1 /* tr -- a filter to translate characters
2 Copyright (C) 91, 95, 96, 1997, 1998, 1999 Free Software Foundation, Inc.
4 This program is free software; you can redistribute it and/or modify
5 it under the terms of the GNU General Public License as published by
6 the Free Software Foundation; either version 2, or (at your option)
9 This program is distributed in the hope that it will be useful,
10 but WITHOUT ANY WARRANTY; without even the implied warranty of
11 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 GNU General Public License for more details.
14 You should have received a copy of the GNU General Public License
15 along with this program; if not, write to the Free Software Foundation,
16 Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
18 /* Written by Jim Meyering */
25 #include <sys/types.h>
30 #include "safe-read.h"
32 #define N_CHARS (UCHAR_MAX + 1)
34 /* A pointer to a function that returns an int. */
35 typedef int (*PFI
) ();
37 /* Convert from character C to its index in the collating
38 sequence array. Just cast to an unsigned int to avoid
39 problems with sign-extension. */
40 #define ORD(c) (unsigned int)(c)
42 /* The inverse of ORD. */
43 #define CHR(i) (unsigned char)(i)
45 /* The value for Spec_list->state that indicates to
46 get_next that it should initialize the tail pointer.
47 Its value should be as large as possible to avoid conflict
48 a valid value for the state field -- and that may be as
49 large as any valid repeat_count. */
50 #define BEGIN_STATE (INT_MAX - 1)
52 /* The value for Spec_list->state that indicates to
53 get_next that the element pointed to by Spec_list->tail is
54 being considered for the first time on this pass through the
55 list -- it indicates that get_next should make any necessary
57 #define NEW_ELEMENT (BEGIN_STATE + 1)
59 /* A value distinct from any character that may have been stored in a
60 buffer as the result of a block-read in the function squeeze_filter. */
61 #define NOT_A_CHAR (unsigned int)(-1)
63 /* The following (but not CC_NO_CLASS) are indices into the array of
64 valid character class strings. */
67 CC_ALNUM
= 0, CC_ALPHA
= 1, CC_BLANK
= 2, CC_CNTRL
= 3,
68 CC_DIGIT
= 4, CC_GRAPH
= 5, CC_LOWER
= 6, CC_PRINT
= 7,
69 CC_PUNCT
= 8, CC_SPACE
= 9, CC_UPPER
= 10, CC_XDIGIT
= 11,
73 /* Character class to which a character (returned by get_next) belonged;
74 but it is set only if the construct from which the character was obtained
75 was one of the character classes [:upper:] or [:lower:]. The value
76 is used only when translating and then, only to make sure that upper
77 and lower class constructs have the same relative positions in string1
79 enum Upper_Lower_class
86 /* A shortcut to ensure that when constructing the translation array,
87 one of the values returned by paired calls to get_next (from s1 and s2)
88 is from [:upper:] and the other is from [:lower:], or neither is from
89 upper or lower. By default, GNU tr permits the identity mappings: from
90 [:upper:] to [:upper:] and [:lower:] to [:lower:]. But when
91 POSIXLY_CORRECT is set, those evoke diagnostics. This array is indexed
92 by values of type enum Upper_Lower_class. */
93 static int const class_ok
[3][3] =
100 /* The type of a List_element. See build_spec_list for more details. */
101 enum Range_element_type
111 /* One construct in one of tr's argument strings.
112 For example, consider the POSIX version of the classic tr command:
113 tr -cs 'a-zA-Z_' '[\n*]'
114 String1 has 3 constructs, two of which are ranges (a-z and A-Z),
115 and a single normal character, `_'. String2 has one construct. */
118 enum Range_element_type type
;
119 struct List_element
*next
;
125 unsigned int first_char
;
126 unsigned int last_char
;
129 enum Char_class char_class
;
133 unsigned int the_repeated_char
;
141 /* Each of tr's argument strings is parsed into a form that is easier
142 to work with: a linked list of constructs (struct List_element).
143 Each Spec_list structure also encapsulates various attributes of
144 the corresponding argument string. The attributes are used mainly
145 to verify that the strings are valid in the context of any options
146 specified (like -s, -d, or -c). The main exception is the member
147 `tail', which is first used to construct the list. After construction,
148 it is used by get_next to save its state when traversing the list.
149 The member `state' serves a similar function. */
152 /* Points to the head of the list of range elements.
153 The first struct is a dummy; its members are never used. */
154 struct List_element
*head
;
156 /* When appending, points to the last element. When traversing via
157 get_next(), points to the element to process next. Setting
158 Spec_list.state to the value BEGIN_STATE before calling get_next
159 signals get_next to initialize tail to point to head->next. */
160 struct List_element
*tail
;
162 /* Used to save state between calls to get_next(). */
165 /* Length, in the sense that length ('a-z[:digit:]123abc')
166 is 42 ( = 26 + 10 + 6). */
169 /* The number of [c*] and [c*0] constructs that appear in this spec. */
170 int n_indefinite_repeats
;
172 /* If n_indefinite_repeats is nonzero, this points to the List_element
173 corresponding to the last [c*] or [c*0] construct encountered in
174 this spec. Otherwise it is undefined. */
175 struct List_element
*indefinite_repeat_element
;
177 /* Non-zero if this spec contains at least one equivalence
178 class construct e.g. [=c=]. */
181 /* Non-zero if this spec contains at least one character class
182 construct. E.g. [:digit:]. */
185 /* Non-zero if this spec contains at least one of the character class
186 constructs (all but upper and lower) that aren't allowed in s2. */
187 int has_restricted_char_class
;
190 /* A representation for escaped string1 or string2. As a string is parsed,
191 any backslash-escaped characters (other than octal or \a, \b, \f, \n,
192 etc.) are marked as such in this structure by setting the corresponding
193 entry in the ESCAPED vector. */
201 /* Return nonzero if the Ith character of escaped string ES matches C
202 and is not escaped itself. */
203 #define ES_MATCH(ES, I, C) ((ES)->s[(I)] == (C) && !(ES)->escaped[(I)])
205 /* The name by which this program was run. */
208 /* When nonzero, each sequence in the input of a repeated character
209 (call it c) is replaced (in the output) by a single occurrence of c
210 for every c in the squeeze set. */
211 static int squeeze_repeats
= 0;
213 /* When nonzero, removes characters in the delete set from input. */
214 static int delete = 0;
216 /* Use the complement of set1 in place of set1. */
217 static int complement
= 0;
219 /* When nonzero, this flag causes GNU tr to provide strict
220 compliance with POSIX draft 1003.2.11.2. The POSIX spec
221 says that when -d is used without -s, string2 (if present)
222 must be ignored. Silently ignoring arguments is a bad idea.
223 The default GNU behavior is to give a usage message and exit.
224 Additionally, when this flag is nonzero, tr prints warnings
225 on stderr if it is being used in a manner that is not portable.
226 Applicable warnings are given by default, but are suppressed
227 if the environment variable `POSIXLY_CORRECT' is set, since
228 being POSIX conformant means we can't issue such messages.
229 Warnings on the following topics are suppressed when this
231 1. Ambiguous octal escapes. */
232 static int posix_pedantic
;
234 /* When tr is performing translation and string1 is longer than string2,
235 POSIX says that the result is undefined. That gives the implementor
236 of a POSIX conforming version of tr two reasonable choices for the
237 semantics of this case.
239 * The BSD tr pads string2 to the length of string1 by
240 repeating the last character in string2.
242 * System V tr ignores characters in string1 that have no
243 corresponding character in string2. That is, string1 is effectively
244 truncated to the length of string2.
246 When nonzero, this flag causes GNU tr to imitate the behavior
247 of System V tr when translating with string1 longer than string2.
248 The default is to emulate BSD tr. This flag is ignored in modes where
249 no translation is performed. Emulating the System V tr
250 in this exceptional case causes the relatively common BSD idiom:
252 tr -cs A-Za-z0-9 '\012'
254 to break (it would convert only zero bytes, rather than all
255 non-alphanumerics, to newlines).
257 WARNING: This switch does not provide general BSD or System V
258 compatibility. For example, it doesn't disable the interpretation
259 of the POSIX constructs [:alpha:], [=c=], and [c*10], so if by
260 some unfortunate coincidence you use such constructs in scripts
261 expecting to use some other version of tr, the scripts will break. */
262 static int truncate_set1
= 0;
264 /* An alias for (!delete && non_option_args == 2).
265 It is set in main and used there and in validate(). */
266 static int translating
;
272 #define IO_BUF_SIZE BUFSIZ
273 static unsigned char io_buf
[IO_BUF_SIZE
];
275 static char const *const char_class_name
[] =
277 "alnum", "alpha", "blank", "cntrl", "digit", "graph",
278 "lower", "print", "punct", "space", "upper", "xdigit"
280 #define N_CHAR_CLASSES (sizeof(char_class_name) / sizeof(char_class_name[0]))
282 typedef char SET_TYPE
;
284 /* Array of boolean values. A character `c' is a member of the
285 squeeze set if and only if in_squeeze_set[c] is true. The squeeze
286 set is defined by the last (possibly, the only) string argument
287 on the command line when the squeeze option is given. */
288 static SET_TYPE in_squeeze_set
[N_CHARS
];
290 /* Array of boolean values. A character `c' is a member of the
291 delete set if and only if in_delete_set[c] is true. The delete
292 set is defined by the first (or only) string argument on the
293 command line when the delete option is given. */
294 static SET_TYPE in_delete_set
[N_CHARS
];
296 /* Array of character values defining the translation (if any) that
297 tr is to perform. Translation is performed only when there are
298 two specification strings and the delete switch is not given. */
299 static char xlate
[N_CHARS
];
301 /* If nonzero, display usage information and exit. */
302 static int show_help
;
304 /* If nonzero, print the version on standard output then exit. */
305 static int show_version
;
307 static struct option
const long_options
[] =
309 {"complement", no_argument
, NULL
, 'c'},
310 {"delete", no_argument
, NULL
, 'd'},
311 {"squeeze-repeats", no_argument
, NULL
, 's'},
312 {"truncate-set1", no_argument
, NULL
, 't'},
313 {"help", no_argument
, &show_help
, 1},
314 {"version", no_argument
, &show_version
, 1},
322 fprintf (stderr
, _("Try `%s --help' for more information.\n"),
327 Usage: %s [OPTION]... SET1 [SET2]\n\
331 Translate, squeeze, and/or delete characters from standard input,\n\
332 writing to standard output.\n\
334 -c, --complement first complement SET1\n\
335 -d, --delete delete characters in SET1, do not translate\n\
336 -s, --squeeze-repeats replace sequence of characters with one\n\
337 -t, --truncate-set1 first truncate SET1 to length of SET2\n\
338 --help display this help and exit\n\
339 --version output version information and exit\n\
343 SETs are specified as strings of characters. Most represent themselves.\n\
344 Interpreted sequences are:\n\
346 \\NNN character with octal value NNN (1 to 3 octal digits)\n\
353 \\t horizontal tab\n\
355 CHAR1-CHAR2 all characters from CHAR1 to CHAR2 in ascending order\n\
356 [CHAR1-CHAR2] same as CHAR1-CHAR2, if both SET1 and SET2 use this\n\
357 [CHAR*] in SET2, copies of CHAR until length of SET1\n\
358 [CHAR*REPEAT] REPEAT copies of CHAR, REPEAT octal if starting with 0\n\
359 [:alnum:] all letters and digits\n\
360 [:alpha:] all letters\n\
361 [:blank:] all horizontal whitespace\n\
362 [:cntrl:] all control characters\n\
363 [:digit:] all digits\n\
364 [:graph:] all printable characters, not including space\n\
365 [:lower:] all lower case letters\n\
366 [:print:] all printable characters, including space\n\
367 [:punct:] all punctuation characters\n\
368 [:space:] all horizontal or vertical whitespace\n\
369 [:upper:] all upper case letters\n\
370 [:xdigit:] all hexadecimal digits\n\
371 [=CHAR=] all characters which are equivalent to CHAR\n\
375 Translation occurs if -d is not given and both SET1 and SET2 appear.\n\
376 -t may be used only when translating. SET2 is extended to length of\n\
377 SET1 by repeating its last character as necessary. Excess characters\n\
378 of SET2 are ignored. Only [:lower:] and [:upper:] are guaranteed to\n\
379 expand in ascending order; used in SET2 while translating, they may\n\
380 only be used in pairs to specify case conversion. -s uses SET1 if not\n\
381 translating nor deleting; else squeezing uses SET2 and occurs after\n\
382 translation or deletion.\n\
384 puts (_("\nReport bugs to <bug-textutils@gnu.org>."));
386 exit (status
== 0 ? EXIT_SUCCESS
: EXIT_FAILURE
);
389 /* Return nonzero if the character C is a member of the
390 equivalence class containing the character EQUIV_CLASS. */
393 is_equiv_class_member (unsigned int equiv_class
, unsigned int c
)
395 return (equiv_class
== c
);
398 /* Return nonzero if the character C is a member of the
399 character class CHAR_CLASS. */
402 is_char_class_member (enum Char_class char_class
, unsigned int c
)
409 result
= ISALNUM (c
);
412 result
= ISALPHA (c
);
415 result
= ISBLANK (c
);
418 result
= ISCNTRL (c
);
421 result
= ISDIGIT_LOCALE (c
);
424 result
= ISGRAPH (c
);
427 result
= ISLOWER (c
);
430 result
= ISPRINT (c
);
433 result
= ISPUNCT (c
);
436 result
= ISSPACE (c
);
439 result
= ISUPPER (c
);
442 result
= ISXDIGIT (c
);
452 es_free (struct E_string
*es
)
458 /* Perform the first pass over each range-spec argument S, converting all
459 \c and \ddd escapes to their one-byte representations. The conversion
460 is done in-place, so S must point to writable storage. If an invalid
461 quote sequence is found print an error message and return nonzero.
462 Otherwise set *LEN to the length of the resulting string and return
463 zero. The resulting array of characters may contain zero-bytes;
464 however, on input, S is assumed to be null-terminated, and hence
465 cannot contain actual (non-escaped) zero bytes. */
468 unquote (const unsigned char *s
, struct E_string
*es
)
473 len
= strlen ((char *) s
);
475 es
->s
= (unsigned char *) xmalloc (len
);
476 es
->escaped
= (int *) xmalloc (len
* sizeof (es
->escaped
[0]));
477 for (i
= 0; i
< len
; i
++)
481 for (i
= 0; s
[i
]; i
++)
523 oct_digit
= s
[i
+ 2] - '0';
524 if (0 <= oct_digit
&& oct_digit
<= 7)
526 c
= 8 * c
+ oct_digit
;
528 oct_digit
= s
[i
+ 2] - '0';
529 if (0 <= oct_digit
&& oct_digit
<= 7)
531 if (8 * c
+ oct_digit
< N_CHARS
)
533 c
= 8 * c
+ oct_digit
;
536 else if (!posix_pedantic
)
538 /* Any octal number larger than 0377 won't
539 fit in 8 bits. So we stop when adding the
540 next digit would put us over the limit and
541 give a warning about the ambiguity. POSIX
542 isn't clear on this, but one person has said
543 that in his interpretation, POSIX says tr
544 can't even give a warning. */
545 error (0, 0, _("warning: the ambiguous octal escape \
546 \\%c%c%c is being\n\tinterpreted as the 2-byte sequence \\0%c%c, `%c'"),
547 s
[i
], s
[i
+ 1], s
[i
+ 2],
548 s
[i
], s
[i
+ 1], s
[i
+ 2]);
554 error (0, 0, _("invalid backslash escape at end of string"));
560 error (0, 0, _("invalid backslash escape `\\%c'"), s
[i
+ 1]);
581 /* If CLASS_STR is a valid character class string, return its index
582 in the global char_class_name array. Otherwise, return CC_NO_CLASS. */
584 static enum Char_class
585 look_up_char_class (const unsigned char *class_str
, size_t len
)
589 for (i
= 0; i
< N_CHAR_CLASSES
; i
++)
590 if (strncmp ((const char *) class_str
, char_class_name
[i
], len
) == 0
591 && strlen (char_class_name
[i
]) == len
)
592 return (enum Char_class
) i
;
596 /* Return a newly allocated string with a printable version of C.
597 This function is used solely for formatting error messages. */
600 make_printable_char (unsigned int c
)
602 char *buf
= xmalloc (5);
604 assert (c
< N_CHARS
);
612 sprintf (buf
, "\\%03o", c
);
617 /* Return a newly allocated copy of S which is suitable for printing.
618 LEN is the number of characters in S. Most non-printing
619 (isprint) characters are represented by a backslash followed by
620 3 octal digits. However, the characters represented by \c escapes
621 where c is one of [abfnrtv] are represented by their 2-character \c
622 sequences. This function is used solely for printing error messages. */
625 make_printable_str (const unsigned char *s
, size_t len
)
627 /* Worst case is that every character expands to a backslash
628 followed by a 3-character octal escape sequence. */
629 char *printable_buf
= xmalloc (4 * len
+ 1);
630 char *p
= printable_buf
;
633 for (i
= 0; i
< len
; i
++)
671 sprintf (buf
, "\\%03o", s
[i
]);
677 return printable_buf
;
680 /* Append a newly allocated structure representing a
681 character C to the specification list LIST. */
684 append_normal_char (struct Spec_list
*list
, unsigned int c
)
686 struct List_element
*new;
688 new = (struct List_element
*) xmalloc (sizeof (struct List_element
));
690 new->type
= RE_NORMAL_CHAR
;
691 new->u
.normal_char
= c
;
693 list
->tail
->next
= new;
697 /* Append a newly allocated structure representing the range
698 of characters from FIRST to LAST to the specification list LIST.
699 Return nonzero if LAST precedes FIRST in the collating sequence,
700 zero otherwise. This means that '[c-c]' is acceptable. */
703 append_range (struct Spec_list
*list
, unsigned int first
, unsigned int last
)
705 struct List_element
*new;
707 if (ORD (first
) > ORD (last
))
709 char *tmp1
= make_printable_char (first
);
710 char *tmp2
= make_printable_char (last
);
713 _("range-endpoints of `%s-%s' are in reverse collating sequence order"),
719 new = (struct List_element
*) xmalloc (sizeof (struct List_element
));
721 new->type
= RE_RANGE
;
722 new->u
.range
.first_char
= first
;
723 new->u
.range
.last_char
= last
;
725 list
->tail
->next
= new;
730 /* If CHAR_CLASS_STR is a valid character class string, append a
731 newly allocated structure representing that character class to the end
732 of the specification list LIST and return 0. If CHAR_CLASS_STR is not
733 a valid string return nonzero. */
736 append_char_class (struct Spec_list
*list
,
737 const unsigned char *char_class_str
, size_t len
)
739 enum Char_class char_class
;
740 struct List_element
*new;
742 char_class
= look_up_char_class (char_class_str
, len
);
743 if (char_class
== CC_NO_CLASS
)
745 new = (struct List_element
*) xmalloc (sizeof (struct List_element
));
747 new->type
= RE_CHAR_CLASS
;
748 new->u
.char_class
= char_class
;
750 list
->tail
->next
= new;
755 /* Append a newly allocated structure representing a [c*n]
756 repeated character construct to the specification list LIST.
757 THE_CHAR is the single character to be repeated, and REPEAT_COUNT
758 is a non-negative repeat count. */
761 append_repeated_char (struct Spec_list
*list
, unsigned int the_char
,
764 struct List_element
*new;
766 new = (struct List_element
*) xmalloc (sizeof (struct List_element
));
768 new->type
= RE_REPEATED_CHAR
;
769 new->u
.repeated_char
.the_repeated_char
= the_char
;
770 new->u
.repeated_char
.repeat_count
= repeat_count
;
772 list
->tail
->next
= new;
776 /* Given a string, EQUIV_CLASS_STR, from a [=str=] context and
777 the length of that string, LEN, if LEN is exactly one, append
778 a newly allocated structure representing the specified
779 equivalence class to the specification list, LIST and return zero.
780 If LEN is not 1, return nonzero. */
783 append_equiv_class (struct Spec_list
*list
,
784 const unsigned char *equiv_class_str
, size_t len
)
786 struct List_element
*new;
790 new = (struct List_element
*) xmalloc (sizeof (struct List_element
));
792 new->type
= RE_EQUIV_CLASS
;
793 new->u
.equiv_code
= *equiv_class_str
;
795 list
->tail
->next
= new;
800 /* Return a newly allocated copy of the substring P[FIRST_IDX..LAST_IDX].
801 The returned string has length LAST_IDX - FIRST_IDX + 1, may contain
802 NUL bytes, and is *not* NUL-terminated. */
804 static unsigned char *
805 substr (const unsigned char *p
, size_t first_idx
, size_t last_idx
)
810 assert (first_idx
<= last_idx
);
811 len
= last_idx
- first_idx
+ 1;
812 tmp
= (unsigned char *) xmalloc (len
);
814 assert (first_idx
<= last_idx
);
815 /* Use memcpy rather than strncpy because `p' may contain zero-bytes. */
816 memcpy (tmp
, p
+ first_idx
, len
);
820 /* Search forward starting at START_IDX for the 2-char sequence
821 (PRE_BRACKET_CHAR,']') in the string P of length P_LEN. If such
822 a sequence is found, set *RESULT_IDX to the index of the first
823 character and return nonzero. Otherwise return zero. P may contain
827 find_closing_delim (const struct E_string
*es
, size_t start_idx
,
828 unsigned int pre_bracket_char
, size_t *result_idx
)
832 for (i
= start_idx
; i
< es
->len
- 1; i
++)
833 if (es
->s
[i
] == pre_bracket_char
&& es
->s
[i
+ 1] == ']'
834 && !es
->escaped
[i
] && !es
->escaped
[i
+ 1])
842 /* Convert a string S with explicit length LEN, possibly
843 containing embedded zero bytes, to a long integer value.
844 If the string represents a negative value, a value larger
845 than LONG_MAX, or if all LEN characters do not represent a
846 valid integer, return nonzero and do not modify *VAL.
847 Otherwise, return zero and set *VAL to the converted value. */
850 non_neg_strtol (const unsigned char *s
, size_t len
, size_t *val
)
853 unsigned long sum
= 0;
860 else if (ISDIGIT (s
[0]))
865 for (i
= 0; i
< len
; i
++)
876 if (sum
> (LONG_MAX
- c
) / base
)
878 sum
= sum
* base
+ c
;
884 /* Parse the bracketed repeat-char syntax. If the P_LEN characters
885 beginning with P[ START_IDX ] comprise a valid [c*n] construct,
886 then set *CHAR_TO_REPEAT, *REPEAT_COUNT, and *CLOSING_BRACKET_IDX
887 and return zero. If the second character following
888 the opening bracket is not `*' or if no closing bracket can be
889 found, return -1. If a closing bracket is found and the
890 second char is `*', but the string between the `*' and `]' isn't
891 empty, an octal number, or a decimal number, print an error message
895 find_bracketed_repeat (const struct E_string
*es
, size_t start_idx
,
896 unsigned int *char_to_repeat
, size_t *repeat_count
,
897 size_t *closing_bracket_idx
)
901 assert (start_idx
+ 1 < es
->len
);
902 if (!ES_MATCH (es
, start_idx
+ 1, '*'))
905 for (i
= start_idx
+ 2; i
< es
->len
; i
++)
907 if (ES_MATCH (es
, i
, ']'))
909 const unsigned char *digit_str
;
910 size_t digit_str_len
= i
- start_idx
- 2;
912 *char_to_repeat
= es
->s
[start_idx
];
913 if (digit_str_len
== 0)
915 /* We've matched [c*] -- no explicit repeat count. */
917 *closing_bracket_idx
= i
;
921 /* Here, we have found [c*s] where s should be a string
922 of octal or decimal digits. */
923 digit_str
= &es
->s
[start_idx
+ 2];
924 if (non_neg_strtol (digit_str
, digit_str_len
, repeat_count
)
925 || *repeat_count
> BEGIN_STATE
)
927 char *tmp
= make_printable_str (digit_str
, digit_str_len
);
928 error (0, 0, _("invalid repeat count `%s' in [c*n] construct"),
933 *closing_bracket_idx
= i
;
937 return -1; /* No bracket found. */
940 /* Return nonzero if the string at ES->s[IDX] matches the regular
941 expression `\*[0-9]*\]', zero otherwise. To match, the `*' and
942 the `]' must not be escaped. */
945 star_digits_closebracket (const struct E_string
*es
, size_t idx
)
949 if (!ES_MATCH (es
, idx
, '*'))
952 for (i
= idx
+ 1; i
< es
->len
; i
++)
954 if (!ISDIGIT (es
->s
[i
]))
956 if (ES_MATCH (es
, i
, ']'))
964 /* Convert string UNESACPED_STRING (which has been preprocessed to
965 convert backslash-escape sequences) of length LEN characters into
966 a linked list of the following 5 types of constructs:
967 - [:str:] Character class where `str' is one of the 12 valid strings.
968 - [=c=] Equivalence class where `c' is any single character.
969 - [c*n] Repeat the single character `c' `n' times. n may be omitted.
970 However, if `n' is present, it must be a non-negative octal or
972 - r-s Range of characters from `r' to `s'. The second endpoint must
973 not precede the first in the current collating sequence.
974 - c Any other character is interpreted as itself. */
977 build_spec_list (const struct E_string
*es
, struct Spec_list
*result
)
979 const unsigned char *p
;
984 /* The main for-loop below recognizes the 4 multi-character constructs.
985 A character that matches (in its context) none of the multi-character
986 constructs is classified as `normal'. Since all multi-character
987 constructs have at least 3 characters, any strings of length 2 or
988 less are composed solely of normal characters. Hence, the index of
989 the outer for-loop runs only as far as LEN-2. */
991 for (i
= 0; i
+ 2 < es
->len
; /* empty */)
993 if (ES_MATCH (es
, i
, '['))
995 int matched_multi_char_construct
;
996 size_t closing_bracket_idx
;
997 unsigned int char_to_repeat
;
1001 matched_multi_char_construct
= 1;
1002 if (ES_MATCH (es
, i
+ 1, ':')
1003 || ES_MATCH (es
, i
+ 1, '='))
1005 size_t closing_delim_idx
;
1008 found
= find_closing_delim (es
, i
+ 2, p
[i
+ 1],
1009 &closing_delim_idx
);
1013 unsigned char *opnd_str
= substr (p
, i
+ 2,
1014 closing_delim_idx
- 1);
1015 size_t opnd_str_len
= closing_delim_idx
- 1 - (i
+ 2) + 1;
1017 if (p
[i
+ 1] == ':')
1019 parse_failed
= append_char_class (result
, opnd_str
,
1022 /* FIXME: big comment. */
1025 if (star_digits_closebracket (es
, i
+ 2))
1028 goto try_bracketed_repeat
;
1032 char *tmp
= make_printable_str (opnd_str
,
1034 error (0, 0, _("invalid character class `%s'"),
1043 parse_failed
= append_equiv_class (result
, opnd_str
,
1046 /* FIXME: big comment. */
1049 if (star_digits_closebracket (es
, i
+ 2))
1052 goto try_bracketed_repeat
;
1056 char *tmp
= make_printable_str (opnd_str
,
1059 _("%s: equivalence class operand must be a single character"),
1068 /* Return nonzero if append_*_class reports a problem. */
1072 i
= closing_delim_idx
+ 2;
1075 /* Else fall through. This could be [:*] or [=*]. */
1078 try_bracketed_repeat
:
1080 /* Determine whether this is a bracketed repeat range
1081 matching the RE \[.\*(dec_or_oct_number)?\]. */
1082 err
= find_bracketed_repeat (es
, i
+ 1, &char_to_repeat
,
1084 &closing_bracket_idx
);
1087 append_repeated_char (result
, char_to_repeat
, repeat_count
);
1088 i
= closing_bracket_idx
+ 1;
1092 matched_multi_char_construct
= 0;
1096 /* Found a string that looked like [c*n] but the
1097 numeric part was invalid. */
1101 if (matched_multi_char_construct
)
1104 /* We reach this point if P does not match [:str:], [=c=],
1105 [c*n], or [c*]. Now, see if P looks like a range `[-c'
1106 (from `[' to `c'). */
1109 /* Look ahead one char for ranges like a-z. */
1110 if (ES_MATCH (es
, i
+ 1, '-'))
1112 if (append_range (result
, p
[i
], p
[i
+ 2]))
1118 append_normal_char (result
, p
[i
]);
1123 /* Now handle the (2 or fewer) remaining characters p[i]..p[es->len - 1]. */
1124 for (; i
< es
->len
; i
++)
1125 append_normal_char (result
, p
[i
]);
1130 /* Given a Spec_list S (with its saved state implicit in the values
1131 of its members `tail' and `state'), return the next single character
1132 in the expansion of S's constructs. If the last character of S was
1133 returned on the previous call or if S was empty, this function
1134 returns -1. For example, successive calls to get_next where S
1135 represents the spec-string 'a-d[y*3]' will return the sequence
1136 of values a, b, c, d, y, y, y, -1. Finally, if the construct from
1137 which the returned character comes is [:upper:] or [:lower:], the
1138 parameter CLASS is given a value to indicate which it was. Otherwise
1139 CLASS is set to UL_NONE. This value is used only when constructing
1140 the translation table to verify that any occurrences of upper and
1141 lower class constructs in the spec-strings appear in the same relative
1145 get_next (struct Spec_list
*s
, enum Upper_Lower_class
*class)
1147 struct List_element
*p
;
1154 if (s
->state
== BEGIN_STATE
)
1156 s
->tail
= s
->head
->next
;
1157 s
->state
= NEW_ELEMENT
;
1166 case RE_NORMAL_CHAR
:
1167 return_val
= p
->u
.normal_char
;
1168 s
->state
= NEW_ELEMENT
;
1173 if (s
->state
== NEW_ELEMENT
)
1174 s
->state
= ORD (p
->u
.range
.first_char
);
1177 return_val
= CHR (s
->state
);
1178 if (s
->state
== ORD (p
->u
.range
.last_char
))
1181 s
->state
= NEW_ELEMENT
;
1189 switch (p
->u
.char_class
)
1207 s
->state
= NEW_ELEMENT
;
1213 if (s
->state
== NEW_ELEMENT
)
1215 for (i
= 0; i
< N_CHARS
; i
++)
1216 if (is_char_class_member (p
->u
.char_class
, i
))
1218 assert (i
< N_CHARS
);
1221 assert (is_char_class_member (p
->u
.char_class
, s
->state
));
1222 return_val
= CHR (s
->state
);
1223 for (i
= s
->state
+ 1; i
< N_CHARS
; i
++)
1224 if (is_char_class_member (p
->u
.char_class
, i
))
1231 s
->state
= NEW_ELEMENT
;
1235 case RE_EQUIV_CLASS
:
1236 /* FIXME: this assumes that each character is alone in its own
1237 equivalence class (which appears to be correct for my
1238 LC_COLLATE. But I don't know of any function that allows
1239 one to determine a character's equivalence class. */
1241 return_val
= p
->u
.equiv_code
;
1242 s
->state
= NEW_ELEMENT
;
1246 case RE_REPEATED_CHAR
:
1247 /* Here, a repeat count of n == 0 means don't repeat at all. */
1248 if (p
->u
.repeated_char
.repeat_count
== 0)
1251 s
->state
= NEW_ELEMENT
;
1252 return_val
= get_next (s
, class);
1256 if (s
->state
== NEW_ELEMENT
)
1261 return_val
= p
->u
.repeated_char
.the_repeated_char
;
1262 if (p
->u
.repeated_char
.repeat_count
> 0
1263 && s
->state
== p
->u
.repeated_char
.repeat_count
)
1266 s
->state
= NEW_ELEMENT
;
1283 /* This is a minor kludge. This function is called from
1284 get_spec_stats to determine the cardinality of a set derived
1285 from a complemented string. It's a kludge in that some of the
1286 same operations are (duplicated) performed in set_initialize. */
1289 card_of_complement (struct Spec_list
*s
)
1292 int cardinality
= N_CHARS
;
1293 SET_TYPE in_set
[N_CHARS
];
1295 memset (in_set
, 0, N_CHARS
* sizeof (in_set
[0]));
1296 s
->state
= BEGIN_STATE
;
1297 while ((c
= get_next (s
, NULL
)) != -1)
1303 /* Gather statistics about the spec-list S in preparation for the tests
1304 in validate that determine the consistency of the specs. This function
1305 is called at most twice; once for string1, and again for any string2.
1306 LEN_S1 < 0 indicates that this is the first call and that S represents
1307 string1. When LEN_S1 >= 0, it is the length of the expansion of the
1308 constructs in string1, and we can use its value to resolve any
1309 indefinite repeat construct in S (which represents string2). Hence,
1310 this function has the side-effect that it converts a valid [c*]
1311 construct in string2 to [c*n] where n is large enough (or 0) to give
1312 string2 the same length as string1. For example, with the command
1313 tr a-z 'A[\n*]Z' on the second call to get_spec_stats, LEN_S1 would
1314 be 26 and S (representing string2) would be converted to 'A[\n*24]Z'. */
1317 get_spec_stats (struct Spec_list
*s
)
1319 struct List_element
*p
;
1322 s
->n_indefinite_repeats
= 0;
1323 s
->has_equiv_class
= 0;
1324 s
->has_restricted_char_class
= 0;
1325 s
->has_char_class
= 0;
1326 for (p
= s
->head
->next
; p
; p
= p
->next
)
1331 case RE_NORMAL_CHAR
:
1336 assert (p
->u
.range
.last_char
>= p
->u
.range
.first_char
);
1337 len
+= p
->u
.range
.last_char
- p
->u
.range
.first_char
+ 1;
1341 s
->has_char_class
= 1;
1342 for (i
= 0; i
< N_CHARS
; i
++)
1343 if (is_char_class_member (p
->u
.char_class
, i
))
1345 switch (p
->u
.char_class
)
1351 s
->has_restricted_char_class
= 1;
1356 case RE_EQUIV_CLASS
:
1357 for (i
= 0; i
< N_CHARS
; i
++)
1358 if (is_equiv_class_member (p
->u
.equiv_code
, i
))
1360 s
->has_equiv_class
= 1;
1363 case RE_REPEATED_CHAR
:
1364 if (p
->u
.repeated_char
.repeat_count
> 0)
1365 len
+= p
->u
.repeated_char
.repeat_count
;
1366 else if (p
->u
.repeated_char
.repeat_count
== 0)
1368 s
->indefinite_repeat_element
= p
;
1369 ++(s
->n_indefinite_repeats
);
1383 get_s1_spec_stats (struct Spec_list
*s1
)
1385 get_spec_stats (s1
);
1387 s1
->length
= card_of_complement (s1
);
1391 get_s2_spec_stats (struct Spec_list
*s2
, size_t len_s1
)
1393 get_spec_stats (s2
);
1394 if (len_s1
>= s2
->length
&& s2
->n_indefinite_repeats
== 1)
1396 s2
->indefinite_repeat_element
->u
.repeated_char
.repeat_count
=
1397 len_s1
- s2
->length
;
1398 s2
->length
= len_s1
;
1403 spec_init (struct Spec_list
*spec_list
)
1405 spec_list
->head
= spec_list
->tail
=
1406 (struct List_element
*) xmalloc (sizeof (struct List_element
));
1407 spec_list
->head
->next
= NULL
;
1410 /* This function makes two passes over the argument string S. The first
1411 one converts all \c and \ddd escapes to their one-byte representations.
1412 The second constructs a linked specification list, SPEC_LIST, of the
1413 characters and constructs that comprise the argument string. If either
1414 of these passes detects an error, this function returns nonzero. */
1417 parse_str (const unsigned char *s
, struct Spec_list
*spec_list
)
1422 fail
= unquote (s
, &es
);
1424 fail
= build_spec_list (&es
, spec_list
);
1429 /* Given two specification lists, S1 and S2, and assuming that
1430 S1->length > S2->length, append a single [c*n] element to S2 where c
1431 is the last character in the expansion of S2 and n is the difference
1432 between the two lengths.
1433 Upon successful completion, S2->length is set to S1->length. The only
1434 way this function can fail to make S2 as long as S1 is when S2 has
1435 zero-length, since in that case, there is no last character to repeat.
1436 So S2->length is required to be at least 1.
1438 Providing this functionality allows the user to do some pretty
1439 non-BSD (and non-portable) things: For example, the command
1440 tr -cs '[:upper:]0-9' '[:lower:]'
1441 is almost guaranteed to give results that depend on your collating
1445 string2_extend (const struct Spec_list
*s1
, struct Spec_list
*s2
)
1447 struct List_element
*p
;
1451 assert (translating
);
1452 assert (s1
->length
> s2
->length
);
1453 assert (s2
->length
> 0);
1458 case RE_NORMAL_CHAR
:
1459 char_to_repeat
= p
->u
.normal_char
;
1462 char_to_repeat
= p
->u
.range
.last_char
;
1465 for (i
= N_CHARS
; i
>= 0; i
--)
1466 if (is_char_class_member (p
->u
.char_class
, i
))
1469 char_to_repeat
= CHR (i
);
1472 case RE_REPEATED_CHAR
:
1473 char_to_repeat
= p
->u
.repeated_char
.the_repeated_char
;
1476 case RE_EQUIV_CLASS
:
1477 /* This shouldn't happen, because validate exits with an error
1478 if it finds an equiv class in string2 when translating. */
1491 append_repeated_char (s2
, char_to_repeat
, s1
->length
- s2
->length
);
1492 s2
->length
= s1
->length
;
1495 /* Return non-zero if S is a non-empty list in which exactly one
1496 character (but potentially, many instances of it) appears.
1497 E.g. [X*] or xxxxxxxx. */
1500 homogeneous_spec_list (struct Spec_list
*s
)
1504 s
->state
= BEGIN_STATE
;
1506 if ((b
= get_next (s
, NULL
)) == -1)
1509 while ((c
= get_next (s
, NULL
)) != -1)
1516 /* Die with an error message if S1 and S2 describe strings that
1517 are not valid with the given command line switches.
1518 A side effect of this function is that if a valid [c*] or
1519 [c*0] construct appears in string2, it is converted to [c*n]
1520 with a value for n that makes s2->length == s1->length. By
1521 the same token, if the --truncate-set1 option is not
1522 given, S2 may be extended. */
1525 validate (struct Spec_list
*s1
, struct Spec_list
*s2
)
1527 get_s1_spec_stats (s1
);
1528 if (s1
->n_indefinite_repeats
> 0)
1530 error (EXIT_FAILURE
, 0,
1531 _("the [c*] repeat construct may not appear in string1"));
1536 get_s2_spec_stats (s2
, s1
->length
);
1538 if (s2
->n_indefinite_repeats
> 1)
1540 error (EXIT_FAILURE
, 0,
1541 _("only one [c*] repeat construct may appear in string2"));
1546 if (s2
->has_equiv_class
)
1548 error (EXIT_FAILURE
, 0,
1549 _("[=c=] expressions may not appear in string2 \
1550 when translating"));
1553 if (s1
->length
> s2
->length
)
1557 /* string2 must be non-empty unless --truncate-set1 is
1558 given or string1 is empty. */
1560 if (s2
->length
== 0)
1561 error (EXIT_FAILURE
, 0,
1562 _("when not truncating set1, string2 must be non-empty"));
1563 string2_extend (s1
, s2
);
1567 if (complement
&& s1
->has_char_class
1568 && ! (s2
->length
== s1
->length
&& homogeneous_spec_list (s2
)))
1570 error (EXIT_FAILURE
, 0,
1571 _("when translating with complemented character classes,\
1572 \nstring2 must map all characters in the domain to one"));
1575 if (s2
->has_restricted_char_class
)
1577 error (EXIT_FAILURE
, 0,
1578 _("when translating, the only character classes that may \
1579 appear in\nstring2 are `upper' and `lower'"));
1583 /* Not translating. */
1585 if (s2
->n_indefinite_repeats
> 0)
1586 error (EXIT_FAILURE
, 0,
1587 _("the [c*] construct may appear in string2 only \
1588 when translating"));
1593 /* Read buffers of SIZE bytes via the function READER (if READER is
1594 NULL, read from stdin) until EOF. When non-NULL, READER is either
1595 read_and_delete or read_and_xlate. After each buffer is read, it is
1596 processed and written to stdout. The buffers are processed so that
1597 multiple consecutive occurrences of the same character in the input
1598 stream are replaced by a single occurrence of that character if the
1599 character is in the squeeze set. */
1602 squeeze_filter (unsigned char *buf
, long int size
, PFI reader
)
1604 unsigned int char_to_squeeze
= NOT_A_CHAR
;
1615 nr
= safe_read (0, (char *) buf
, size
);
1617 nr
= (*reader
) (buf
, size
, NULL
);
1620 error (EXIT_FAILURE
, errno
, _("read error"));
1628 if (char_to_squeeze
== NOT_A_CHAR
)
1631 /* Here, by being a little tricky, we can get a significant
1632 performance increase in most cases when the input is
1633 reasonably large. Since tr will modify the input only
1634 if two consecutive (and identical) input characters are
1635 in the squeeze set, we can step by two through the data
1636 when searching for a character in the squeeze set. This
1637 means there may be a little more work in a few cases and
1638 perhaps twice as much work in the worst cases where most
1639 of the input is removed by squeezing repeats. But most
1640 uses of this functionality seem to remove less than 20-30%
1642 for (; i
< nr
&& !in_squeeze_set
[buf
[i
]]; i
+= 2)
1645 /* There is a special case when i == nr and we've just
1646 skipped a character (the last one in buf) that is in
1648 if (i
== nr
&& in_squeeze_set
[buf
[i
- 1]])
1652 out_len
= nr
- begin
;
1655 char_to_squeeze
= buf
[i
];
1656 /* We're about to output buf[begin..i]. */
1657 out_len
= i
- begin
+ 1;
1659 /* But since we stepped by 2 in the loop above,
1660 out_len may be one too large. */
1661 if (i
> 0 && buf
[i
- 1] == char_to_squeeze
)
1664 /* Advance i to the index of first character to be
1665 considered when looking for a char different from
1670 && fwrite ((char *) &buf
[begin
], 1, out_len
, stdout
) == 0)
1671 error (EXIT_FAILURE
, errno
, _("write error"));
1674 if (char_to_squeeze
!= NOT_A_CHAR
)
1676 /* Advance i to index of first char != char_to_squeeze
1677 (or to nr if all the rest of the characters in this
1678 buffer are the same as char_to_squeeze). */
1679 for (; i
< nr
&& buf
[i
] == char_to_squeeze
; i
++)
1682 char_to_squeeze
= NOT_A_CHAR
;
1683 /* If (i >= nr) we've squeezed the last character in this buffer.
1684 So now we have to read a new buffer and continue comparing
1685 characters against char_to_squeeze. */
1690 /* Read buffers of SIZE bytes from stdin until one is found that
1691 contains at least one character not in the delete set. Store
1692 in the array BUF, all characters from that buffer that are not
1693 in the delete set, and return the number of characters saved
1697 read_and_delete (unsigned char *buf
, long int size
, PFI not_used
)
1700 static int hit_eof
= 0;
1702 assert (not_used
== NULL
);
1708 /* This enclosing do-while loop is to make sure that
1709 we don't return zero (indicating EOF) when we've
1710 just deleted all the characters in a buffer. */
1714 int nr
= safe_read (0, (char *) buf
, size
);
1717 error (EXIT_FAILURE
, errno
, _("read error"));
1724 /* This first loop may be a waste of code, but gives much
1725 better performance when no characters are deleted in
1726 the beginning of a buffer. It just avoids the copying
1727 of buf[i] into buf[n_saved] when it would be a NOP. */
1729 for (i
= 0; i
< nr
&& !in_delete_set
[buf
[i
]]; i
++)
1733 for (++i
; i
< nr
; i
++)
1734 if (!in_delete_set
[buf
[i
]])
1735 buf
[n_saved
++] = buf
[i
];
1737 while (n_saved
== 0);
1742 /* Read at most SIZE bytes from stdin into the array BUF. Then
1743 perform the in-place and one-to-one mapping specified by the global
1744 array `xlate'. Return the number of characters read, or 0 upon EOF. */
1747 read_and_xlate (unsigned char *buf
, long int size
, PFI not_used
)
1749 long chars_read
= 0;
1750 static int hit_eof
= 0;
1753 assert (not_used
== NULL
);
1759 chars_read
= safe_read (0, (char *) buf
, size
);
1761 error (EXIT_FAILURE
, errno
, _("read error"));
1762 if (chars_read
== 0)
1768 for (i
= 0; i
< chars_read
; i
++)
1769 buf
[i
] = xlate
[buf
[i
]];
1774 /* Initialize a boolean membership set IN_SET with the character
1775 values obtained by traversing the linked list of constructs S
1776 using the function `get_next'. If COMPLEMENT_THIS_SET is
1777 nonzero the resulting set is complemented. */
1780 set_initialize (struct Spec_list
*s
, int complement_this_set
, SET_TYPE
*in_set
)
1785 memset (in_set
, 0, N_CHARS
* sizeof (in_set
[0]));
1786 s
->state
= BEGIN_STATE
;
1787 while ((c
= get_next (s
, NULL
)) != -1)
1789 if (complement_this_set
)
1790 for (i
= 0; i
< N_CHARS
; i
++)
1791 in_set
[i
] = (!in_set
[i
]);
1795 main (int argc
, char **argv
)
1798 int non_option_args
;
1799 struct Spec_list buf1
, buf2
;
1800 struct Spec_list
*s1
= &buf1
;
1801 struct Spec_list
*s2
= &buf2
;
1803 program_name
= argv
[0];
1804 setlocale (LC_ALL
, "");
1805 bindtextdomain (PACKAGE
, LOCALEDIR
);
1806 textdomain (PACKAGE
);
1808 while ((c
= getopt_long (argc
, argv
, "cdst", long_options
, NULL
)) != -1)
1824 squeeze_repeats
= 1;
1839 printf ("tr (%s) %s\n", GNU_PACKAGE
, VERSION
);
1840 exit (EXIT_SUCCESS
);
1846 posix_pedantic
= (getenv ("POSIXLY_CORRECT") != NULL
);
1848 non_option_args
= argc
- optind
;
1849 translating
= (non_option_args
== 2 && !delete);
1851 /* Change this test if it is valid to give tr no options and
1852 no args at all. POSIX doesn't specifically say anything
1853 either way, but it looks like they implied it's invalid
1854 by omission. If you want to make tr do a slow imitation
1855 of `cat' use `tr a a'. */
1856 if (non_option_args
> 2)
1858 error (0, 0, _("too many arguments"));
1862 if (!delete && !squeeze_repeats
&& non_option_args
!= 2)
1863 error (EXIT_FAILURE
, 0, _("two strings must be given when translating"));
1865 if (delete && squeeze_repeats
&& non_option_args
!= 2)
1866 error (EXIT_FAILURE
, 0, _("two strings must be given when both \
1867 deleting and squeezing repeats"));
1869 /* If --delete is given without --squeeze-repeats, then
1870 only one string argument may be specified. But POSIX
1871 says to ignore any string2 in this case, so if POSIXLY_CORRECT
1872 is set, pretend we never saw string2. But I think
1873 this deserves a fatal error, so that's the default. */
1874 if ((delete && !squeeze_repeats
) && non_option_args
!= 1)
1876 if (posix_pedantic
&& non_option_args
== 2)
1879 error (EXIT_FAILURE
, 0,
1880 _("only one string may be given when deleting \
1881 without squeezing repeats"));
1884 if (squeeze_repeats
&& non_option_args
== 0)
1885 error (EXIT_FAILURE
, 0,
1886 _("at least one string must be given when squeezing repeats"));
1889 if (parse_str ((unsigned char *) argv
[optind
], s1
))
1890 exit (EXIT_FAILURE
);
1892 if (non_option_args
== 2)
1895 if (parse_str ((unsigned char *) argv
[optind
+ 1], s2
))
1896 exit (EXIT_FAILURE
);
1903 /* Use binary I/O, since `tr' is sometimes used to transliterate
1904 non-printable characters, or characters which are stripped away
1905 by text-mode reads (like CR and ^Z). */
1906 SET_BINARY2 (STDIN_FILENO
, STDOUT_FILENO
);
1908 if (squeeze_repeats
&& non_option_args
== 1)
1910 set_initialize (s1
, complement
, in_squeeze_set
);
1911 squeeze_filter (io_buf
, IO_BUF_SIZE
, NULL
);
1913 else if (delete && non_option_args
== 1)
1917 set_initialize (s1
, complement
, in_delete_set
);
1920 nr
= read_and_delete (io_buf
, IO_BUF_SIZE
, NULL
);
1921 if (nr
> 0 && fwrite ((char *) io_buf
, 1, nr
, stdout
) == 0)
1922 error (EXIT_FAILURE
, errno
, _("write error"));
1926 else if (squeeze_repeats
&& delete && non_option_args
== 2)
1928 set_initialize (s1
, complement
, in_delete_set
);
1929 set_initialize (s2
, 0, in_squeeze_set
);
1930 squeeze_filter (io_buf
, IO_BUF_SIZE
, (PFI
) read_and_delete
);
1932 else if (translating
)
1937 SET_TYPE
*in_s1
= in_delete_set
;
1939 set_initialize (s1
, 0, in_s1
);
1940 s2
->state
= BEGIN_STATE
;
1941 for (i
= 0; i
< N_CHARS
; i
++)
1943 for (i
= 0; i
< N_CHARS
; i
++)
1947 int ch
= get_next (s2
, NULL
);
1948 assert (ch
!= -1 || truncate_set1
);
1951 /* This will happen when tr is invoked like e.g.
1952 tr -cs A-Za-z0-9 '\012'. */
1958 assert (get_next (s2
, NULL
) == -1 || truncate_set1
);
1964 enum Upper_Lower_class class_s1
;
1965 enum Upper_Lower_class class_s2
;
1967 for (i
= 0; i
< N_CHARS
; i
++)
1969 s1
->state
= BEGIN_STATE
;
1970 s2
->state
= BEGIN_STATE
;
1973 c1
= get_next (s1
, &class_s1
);
1974 c2
= get_next (s2
, &class_s2
);
1975 if (!class_ok
[(int) class_s1
][(int) class_s2
])
1976 error (EXIT_FAILURE
, 0,
1977 _("misaligned [:upper:] and/or [:lower:] construct"));
1979 if (class_s1
== UL_LOWER
&& class_s2
== UL_UPPER
)
1981 for (i
= 0; i
< N_CHARS
; i
++)
1983 xlate
[i
] = toupper (i
);
1985 else if (class_s1
== UL_UPPER
&& class_s2
== UL_LOWER
)
1987 for (i
= 0; i
< N_CHARS
; i
++)
1989 xlate
[i
] = tolower (i
);
1991 else if ((class_s1
== UL_LOWER
&& class_s2
== UL_LOWER
)
1992 || (class_s1
== UL_UPPER
&& class_s2
== UL_UPPER
))
1994 /* By default, GNU tr permits the identity mappings: from
1995 [:upper:] to [:upper:] and [:lower:] to [:lower:]. But
1996 when POSIXLY_CORRECT is set, those evoke diagnostics. */
1999 error (EXIT_FAILURE
, 0,
2001 invalid identity mapping; when translating, any [:lower:] or [:upper:]\n\
2002 construct in string1 must be aligned with a corresponding construct\n\
2003 ([:upper:] or [:lower:], respectively) in string2"));
2008 /* The following should have been checked by validate... */
2009 if (c1
== -1 || c2
== -1)
2014 assert (c1
== -1 || truncate_set1
);
2016 if (squeeze_repeats
)
2018 set_initialize (s2
, 0, in_squeeze_set
);
2019 squeeze_filter (io_buf
, IO_BUF_SIZE
, (PFI
) read_and_xlate
);
2027 chars_read
= read_and_xlate (io_buf
, IO_BUF_SIZE
, NULL
);
2029 && fwrite ((char *) io_buf
, 1, chars_read
, stdout
) == 0)
2030 error (EXIT_FAILURE
, errno
, _("write error"));
2032 while (chars_read
> 0);
2036 if (fclose (stdout
) == EOF
)
2037 error (EXIT_FAILURE
, errno
, _("write error"));
2040 error (EXIT_FAILURE
, errno
, _("standard input"));
2042 exit (EXIT_SUCCESS
);