Also check for the log_user method, to avoid
[coreutils.git] / lib / md5.c
blob5cae8662c8aec4e0f9ef4047990a67bf80c19808
1 /* md5.c - Functions to compute MD5 message digest of files or memory blocks
2 according to the definition of MD5 in RFC 1321 from April 1992.
3 Copyright (C) 1995, 1996, 2001, 2003 Free Software Foundation, Inc.
4 NOTE: The canonical source of this file is maintained with the GNU C
5 Library. Bugs can be reported to bug-glibc@prep.ai.mit.edu.
7 This program is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 2, or (at your option) any
10 later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software Foundation,
19 Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
21 /* Written by Ulrich Drepper <drepper@gnu.ai.mit.edu>, 1995. */
23 #ifdef HAVE_CONFIG_H
24 # include <config.h>
25 #endif
27 #include <sys/types.h>
29 #if STDC_HEADERS || defined _LIBC
30 # include <stdlib.h>
31 # include <string.h>
32 #else
33 # ifndef HAVE_MEMCPY
34 # define memcpy(d, s, n) bcopy ((s), (d), (n))
35 # endif
36 #endif
38 #include "md5.h"
39 #include "unlocked-io.h"
41 #ifdef _LIBC
42 # include <endian.h>
43 # if __BYTE_ORDER == __BIG_ENDIAN
44 # define WORDS_BIGENDIAN 1
45 # endif
46 /* We need to keep the namespace clean so define the MD5 function
47 protected using leading __ . */
48 # define md5_init_ctx __md5_init_ctx
49 # define md5_process_block __md5_process_block
50 # define md5_process_bytes __md5_process_bytes
51 # define md5_finish_ctx __md5_finish_ctx
52 # define md5_read_ctx __md5_read_ctx
53 # define md5_stream __md5_stream
54 # define md5_buffer __md5_buffer
55 #endif
57 #ifdef WORDS_BIGENDIAN
58 # define SWAP(n) \
59 (((n) << 24) | (((n) & 0xff00) << 8) | (((n) >> 8) & 0xff00) | ((n) >> 24))
60 #else
61 # define SWAP(n) (n)
62 #endif
64 #define BLOCKSIZE 4096
65 /* Ensure that BLOCKSIZE is a multiple of 64. */
66 #if BLOCKSIZE % 64 != 0
67 /* FIXME-someday (soon?): use #error instead of this kludge. */
68 "invalid BLOCKSIZE"
69 #endif
71 /* This array contains the bytes used to pad the buffer to the next
72 64-byte boundary. (RFC 1321, 3.1: Step 1) */
73 static const unsigned char fillbuf[64] = { 0x80, 0 /* , 0, 0, ... */ };
76 /* Initialize structure containing state of computation.
77 (RFC 1321, 3.3: Step 3) */
78 void
79 md5_init_ctx (ctx)
80 struct md5_ctx *ctx;
82 ctx->A = 0x67452301;
83 ctx->B = 0xefcdab89;
84 ctx->C = 0x98badcfe;
85 ctx->D = 0x10325476;
87 ctx->total[0] = ctx->total[1] = 0;
88 ctx->buflen = 0;
91 /* Put result from CTX in first 16 bytes following RESBUF. The result
92 must be in little endian byte order.
94 IMPORTANT: On some systems it is required that RESBUF is correctly
95 aligned for a 32 bits value. */
96 void *
97 md5_read_ctx (ctx, resbuf)
98 const struct md5_ctx *ctx;
99 void *resbuf;
101 ((md5_uint32 *) resbuf)[0] = SWAP (ctx->A);
102 ((md5_uint32 *) resbuf)[1] = SWAP (ctx->B);
103 ((md5_uint32 *) resbuf)[2] = SWAP (ctx->C);
104 ((md5_uint32 *) resbuf)[3] = SWAP (ctx->D);
106 return resbuf;
109 /* Process the remaining bytes in the internal buffer and the usual
110 prolog according to the standard and write the result to RESBUF.
112 IMPORTANT: On some systems it is required that RESBUF is correctly
113 aligned for a 32 bits value. */
114 void *
115 md5_finish_ctx (ctx, resbuf)
116 struct md5_ctx *ctx;
117 void *resbuf;
119 /* Take yet unprocessed bytes into account. */
120 md5_uint32 bytes = ctx->buflen;
121 size_t pad;
123 /* Now count remaining bytes. */
124 ctx->total[0] += bytes;
125 if (ctx->total[0] < bytes)
126 ++ctx->total[1];
128 pad = bytes >= 56 ? 64 + 56 - bytes : 56 - bytes;
129 memcpy (&ctx->buffer[bytes], fillbuf, pad);
131 /* Put the 64-bit file length in *bits* at the end of the buffer. */
132 *(md5_uint32 *) &ctx->buffer[bytes + pad] = SWAP (ctx->total[0] << 3);
133 *(md5_uint32 *) &ctx->buffer[bytes + pad + 4] = SWAP ((ctx->total[1] << 3) |
134 (ctx->total[0] >> 29));
136 /* Process last bytes. */
137 md5_process_block (ctx->buffer, bytes + pad + 8, ctx);
139 return md5_read_ctx (ctx, resbuf);
142 /* Compute MD5 message digest for bytes read from STREAM. The
143 resulting message digest number will be written into the 16 bytes
144 beginning at RESBLOCK. */
146 md5_stream (stream, resblock)
147 FILE *stream;
148 void *resblock;
150 struct md5_ctx ctx;
151 char buffer[BLOCKSIZE + 72];
152 size_t sum;
154 /* Initialize the computation context. */
155 md5_init_ctx (&ctx);
157 /* Iterate over full file contents. */
158 while (1)
160 /* We read the file in blocks of BLOCKSIZE bytes. One call of the
161 computation function processes the whole buffer so that with the
162 next round of the loop another block can be read. */
163 size_t n;
164 sum = 0;
166 /* Read block. Take care for partial reads. */
167 while (1)
169 n = fread (buffer + sum, 1, BLOCKSIZE - sum, stream);
171 sum += n;
173 if (sum == BLOCKSIZE)
174 break;
176 if (n == 0)
178 /* Check for the error flag IFF N == 0, so that we don't
179 exit the loop after a partial read due to e.g., EAGAIN
180 or EWOULDBLOCK. */
181 if (ferror (stream))
182 return 1;
183 goto process_partial_block;
186 /* We've read at least one byte, so ignore errors. But always
187 check for EOF, since feof may be true even though N > 0.
188 Otherwise, we could end up calling fread after EOF. */
189 if (feof (stream))
190 goto process_partial_block;
193 /* Process buffer with BLOCKSIZE bytes. Note that
194 BLOCKSIZE % 64 == 0
196 md5_process_block (buffer, BLOCKSIZE, &ctx);
199 process_partial_block:;
201 /* Process any remaining bytes. */
202 if (sum > 0)
203 md5_process_bytes (buffer, sum, &ctx);
205 /* Construct result in desired memory. */
206 md5_finish_ctx (&ctx, resblock);
207 return 0;
210 /* Compute MD5 message digest for LEN bytes beginning at BUFFER. The
211 result is always in little endian byte order, so that a byte-wise
212 output yields to the wanted ASCII representation of the message
213 digest. */
214 void *
215 md5_buffer (buffer, len, resblock)
216 const char *buffer;
217 size_t len;
218 void *resblock;
220 struct md5_ctx ctx;
222 /* Initialize the computation context. */
223 md5_init_ctx (&ctx);
225 /* Process whole buffer but last len % 64 bytes. */
226 md5_process_bytes (buffer, len, &ctx);
228 /* Put result in desired memory area. */
229 return md5_finish_ctx (&ctx, resblock);
233 void
234 md5_process_bytes (buffer, len, ctx)
235 const void *buffer;
236 size_t len;
237 struct md5_ctx *ctx;
239 /* When we already have some bits in our internal buffer concatenate
240 both inputs first. */
241 if (ctx->buflen != 0)
243 size_t left_over = ctx->buflen;
244 size_t add = 128 - left_over > len ? len : 128 - left_over;
246 memcpy (&ctx->buffer[left_over], buffer, add);
247 ctx->buflen += add;
249 if (ctx->buflen > 64)
251 md5_process_block (ctx->buffer, ctx->buflen & ~63, ctx);
253 ctx->buflen &= 63;
254 /* The regions in the following copy operation cannot overlap. */
255 memcpy (ctx->buffer, &ctx->buffer[(left_over + add) & ~63],
256 ctx->buflen);
259 buffer = (const char *) buffer + add;
260 len -= add;
263 /* Process available complete blocks. */
264 if (len >= 64)
266 #if !_STRING_ARCH_unaligned
267 /* To check alignment gcc has an appropriate operator. Other
268 compilers don't. */
269 # if __GNUC__ >= 2
270 # define UNALIGNED_P(p) (((md5_uintptr) p) % __alignof__ (md5_uint32) != 0)
271 # else
272 # define UNALIGNED_P(p) (((md5_uintptr) p) % sizeof (md5_uint32) != 0)
273 # endif
274 if (UNALIGNED_P (buffer))
275 while (len > 64)
277 md5_process_block (memcpy (ctx->buffer, buffer, 64), 64, ctx);
278 buffer = (const char *) buffer + 64;
279 len -= 64;
281 else
282 #endif
284 md5_process_block (buffer, len & ~63, ctx);
285 buffer = (const char *) buffer + (len & ~63);
286 len &= 63;
290 /* Move remaining bytes in internal buffer. */
291 if (len > 0)
293 size_t left_over = ctx->buflen;
295 memcpy (&ctx->buffer[left_over], buffer, len);
296 left_over += len;
297 if (left_over >= 64)
299 md5_process_block (ctx->buffer, 64, ctx);
300 left_over -= 64;
301 memcpy (ctx->buffer, &ctx->buffer[64], left_over);
303 ctx->buflen = left_over;
308 /* These are the four functions used in the four steps of the MD5 algorithm
309 and defined in the RFC 1321. The first function is a little bit optimized
310 (as found in Colin Plumbs public domain implementation). */
311 /* #define FF(b, c, d) ((b & c) | (~b & d)) */
312 #define FF(b, c, d) (d ^ (b & (c ^ d)))
313 #define FG(b, c, d) FF (d, b, c)
314 #define FH(b, c, d) (b ^ c ^ d)
315 #define FI(b, c, d) (c ^ (b | ~d))
317 /* Process LEN bytes of BUFFER, accumulating context into CTX.
318 It is assumed that LEN % 64 == 0. */
320 void
321 md5_process_block (buffer, len, ctx)
322 const void *buffer;
323 size_t len;
324 struct md5_ctx *ctx;
326 md5_uint32 correct_words[16];
327 const md5_uint32 *words = buffer;
328 size_t nwords = len / sizeof (md5_uint32);
329 const md5_uint32 *endp = words + nwords;
330 md5_uint32 A = ctx->A;
331 md5_uint32 B = ctx->B;
332 md5_uint32 C = ctx->C;
333 md5_uint32 D = ctx->D;
335 /* First increment the byte count. RFC 1321 specifies the possible
336 length of the file up to 2^64 bits. Here we only compute the
337 number of bytes. Do a double word increment. */
338 ctx->total[0] += len;
339 if (ctx->total[0] < len)
340 ++ctx->total[1];
342 /* Process all bytes in the buffer with 64 bytes in each round of
343 the loop. */
344 while (words < endp)
346 md5_uint32 *cwp = correct_words;
347 md5_uint32 A_save = A;
348 md5_uint32 B_save = B;
349 md5_uint32 C_save = C;
350 md5_uint32 D_save = D;
352 /* First round: using the given function, the context and a constant
353 the next context is computed. Because the algorithms processing
354 unit is a 32-bit word and it is determined to work on words in
355 little endian byte order we perhaps have to change the byte order
356 before the computation. To reduce the work for the next steps
357 we store the swapped words in the array CORRECT_WORDS. */
359 #define OP(a, b, c, d, s, T) \
360 do \
362 a += FF (b, c, d) + (*cwp++ = SWAP (*words)) + T; \
363 ++words; \
364 a = rol (a, s); \
365 a += b; \
367 while (0)
369 /* Before we start, one word to the strange constants.
370 They are defined in RFC 1321 as
372 T[i] = (int) (4294967296.0 * fabs (sin (i))), i=1..64, or
373 perl -e 'foreach(1..64){printf "0x%08x\n", int (4294967296 * abs (sin $_))}'
376 /* Round 1. */
377 OP (A, B, C, D, 7, 0xd76aa478);
378 OP (D, A, B, C, 12, 0xe8c7b756);
379 OP (C, D, A, B, 17, 0x242070db);
380 OP (B, C, D, A, 22, 0xc1bdceee);
381 OP (A, B, C, D, 7, 0xf57c0faf);
382 OP (D, A, B, C, 12, 0x4787c62a);
383 OP (C, D, A, B, 17, 0xa8304613);
384 OP (B, C, D, A, 22, 0xfd469501);
385 OP (A, B, C, D, 7, 0x698098d8);
386 OP (D, A, B, C, 12, 0x8b44f7af);
387 OP (C, D, A, B, 17, 0xffff5bb1);
388 OP (B, C, D, A, 22, 0x895cd7be);
389 OP (A, B, C, D, 7, 0x6b901122);
390 OP (D, A, B, C, 12, 0xfd987193);
391 OP (C, D, A, B, 17, 0xa679438e);
392 OP (B, C, D, A, 22, 0x49b40821);
394 /* For the second to fourth round we have the possibly swapped words
395 in CORRECT_WORDS. Redefine the macro to take an additional first
396 argument specifying the function to use. */
397 #undef OP
398 #define OP(f, a, b, c, d, k, s, T) \
399 do \
401 a += f (b, c, d) + correct_words[k] + T; \
402 a = rol (a, s); \
403 a += b; \
405 while (0)
407 /* Round 2. */
408 OP (FG, A, B, C, D, 1, 5, 0xf61e2562);
409 OP (FG, D, A, B, C, 6, 9, 0xc040b340);
410 OP (FG, C, D, A, B, 11, 14, 0x265e5a51);
411 OP (FG, B, C, D, A, 0, 20, 0xe9b6c7aa);
412 OP (FG, A, B, C, D, 5, 5, 0xd62f105d);
413 OP (FG, D, A, B, C, 10, 9, 0x02441453);
414 OP (FG, C, D, A, B, 15, 14, 0xd8a1e681);
415 OP (FG, B, C, D, A, 4, 20, 0xe7d3fbc8);
416 OP (FG, A, B, C, D, 9, 5, 0x21e1cde6);
417 OP (FG, D, A, B, C, 14, 9, 0xc33707d6);
418 OP (FG, C, D, A, B, 3, 14, 0xf4d50d87);
419 OP (FG, B, C, D, A, 8, 20, 0x455a14ed);
420 OP (FG, A, B, C, D, 13, 5, 0xa9e3e905);
421 OP (FG, D, A, B, C, 2, 9, 0xfcefa3f8);
422 OP (FG, C, D, A, B, 7, 14, 0x676f02d9);
423 OP (FG, B, C, D, A, 12, 20, 0x8d2a4c8a);
425 /* Round 3. */
426 OP (FH, A, B, C, D, 5, 4, 0xfffa3942);
427 OP (FH, D, A, B, C, 8, 11, 0x8771f681);
428 OP (FH, C, D, A, B, 11, 16, 0x6d9d6122);
429 OP (FH, B, C, D, A, 14, 23, 0xfde5380c);
430 OP (FH, A, B, C, D, 1, 4, 0xa4beea44);
431 OP (FH, D, A, B, C, 4, 11, 0x4bdecfa9);
432 OP (FH, C, D, A, B, 7, 16, 0xf6bb4b60);
433 OP (FH, B, C, D, A, 10, 23, 0xbebfbc70);
434 OP (FH, A, B, C, D, 13, 4, 0x289b7ec6);
435 OP (FH, D, A, B, C, 0, 11, 0xeaa127fa);
436 OP (FH, C, D, A, B, 3, 16, 0xd4ef3085);
437 OP (FH, B, C, D, A, 6, 23, 0x04881d05);
438 OP (FH, A, B, C, D, 9, 4, 0xd9d4d039);
439 OP (FH, D, A, B, C, 12, 11, 0xe6db99e5);
440 OP (FH, C, D, A, B, 15, 16, 0x1fa27cf8);
441 OP (FH, B, C, D, A, 2, 23, 0xc4ac5665);
443 /* Round 4. */
444 OP (FI, A, B, C, D, 0, 6, 0xf4292244);
445 OP (FI, D, A, B, C, 7, 10, 0x432aff97);
446 OP (FI, C, D, A, B, 14, 15, 0xab9423a7);
447 OP (FI, B, C, D, A, 5, 21, 0xfc93a039);
448 OP (FI, A, B, C, D, 12, 6, 0x655b59c3);
449 OP (FI, D, A, B, C, 3, 10, 0x8f0ccc92);
450 OP (FI, C, D, A, B, 10, 15, 0xffeff47d);
451 OP (FI, B, C, D, A, 1, 21, 0x85845dd1);
452 OP (FI, A, B, C, D, 8, 6, 0x6fa87e4f);
453 OP (FI, D, A, B, C, 15, 10, 0xfe2ce6e0);
454 OP (FI, C, D, A, B, 6, 15, 0xa3014314);
455 OP (FI, B, C, D, A, 13, 21, 0x4e0811a1);
456 OP (FI, A, B, C, D, 4, 6, 0xf7537e82);
457 OP (FI, D, A, B, C, 11, 10, 0xbd3af235);
458 OP (FI, C, D, A, B, 2, 15, 0x2ad7d2bb);
459 OP (FI, B, C, D, A, 9, 21, 0xeb86d391);
461 /* Add the starting values of the context. */
462 A += A_save;
463 B += B_save;
464 C += C_save;
465 D += D_save;
468 /* Put checksum in context given as argument. */
469 ctx->A = A;
470 ctx->B = B;
471 ctx->C = C;
472 ctx->D = D;