /* Here, a repeat count of n == 0 means don't repeat at all. */
1103 if (p
->u
.repeated_char
.repeat_count
== 0)
1106 s
->state
= NEW_ELEMENT
;
1107 return_val
= get_next (s
, class);
1111 if (s
->state
== NEW_ELEMENT
)
1116 return_val
= p
->u
.repeated_char
.the_repeated_char
;
1117 if (s
->state
== p
->u
.repeated_char
.repeat_count
)
1120 s
->state
= NEW_ELEMENT
;
1132 /* This is a minor kludge. This function is called from
1133 get_spec_stats to determine the cardinality of a set derived
1134 from a complemented string. It's a kludge in that some of the
1135 same operations are (duplicated) performed in set_initialize. */
1138 card_of_complement (struct Spec_list
*s
)
1141 int cardinality
= N_CHARS
;
1142 bool in_set
[N_CHARS
] = {0};
1144 s
->state
= BEGIN_STATE
;
1145 while ((c
= get_next (s
, nullptr)) != -1)
1147 cardinality
-= (!in_set
[c
]);
1153 /* Discard the lengths associated with a case conversion,
1154 as using the actual number of upper or lower case characters
1155 is problematic when they don't match in some locales.
1156 Also ensure the case conversion classes in string2 are
1157 aligned correctly with those in string1.
1158 Note POSIX says the behavior of 'tr "[:upper:]" "[:upper:]"'
1159 is undefined. Therefore we allow it (unlike Solaris)
1160 and treat it as a no-op. */
1163 validate_case_classes (struct Spec_list
*s1
, struct Spec_list
*s2
)
1169 MAYBE_UNUSED count old_s1_len
= s1
->length
, old_s2_len
= s2
->length
;
1170 struct List_element
*s1_tail
= s1
->tail
;
1171 struct List_element
*s2_tail
= s2
->tail
;
1172 bool s1_new_element
= true;
1173 bool s2_new_element
= true;
1175 if (complement
|| !s2
->has_char_class
)
1178 for (int i
= 0; i
< N_CHARS
; i
++)
1186 s1
->state
= BEGIN_STATE
;
1187 s2
->state
= BEGIN_STATE
;
1189 while (c1
!= -1 && c2
!= -1)
1191 enum Upper_Lower_class class_s1
, class_s2
;
1193 c1
= get_next (s1
, &class_s1
);
1194 c2
= get_next (s2
, &class_s2
);
1196 /* If c2 transitions to a new case class, then
1197 c1 must also transition at the same time. */
1198 if (s2_new_element
&& class_s2
!= UL_NONE
1199 && !(s1_new_element
&& class_s1
!= UL_NONE
))
1200 error (EXIT_FAILURE
, 0,
1201 _("misaligned [:upper:] and/or [:lower:] construct"));
1203 /* If case converting, quickly skip over the elements. */
1204 if (class_s2
!= UL_NONE
)
1206 skip_construct (s1
);
1207 skip_construct (s2
);
1208 /* Discount insignificant/problematic lengths. */
1209 s1
->length
-= (class_s1
== UL_UPPER
? n_upper
: n_lower
) - 1;
1210 s2
->length
-= (class_s2
== UL_UPPER
? n_upper
: n_lower
) - 1;
1213 s1_new_element
= s1
->state
== NEW_ELEMENT
; /* Next element is new. */
1214 s2_new_element
= s2
->state
== NEW_ELEMENT
; /* Next element is new. */
1217 affirm (old_s1_len
>= s1
->length
&& old_s2_len
>= s2
->length
);
1223 /* Gather statistics about the spec-list S in preparation for the tests
1224 in validate that determine the consistency of the specs. This function
1225 is called at most twice; once for string1, and again for any string2.
1226 LEN_S1 < 0 indicates that this is the first call and that S represents
1227 string1. When LEN_S1 >= 0, it is the length of the expansion of the
1228 constructs in string1, and we can use its value to resolve any
1229 indefinite repeat construct in S (which represents string2). Hence,
1230 this function has the side-effect that it converts a valid [c*]
1231 construct in string2 to [c*n] where n is large enough (or 0) to give
1232 string2 the same length as string1. For example, with the command
1233 tr a-z 'A[\n*]Z' on the second call to get_spec_stats, LEN_S1 would
1234 be 26 and S (representing string2) would be converted to 'A[\n*24]Z'. */
1237 get_spec_stats (struct Spec_list
*s
)
1239 struct List_element
*p
;
1242 s
->n_indefinite_repeats
= 0;
1243 s
->has_equiv_class
= false;
1244 s
->has_restricted_char_class
= false;
1245 s
->has_char_class
= false;
1246 for (p
= s
->head
->next
; p
; p
= p
->next
)
1253 case RE_NORMAL_CHAR
:
1258 affirm (p
->u
.range
.last_char
>= p
->u
.range
.first_char
);
1259 len
= p
->u
.range
.last_char
- p
->u
.range
.first_char
+ 1;
1263 s
->has_char_class
= true;
1264 for (int i
= 0; i
< N_CHARS
; i
++)
1265 if (is_char_class_member (p
->u
.char_class
, i
))
1267 switch (p
->u
.char_class
)
1273 s
->has_restricted_char_class
= true;
1278 case RE_EQUIV_CLASS
:
1279 for (int i
= 0; i
< N_CHARS
; i
++)
1280 if (is_equiv_class_member (p
->u
.equiv_code
, i
))
1282 s
->has_equiv_class
= true;
1285 case RE_REPEATED_CHAR
:
1286 if (p
->u
.repeated_char
.repeat_count
> 0)
1287 len
= p
->u
.repeated_char
.repeat_count
;
1290 s
->indefinite_repeat_element
= p
;
1291 ++(s
->n_indefinite_repeats
);
1299 /* Check for arithmetic overflow in computing length. Also, reject
1300 any length greater than the maximum repeat count, in case the
1301 length is later used to compute the repeat count for an
1302 indefinite element. */
1303 new_length
= length
+ len
;
1304 if (! (length
<= new_length
&& new_length
<= REPEAT_COUNT_MAXIMUM
))
1305 error (EXIT_FAILURE
, 0, _("too many characters in set"));
1306 length
= new_length
;
1313 get_s1_spec_stats (struct Spec_list
*s1
)
1315 get_spec_stats (s1
);
1317 s1
->length
= card_of_complement (s1
);
1321 get_s2_spec_stats (struct Spec_list
*s2
, count len_s1
)
1323 get_spec_stats (s2
);
1324 if (len_s1
>= s2
->length
&& s2
->n_indefinite_repeats
== 1)
1326 s2
->indefinite_repeat_element
->u
.repeated_char
.repeat_count
=
1327 len_s1
- s2
->length
;
1328 s2
->length
= len_s1
;
1333 spec_init (struct Spec_list
*spec_list
)
1335 struct List_element
*new = xmalloc (sizeof *new);
1336 spec_list
->head
= spec_list
->tail
= new;
1337 spec_list
->head
->next
= nullptr;
1340 /* This function makes two passes over the argument string S. The first
1341 one converts all \c and \ddd escapes to their one-byte representations.
1342 The second constructs a linked specification list, SPEC_LIST, of the
1343 characters and constructs that comprise the argument string. If either
1344 of these passes detects an error, this function returns false. */
1347 parse_str (char const *s
, struct Spec_list
*spec_list
)
1350 bool ok
= unquote (s
, &es
) && build_spec_list (&es
, spec_list
);
1355 /* Given two specification lists, S1 and S2, and assuming that
1356 S1->length > S2->length, append a single [c*n] element to S2 where c
1357 is the last character in the expansion of S2 and n is the difference
1358 between the two lengths.
1359 Upon successful completion, S2->length is set to S1->length. The only
1360 way this function can fail to make S2 as long as S1 is when S2 has
1361 zero-length, since in that case, there is no last character to repeat.
1362 So S2->length is required to be at least 1. */
1365 string2_extend (const struct Spec_list
*s1
, struct Spec_list
*s2
)
1367 struct List_element
*p
;
1368 unsigned char char_to_repeat
;
1370 affirm (translating
);
1371 affirm (s1
->length
> s2
->length
);
1372 affirm (s2
->length
> 0);
1377 case RE_NORMAL_CHAR
:
1378 char_to_repeat
= p
->u
.normal_char
;
1381 char_to_repeat
= p
->u
.range
.last_char
;
1384 /* Note BSD allows extending of classes in string2. For example:
1385 tr '[:upper:]0-9' '[:lower:]'
1386 That's not portable however, contradicts POSIX and is dependent
1387 on your collating sequence. */
1388 error (EXIT_FAILURE
, 0,
1389 _("when translating with string1 longer than string2,\n"
1390 "the latter string must not end with a character class"));
1392 case RE_REPEATED_CHAR
:
1393 char_to_repeat
= p
->u
.repeated_char
.the_repeated_char
;
1396 case RE_EQUIV_CLASS
:
1397 /* This shouldn't happen, because validate exits with an error
1398 if it finds an equiv class in string2 when translating. */
1405 append_repeated_char (s2
, char_to_repeat
, s1
->length
- s2
->length
);
1406 s2
->length
= s1
->length
;
1409 /* Return true if S is a non-empty list in which exactly one
1410 character (but potentially, many instances of it) appears.
1411 E.g., [X*] or xxxxxxxx. */
1414 homogeneous_spec_list (struct Spec_list
*s
)
1418 s
->state
= BEGIN_STATE
;
1420 if ((b
= get_next (s
, nullptr)) == -1)
1423 while ((c
= get_next (s
, nullptr)) != -1)
1430 /* Die with an error message if S1 and S2 describe strings that
1431 are not valid with the given command line switches.
1432 A side effect of this function is that if a valid [c*] or
1433 [c*0] construct appears in string2, it is converted to [c*n]
1434 with a value for n that makes s2->length == s1->length. By
1435 the same token, if the --truncate-set1 option is not
1436 given, S2 may be extended. */
1439 validate (struct Spec_list
*s1
, struct Spec_list
*s2
)
1441 get_s1_spec_stats (s1
);
1442 if (s1
->n_indefinite_repeats
> 0)
1443 error (EXIT_FAILURE
, 0,
1444 _("the [c*] repeat construct may not appear in string1"));
1448 get_s2_spec_stats (s2
, s1
->length
);
1450 if (s2
->n_indefinite_repeats
> 1)
1451 error (EXIT_FAILURE
, 0,
1452 _("only one [c*] repeat construct may appear in string2"));
1456 if (s2
->has_equiv_class
)
1457 error (EXIT_FAILURE
, 0,
1458 _("[=c=] expressions may not appear in string2"
1459 " when translating"));
1461 if (s2
->has_restricted_char_class
)
1462 error (EXIT_FAILURE
, 0,
1463 _("when translating, the only character classes"
1464 " that may appear in\n"
1465 "string2 are 'upper' and 'lower'"));
1467 validate_case_classes (s1
, s2
);
1469 if (s1
->length
> s2
->length
)
1473 /* string2 must be non-empty unless --truncate-set1 is
1474 given or string1 is empty. */
1476 if (s2
->length
== 0)
1477 error (EXIT_FAILURE
, 0,
1478 _("when not truncating set1,"
1479 " string2 must be non-empty"));
1480 string2_extend (s1
, s2
);
1484 if (complement
&& s1
->has_char_class
1485 && ! (s2
->length
== s1
->length
&& homogeneous_spec_list (s2
)))
1486 error (EXIT_FAILURE
, 0,
1487 _("when translating with complemented character classes,\n"
1488 "string2 must map all characters in the domain to one"));
1491 /* Not translating. */
1493 if (s2
->n_indefinite_repeats
> 0)
1494 error (EXIT_FAILURE
, 0,
1495 _("the [c*] construct may appear in string2"
1496 " only when translating"));
1501 /* Read buffers of SIZE bytes via the function READER (if READER is
1502 null, read from stdin) until EOF. When non-null, READER is either
1503 read_and_delete or read_and_xlate. After each buffer is read, it is
1504 processed and written to stdout. The buffers are processed so that
1505 multiple consecutive occurrences of the same character in the input
1506 stream are replaced by a single occurrence of that character if the
1507 character is in the squeeze set. */
1510 squeeze_filter (char *buf
, size_t size
, size_t (*reader
) (char *, size_t))
1512 /* A value distinct from any character that may have been stored in a
1513 buffer as the result of a block-read in the function squeeze_filter. */
1514 const int NOT_A_CHAR
= INT_MAX
;
1516 int char_to_squeeze
= NOT_A_CHAR
;
1524 nr
= reader (buf
, size
);
1532 if (char_to_squeeze
== NOT_A_CHAR
)
1535 /* Here, by being a little tricky, we can get a significant
1536 performance increase in most cases when the input is
1537 reasonably large. Since tr will modify the input only
1538 if two consecutive (and identical) input characters are
1539 in the squeeze set, we can step by two through the data
1540 when searching for a character in the squeeze set. This
1541 means there may be a little more work in a few cases and
1542 perhaps twice as much work in the worst cases where most
1543 of the input is removed by squeezing repeats. But most
1544 uses of this functionality seem to remove less than 20-30%
1546 for (; i
< nr
&& !in_squeeze_set
[to_uchar (buf
[i
])]; i
+= 2)
1549 /* There is a special case when i == nr and we've just
1550 skipped a character (the last one in buf) that is in
1552 if (i
== nr
&& in_squeeze_set
[to_uchar (buf
[i
- 1])])
1556 out_len
= nr
- begin
;
1559 char_to_squeeze
= buf
[i
];
1560 /* We're about to output buf[begin..i]. */
1561 out_len
= i
- begin
+ 1;
1563 /* But since we stepped by 2 in the loop above,
1564 out_len may be one too large. */
1565 if (i
> 0 && buf
[i
- 1] == char_to_squeeze
)
1568 /* Advance i to the index of first character to be
1569 considered when looking for a char different from
1574 && fwrite (&buf
[begin
], 1, out_len
, stdout
) != out_len
)
1578 if (char_to_squeeze
!= NOT_A_CHAR
)
1580 /* Advance i to index of first char != char_to_squeeze
1581 (or to nr if all the rest of the characters in this
1582 buffer are the same as char_to_squeeze). */
1583 for (; i
< nr
&& buf
[i
] == char_to_squeeze
; i
++)
1586 char_to_squeeze
= NOT_A_CHAR
;
1587 /* If (i >= nr) we've squeezed the last character in this buffer.
1588 So now we have to read a new buffer and continue comparing
1589 characters against char_to_squeeze. */
1595 plain_read (char *buf
, size_t size
)
1597 ptrdiff_t nr
= safe_read (STDIN_FILENO
, buf
, size
);
1599 error (EXIT_FAILURE
, errno
, _("read error"));
1603 /* Read buffers of SIZE bytes from stdin until one is found that
1604 contains at least one character not in the delete set. Store
1605 in the array BUF, all characters from that buffer that are not
1606 in the delete set, and return the number of characters saved
1610 read_and_delete (char *buf
, size_t size
)
1614 /* This enclosing do-while loop is to make sure that
1615 we don't return zero (indicating EOF) when we've
1616 just deleted all the characters in a buffer. */
1619 size_t nr
= plain_read (buf
, size
);
1624 /* This first loop may be a waste of code, but gives much
1625 better performance when no characters are deleted in
1626 the beginning of a buffer. It just avoids the copying
1627 of buf[i] into buf[n_saved] when it would be a NOP. */
1630 for (i
= 0; i
< nr
&& !in_delete_set
[to_uchar (buf
[i
])]; i
++)
1634 for (++i
; i
< nr
; i
++)
1635 if (!in_delete_set
[to_uchar (buf
[i
])])
1636 buf
[n_saved
++] = buf
[i
];
1638 while (n_saved
== 0);
1643 /* Read at most SIZE bytes from stdin into the array BUF. Then
1644 perform the in-place and one-to-one mapping specified by the global
1645 array 'xlate'. Return the number of characters read, or 0 upon EOF. */
1648 read_and_xlate (char *buf
, size_t size
)
1650 size_t bytes_read
= plain_read (buf
, size
);
1652 for (size_t i
= 0; i
< bytes_read
; i
++)
1653 buf
[i
] = xlate
[to_uchar (buf
[i
])];
1658 /* Initialize a boolean membership set, IN_SET, with the character
1659 values obtained by traversing the linked list of constructs S
1660 using the function 'get_next'. IN_SET is expected to have been
1661 initialized to all zeros by the caller. If COMPLEMENT_THIS_SET
1662 is true the resulting set is complemented. */
1665 set_initialize (struct Spec_list
*s
, bool complement_this_set
, bool *in_set
)
1669 s
->state
= BEGIN_STATE
;
1670 while ((c
= get_next (s
, nullptr)) != -1)
1672 if (complement_this_set
)
1673 for (size_t i
= 0; i
< N_CHARS
; i
++)
1674 in_set
[i
] = (!in_set
[i
]);
1678 main (int argc
, char **argv
)
1681 int non_option_args
;
1684 struct Spec_list buf1
, buf2
;
1685 struct Spec_list
*s1
= &buf1
;
1686 struct Spec_list
*s2
= &buf2
;
1688 initialize_main (&argc
, &argv
);
1689 set_program_name (argv
[0]);
1690 setlocale (LC_ALL
, "");
1691 bindtextdomain (PACKAGE
, LOCALEDIR
);
1692 textdomain (PACKAGE
);
1694 atexit (close_stdout
);
1696 while ((c
= getopt_long (argc
, argv
, "+AcCdst", long_options
, nullptr)) != -1)
1701 /* Undocumented option, for compatibility with AIX. */
1702 setlocale (LC_COLLATE
, "C");
1703 setlocale (LC_CTYPE
, "C");
1716 squeeze_repeats
= true;
1720 truncate_set1
= true;
1723 case_GETOPT_HELP_CHAR
;
1725 case_GETOPT_VERSION_CHAR (PROGRAM_NAME
, AUTHORS
);
1728 usage (EXIT_FAILURE
);
1733 non_option_args
= argc
- optind
;
1734 translating
= (non_option_args
== 2 && !delete);
1735 min_operands
= 1 + (delete == squeeze_repeats
);
1736 max_operands
= 1 + (delete <= squeeze_repeats
);
1738 if (non_option_args
< min_operands
)
1740 if (non_option_args
== 0)
1741 error (0, 0, _("missing operand"));
1744 error (0, 0, _("missing operand after %s"), quote (argv
[argc
- 1]));
1745 fprintf (stderr
, "%s\n",
1747 ? N_("Two strings must be given when "
1748 "both deleting and squeezing repeats.")
1749 : N_("Two strings must be given when translating.")));
1751 usage (EXIT_FAILURE
);
1754 if (max_operands
< non_option_args
)
1756 error (0, 0, _("extra operand %s"), quote (argv
[optind
+ max_operands
]));
1757 if (non_option_args
== 2)
1758 fprintf (stderr
, "%s\n",
1759 _("Only one string may be given when "
1760 "deleting without squeezing repeats."));
1761 usage (EXIT_FAILURE
);
1765 if (!parse_str (argv
[optind
], s1
))
1766 main_exit (EXIT_FAILURE
);
1768 if (non_option_args
== 2)
1771 if (!parse_str (argv
[optind
+ 1], s2
))
1772 main_exit (EXIT_FAILURE
);
1779 /* Use binary I/O, since 'tr' is sometimes used to transliterate
1780 non-printable characters, or characters which are stripped away
1781 by text-mode reads (like CR and ^Z). */
1782 xset_binary_mode (STDIN_FILENO
, O_BINARY
);
1783 xset_binary_mode (STDOUT_FILENO
, O_BINARY
);
1784 fadvise (stdin
, FADVISE_SEQUENTIAL
);
1786 if (squeeze_repeats
&& non_option_args
== 1)
1788 set_initialize (s1
, complement
, in_squeeze_set
);
1789 squeeze_filter (io_buf
, sizeof io_buf
, plain_read
);
1791 else if (delete && non_option_args
== 1)
1793 set_initialize (s1
, complement
, in_delete_set
);
1797 size_t nr
= read_and_delete (io_buf
, sizeof io_buf
);
1800 if (fwrite (io_buf
, 1, nr
, stdout
) != nr
)
1804 else if (squeeze_repeats
&& delete && non_option_args
== 2)
1806 set_initialize (s1
, complement
, in_delete_set
);
1807 set_initialize (s2
, false, in_squeeze_set
);
1808 squeeze_filter (io_buf
, sizeof io_buf
, read_and_delete
);
1810 else if (translating
)
1814 bool *in_s1
= in_delete_set
;
1816 set_initialize (s1
, false, in_s1
);
1817 s2
->state
= BEGIN_STATE
;
1818 for (int i
= 0; i
< N_CHARS
; i
++)
1820 for (int i
= 0; i
< N_CHARS
; i
++)
1824 int ch
= get_next (s2
, nullptr);
1825 affirm (ch
!= -1 || truncate_set1
);
1828 /* This will happen when tr is invoked like e.g.
1829 tr -cs A-Za-z0-9 '\012'. */
1839 enum Upper_Lower_class class_s1
;
1840 enum Upper_Lower_class class_s2
;
1842 for (int i
= 0; i
< N_CHARS
; i
++)
1844 s1
->state
= BEGIN_STATE
;
1845 s2
->state
= BEGIN_STATE
;
1848 c1
= get_next (s1
, &class_s1
);
1849 c2
= get_next (s2
, &class_s2
);
1851 if (class_s1
== UL_LOWER
&& class_s2
== UL_UPPER
)
1853 for (int i
= 0; i
< N_CHARS
; i
++)
1855 xlate
[i
] = toupper (i
);
1857 else if (class_s1
== UL_UPPER
&& class_s2
== UL_LOWER
)
1859 for (int i
= 0; i
< N_CHARS
; i
++)
1861 xlate
[i
] = tolower (i
);
1865 /* The following should have been checked by validate... */
1866 if (c1
== -1 || c2
== -1)
1871 /* When case-converting, skip the elements as an optimization. */
1872 if (class_s2
!= UL_NONE
)
1874 skip_construct (s1
);
1875 skip_construct (s2
);
1878 affirm (c1
== -1 || truncate_set1
);
1880 if (squeeze_repeats
)
1882 set_initialize (s2
, false, in_squeeze_set
);
1883 squeeze_filter (io_buf
, sizeof io_buf
, read_and_xlate
);
1889 size_t bytes_read
= read_and_xlate (io_buf
, sizeof io_buf
);
1890 if (bytes_read
== 0)
1892 if (fwrite (io_buf
, 1, bytes_read
, stdout
) != bytes_read
)
1898 if (close (STDIN_FILENO
) != 0)
1899 error (EXIT_FAILURE
, errno
, _("standard input"));
1901 main_exit (EXIT_SUCCESS
);